
Journal of Object Technology | RESEARCH ARTICLE

An Empirical Study on Leveraging LLMs for Metamodels
and Code Co-evolution

Zohra Kaouter Kebaili∗, Djamel Eddine Khelladi∗, Mathieu Acher†, and Olivier Barais‡

∗CNRS, Univ. Rennes, IRISA, INRIA, France
†INSA Rennes, IUF, IRISA, INRIA, France

‡Univ. Rennes, IRISA, INRIA, France

ABSTRACT1

Metamodels play an important role in MDE and in specifying a software language. They are cornerstone to generate other
artifacts of lower abstraction level, such as code. Developers then enrich the generated code to build their language services
and tooling, e.g., editors, and checkers. When a metamodel evolves, part of the code is regenerated and all the additional
developers’ code can be impacted. Thus, requiring erroneous code to be co-evolved accordingly.

2

3

4

5

In this paper, we explore a novel approach to mitigate the challenge of metamodel evolution impacts on the code using LLMs.
In fact LLMs stand as promising tools for tackling increasingly complex problems and support developers in various tasks of
writing, correcting and documenting source code, models, and other artifacts. However, while there is an extensive empirical
assessment of the LLMs capabilities in generating models, code and tests, there is a lack of work on their ability to support their
maintenance. In this paper, we focus on the particular problem of metamodels and code co-evolution. We first designed a
prompt template structure that contains contextual information about metamodel changes, the abstraction gap between the
metamodel and the code, and the erroneous code to co-evolve. To investigate the usefulness of this template, we generated
three more variations of the prompts. The generated prompts are then given to the LLM to co-evolve the impacted code.

6

7

8

9

10

11

12

13

We evaluated our generated prompts and other three of their variations with ChatGPT version 3.5 on seven Eclipse projects
from OCL and Modisco evolved metamodels. Results show that ChatGPT can co-evolve correctly 88.7 % of the errors due
to metamodel evolution, varying from 75% to 100% of correctness rate. When varying the prompts, we observed increased
correctness in two variants and decreased correctness in another variant. We also observed that varying the temperature
hyperparameter yields better results with lower temperatures. Our results are observed on a total of 5320 generated prompts.
Finally, when compared to the quick fixes of the IDE, the generated prompts co-evolutions completely outperform the quick fixes.

14

15

16

17

18

19

KEYWORDS Metemodel evolution, code evolution, LLM, chatgpt, coevolution, prompt engineering20

1

1. Introduction2

Large language models (LLMs) have emerged in the field of nat-3

ural language processing, exhibiting high aptitude to transform4

JOT reference format:
Zohra Kaouter Kebaili, Djamel Eddine Khelladi, Mathieu Acher, and
Olivier Barais. An Empirical Study on Leveraging LLMs for Metamodels and
Code Co-evolution. Journal of Object Technology. Vol. 23, No. 3, 2024.
Licensed under Attribution - NonCommercial - No Derivatives 4.0
International (CC BY-NC-ND 4.0) http://dx.doi.org/10.5381/jot.2024.23.3.a6

and generate textual data. Taking advantage of LLMs is highly 5

dependent on good prompts. The use of LLMs is based on the 6

human capacity of crafting high quality prompts: precise and 7

concise. AI community gave the term "Prompt engineering" 8

to the process of designing and refining prompts (Clarisó & 9

Cabot 2023). Since their appearance, LLMs have been applied 10

in different domains of scientific research, such as Software 11

Engineering and Model-Driven Engineering (MDE) (Ozkaya 12

2023; Abukhalaf et al. 2023; Liu et al. 2023; Hou et al. 2023; 13

An AITO publication

http://dx.doi.org/10.5381/jot.2024.23.3.a6

Pearce et al. 2022; Sobania et al. 2022; Ziegler et al. 2022;1

Vaithilingam et al. 2022; Nguyen & Nadi 2022; Döderlein et2

al. 2022; Nathalia et al. 2023; Yetiştiren et al. 2023; Guo et al.3

2023; Fu et al. 2023; Kabir et al. 2023; Chaaben et al. 2023;4

Cámara et al. 2023; Abukhalaf et al. 2023).5

In MDE, metamodels are cornerstone. They define domain6

concepts and the relations between them (Cabot & Gogolla7

2012). The metamodel is used to generate other artifacts, such8

as models, transformations, constraints, and code. The gen-9

erated code can be used later as a code API to build editors,10

debuggers, and other language services and tooling. The evo-11

lution of the metamodel represents one of the challenges en-12

countered in MDE. When the metamodel evolves, the code API13

is re-generated, and as a consequence, the additional code of14

the tools built on this code API are impacted and may be bro-15

ken. However, few approaches have addressed the challenge16

of metamodels and code co-evolution. In particular, (Riedl-17

Ehrenleitner et al. 2014; Kanakis et al. 2019; Pham et al. 2017;18

Jongeling et al. 2020, 2022; Zaheri et al. 2021) focused on19

consistency checking between models and code, but not its20

co-evolution. Other works (Yu et al. 2012; Khelladi, Combe-21

male, Acher, Barais, & Jézéquel 2020; Khelladi, Combemale,22

Acher, & Barais 2020) proposed to co-evolve the code semi-23

automatically. While LLMs have been so far empirically eval-24

uated to generate qualitative code, refining it, repairing it if25

vulnerable or augment it (Ozkaya 2023; Abukhalaf et al. 2023;26

Liu et al. 2023; Hou et al. 2023; Pearce et al. 2022; Sobania et27

al. 2022; Ziegler et al. 2022; Vaithilingam et al. 2022; Nguyen &28

Nadi 2022; Döderlein et al. 2022; Nathalia et al. 2023; Yetiştiren29

et al. 2023; Guo et al. 2023; Fu et al. 2023; Kabir et al. 2023),30

only few works evaluated LLMs in the context of MDE activ-31

ities, such as generation of models and constraints (Chaaben32

et al. 2023; Cámara et al. 2023; Abukhalaf et al. 2023). How-33

ever, to the best of our knowledge, no existing study evaluated34

the LLMs capabilities to support developers in the problem of35

metamodels and code co-evolution.36

In this paper, we fill this gap. We explore a novel approach37

to mitigate the challenge of metamodel evolution impacts on the38

code using LLMs. Our approach is based on prompt engineer-39

ing, where we design and generate natural language prompts to40

best co-evolve the impacted code due to the metamodel evolu-41

tion. We first designed a prompt template structure that contains42

contextual information about metamodel changes, the abstrac-43

tion gap between the metamodel and the code, and the erroneous44

code to co-evolve. To investigate the usefulness of this template45

structure, we generated three more variations of these prompts.46

The generated prompts are then given to the LLM to co-evolve47

the impacted code errors.48

We evaluated our generated prompts and other three of their49

variations with ChatGPT version 3.5 on seven Eclipse Modeling50

Framework (EMF) projects from OCL, Modisco, and papyrus51

with three evolved metamodels. Results show that ChatGPT52

can co-evolve correctly 88.7% of the errors due to metamodel53

evolution, varying from 75% to 100% of correctness rate. When54

varying the prompts, we observed increased correctness in two55

variants and decreased correctness in another variant. We also56

observed that varying the temperature hyperparameter yields57

better results with lower temperatures. Our results are observed 58

on a total of 5320 generated prompts. Finally, when compared to 59

the quick fixes of the IDE, the generated prompts co-evolutions 60

completely outperform the quick fixes. 61

The paper is structured as follows. Section 2 gives a motivat- 62

ing example to illustrate the problem of metamodels and code 63

co-evolution. Section 3 presents our approach for generating 64

prompts. Section 4 details our followed methodology in this 65

empirical study. Section 5 reports on the obtained results and 66

discusses threats to validity. Section 6 discusses related work, 67

and Section 7 concludes the paper. 68

2. Motivating example 69

To illustrate the adressed challenge, let us have an example. 70

Figure 1 shows an excerpt of the version 0.9.0 of "Modisco 71

Discovery Benchmark" metamodel. Modisco is an academic 72

initiative project implemented in the Eclipse platform that has 73

evolved numerous times in the past to support the development 74

of model-driven tools, reverse engineering, verification, and 75

transformation of existing software systems (Bruneliere et al. 76

2010, 2014). Figure 1 illustrates some of the domain concepts 77

Discovery, Project, and ProjectDiscovery used for the dis- 78

covery and reverse engineering of an existing software system. 79

From these metaclasses, a first code API is generated, contain- 80

ing Java interfaces and their implementation classes, a factory, 81

a package, etc. Listing 1 shows a snippet of the generated Java 82

interfaces and classes from the metamodel in Figure 1. 83

The generated code API is further enriched by the devel- 84

opers with additional code functionalities in the "Modisco 85

Discovery Benchmark" project and its dependent projects 86

as well. For instance, by implementing the methods de- 87

fined in metaclasses and advanced functionalities in new 88

classes. Listing 2 shows the two classes Report and 89

JavaBenchmarkDiscoverer of the additional code (Line 4, 8 90

in the same project "Modisco Discovery Benchmark" and 91

in another dependent project, namely the "Modisco Java 92

Discoverer Benchmark" project). In version 0.11.0, the 93

"Modisco Discovery Benchmark" metamodel evolved with sev- 94

eral significant changes, among which the following impact- 95

ing changes: 1) Renaming the property DicoveryDate of the 96

class JavaBenchmarkDiscoverer to DiscoveryDate, and 2) 97

Moving the property discoveryTimeInSeconds from metaclass 98

Discovery to DiscoveryIteration. 99

After applying these modifications, the code of Listing 1 is 100

re-generated from the evolved version of the metamodel, which 101

impacts the existing additional code depicted in Listings 2. 102

1 //Discovery Interface 103

2 public interface Discovery extends EObject { 104

3 double getTotalExecutionTimeInSeconds(); 105

4 void setTotalExecutionTimeInSeconds(double value); 106

5 ... 107

6 } 108

7 //Project Interface 109

8 public interface ProjectDiscovery extends 110

Discovery {...} 111

9 //DiscoveryImpl Class 112

10 public class DiscoveryImpl extends EObjectImpl 113

implements Discovery { 114

2 Kebaili et al.

Figure 1 Excerpt of Modisco Benchmark metamodel in ver-
sion 0.9.0.

11 public double getTotalExecutionTimeInSeconds()1

{...}2

12 public void setTotalExecutionTimeInSeconds(3

double totalExecTime) {...}4

13 ...5

14 }6

Listing 1 Excerpt of the generated code in
org.eclipse.modisco.infra.discovery.benchmark.

17

2 public class Report {8

3 ...9

4 discovery.setDiscoveryTimeInSeconds(...);10

5 }11

612

7 public class JavaBenchmarkDiscoverer extends13

AbstractModelDiscoverer<IFile> {14

8 ...15

9 discovery.setDicoveryDate(new Date());16

10 ...17

11 }18

Listing 2 Excerpt of the additional code V1.

119

2 public class Report {20

3 ...21

4 discovery.getIterations().get(0).22

5 setDiscoveryTimeInSeconds(...);23

6 ...24

7 }25

826

9 public class JavaBenchmarkDiscoverer extends27

AbstractModelDiscoverer<IFile> {28

10 ...29

11 discovery.setDiscoveryDate(new Date());30

12 ...31

13 }32

Listing 3 Excerpt of the additional code V2.

The resulting errors in the original code in version 0.9.0 are33

underlined in red in Listing 2. Listing 3 presents the final result34

of the manual developer’s co-evolution in version 0.11.0. The35

co-evolved code is underlined in green. The changes rename36

of the property DicoveryDate and the move of the property37

Figure 2 ChatGPT primitive answer to the naive prompt.

discoveryTimeInSeconds impact their usages (Line 4, 8 in List- 38

ing 2). The impact of renaming DicoveryDate is co-evolved by 39

replacing setDicoveryDate by setDiscoveryDate. The impact 40

of moving the property discoveryTimeInSeconds is co-evolved 41

by extending the call path of the method setDiscoveryTimeIn- 42

Seconds through the reference iterations by calling the method 43

getIterations and getting the first element of the returned list of 44

DiscoveryIteration objects. 45

Developers unfortunately manually co-evolve the code, 46

which is tedious, error-prone, and time-consuming. One help 47

developers get is from the IDE and the provided quick fixes. 48

For example, when using Eclipse quick fixes to co-evolve these 49

errors, it suggests creating the method setDiscoveryTimeIn- 50

Seconds in the class Discovery, which does not meet the 51

required co-evolutions shown in Listing 3. 52

With the ever-growing popularity and promising results 53

of LLMs, a developer can prompt an LLM to suggest a co- 54

evolution. For example, we asked ChatGPT to co-evolve the 55

error resulted from moving the property discoveryTimeInSec- 56

onds by giving the erroneous code (Line 4 in Listing 2) with 57

the message of the error taken from eclipse Problems window. 58

This is the first intuition when using ChatGPT because the devel- 59

oper does not know necessarily the metamodel change causing 60

the error and finding it due to the abstraction gap is a tedious 61

and error-prone task. Figure 2 shows that ChatGPT proposes 62

to create a method named setDiscoveryTimeInSeconds in the 63

class Discovery, which is totally wrong because it does not fit 64

the causing change. 65

Our Hypothesis is that the LLM fails because our problem 66

is more complex than simply repairing a code error. It must 67

understand the original impacting metamodel change traced 68

to the code error, as well as the abstraction gap between the 69

two artefacts of metamodels and code. After improving the 70

prompt, ChatGPT succeeded to give the right resolution as show 71

in Figure 3. Our vision is that this contextual rich information 72

must be injected in the prompt. Thus, the quality of the prompt 73

is a key for the LLM to solve this problem of metamodels and 74

code co-evolution. 75

The next section presents our contribution for a contextual- 76

ized information rich prompts-based co-evolution of metamodel 77

and code using LLMs. 78

An Empirical Study on Leveraging LLMs for Metamodels and Code Co-evolution 3

Figure 3 ChatGPT improved answer with the enriched
prompt with contextual information.

Figure 4 Overall Approach for Prompt-based co-evolution.

3. Prompt-Based Approach1

This section introduces our approach to generate the prompts2

needed for the code co-evolution. It first gives an overview3

of the approach. Then details the structure of the generated4

prompts, before to detail each part of it and how it is generated.5

Finally, it describes our prototype implementation.6

3.1. Overview7

Figure 4 shows the overall steps of our approach. We start by8

retrieving the list of changes that describe the evolution between9

the old metamodel and the new metamodel 1 .10

When the metamodel evolves, the code API is regenerated,11

therefore the additional code is broken. The additional code is12

then parsed to collect the list of errors 2 . The list of changes13

and the list of errors are the inputs of our prompt generator. The14

goal is to generate a prompt for each error, including sufficient15

information about the change and the error itself 3 . Each gen-16

erated prompt is used to request ChatGPT to give a correction17

for the concerned error 4 . A global report is generated for the18

additional code to allow the developer to have a visual output19

about the generated prompts and the answers of the LLM 5 .20

Algorithm 1 further depicts the overall method of co-evolution21

based on a given LLM. After we parse the project, we retrieve22

the list of errors per class (Lines 2-3). Then for each error, we23

generate the prompt (Lines 4-5) and call the LLM and record24

its co-evolution response for analysis (Lines 6-7).25

Algorithm 1: ChatGPT Co-evolution
Data: EcoreModelingProject, changesList

1 javaClasses← Parse(EcoreModelingProject)
2 for (jc ∈ javaClasses) do
3 errorsList← getErrors(jc)
4 for (error : errorsList) do
5 prompt← promptGenerator(error, changesList, jc)
6 coevolutionResponse← callLLM(prompt)
7 addToReport(error, prompt, coevolutionResponse)
8 end
9 end

Figure 5 Generated Prompt Structure.

3.2. Generated Prompt Structure 26

Figure 5 shows the overall structure of the envisioned prompts 27

we will generate in order to co-evolve the code errors. In fact, 28

the rationale behind the prompt structure is that our problem 29

does not only concern the code errors to repair, but it is also 30

related to the use of the code generated from the metamodels 31

and their changes. Therefore, to contextualize our problem, we 32

must explain : 1) what is the code generated from the metamod- 33

els, 2) what is the impacting metamodel change, and 3) what is 34

the impacted code error to co-evolve. Concerning the prompt 35

prefix we use "Co-evolve this code" to ask ChatGPT for one 36

co-evolution. Next subsections detail the different parts of the 37

prompt structure. 38

3.3. Abstraction Gap Between Metamodels and Code 39

One main distinction from simply repairing code errors is the in- 40

terplay between the metamodels and the additional code through 41

the generated code from the metamodels. This is due to the gap 42

in abstraction in between metamodels and generated code. In 43

fact, for each metamodel various code elements are generated 44

for each metamodel element and with different patterns. Table 1 45

classifies and provides illustrative examples for the different 46

generated code elements from each metamodel element, namely 47

metaclass, attribute/reference, and method. For example, take 48

the case of a metaclass1. EMF generates a corresponding inter- 49

face and a class implementation, a createClass() method in the 50

factory class, three literals (i.e., constants) for the class and an 51

accessor method in the package class, and a corresponding to 52

create adapter method. For the attribute case, EMF generates 53

the signature and implementation of a getter and a setter, an 54

accessor, and a literal. This classification is essential to match 55

the different errors with the right used generated code elements 56

to explicit the abstraction gap. If a class is changed, all its 57

generated elements are impacted and their usages will be er- 58

1 For simplicity, we refer to a metaclass by simply a class in the remaining of
the paper.

4 Kebaili et al.

roneous. For example, if a class is renamed, every invocation1

of the method "get+className" will be erroneous and must be2

co-evolved. Thus, we consider the abstraction gap as the first3

contextual information we inject in the prompts for the LLM to4

co-evolve the code errors.5

3.4. Metamodel Evolution Changes6

A metamodel represents a high abstraction level of a domain.7

Like any software artefact, metamodels evolve to meet domain8

changing requirements (Mens 2008). Herrmannsdoerfer et al.9

(Herrmannsdoerfer et al. 2011) distinguish two types of meta-10

model changes: atomic and complex. Atomic changes are addi-11

tions, removals, and updates of a metamodel element. Complex12

changes consist of a combination of atomic changes (Vermolen13

et al. 2011; Khelladi et al. 2015). For example, push property is14

a complex change where a property is pushed from a parent class15

to an inheriting child class. This is composed of two atomic16

changes: delete a property and add a property (Herrmannsdoer-17

fer et al. 2011). Many approaches in the literature (Alter 2015;18

Williams et al. 2012; Cicchetti et al. 2009; Langer et al. 2013;19

Vermolen et al. 2011; Khelladi, Hebig, et al. 2016; Bettini et al.20

2022) exist to detect metamodel changes between two versions.21

Particularly in our work, we use (Khelladi, Hebig, et al. 2016;22

Khelladi, Bendraou, & Gervais 2016) to extract the changes23

between two metamodel versions.24

In practice, we focus on the impacting metamodel changes25

that will require co-evolution of the code and not on the non-26

impacting changes. For example, an add change of a class does27

not require co-evolution. However, a delete change or a change28

of type will impact the code that must be co-evolved. The list29

of impacting metamodel changes (Iovino et al. 2012; Cicchetti30

et al. 2009) we consider in the prompts is as follows: 1) Delete31

property2 p in a class C, 2) Delete class C, 3) Rename element e32

in a class C, 4) Generalize property p multiplicity from a single33

value to multiple values in a class C, 5) Move property p from34

class Source to Target through a reference ref, 6) Extract35

class of properties p1, ..., pn from Source to Target through a36

reference ref, 7) Push property p from super class Super to sub37

classes Sub1,...,Subn, 8) Inline class Source to Target with38

properties p1, ..., pn, and 9) Change property p type from S to T39

in a class C.40

Thus, we consider these definitions of metamodel changes41

as the second contextual information we inject in the prompts42

for the LLM to co-evolve the code errors.43

3.5. Extracted Code Errors44

Now that we have two main ingredients needed for the genera-45

tion of the prompts. We only require the erroneous code to be46

co-evolved.47

To do so, we parse the code (i.e., compilation units) to access48

the Abstract Syntax Trees (ASTs) and retrieve the code errors.49

Each error contains the necessary information to locate the exact50

impacted AST node in the parsed global AST (i.e., char start51

and end) and to process it (i.e., message). After that, we simply52

extract the sub-AST corresponding to the code containing the53

2 Property refers to Attribute, Reference, and Method.

Figure 6 Move attribute prompt example.

error. We consider three possible situations, namely 1) if the 54

error is in a method, we extract the whole method, 2) if the error 55

is in the imports, we extract the list of imports, 3) if the error 56

is in the class definition or the fields, we extract it without the 57

class’s methods. This constitutes the final part of the contextual 58

information we inject in the prompts for the LLM to co-evolve 59

the code errors. Note that we simply specify in the prompt 60

before the code the order to "Co-evolve this code: ". 61

3.6. Prompt Generation 62

Algorithm 2 allows generating prompts following the specified 63

structure in Figure 5. It first finds the ASTNode correspond- 64

ing to the error in the code (Line 1). Then, it iterates over the 65

list of metamodel changes to match the error node with the 66

code usage to identify the impacted abstraction gap (Lines 6- 67

8). After that, it summarizes the impacting metamodel change 68

(Line 11). Finally, it extracts the erroneous code (Line 21) and 69

puts together all three contextual information into one gener- 70

ated prompt (Lines 22-25). Figure 6 shows an example of the 71

generated prompt for the error in Listing 2 (Line 4) due to the 72

move of property DiscoveryTimeInSeconds in the metamodel. 73

3.7. Prototype Implementation 74

We implemented our solution as an eclipse Java plugin handling 75

Ecore/EMF metamodels and their Java code. To retrieve the 76

list of errors, we used JDT eclipse plugin 3. To launch our 77

tool, we added a command to the context menu when select- 78

ing a java project. Generated prompts are sent to ChatGPT 79

(see next section 4.1), more specifically, its OpenAI API end- 80

point "https://api.openai.com/v1/chat/completions". We used 81

Java JSON package to send our prompts and to receive Chat- 82

GPT responses. The error location, the corresponding gener- 83

ated prompt and ChatGPT responses are parsed in CSV file 84

to have a visible results and to keep the history of proposed 85

the co-evolutions. Moreover, quick fixes (our baseline) are 86

called using org.eclipse.jdt.ui.text.java.IQuickAssistProcessor 87

and org.eclipse.jdt.ui.text.java.IJavaCompletionProposal. 88

4. Methodology 89

This section describes our methodology for empirically assess- 90

ing the capabilities of ChatGPT in addressing the problem of 91

metamodel and code co-evolution. It first describes the selected 92

LLM and the followed evaluation process. Then, it presents our 93

research questions and the data set. 94

3 Eclipse Java development tools (JDT): https://www.eclipse.org/jdt/core/

An Empirical Study on Leveraging LLMs for Metamodels and Code Co-evolution 5

https://www.eclipse.org/jdt/core/

Table 1 Classification of the different patterns of the generated code element from the metamodel elements.
[Examples illustrated for a metaclass Rule, property Status, and method Execute()]

Metamodel

element type
Generated code elements Pattern of the generated code elements Examples

Metaclass

Interface "MetaClassName" Rule

createClass()

(in metamodelFactory class)
"create"+"MetaClassName"() createRule()

Literals of the class

"META_CLASS_NAME"

"META_CLASS_NAME"+"_"+ "FEATURE_COUNT"

"META_CLASS_NAME"+ "_"+"OPERATION_COUNT"

RULE,

RULE_FEATURE_COUNT,

RULE_OPERATION_COUNT

Accessor of Meta objects

(in metamodelPackage class)
"get"+"MetaClassName"() getRule()

Class implementation "MetaClassNameImpl" RuleImpl

Adapter "create"+"MetaClassName"+"Adapter" createRuleAdapter()

Attribute Signature of getters and setters "get"+"AttributeName"(), "set"+"AttributeName"() getStatus(), setStatus()

(Same for a
Accessor of Meta objects "get"+"MetaClassName"+"_"+"AttributeName"() getRule_Status()

Reference) Literal "META_CLASS_NAME"+"__"+"ATTRIBUTE_NAME" RULE__STATUS

Implementation

of getters and setters
"get"+"AttributeName"(), "set"+"AttributeName"() getStatus(), setStatus()

Method

Declaration of the method "methodName"() Execute()

Accessor of meta objects "get"+"MetaClass"+"__"+"MethodName"() getRule__Execute()

Literal "META_CLASS_NAME"+"__"+"METHOD_NAME" RULE___EXECUTE

Implementation of the method "methodName"() Execute()

4.1. Selected LLM1

We chose to use ChatGPT GPT-3.5-turbo in chat mode. It2

currently points to gpt-3.5-turbo-0613 released in June 2023.3

We opted for this model because of four factors. The first one is4

that prompt content is only textual, we don’t need to inject audio5

or image content. The second one is its capacity to generate6

good answers for requests about code and models generation7

(Nathalia et al. 2023; Yetiştiren et al. 2023; Guo et al. 2023; Fu8

et al. 2023; Kabir et al. 2023; Chaaben et al. 2023; Cámara et9

al. 2023). The third factor is that it was the latest API version10

that is accessible, gpt-4 API still not accessible for us. The last11

one is related to the high popularity of ChatGPT as a tool. It12

has more than 100 million users, and its website saw more than13

1.7 billion visitors in the last three months, with Software and14

Software Development as visitors’ top category4.15

4.2. Evaluation Process16

First, as we aim to query ChatGPT to co-evolve the erroneous17

code due to metamodel evolution, we need to provoke the errors18

4 https://www.similarweb.com/fr/website/chat.openai.com/#demographics

in the code. To do so, we replace the original metamodel by 19

the evolved metamodel. Then, we regenerate the code API 20

with EMF. This will cause errors in the additional code that 21

must co-evolve. After that, we must map the errors with the 22

causing metamodel change before to generate a prompt with 23

all appropriate information to be able to co-evolve the code 24

errors. We then rely on the OpenAI API to query ChatGPT 25

before to analyze its results. Finally, we measure the correctness 26

of ChatGPT co-evolution by comparing its co-evolution with 27

the manually co-evolved version by developers. Note that the 28

comparison is processed manually by authors. This allows us 29

to measure the correctness reached by ChatGPT . Correctness 30

varies from 0 to 1, i.e., 0% to 100% and is defined as follows: 31

Correctness =
LLMCoevolutions ∩ManualCoevolutions

ManualCoevolutions
32

We chose the structure shown in Figure 5 since it contains the 33

contextual information needed for our problem of metamodels 34

and code co-evolution. This structure was built after few manual 35

naive attempts with ChatGPT , starting from a minimum context 36

(as shown in the Motivating Example of Figure 2 that failed) 37

6 Kebaili et al.

https://www.similarweb.com/fr/website/chat.openai.com/#demographics

Algorithm 2: Prompt Generator Algorithm
Data: error, changesList, javaClass

1 errorNode← findErrorAstNode(javaClass, error)
2 found← false
3 while (change ∈ changesList & ¬ f ound) do
4 switch change do
5 case RenameClass do
6 if (errornode.name="get"+change.name) then
7 found← true
8 abstractionGap="The method "+

errornode.name+" is generated from the
metaclass "+ change.name

9 else if ... then
10 /*treat other abstraction gaps*/
11 changeInfo= "The metaclass "+

change.oldName+" is renamed to
"+change.newName

12 end
13 case RenameProperty do
14 ...
15 end
16 case DeleteProperty do
17 ...
18 end
19 end
20 end
21 codeError← extractCodeError(errornode)
22 prompt.add(abstractionGap)
23 prompt.add(changeInfo)
24 prompt.add(codeError)
25 return prompt

and by enriching the structure with more context information.1

However, we do not claim its completeness in terms of needed2

information or if it is the best structure. Other variants can3

lead to different results. To investigate more this choice, we4

generated three more variations of this structure to observe its5

effect on the results. Table 2 contains each variation and its6

corresponding explanation. Since our prompt contains three7

parts, we can change the order of these parts (Order Change8

operator) and the size of the erroneous code we put in the9

prompt (Minimal Code operator). Finally, rather than asking10

for a single co-evolution solution, we ask for alternative ones11

(Alternative Answers operator) in the prompt prefix. To stress12

out our evaluation, we conducted 5 runs separated by almost13

a day, the time we needed for one run to check manually the14

results of each project, which means that each generated prompt15

is proposed to ChatGPT five times. This aims to check whether16

ChatGPT gives a same or different answer, hence, assess its17

robustness. Finally, we compare ChatGPT to a baseline, namely18

the IDE quick fixes that are provided to repair the code errors.19

Note that we do not take as a baseline ChatGPT with prompts20

that only contain the code error, since as shown in Section 2 and21

Figure 2, it does not work.22

4.3. Research Questions23

To assess the capabilities of ChatGPT in the co-evolution of24

code, we set the following research questions.25

RQ1 To what extent can ChatGPT co-evolve the code with 26

evolved metamodels? This aims to assess the ability of 27

ChatGPT to give correct resolutions to co-evolve the code 28

according to the metamodel changes. 29

RQ2 How does varying the temperature hyperparameter affect 30

the output of the co-evolution? The temperature hyper- 31

parameter controls the creativity of the language model. 32

This question aims to assess the capability of ChatGPT 33

to co-evolve the erroneous code when given less or more 34

creativity in the generation of the solution. 35

RQ3 How does varying the prompt structure affect the output of 36

the co-evolution? This aims to assess the quality improve- 37

ment of the co-evolutions due to the prompts’ variations. 38

RQ4 How does ChatGPT proposed co-evolution compare to the 39

quick fix baseline? As quick fixes are provided by default 40

in an IDE to repair the code errors, this question aims to 41

assess which method outperforms the other in the task of 42

code co-evolution with evolving metamodels. 43

4.4. Data set 44

This section presents the used data set in our empirical study, to 45

be found in the attached supplementary material5. 46

We chose Eclipse Modeling Framework (EMF) platform as 47

technological space, which allows us to build modeling tools 48

and applications based on Ecore metamodels (Steinberg et al. 49

2008). First, we aimed at selecting metamodels with meaningful 50

real evolutions that do not consist in only deleting metamodel 51

elements, but rather including complex evolution changes (see 52

subsection 3.4). 53

This selection criterion resulted in seven Java projects from 54

three case studies of three different language implementations 55

in Eclipse, namely OCL (MDT 2015b), Papyrus (MDT 2015c), 56

and Modisco (MDT 2015a) with their versions that was manu- 57

ally co-evolved by developers, that represent our ground of truth. 58

OCL is a standard language defined by the Object Management 59

Group (OMG) to specify First-order logic constraints. Papyrus 60

is an industrial project led by CEA6 to support model-based 61

simulation, formal testing, safety analysis, etc. Modisco is an 62

academic initiative to support development of model-driven 63

tools, reverse engineering, verification, and transformation of 64

existing software systems. Thus, the case studies cover standard, 65

industrial, and academic languages that have evolved several 66

times for more than 10 years of continuous development period. 67

Table 3 presents the details on the selected case studies, in 68

particular about their metamodels and the occurred changes dur- 69

ing evolution. The total of applied metamodel changes was 330 70

atomic changes, including 19 complex changes in the three 71

metamodels. Table 4 presents the details on the size of the seven 72

projects and code of the original versions that we co-evolve in 73

addition to the number of errors after the metamodels evolution. 74

5. Results 75

This section now presents our results answering each RQ. 76

5 https://figshare.com/s/bf35039892799c0e6f34
6 http://www-list.cea.fr/en/

An Empirical Study on Leveraging LLMs for Metamodels and Code Co-evolution 7

https://figshare.com/s/bf35039892799c0e6f34
http://www-list.cea.fr/en/

Table 2 Variation operators of our original prompt (OP).

Variation Operators Explanation

Order Change (OC)
We change the order between the three structured parts of the prompt.

We start by describing the metamodel change before the abstraction gap.

Minimal Code (MC)
Instead of giving the whole method that contains the code error to co-evolve,

we only give the instruction of code error.

Alternative Answers (AA)
Instead of asking the LLM to give one solution of co-evolution,

we specifically ask for alternative ways to co-evolve the code error.

Table 3 Details of the metamodels and their evolutions.

Case study
Evolved

metamodels
Versions

Atomic changes

in the metamodel

Complex changes

in the metamodel

OCL
Pivot.ecore in project

ocl.examples.pivot

3.2.2 to

3.4.4

Deletes: 2 classes, 16 properties, 6 super types

Renames: 1 class, 5 properties

Property changes: 4 types; 2 multiplicities

Adds: 25 classes, 121 properties, 36 super types

1 pull property

2 push properties

Modisco
Benchmark.ecore in project

modisco.infra.discovery.benchmark

0.9.0 to

0.13.0

Deletes: 6 classes, 19 properties, 5 super types

Renames: 5 properties

Adds: 7 classes, 24 properties, 4 super types

4 moves property

6 pull property

1 extract class

1 extract super class

Papyrus
ExtendedTypes.ecore in project

papyrus.infra.extendedtypes

0.9.0 to

1.1.0

Deletes: 10 properties, 2 super types

Renames: 3 classes, 2 properies

Adds: 8 classes, 9 properties, 8 super types

2 pull property

1 push property

1 extract super class

5.1. RQ1: Assessing the ability of ChatGPT to give cor-1

rect code co-evolutions2

To assess the ability of ChatGPT to give correct code co-3

evolutions, we ran over the errors caused by the metamodel4

changes and generated 266 prompts that we submitted to Chat-5

GPT . Note that we ran our original prompts asking for a single6

co-evolution of the code error. We further set a fixed tempera-7

ture hyperparameter to 0.2. A value of 0 restricts the generation8

of a solution towards a more deterministic one and the more it9

is higher the more creative the model gets in generating a differ-10

ent solution. Thus, we chose 0.2 to allow only little creativity11

while restricting the model to not get a different answer for the12

same prompts in different executions, since we ask for a single13

solution. Among the 266 generated prompts, ChatGPT gave, on14

average, a correct code co-evolution in 88.7% of the time, vary-15

ing from 75% to 100%. When taking only on complex changes16

into consideration, correctness improves on average from 88.7%17

to 95.2%, i.e., ChatGPT performs better for complex changes.18

Results show a promising ability of ChatGPT to actually co-19

evolve code with evolving metamodels when given the right20

contextual information in the prompts, rather than simply the21

errors and their messages. 22

RQ1 insights: Results confirm that ChatGPT is able at
88.7% to correctly co-evolve code due to metamodel evo-
lution thanks to the information on the abstraction gap and
the impacting metamodel change. It also performs better
on complex changes.

23

5.2. RQ2: Studying the impact of temperature variation 24

on the output co-evolutions 25

The temperature hyperparameter controls the creativity of the 26

language model. The temperature hyperparameter in ChatGPT 27

can be set between 0 and 2. Yet, it is suggested to only set it 28

between 0 and 1 in the documentation7. Thus, to assess the 29

effect of the temperature in co-evolving the code, we will vary it 30

on 0, 0.2, 0.5, 0.8, and 1.0. Table 5 shows the obtained results. 31

Overall, we observe that as the temperature increases, the cor- 32

rectness of code co-evolutions suggested by ChatGPT decreases. 33

Notably, the correctness improves when the temperature is in- 34

creased from 0 to 0.2. However, it subsequently degrades with 35

7 https://platform.openai.com/docs/api-reference/chat

8 Kebaili et al.

https://platform.openai.com/docs/api-reference/chat

Table 4 Details of the projects and their caused errors by the metamodels’ evolution.

Evolved

metamodels

Projects to co-evolve in response to the

evolved metamodels

No of

packages

No of

classes

No of

LOC

No of Impacted

classes

No of total

errors

OCL Pivot.ecore [P1] ocl.examples.xtext.base 12 181 17599 10 29

Modisco

Benchmark.ecore

[P2] modisco.infra.discovery.benchmark

[P3] gmt.modisco.java.discoverer.benchmark

[P4] modisco.java.discoverer.benchmark

[P5] modisco.java.discoverer.benchmark.javaBenchmark

3

8

10

3

28

21

28

16

2333

1947

2794

1654

1

4

9

9

6

30

56

73

Papyrus

ExtendedTypes.ecore

[P6] papyrus.infra.extendedtypes

[P7] papyrus.uml.tools.extendedtypes

8

7

37

15

2057

725

8

7

44

28

Table 5 Measured correctness rate per temperature.

Projects

Tem
perature

P1 P2 P3 P4 P5 P6 P7

0.0 76% 62.5% 100% 80% 86% 93.7% 92.8%

0.2 84% 75% 100% 82% 88% 95.8% 96.4%

0.5 57% 50% 100% 58% 68% 87.5% 89.2%

0.8 50% 37% 0% 32% 46% 62.5% 85.7%

1.0 30% 29% 0% 26% 40% 68.7% 78.5%

the further increase in temperature, up to 1. At temperatures 0.81

and 1, we observed the worst decrease in correctness. The best2

performance of ChatGPT is obtained at the temperature 0.2.3

Note that even with a temperature set to 0, which implies no4

creativity, ChatGPT yields results that are nearly as satisfactory5

as those obtained with a temperature of 0.2.6

Moreover, when we repeated the same prompt for each temer-7

ature for 5 times, the five answers of ChatGPT were similar.8

ChatGPT gives almost the same proposition of co-evolution,9

sometimes it uses different terms to comment its answer. For10

example: "// Remove the following line since DiscoveredProject11

is removed" and " // Code using DiscoveredProject should be re-12

moved". However, they are the same co-evolutions. Sometimes13

ChatGPT also uses intermediate variables to give the same co-14

evolution, for example: "return aReport.generate()" and bench-15

markModel=aReport.generate() return benchmarkModel". We16

believe that this result of obtaining the same co-evolutions over17

5 runs shows the efficiency of the prompt template in Figure 5.18

By including the necessary information (i.e., abstraction gap,19

causing change information, and code error), it allows Chat-20

GPT to narrow the scope of possibilities and to propose similar21

answer for each unique prompt in each run.22

Table 6 Measured correctness rate for different prompt varia-
tions. [↗ and↘ are increase and decrease in correctness.]

Projects
Variations

P1 P2 P3 P4 P5 P6 P7

Original

Prompt (OP)
84% 75% 100% 82% 88% 95.8% 96.4%

Order

change (OC)
84% 66%↘ 100% 74%↘ 86%↘ 95.8% 96.4%

Minimal

Code (MC)
88.4%↗ 87.5%↗ 100% 86%↗ 96%↗ 97.9%↗ 96.4%

Alternative

Answers (AA)
84% 79%↗ 100% 92%↗ 92%↗ 95.8% 96.4%

RQ2 insights: Results show that lower temperature of 0
and 0.2 give better co-evolutions from ChatGPT with 0.2
being the best we observed. Interestingly, we obtained
the same results over 5 different runs, which suggests the
efficiency our prompt structure in narrowing the scope of
possibilities of ChatGPT ’s answers.

23

5.3. RQ3: Studying the impact of prompt structure varia- 24

tion on the output co-evolutions 25

In our approach, we propose a possible structure for the gen- 26

erated prompts (cf. Subsection 3.6). However, there is no 27

assurance that this represents the best proposition. Therefore, 28

we varied the structure that we proposed in three different ways, 29

as shown in Table 2. Then we ran the three variations of the 30

original prompts in order to assess the fluctuation and effect on 31

the correctness of the proposed co-evolutions. Here we set the 32

temperature to 0.2 based on results of RQ2. 33

Table 6 shows the obtained results. Overall, we observe slight 34

increase and decrease compared to the original Prompts struc- 35

ture (OP). We observe that changing the order in the prompt by 36

first describing the metamodel change (OC) decreases the cor- 37

rectness of the proposed ChatGPT co-evolutions. It decreased 38

by -9% in P2, -8% in P4 and by -2% in P5. We observed that 39

in particular when describing the abstraction gap with the gen- 40

An Empirical Study on Leveraging LLMs for Metamodels and Code Co-evolution 9

erated elements for the metamodel deleted classes, ChatGPT1

assumes that the code classes still exist in the code and were2

not deleted. Thereby, altering sometimes the correctness of its3

proposed co-evolutions.4

However, the two other prompt variations of giving a min-5

imal code containing the error and asking for alternative solu-6

tions delivered better overall results. Surprisingly, on the one7

hand, giving only the code instruction containing the error (MC)8

gave the best results. It improved by +4.4% in P1, +12.5% in9

P2, +4% in P4, +8% in P5, and +2.1% in P6. Our observation10

is that this improvement is sometimes due to the inability of11

ChatGPT to find the impacted code element and co-evolve it12

within complex and long methods. On the other hand, when13

asking for alternatives, it improved only by +4% in P2, +10% in14

P4, and +4% in P5. We observed that when ChatGPT is unable15

to find the correct resolution with (OP) prompts, it is unlikely16

to find the right one when asking for alternatives (AA). Only17

in few cases it could find the correct co-evolutions. The gener-18

ation of prompts and saving the results took on average from19

about 10 seconds per prompt for the Original Prompts to 8420

seconds per prompt in the case of Alternative Answers (AA)21

variation prompts. Finally, when focusing only on complex22

changes, correctness improves on average from 88.7% to 97.6%23

for (MC) and (AA). This implies that, overall, ChatGPT also24

performs better for complex changes when varying the prompts.25

This can be explained by the fact that complex changes provide26

much more context information that guide better ChatGPT to27

give better responses.28

RQ3 insights: Results show an improvement with two
variants out of the three we explored. However, gains are
not significant compared to our original structure of the
prompt. Variants also perform better on complex changes.

29

5.4. RQ4: Comparison with quick fixes as baseline30

To compare to a baseline the obtained results of proposed co-31

evolutions with our generated prompts, we checked what is the32

best quick fix an IDE proposes for each error. Algorithm 333

shows the followed steps to run the quick fixes on our projects34

automatically. It iterates over the java classes and for each error,35

we automatically apply the top quick fix suggested by the IDE.36

It stops when all the errors disappear or if the remaining errors37

have no possible quick fixes purposed by the IDE.38

In Table 7, we present the percentage of errors that quick fixes39

eliminated for each project. While the quick fixes eliminated40

from 41% to 100% errors. We use the term eliminated instead41

of correct co-evolution because no quick fix was applied as42

expected to the manual developers’ co-evolutions. In other43

words, the correctness rate of automatic quick fixes are equal44

to 0 and are not suited for the task of metamodels and code45

co-evolution. For example, concerning errors caused by class or46

property deletion from the metamodel, renaming a class or an47

attribute, moving, pushing or pulling attributes or methods from48

a class to another, the quick fixes proposed to create them back49

in their old containers. This is in contradiction of the applied50

metamodel changes and the code co-evolution.51

For errors caused by changing a variable’s type, the quick52

Algorithm 3: Quick fixes for coevolution
Data: EcoreModelingProject

1 javaClasses← Parse(EcoreModelingProject)
2 for (jc ∈ javaClasses) do
3 errorsList← getErrors(jc)
4 while (!errorsList.isEmpty() & hasQuickFix) do
5 error← errorsList.next()
6 if error.hasQuickickFix() then
7 useQuickFixes(error)
8 refreshJavaClass(jc)
9 refreshErrorsList(jc, errorsList)

10 end
11 end

Table 7 Number of applied Quick Fixes for each project and
per evolved metamodel.

Evolved

metamodels

Co-evolved

projects

% of eliminated

errors

OCL Pivot.ecore [P1] 41%

Modisco

Benchmark.ecore

[P2] 100%

[P3] 100%

[P4] 83%

[P5] 67%

Papyrus

ExtendedTypes.ecore

[P6] 69%

[P7] 93%

fixes always proposed to add a cast with a wrong type. 53

Similarly, as naive prompts with only the code errors and 54

their messages, quick fixes do not take in consideration the 55

knowledge of the abstraction gap and the information contained 56

in its causing metamodel changes. For example, the quick fix 57

create the missing method m() is applied no matter the 58

metamodel change (i.e., deletion, moving, pulling, or pushing 59

changes) and no matter the metamodel element it was generated 60

from. Our approach of generated prompts takes into account 61

the context of the impacted code, the abstraction gap, and the 62

causing metamodel change thanks to the prompt template that 63

we designed (cf. Table 5). 64

RQ4 insights: Results show that ChatGPT with our gen-
erated prompts completely outperforms the quick fixes in
correctly co-evolving the code.

65

5.5. Threats to Validity 66

This section discusses threats to validity w.r.t. Wohlin et al. 67

(Wohlin et al. 2012). 68

5.5.1. Internal Validity. A first internal threat is that we only 69

varied the temperature hyperparameter over ChatGPT API. The 70

10 Kebaili et al.

documentation suggests not to modify top_p and temperature1

at the same time, so we chose to let the default value of top_-2

p = 1. Moreover, to measure the correctness, we analyzed3

the developers’ manual co-evolution. To mitigate the risk of4

misidentifying a manual co-evolution, for each impacted code5

error, we mapped it in the co-evolved class version. If we did not6

find it, we further searched in other classes in case the original7

impacted part of the code was moved into another class. Thus,8

our objective was to reduce the risk of missing any mappings9

between an error in the original code and its co-evolved version.10

Moreover, as our co-evolution relies on the quality of detected11

metamodel changes. We also validated each detected change by12

checking whether it occurred between the original and evolved13

metamodels. This alleviates the risk of relying on an incorrect14

metamodel change that would degrade the generated prompts15

and lead to wrong co-evolution from ChatGPT .16

5.5.2. External Validity. We implemented and ran the em-17

pirical study for EMF and Ecore metamodels and Java code.18

Note that the choice of Java is imposed by EMF and no other19

languages are supported. Thus, we naturally do not general-20

ize to other languages. We also relied only on ChatGPT and21

GPT-3.5-turbo released in june 2023. Therefore, we cannot gen-22

eralize our approach to other LLMs and other future versions of23

ChatGPT . It is also unclear how our findings would transfer to24

other benchmarks other than EMF Ecore metamodels and java25

code. Further experiments are necessary in future to get more26

insights and- before any generalization claims.27

5.5.3. Conclusion Validity. Our empirical study show28

promising results with ChatGPT being able to generate cor-29

rect code co-evolution when given the necessary contextual30

information. It showed to be useful, with an average of 88.7%31

correctness (from 75% to 100%). The results also show the32

benefit over relying on quick fixes. Nonetheless, even though33

we evaluated it on real evolved projects, we must evaluate it on34

more case studies to have more insights and statistical evidence.35

5.6. Discussion and Limitations36

The rationale behind the prompt structure, which an important37

part in our empirical study, is that our problem concerns the use38

of the code generated from the metamodels and their changes39

and not only error repair. Moreover, our results show that40

ChatGPT can co-evolve the code correctly by setting lower41

temperature, especially in case of complex metamodel changes.42

Furthermore, repeating the experimentation five time has led to43

the same results shown in Table 5 and Table 6, which confirms44

the robustness of ChatGPT in the code co-evolution task and45

that his capability is not due to randomness. Finally, we handled46

a single metamodel with changes that are independent between47

them. Treating the case of multiple metamodel and the case of48

interdependent changes would need setting an order of priority49

between them, which we left for a future work.50

6. Related Work51

This section discusses close related work that focuses on empir-52

ically evaluating LLMs on code and MDE artifacts.53

In literature, several studies delve into examining how the 54

evolution of the metamodel influences the generated artifacts. 55

In particular (Kessentini, Wimmer, & Sahraoui 2018; Kessen- 56

tini et al. 2019; Cicchetti et al. 2008; Herrmannsdoerfer et al. 57

2009; Garcés et al. 2009; Wachsmuth 2007) have focused on 58

the co-evolution of metamodel and models, (Batot et al. 2017; 59

Khelladi et al. 2017; Correa & Werner 2007; Kusel, Etzlstorfer, 60

Kapsammer, Retschitzegger, Schoenboeck, et al. 2015) stud- 61

ied the metamodel and constraints co-evolution, and other on 62

the metamodel and transformations co-evolution (Kessentini, 63

Sahraoui, & Wimmer 2018; Khelladi et al. 2018; Garcés et al. 64

2014; García et al. 2013; Kusel, Etzlstorfer, Kapsammer, Rets- 65

chitzegger, Schwinger, & Schonbock 2015). Other approaches 66

focused on the model consistency repair (e.g., (Kretschmer 67

et al. 2017; Kretschmer, Khelladi, Lopez-Herrejon, & Egyed 68

2021; Kretschmer, Khelladi, & Egyed 2021; Macedo et al. 2013; 69

Pinna Puissant et al. 2015)). However, only a few works ad- 70

dressed the challenge of metamodels and code co-evolution. In 71

particular, (Riedl-Ehrenleitner et al. 2014; Kanakis et al. 2019; 72

Pham et al. 2017; Jongeling et al. 2020, 2022; Zaheri et al. 2021) 73

focused on consistency checking between models and code, but 74

not on its co-evolution. Other works (Yu et al. 2012; Khel- 75

ladi, Combemale, Acher, Barais, & Jézéquel 2020) proposed 76

to co-evolve the code. However, the former handles only the 77

generated code API, it does not handle additional code and aims 78

to maintain bidirectional traceability between the model and the 79

code API. The latter supports a semi-automatic co-evolution 80

requiring developers’ intervention. 81

Furthermore, several works evaluated the use of LLMs in 82

software engineering tasks. Early studies on Copilot focus on 83

the exploration of the security of the generated code (Pearce 84

et al. 2022), comparison of the performances of Copilot with 85

mutation-based code generation techniques (Sobania et al. 86

2022), and the impact on productivity and the usefulness of 87

Copilot for developers (Ziegler et al. 2022; Vaithilingam et al. 88

2022). Nguyen et al. (Nguyen & Nadi 2022) performed an early 89

empirical study on the performance and understandability of 90

Copilot generated code on 34 problems from Leetcode. Doder- 91

lein et al. (Döderlein et al. 2022) extended the study of Nguyen 92

et al. (Nguyen & Nadi 2022) and run an empirical study on the 93

effect of varying temperature and prompts on the generated code 94

with Copilot and Codex. They used a total of 446 questions 95

to solve from Leetcode and Human Eval data set. Nathalia et 96

al. (Nathalia et al. 2023) evaluated the Performance and Effi- 97

ciency of ChatGPT compared to beginners and experts software 98

engineers. Yeticstiren et al. (Yetiştiren et al. 2023) compared 99

the code quality generated from Copilot, CodeWhisperer, and 100

ChatGPT, showing an advantage for ChatGPT in generating 101

correct solutions. Guo et al. (Guo et al. 2023) ran an empirical 102

study on ChatGPT and its capabilities in refining code based on 103

code reviews. Fu et al. (Fu et al. 2023) also evaluated ChatGPT 104

and its ability to detect, classify, and repair vulnerable code. 105

Finally, Kabir et al. (Kabir et al. 2023) evaluated ChatGPT 106

ability to generate code and to maintain it by improving it based 107

on a new feature description to add in the code. All the above 108

studies focused on either evaluating the ability of LLMs to gen- 109

erate qualitative code, refining it, repairing it if vulnerable, or 110

An Empirical Study on Leveraging LLMs for Metamodels and Code Co-evolution 11

augmenting it. However, none of them specifically explored the1

task of code co-evolution.2

Moreover, other studies focused on evaluating LLMs in MDE3

activities. Chen et al. (Chen et al. 2023) propose a comparative4

study between GPT-3.5 and GPT-4 in automatically generating5

domain models. This work shows that GPT-4 has better model-6

ing results. Chaaben et al. (Chaaben et al. 2023) showed how7

using few-shot learning with GTP3 model can be effective in8

model completion and in other modeling activities. Camara et9

al. (Cámara et al. 2023) further assessed how good ChatGPT is10

in generated UML models. Finally, Abukhalaf (Abukhalaf et al.11

2023) run an empirical study on the quality of generated OCL12

constraints with Codex. However, these studies also focused on13

the ability of LLMs to generate MDE artifacts, such as models14

and constraints, but not on their co-evolution. Only Fu et al.15

(Fu et al. 2023) looked at repairing vulnerable code with Chat-16

GPT. Jiang et al. (Jiang et al. 2023) proposed self-augmented17

code generation framework based on LLMs called SelfEvolve.18

SelfEvolve allows generating code and keep correcting it itera-19

tively with the LLM. Zhang et al. (Zhang et al. 2023) proposed20

Codeditor, an LLM based tool for code co-evolution between21

different programming languages. It learns code evolutions as22

edit sequences and then uses LLMs for multilingual translation.23

To the best of our knowledge, no study investigated the24

ability of LLMs in the MDE problem of code co-evolution when25

metamodels evolve. We empirically evaluated how effective is26

ChatGPT in solving this co-evolution problem.27

7. Conclusion28

Co-evolving the impact of metamodel evolution on the code is29

costly and yet challenging. In this paper, we proposed a prompt-30

based approach for metamodel and code co-evolution. This31

approach relies on designing and generating a rich contextual in-32

formation that we inject in the prompts, namely the abstraction33

gap knowledge, the metamodel changes information and the34

impacted code to be co-evolved. We evaluated our approach on35

seven EMF projects and three evolved metamodels from three36

different Eclipse EMF implementations of OCL, Modisco and37

Papyrus, with a total of 5320 generated prompts. Results show38

that on average ChatGPT has successfully proposed 88.7% of39

correct co-evolutions with our original generated prompts. We40

evaluated then the impact of the temperature variation on the41

proposed co-evolutions. We found that ChatGPT gives better42

responses with lower temperature values of 0 and 0.2. More-43

over, when experimenting other variations of the structure of44

generated prompts, we observed that there was improvement in45

two variations. The first one is giving the minimum impacted46

code to co-evolve in the prompt, and the second one is requiring47

alternative answers for the co-evolution. However, varying the48

prompt by changing the order of the contextual information49

degraded a little the quality of the proposed co-evolutions. Fi-50

nally, we compared our approach with the quick fixes of the51

IDE as a baseline. Results show that our approach significantly52

outperforms the quick fixes that do not take into account the53

context of the abstraction gap and the metamodel changes.54

As future work, we intend to evaluate or approach in other55

technological spaces than EMF, such as OpenAPI and the chal- 56

lenge of the API evolution impact on clients’ code. After that, 57

we plan to transform our approach into a DSL-based approach 58

with a graphical user interface for the output report instead of 59

a CSV file. To facilitate prompt generation and enhance the 60

option of prompt variation, a DSL would be a viable solution. 61

We also plan to replicate our empirical study with other LLMs 62

and other contexts of co-evolution (e.g., between code and test 63

(Le Dilavrec et al. 2021)). Another actionable element is to 64

investigate the mining of contextual information from Software 65

Engineering tasks to enrich the prompts, and then improve 66

baseline results Finally, since our contributions focus on em- 67

pirically studying the use of ChatGPT in metamodel and code 68

co-evolution, we plan to implement an alternative of the quick 69

fix engine in the Eclipse IDE based on our generated prompt 70

structure. Integrating our prompt-based metamodel and code 71

co-evolution in the IDE will have a direct impact in helping 72

MDE developers and language engineers. 73

Acknowledgments 74

The research leading to these results has received funding from 75

the ANR agency under grant ANR JCJC MC-EVO2 204687. 76

References 77

Abukhalaf, S., Hamdaqa, M., & Khomh, F. (2023). On codex 78

prompt engineering for OCL generation: An empirical study. 79

In 2023 ieee/acm 20th international conference on mining 80

software repositories (msr) (p. 148-157). 81

Alter, S. (2015). Work system theory: A bridge between busi- 82

ness and IT views of systems. Lecture Notes in Computer 83

Science (including subseries Lecture Notes in Artificial Intel- 84

ligence and Lecture Notes in Bioinformatics), 9097, 520–521. 85

doi: 10.1007/978-3-319-19069-3 86

Batot, E., Kessentini, W., Sahraoui, H., & Famelis, M. (2017). 87

Heuristic-based recommendation for metamodel—ocl coevo- 88

lution. In Acm/ieee 20th int. conference on model driven 89

engineering languages and systems (models) (pp. 210–220). 90

Bettini, L., Di Ruscio, D., Iovino, L., & Pierantonio, A. (2022). 91

An executable metamodel refactoring catalog. Software and 92

Systems Modeling, 21(5), 1689–1709. 93

Bruneliere, H., Cabot, J., Dupé, G., & Madiot, F. (2014). 94

Modisco: A model driven reverse engineering framework. 95

Information and Software Technology, 56(8), 1012–1032. 96

Bruneliere, H., Cabot, J., Jouault, F., & Madiot, F. (2010). 97

Modisco: a generic and extensible framework for model 98

driven reverse engineering. In Ieee/acm international confer- 99

ence on automated software engineering (pp. 173–174). 100

Cabot, J., & Gogolla, M. (2012). Object constraint language 101

(ocl): a definitive guide. In Formal methods for model-driven 102

engineering (pp. 58–90). Springer. 103

Cámara, J., Troya, J., Burgueño, L., & Vallecillo, A. (2023). 104

On the assessment of generative ai in modeling tasks: an 105

experience report with chatgpt and uml. Software and Systems 106

Modeling, 1–13. 107

Chaaben, M. B., Burgueño, L., & Sahraoui, H. (2023). Towards 108

using few-shot prompt learning for automating model com- 109

12 Kebaili et al.

pletion. In Ieee/acm 45th int. conf. on software engineering:1

New ideas and emerging results (icse-nier) (pp. 7–12).2

Chen, K., Yang, Y., Chen, B., López, J. A. H., Mussbacher, G.,3

& Varró, D. (2023). Automated domain modeling with large4

language models: A comparative study. In 2023 acm/ieee5

26th international conference on model driven engineering6

languages and systems (models) (pp. 162–172).7

Cicchetti, A., Di Ruscio, D., Eramo, R., & Pierantonio, A.8

(2008). Automating co-evolution in model-driven engineer-9

ing. In 2008 12th international ieee enterprise distributed10

object computing conference (pp. 222–231).11

Cicchetti, A., Di Ruscio, D., & Pierantonio, A. (2009). Manag-12

ing dependent changes in coupled evolution. In Int. conf. on13

theory and practice of model transformations (pp. 35–51).14

Clarisó, R., & Cabot, J. (2023). Model-driven prompt engi-15

neering. In Acm/ieee 26th int. conference on model driven16

engineering languages and systems (models) (pp. 47–54).17

Correa, A., & Werner, C. (2007). Refactoring object constraint18

language specifications. Software & Systems Modeling, 6(2),19

113–138.20

Döderlein, J.-B., Acher, M., Khelladi, D. E., & Combemale, B.21

(2022). Piloting copilot and codex: Hot temperature, cold22

prompts, or black magic? arXiv preprint arXiv:2210.14699.23

Fu, M., Tantithamthavorn, C., Nguyen, V., & Le, T. (2023).24

Chatgpt for vulnerability detection, classification, and repair:25

How far are we? arXiv preprint arXiv:2310.09810.26

Garcés, K., Jouault, F., Cointe, P., & Bézivin, J. (2009). Man-27

aging model adaptation by precise detection of metamodel28

changes. In European conf. on model driven architecture-29

foundations and applications, ECMDA-FA (pp. 34–49).30

Garcés, K., Vara, J. M., Jouault, F., & Marcos, E. (2014).31

Adapting transformations to metamodel changes via external32

transformation composition. Software & Systems Modeling,33

13(2), 789–806.34

García, J., Diaz, O., & Azanza, M. (2013). Model transforma-35

tion co-evolution: A semi-automatic approach. In Int. conf.36

software language engineering, SLE (pp. 144–163).37

Guo, Q., Cao, J., Xie, X., Liu, S., Li, X., Chen, B., & Peng,38

X. (2023). Exploring the potential of chatgpt in auto-39

mated code refinement: An empirical study. arXiv preprint40

arXiv:2309.08221.41

Herrmannsdoerfer, M., Benz, S., & Juergens, E. (2009). Cope-42

automating coupled evolution of metamodels and models. In43

Ecoop (Vol. 9, pp. 52–76).44

Herrmannsdoerfer, M., Vermolen, S. D., & Wachsmuth, G.45

(2011). An extensive catalog of operators for the coupled46

evolution of metamodels and models. In International con-47

ference software language engineering, SLE (pp. 163–182).48

Hou, X., Zhao, Y., Liu, Y., Yang, Z., Wang, K., Li, L., . . .49

Wang, H. (2023). Large language models for software en-50

gineering: A systematic literature review. arXiv preprint51

arXiv:2308.10620.52

Iovino, L., Pierantonio, A., & Malavolta, I. (2012). On the53

impact significance of metamodel evolution in mde. Journal54

of Object Technology, 11(3), 3–1.55

Jiang, S., Wang, Y., & Wang, Y. (2023). Selfevolve: A code evo-56

lution framework via large language models. arXiv preprint57

arXiv:2306.02907. 58

Jongeling, R., Fredriksson, J., Ciccozzi, F., Carlson, J., & Cic- 59

chetti, A. (2022). Structural consistency between a system 60

model and its implementation: a design science study in in- 61

dustry. In The european conference on modelling foundations 62

and applications (ecmfa). 63

Jongeling, R., Fredriksson, J., Ciccozzi, F., Cicchetti, A., & 64

Carlson, J. (2020). Towards consistency checking between 65

a system model and its implementation. In International 66

conference on systems modelling and management (pp. 30– 67

39). 68

Kabir, M. M. A., Hassan, S. A., Wang, X., Wang, Y., Yu, H., 69

& Meng, N. (2023). An empirical study of chatgpt-3.5 on 70

question answering and code maintenance. arXiv preprint 71

arXiv:2310.02104. 72

Kanakis, G., Khelladi, D. E., Fischer, S., Tröls, M., & Egyed, A. 73

(2019). An empirical study on the impact of inconsistency 74

feedback during model and code co-changing. The Journal 75

of Object Technology, 18(2), 10–1. 76

Kessentini, W., Sahraoui, H., & Wimmer, M. (2018). Auto- 77

mated co-evolution of metamodels and transformation rules: 78

A search-based approach. In International symposium on 79

search based software engineering (pp. 229–245). 80

Kessentini, W., Sahraoui, H., & Wimmer, M. (2019). Automated 81

metamodel/model co-evolution: A search-based approach. 82

Information and Software Technology, 106, 49–67. 83

Kessentini, W., Wimmer, M., & Sahraoui, H. (2018). Integrating 84

the designer in-the-loop for metamodel/model co-evolution 85

via interactive computational search. In Proceedings of the 86

21th acm/ieee international conference on model driven engi- 87

neering languages and systems (pp. 101–111). 88

Khelladi, D. E., Bendraou, R., & Gervais, M.-P. (2016). Ad- 89

room: a tool for automatic detection of refactorings in object- 90

oriented models. In The 38th international conference on 91

software engineering companion (pp. 617–620). 92

Khelladi, D. E., Bendraou, R., Hebig, R., & Gervais, M.-P. 93

(2017). A semi-automatic maintenance and co-evolution 94

of ocl constraints with (meta) model evolution. Journal of 95

Systems and Software, 134, 242–260. 96

Khelladi, D. E., Combemale, B., Acher, M., & Barais, O. (2020). 97

On the power of abstraction: a model-driven co-evolution 98

approach of software code. In Proceedings of the acm/ieee 99

42nd international conference on software engineering: new 100

ideas and emerging results (pp. 85–88). 101

Khelladi, D. E., Combemale, B., Acher, M., Barais, O., & 102

Jézéquel, J.-M. (2020). Co-evolving code with evolving 103

metamodels. In Proceedings of the acm/ieee 42nd interna- 104

tional conference on software engineering (pp. 1496–1508). 105

Khelladi, D. E., Hebig, R., Bendraou, R., Robin, J., & Gervais, 106

M.-P. (2015). Detecting complex changes during metamodel 107

evolution. In Advanced information systems engineering 108

(caise) (pp. 263–278). 109

Khelladi, D. E., Hebig, R., Bendraou, R., Robin, J., & Gervais, 110

M. P. (2016). Detecting complex changes and refactorings 111

during (Meta)model evolution. Information Systems, 62, 220– 112

241. 113

Khelladi, D. E., Kretschmer, R., & Egyed, A. (2018). Change 114

An Empirical Study on Leveraging LLMs for Metamodels and Code Co-evolution 13

propagation-based and composition-based co-evolution of1

transformations with evolving metamodels. In Proceedings2

of the 21th acm/ieee international conference on model driven3

engineering languages and systems (pp. 404–414).4

Kretschmer, R., Khelladi, D. E., Demuth, A., Lopez-Herrejon,5

R. E., & Egyed, A. (2017). From abstract to concrete repairs6

of model inconsistencies: An automated approach. In Asia-7

pacific software engineering conf., APSEC (pp. 456–465).8

Kretschmer, R., Khelladi, D. E., & Egyed, A. (2021). Transform-9

ing abstract to concrete repairs with a generative approach of10

repair values. Journal of Systems and Software, 175, 110889.11

Kretschmer, R., Khelladi, D. E., Lopez-Herrejon, R. E., &12

Egyed, A. (2021). Consistent change propagation within13

models. Software and Systems Modeling, 20, 539–555.14

Kusel, A., Etzlstorfer, J., Kapsammer, E., Retschitzegger, W.,15

Schoenboeck, J., Schwinger, W., & Wimmer, M. (2015).16

Systematic co-evolution of ocl expressions. In 11th APCCM17

2015 (Vol. 27, p. 30).18

Kusel, A., Etzlstorfer, J., Kapsammer, E., Retschitzegger, W.,19

Schwinger, W., & Schonbock, J. (2015). Consistent co-20

evolution of models and transformations. In Acm/ieee 18th21

models (pp. 116–125).22

Langer, P., Wimmer, M., Brosch, P., Herrmannsdörfer, M., Seidl,23

M., Wieland, K., & Kappel, G. (2013). A posteriori operation24

detection in evolving software models. Journal of Systems25

and Software, 86(2), 551–566.26

Le Dilavrec, Q., Khelladi, D. E., Blouin, A., & Jézéquel, J.-27

M. (2021). Untangling spaghetti of evolutions in software28

histories to identify code and test co-evolutions. In Int. conf.29

on soft. maintenance and evolution, ICSME (pp. 206–216).30

Liu, C., Bao, X., Zhang, H., Zhang, N., Hu, H., Zhang, X.,31

& Yan, M. (2023). Improving chatgpt prompt for code32

generation. arXiv preprint arXiv:2305.08360.33

Macedo, N., Guimaraes, T., & Cunha, A. (2013). Model34

repair and transformation with echo. In Ieee/acm int. conf.35

on automated software engineering (ase) (pp. 694–697).36

MDT. (2015a). Model development tools. modisco. http://37

www.eclipse.org/modeling/mdt/?project=modisco.38

MDT. (2015b). Model development tools. object constraints lan-39

guage (ocl). http://www.eclipse.org/modeling/mdt/?project=40

ocl.41

MDT. (2015c). Model development tools. papyrus. http://42

www.eclipse.org/modeling/mdt/?project=papyrus.43

Mens, T. (2008). Introduction and roadmap: History and44

challenges of software evolution. Springer.45

Nathalia, N., Paulo, A., & Donald, C. (2023). Artificial intel-46

ligence vs. software engineers: An empirical study on per-47

formance and efficiency using chatgpt. In The 33rd annual48

international conference on computer science and software49

engineering (pp. 24–33).50

Nguyen, N., & Nadi, S. (2022). An empirical evaluation of51

github copilot’s code suggestions. In The 19th international52

conference on mining software repositories (pp. 1–5).53

Ozkaya, I. (2023). Application of large language models54

to software engineering tasks: Opportunities, risks, and55

implications. IEEE Software, 40(3), 4-8. doi: 10.1109/56

MS.2023.324840157

Pearce, H., Ahmad, B., Tan, B., Dolan-Gavitt, B., & Karri, R. 58

(2022). Asleep at the keyboard? assessing the security of 59

github copilot’s code contributions. In 2022 ieee symposium 60

on security and privacy (sp) (pp. 754–768). 61

Pham, V. C., Radermacher, A., Gerard, S., & Li, S. (2017). 62

Bidirectional mapping between architecture model and code 63

for synchronization. In Ieee international conference on 64

software architecture, ICSA (pp. 239–242). 65

Pinna Puissant, J., Van Der Straeten, R., & Mens, T. (2015). 66

Resolving model inconsistencies using automated regression 67

planning. Software & Systems Modeling, 14, 461–481. 68

Riedl-Ehrenleitner, M., Demuth, A., & Egyed, A. (2014). To- 69

wards model-and-code consistency checking. In Annual com- 70

puter software and applications conference (pp. 85–90). 71

Sobania, D., Briesch, M., & Rothlauf, F. (2022). Choose your 72

programming copilot: A comparison of the program synthesis 73

performance of github copilot and genetic programming. In 74

Proceedings of the genetic and evolutionary computation 75

conference (pp. 1019–1027). 76

Steinberg, D., Budinsky, F., Merks, E., & Paternostro, M. (2008). 77

Emf: eclipse modeling framework. Pearson Education. 78

Vaithilingam, P., Zhang, T., & Glassman, E. L. (2022). Ex- 79

pectation vs. experience: Evaluating the usability of code 80

generation tools powered by large language models. In Chi 81

conference on human factors in computing systems, extended 82

abstracts (pp. 1–7). 83

Vermolen, S. D., Wachsmuth, G., & Visser, E. (2011). Re- 84

constructing complex metamodel evolution. In International 85

conference on software language engineering (pp. 201–221). 86

Wachsmuth, G. (2007). Metamodel adaptation and model 87

co-adaptation. In Ecoop (Vol. 7, pp. 600–624). 88

Williams, J. R., Paige, R. F., & Polack, F. A. (2012). Searching 89

for model migration strategies. In Proceedings of the 6th 90

international workshop on models and evolution (pp. 39–44). 91

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, 92

B., & Wesslén, A. (2012). Experimentation in software 93

engineering. Springer Science & Business Media. 94

Yetiştiren, B., Özsoy, I., Ayerdem, M., & Tüzün, E. (2023). 95

Evaluating the code quality of ai-assisted code generation 96

tools: An empirical study on github copilot, amazon code- 97

whisperer, and chatgpt. arXiv preprint arXiv:2304.10778. 98

Yu, Y., Lin, Y., Hu, Z., Hidaka, S., Kato, H., & Montrieux, 99

L. (2012). Maintaining invariant traceability through bidi- 100

rectional transformations. In International conference on 101

software engineering (icse) (pp. 540–550). 102

Zaheri, M., Famelis, M., & Syriani, E. (2021). Towards check- 103

ing consistency-breaking updates between models and gen- 104

erated artifacts. In Int. conf. on model driven engineering 105

languages and systems companion (models-c) (pp. 400–409). 106

Zhang, J., Nie, P., Li, J. J., & Gligoric, M. (2023). Multilin- 107

gual code co-evolution using large language models. arXiv 108

preprint arXiv:2307.14991. 109

Ziegler, A., Kalliamvakou, E., Li, X. A., Rice, A., Rifkin, D., 110

Simister, S., . . . Aftandilian, E. (2022). Productivity assess- 111

ment of neural code completion. In Acm sigplan international 112

symposium on machine programming (pp. 21–29). 113

14 Kebaili et al.

http://www.eclipse.org/modeling/mdt/?project=modisco
http://www.eclipse.org/modeling/mdt/?project=modisco
http://www.eclipse.org/modeling/mdt/?project=modisco
http://www.eclipse.org/modeling/mdt/?project=ocl
http://www.eclipse.org/modeling/mdt/?project=ocl
http://www.eclipse.org/modeling/mdt/?project=ocl
http://www.eclipse.org/modeling/mdt/?project=papyrus
http://www.eclipse.org/modeling/mdt/?project=papyrus
http://www.eclipse.org/modeling/mdt/?project=papyrus

