
Journal of Object Technology | RESEARCH ARTICLE

Tooling Offline Runtime Verification against
Interaction Models : recognizing sliced behaviors

using parameterized simulation
Erwan Mahe ∗, Boutheina Bannour ∗, Christophe Gaston ∗, Arnault Lapitre ∗, and Pascale Le Gall †

∗Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France
†Université Paris-Saclay, CentraleSupélec, F-91192, Gif-sur-Yvette, France

ABSTRACT Offline runtime verification involves the static analysis of executions of a system against a specification.
For distributed systems, it is generally not possible to characterize executions in the form of global traces, given the
absence of a global clock. To account for this, we model executions as collections of local traces called multi-traces,
with one local trace per group of co-localized actors that share a common clock. Due to the difficulty of synchronizing
the start and end of the recordings of local traces, events may be missing at their beginning or end. Considering such
partially observed multi-traces is challenging for runtime verification. To that end, we propose an algorithm that verifies
the conformity of such traces against formal specifications called Interactions (akin to Message Sequence Charts). It
relies on parameterized simulation to reconstitute unobserved behaviors.

KEYWORDS interaction, simulation, co-localization, shared clock, partial observation, multi-trace slice

1. Introduction
Runtime Verification (RV) (Bartocci et al. 2018; Sánchez
et al. 2019) refers to a group of techniques aiming at con-
fronting observed system executions to formal references,
specifying legal system executions, in order to identify
non-conformance. Executions are observed via instru-
mentation and collected in traces consisting of sequences
of atomic events. Such events often correspond to com-
munication actions, consisting of emissions or receptions
of messages observed at the system’s interfaces under
observation. Most approaches for RV can be described as
either offline or online. In online approaches, events are
processed on the fly whenever they are observed, while
in offline approaches (abbrv. ORV) - which are the focus

JOT reference format:
Erwan Mahe , Boutheina Bannour , Christophe Gaston , Arnault
Lapitre , and Pascale Le Gall . Tooling Offline Runtime Verification
against Interaction Models : recognizing sliced behaviors using
parameterized simulation. Journal of Object Technology. Vol. 23, No. 2,
2024. Licensed under Attribution 4.0 International (CC BY 4.0)
http://dx.doi.org/10.5381/jot.2024.23.2.a2

of this paper -, traces are logged a priori to their analysis.
Capturing executions of a Distributed System (DS) as
traces is possible if it is observed via a unique interface
deployed on a single machine. In practice, however, as
a DS may be distributed across distinct machines, so is
the instrumentation that observes its execution. Also,
events observed on different and geographically distant
computers cannot be easily temporally ordered as there
is no common clock to label them with comparable dates.
For these reasons, instead of a single global trace, one
rather observes a set of local traces occurring on specific
sub-systems or groups of co-localized (i.e. sharing a com-
mon clock) sub-systems. In such a situation, an execution
is characterized as a structured collection of local traces,
which we call a multi-trace.

While most RV techniques are based on formal ref-
erences given in the form of automata (Benharrat et al.
2017) or temporal logic formulas (Bauer & Falcone 2016),
we use an interaction language. Interactions are models
whose most well-known instances are UML Sequence
Diagrams (UML-SD) (OMG 2017) or Message Sequence
Charts (MSC) (ITU 2011). Interactions specify the com-

An AITO publication

https://orcid.org/0000-0002-5322-4337
https://orcid.org/0000-0002-4943-7807
https://orcid.org/0000-0001-6865-5108
https://orcid.org/0000-0002-2185-4051
https://orcid.org/0000-0002-8955-6835
https://orcid.org/0000-0002-5322-4337
https://orcid.org/0000-0002-4943-7807
https://orcid.org/0000-0001-6865-5108
https://orcid.org/0000-0002-2185-4051
https://orcid.org/0000-0002-8955-6835
http://dx.doi.org/10.5381/jot.2024.23.2.a2

munication flow between entities constituting a system.
They are particularly adapted to specify DS behaviors, as
DS are, by nature, composed of sub-systems interacting
via message passing.

The graphical representation of interactions provides
an intuitive vision of a DS’s expected behaviors. Each
sub-system is represented by a vertical line called a lifeline
while message passing between sub-systems is repre-
sented by horizontal arrows drawn between the corre-
sponding lifelines. As time flows from top to bottom,
behaviors expected to occur on a given lifeline are se-
quences of emissions and receptions of messages that
match the horizontal arrows entering or exiting the life-
line from top to bottom. More complex behaviors can be
specified via operators drawn as annotated boxes.

In previous works (Mahe et al. 2022), we defined the
semantics of interactions without the need for translations
to other formalisms. In particular, an operational seman-
tics in the style introduced by Plotkin for process algebras
(Plotkin 2004) can be used to animate interaction mod-
els, explore their semantics, and define ORV algorithms
(Mahe et al. 2020, 2021). This semantics is based on the key
notion of follow-up interaction. Given an initial interaction
i which specifies a set of expected behaviors, if a certain
communication action a (either an emission or a reception
of a message) inside i can immediately occur, then there
exists a follow-up i′, which we denote by i a

−→ i′, such that
i′ specifies continuations of behaviors of i that start with
the occurrence of a. Such atomic execution steps can be
used to display graphically the semantics of an interaction
in a tree-like structure. Being grounded by this small-step
semantics, our approach is, to the best of our knowledge,
the first tooled approach to offer interaction animation
without going through translation mechanisms to inter-
mediate formalisms like automata (Bannour et al. 2011),
Petri-nets (Faria & Paiva 2016) or others as overviewed
in (Mouakher et al. 2022).

The main contributions of this paper are extensions of
the work in (Mahe et al. 2021, 2022) under two aspects:

(1) The observability constraints imposed by monitoring:

– We define a finer notion of multi-trace, whose compo-
nent local traces are defined on groups of co-localized
lifelines (e.g. that share a common clock) rather than
on single lifelines. Analyzing those richer multi-traces
allows taking advantage of the additional information
provided by the existence of common clocks;

– We define a new ORV algorithm tolerant to the ab-
sence of synchronization related to both the beginning
and the end of observation across distant monitors.
To do so we rely on parameterized simulation for
guessing missing/unobserved behaviors. With this
new algorithm, logging on each co-localization can
start and end independently and at any time when
the system is in operation;

(2) Our specification formalism and tool implementation:

– We introduce a coregr operator for specifying be-
haviors that ought to be concurrent on specific sub-
systems (the concurrent region r) while being weakly
sequential on others. This new operator allows defin-
ing more expressive (w.r.t. the language from (Mahe
et al. 2022)) specifications. It also simplifies the def-
inition of the language, the weakly sequential seq
and interleaving par operators being covered by its
definition (being resp. equivalent to coreg∅ and coregL
where L is the set of all lifelines).

– We also propose a reformulation of the operational
semantics from (Mahe et al. 2022) which has the
advantage of using fewer inductive predicates;

– We extend the tool implementation mentioned in
(Mahe et al. 2021) to include our new contributions
and present its interface in more details. This tool,
called HIBOU, allows designing interactions, explor-
ing their semantics, generating multi-traces and per-
forming RV. We also propose an experimental evalu-
ation of our simulation-based ORV approach using
this tool.

The paper is organized as follows. In Sec.2 we introduce
the notions of multi-trace for characterizing behaviors of
DS and of multi-trace slice for characterizing partial ob-
servations of such behaviors. Then, in Sec.3 we define
our language of interactions and its semantics in terms of
multi-traces. Following those definitions, we introduce in
Sec.4 a generic algorithm for verifying partially observed
distributed behaviors (i.e. multi-trace slices) against for-
mal specifications given in the form of interactions. This
algorithm uses simulation steps in order to complete opti-
mistically behaviors that might be missing from the slice
(because it is not observed). It is generic in so far as the
manner with which simulation is performed is parameter-
ized by a certain criterion. After that, we propose one such
criterion in Sec.5, apply the resulting algorithm on an ex-
ample, discuss its advantages and limitations and present
results from experiments. Related works and the position
of our contribution are then discussed in Sec.6. Finally, in
Sec.7, we present our tool implementation HIBOU.

2. Characterizing observed DS executions

2.1. Multi-traces to model executions
The asynchronous exchanges of messages are at the heart
of the behaviors of Distributed Systems (DS). Those ex-
changes can be modeled using discrete communication
actions (abbrv. as actions) corresponding to atomic emis-
sions and receptions of messages. Those actions occur
at the communication interfaces of specific sub-systems
(those that emit and/or receive the corresponding mes-
sages) within the DS.

To formalize this, we describe the sub-systems consti-
tuting a DS using a set L of lifelines, and the messages that
can transit through it using a set M of messages.

Elements of the set A of communication actions are :

2 Mahe et al.

l1
l2

l3

trace (global)

l1!m1.l3?m1.l2?m1.l3!m4.l2?m4

(a) 1 global clock⇒ global trace

l1
l2

l3

multi-trace (fully local)
[l1] l1!m1

[l2] l2?m1.l2?m4

[l3] l3?m1.l3!m4


(b) 3 local clocks⇒ "classical" multi-trace

l1
l2

l3

multi-trace (co-localized) [l1, l2] l1!m1.l2?m1.l2?m4

[l3] l3?m1.l3!m4



(c) 2 shared clocks⇒ "generalized" multi-trace

l1
l2

l3

multi-trace (partially observed) [l1, l2] l1!m1.l2?m1.l2?m4

[l3] l3?m1.l3!m4



(d) partial observation⇒ slice of multi-trace

Figure 1 Trace collection

– either of the form l!m, corresponding to the emission
of the message m in M from the lifeline l in L

– or of the form l?m, corresponding to the reception of
the message m in M by the lifeline l in L.

For any action a ∈A of the form l!m or l?m, we denote by
θ(a) the lifeline l on which a occurs.

An execution of a DS can be characterized by the actions
that occurred in its span and by the order between their
occurrences. Depending on the architecture of the DS our
ability to reorder those actions may vary.

Fig.1a describes (on the left) a DS with three lifelines:
l1 (the computer icon), l2 (the sensor icon) and l3 (the gear
icon) which all share the same global clock (as indicated
by the drawn clocks). Thanks to the global clock, actions
can be ordered globally, whichever is the sub-system on
which they occur. Hence, an execution of the DS can
be characterized by a global sequence of actions, which
we call a trace. Traces are sequences of actions where ε
represents the empty sequence and are concatenated using
the "." operator. We denote by T = A∗ the set of all global
traces1. The right side of Fig.1a describes an execution of
our example DS in the form of a global trace:

l1!m1.l3?m1.l2?m1.l3!m4.l2?m4

This execution can be understood as follows: l1 broadcasts
message m1 to both l3 and l2 and then l3 sends m4 to l2.

Characterizing executions as global traces requires that
all sub-systems share a common clock which we may call
the global clock. However, in all generality, as the sub-
systems of a DS can be distributed across distant machines,
they may not share a common clock (Lamport 2019) and
such a centralization and reordering of logging is not
possible. Fig.1b describes a similar system as that of Fig.1a
except that all three lifelines have different local clocks (as
indicated by the drawn clocks). Let us suppose however,

1 Given a set X, X∗ denotes the set of all sequences with elements in X
(this is the Kleene star notation).

that the same execution occurred in both cases. Then,
because it is not possible to reorder actions occurring on
distinct lifelines, instead of a global trace, the execution is
rather characterized by a set of three local traces (one for
each sub-system), which we call a multi-trace:

[l1] l1!m1

[l2] l2?m1.l2?m4

[l3] l3?m1.l3!m4

This notion of multi-trace can be found e.g. in (Benharrat
et al. 2017; Mahe et al. 2021) as well as in (Attard &
Francalanza 2017) (called partitioned traces) and (Nguyen
et al. 2012; Bauer & Falcone 2016) (as sets of logs/local
traces).

Still, it may be so that groups of sub-systems do share a
common clock. We call those groups co-localizations (Pratt
1986). Fig.1c describes a variant of our example where
lifelines l1 and l2 share a common clock (as indicated by
the drawn clocks). In this case it is possible to order an
action occurring on l1 w.r.t. another occurring on l2. As a
result, the execution (the same as in the previous two cases)
can be characterized by a generalized multi-trace where
lifelines l1 and l2 constitute together a co-localization and
where lifeline l3 alone represents another co-localization.
The multi-trace is then composed of two collected local
traces, each representing a local order of actions on one of
the two co-localizations.

[l1, l2] l1!m1.l2?m1.l2?m4

[l3] l3?m1.l3!m4

More formally, a co-localization c is defined by a subset
of lifelines c ⊆ L. We introduce A|c = {a ∈ A | θ(a) ∈ c}
the set of actions occurring on a lifeline in c and T|c = A∗

|c
the set of local traces defined on c.

Tooling ORV against Interaction Models : recognizing sliced behaviors using parameterized simulation 3

For a set X, Part(X) denotes the set of partitions of X,
where a partition C ∈ Part(X) is defined as a collection C ⊂
P(X) s.t.

⋃
c∈C c = X and ∀ (c, c′) ∈ C, c , c′ ⇒ c∩ c′ = ∅.

Definition 1 (Multi-traces). Given a partition C ∈ Part(L)
of lifelines, we denote by MC the set of multi-traces up to C. A
multi-trace µ ∈MC is defined as a tuple of traces, each defined
over events occurring on a specific co-localization from C, hence
MC =

∏
c∈C T|c.

Given a multi-trace µ ∈ MC and given any c ∈ C, we
denote by:

– µ|c the local component of µ on c,
– for any t ∈ T|c, µ[t]c the multi-trace µ in which t sub-

stitutes the c component, i.e. ∀ c′ ∈ C \ {c}, (µ[t]c)|c′ =
µ|c′ and (µ[t]c)|c = t.

We also extend the notation θ s.t. for any a ∈ A and
C ∈ Part(L), θC(a) designates the unique co-localization
c ∈ C on which a occurs i.e. s.t. θ(a) ∈ c.
εC denotes the empty multi-trace s.t. ∀ c ∈ C, εC|c = ε.

We define a left concatenation operator for multi-traces
as follows: for any action a and multi-trace µ, a →

⊙ µ =
µ[a.µ|θC(a)]θC(a) is the multi-trace obtained by prepending
action a on the corresponding component of µ (i.e. µ|θC(a)).

Finally, we denote by Ct = {L} the trivial partition (in
which all lifelines are co-localized) and by Cd = {{l} | l ∈ L}
the discrete partition (in which no two lifelines are co-
localized).

Multi-traces defined up to Ct and Cd respectively cor-
respond to the notions of global traces (Mahe et al. 2020)
and multi-traces as defined in (Mahe et al. 2021). Co-
localizations allow us to generalize and bridge the gap
between those two notions. Hence, any RV approach
that can handle those generalized multi-traces can also
handle both global traces (trivial partition Ct) and classical
multi-traces (discrete partition Cd) which are particular
cases of generalized multi-traces.

As a side note, it is possible to define projections from
coarser multi-traces to finer multi-traces. For any set X,
a partition C′ ∈ Part(X) is a refinement of a partition
C ∈ Part(X), denoted by C′ ≤ C, if for any c′ ∈ C′, there
exists c ∈ C s.t. c′ ⊂ c. For instance, the multi-traces
from Fig.1c and Fig.1b can be obtained by projecting
that from Fig.1a because {{l1, l2}, {l3}} ≤ {{l1, l2, l3}} and
{{l1}, {l2}, {l3} ≤ {{l1, l2, l3}}.

2.2. Slices to model partially observed executions
As we have seen, the example execution from Fig.1a is
characterized by the global trace :

t = l1!m1.l3?m1.l2?m1.l3!m4.l2?m4

With the aim of performing Offline Runtime Verification
we would then analyze this trace w.r.t. a certain behavioral
model. However, in practice, the instrumentation that is
used to collect this trace (from an observation of the exe-
cution that occurred) is not always perfect. If we suppose

that this trace t characterizes the entirety of the execution,
then, depending on the quality of the instrumentation, the
collected trace t′ may be a suffix of t (if the observation
started too late), a prefix of t (it it ended too early) or a
sub-word of t (if both).

This remark can equally be applied in the absence of
a global clock. In the case of Fig.1c, l1 and l2 share a
common clock while l3 has its own local clock. Thus, the
instrumentation must have at least two distinct observers
to log actions on those two co-localizations. In ideal
conditions, the observation of this execution would yield
the following multi-trace (see also Fig.1c) defined over
C = {{l1, l2}, {l3}}:

[l1, l2] l1!m1.l2?m1.l2?m4

[l3] l3?m1.l3!m4

In practice however, it may be difficult to synchronize the
periods of observation between distant observers. Hence
it may be so that some actions are missing at the beginning
and/or at the end of local components of the multi-trace
(as compared with the multi-trace that would have been
observed in ideal conditions of observation).

This is illustrated on Fig.1d. Here, we suppose that
observation on component {l1, l2} started too late, lead-
ing to l1!m1 and l2?m1 not being observed while that on
component {l3} ceased too early, leading to l3!m4 not being
observed. With the convention that the missing actions are
greyed-out, this leads to the following partial multi-trace:

[l1, l2] l1!m1.l2?m1.l2?m4

[l3] l3?m1.l3!m4

This notion of partial observation (i.e. some elements
may be missing at the beginning or at the end of traces
composing the multi-trace) corresponds to considering
slices of multi-traces, as defined in Def.2.

Definition 2 (Slices). For any traces t, t′ ∈ T|c, we say that
t′ is a slice of t iff there exists t+ and t− ∈ T|c s.t. t = t−.t′.t+
and we denote by t̃ the set of slices of t.
For any multi-traces µ,µ′ ∈MC, we say that µ′ is a slice of µ
iff for all c ∈ C, µ′

|c ∈ µ̃|c and µ̃ denotes the set of slices of µ.

In our example, if we denote by µ0 the multi-trace from
Fig.1c (observed in ideal conditions) then the multi-trace
described on Fig.1d (collected in conditions of partial
observation) is a slice of µ0 i.e. µ′0 ∈ µ̃0.

3. Interactions and their semantics

3.1. Syntax
Formal behavioral models enable users to

1. specify systems which may exhibit infinitely many
distinct behaviors as finite expressions and

4 Mahe et al.

2. automate Verification and Validation processes such
as RV.

The challenge of modeling and adapting RV to complex
DS requires rich and intuitive formalisms. Interactions
(Mahe et al. 2022) are well-suited to specify distributed
behaviors thanks to their intuitive graphical representation
(in the fashion of UML-Sequence Diagrams (Micskei &
Waeselynck 2011)) while at the same time being formal
models on which RV techniques can be applied (Mahe
et al. 2020, 2021). In that spirit, an interaction is both
described as a syntactic term which takes the form of a
binary tree (see Fig.2b) and visualized as a diagram (see
Fig.2a) which may be familiar to many software engineers
thanks to the wide use of UML-SD and MSC. Fig.2 depicts
an example of interaction defined on the lifelines l1, l2 and
l3 with messages m1, m2, m3 and m4. It is represented as
a diagram on the left (Fig.2a), and as a term on the right
(Fig.2b).

co-region

asynchronous broadcast

weak sequential loop

parallel loop

(a) interaction diagram

seq

coreg{l2}

alt

strict

l1!m1 seq

l2?m1 l3?m1

∅

loopW

alt

strict

l1!m2 l2?m2

strict

l2!m3 l3?m3

loopP

seq

strict

l3!m4 l2?m4

strict

l2!m5 l3?m5

(b) interaction term

Figure 2 An example of an interaction

Interaction models correspond to expressions built over:

– the empty interaction, denoted by ∅, with the empty
multi-trace εC as the only accepted one

– and actions a (of the form l!m or l?m) with a multi-
trace reduced to a single action as the only accepted
one (i.e. the multi-trace a →⊙ εC).

We then use operators to compose interactions into
more complex expressions. Let us consider two interac-
tions i1 and i2:

– alt stands for alternative and a behavior of alt(i1, i2)
is either a behavior of i1 or one of i2 according to a
non-deterministic and exclusive choice between the
two alternatives.

– strict stands for strict sequencing and a behavior of
strict(i1, i2) is such that a behavior from i1 must be
entirely expressed before any action from i2 can occur;

– coreg stands for concurrent region and corresponds to
a family of operators (coregr)r∈P(L). For a given subset
r ⊆ L of lifelines, coregr(i1, i2) specifies behaviors
composed from behaviors of i1 and i2.

(a) In the first case r = L, actions occurring in i1 and
i2 can occur in any order in behaviors expressed by
coregr(i1, i2). This definition coincides with a classical
interleaving (Knapp & Mossakowski 2017; Mahe et
al. 2022) or orthocurrence (Pratt 1986) operator. As
such we denote by par the corresponding derivable
construct.
(b) In the second case r = ∅, interleaving is only pos-
sible between actions that occur on different lifelines,
i.e. the behaviors of coreg∅(i1, i2) are defined as with
the strict operator for actions occurring on the same
lifeline (whatever it may be) and as with the par oper-
ator for actions occurring on different lifelines. This
definition coincides with weak sequencing (Knapp &
Mossakowski 2017; Mahe et al. 2022) which is a key
operator for sequence diagrams. As such we denote
by seq the corresponding derivable construct.
(c) In the last case r < {∅, L}, coregr behaves as par on r
and as seq on L \ r.

The coreg operator is new w.r.t. the language from
(Mahe et al. 2022). This operator is inspired by the co-
regions of UML-SD (OMG 2017), also found in some
papers on MSCs (Katoen & Lambert 1998). The coreg
construct allows certain patterns of communications that
would be difficult to model ergonomically otherwise. For
instance, on Fig.2 we have that (1) l1 has to emit m1 (if it
ever does) before it can emit m2 (if it ever does) and (2) l2
can receive m1 or m2 in any order. To specify this, we use
a co-region on lifeline l2. This could not have been done
using a seq (as it would forbid m2 to be received before m1)
or a par (as it would allow m2 to be emitted before m1).

seq and par are not primitive operators as they can be
derived from coreg. However, because those two operators
are familiar to users of sequence-diagram-like models and
widely used, we keep them to denote the corresponding
coreg variants.

strict and coreg are binary scheduling operators i.e. they
can be used to schedule behaviors w.r.t. one another. As a
result, they can be used for defining repetition operators
in the same manner as concatenation can be used to define
the Kleene star for regular expressions. In (Mahe et al.
2022) we have defined loopS, loopW , loopP as repetition
operators using resp. strict, seq and par. In the same
fashion we can define a family (loopCr)r∈P(L) of repetition
operators. In contrast to MSC and UML-SD, which only
have a single loop construct, those loops enable us to
specify a variety of behaviors.

loopS is a strict sequential loop meaning that any in-
stance of the repeated behavior must be entirely executed
(globally) before any other instance of the behavior might
be started.

loopC, used as loopCr(i) with r ⊆ L is a repetition using
a coregr operator. It is a middleground between:

– loopW = loopC∅ which corresponds to repetitions us-
ing the weak sequential operator. Several instances
of the repeated behavior might exist at the same time

Tooling ORV against Interaction Models : recognizing sliced behaviors using parameterized simulation 5

because there is no synchronization between lifelines
as for the beginning and end of the executions of
those instances. Moreover, with loopW , it might be so
that the first action that is executed does not come
from the first instance of the loop. For instance, in the
example from Fig.2, after a first occurrence of l1!m2,
lifeline l2 may emit m3 several times before receiving
the m2 initially sent by l1.

– and loopP = loopCL , which is more akin to the bang
operator of pi-calculus (Parrow 2001) and signifies
the parallel composition of an arbitrary number of
instances of the same behavior. It can be used to
model services of which, at any given time, many
instances may run in parallel.

When modeling DS, communications between sub-
systems can be defined up to a certain communication
medium. In formalisms based on communicating au-
tomata, this often takes the form of buffers which as-
sume certain policies (FIFO, bag, etc.) (Engels et al.
2002). In our case, loops used in combination with
asynchronous message passing, may be used to abstract
away those communication media. For instance, while
loopW(strict(l1!m, l2?m)) corresponds to having a FIFO
buffer receiving messages from l1 on l2, in contrast, by
using loopP(strict(l1!m, l2?m)) we rather have a bag buffer
in so far as instances of message m can be received in any
order.

Definition 3. The set I of interactions is the least term set s.t.:
− ∅ and actions in A belong to I

− for any i1, i2 ∈ I2 and any r ⊆ L:
− ∀ f ∈ {strict, alt, coregr}, f (i1, i2) ∈ I

− ∀ k ∈ {S, Cr}, loopk(i1) ∈ I

In Def.3, we formalize our interaction language. Let us
keep in mind that the seq, par, loopW and loopP constructs
are derivable from coreg and loopC.

Via their recursive definition, interactions have a tree-
like structure, as illustrated on Fig.2b. Those trees are
binary-trees and we can pinpoint unambiguously each
sub-tree via its position as a word p ∈ {1, 2}∗ (with ε the
empty position which designates the root node). More
precisely, 1 (resp. 2) allows access to the left direct sub-
interaction or the unique direct sub-interaction (resp. the
right direct sub-interaction). For any interaction i, pos(i)
designates the set of its positions, and, for any p ∈ pos(i), i|p
designates the sub-interaction at position p. For example,
for the interaction i = seq(alt(l1!m1, l2?m2), l1!m3), i|1 is
the interaction alt(l1!m1, l2?m2), i|12 is the interaction l2?m2
and {ε, 1, 2, 11, 12} is the set of positions of i.

3.2. Semantics
Given a partition C ∈ Part(L) defining co-localizations,
each interaction i ∈ I characterizes a (potentially infinite)
set σC(i) of multi-traces according to C. This semantics can
be defined in an operational-style using either inductive
rules (in the style of Plotkin (Plotkin 2004)) as in (Mahe et

al. 2022) or through the definition of an execution function
(in the style of functional programming languages) as in
(Mahe et al. 2020, 2021). In the following we propose a
reworked (w.r.t. that of (Mahe et al. 2022)) operational-
style formulation which includes the coregion operator
coreg and involves fewer inductive predicates.

Interactions provide detailed control structures as for
the occurrences and orders of actions, going beyond the
simple linear order of events made available by multi-
traces. An operational-style semantics defines accepted
behaviors via concatenations of actions a which occur-
rences are associated to term transformations of the form

i
a@p
−−−→ i′

Here interaction i′ specifies all the continuations of the
behaviors specified by i which start with the occurrence
of action a ∈A, which, by construction, is a sub-term of i
at a certain position p ∈ pos(i).

In order to ensure that the follow-up interaction i′

specifies the right order of actions following the first
selected action (a at position p) according to the interaction
i, the execution relation→ performs transformations on
the initial term i so as to obtain i′. Those transformations
may include pruning operations (related to the notion
of "permission" in (Mauw & Reniers 1997)) which clean
the term with regard to the lifeline of the action which is
executed.

�

�

�

(a) on diagram

coreg{l2}

alt

strict

l1!m1 seq

l2?m1 l3?m1

∅

loopW

alt

strict

l1!m2 l2?m2

strict

l2!m3 l3?m3

■ pruning ■ simplification

(b) on term

Figure 3 Pruning an interaction

In particular, the mechanism of pruning enters into
play for handling weak sequencing. For example, let us
consider executing l3!m4 in the interaction from Fig.2. If
l3!m4 is the first action to occur then, so as to respect the
top to bottom order of the diagram (i.e. weak sequencing),
this means that neither l3?m1 nor l3?m3 can occur. Indeed,
they appear above l3!m4 along the lifeline l3 in Fig.2, more
precisely they are scheduled with weak sequencing w.r.t.
to it and must precede it. Hence, if those actions were to
occur they would have done so before l3!m4. As a result,
both actions must be eliminated or, in other words, to
better conform to our vocabulary, pruned from the follow-
up interaction. This is possible because they are within
alternatives and loops. The general idea is to transform the
sub-terms preceding (i.e. with sequencing) the action that

6 Mahe et al.

is executed (here l3!m4) in such a way as to eliminate from
these sub-terms actions that involve the lifeline on which
this executed action occurs (here l3). In this process, which
we call pruning, pertinent actions are eliminated and, from
the bottom up, the pruned sub-terms are reconstructed so
as to keep all the behaviors that do not involve a certain
lifeline (here l3).

This process of pruning is illustrated on Fig.3. The
interaction term with coreg{l2} as root in Fig.3b is simplified
with two purposes: eliminate all traces with an action on
lifeline l3 and preserve all other accepted traces. As the
sub-interaction strict(l1!m1, seq(l2?m1, l3?m1)) at position
1 only accepts traces containing the action l3?m1, the first
alternative of the alt operator (position 11) is no longer
allowed and the sub-interaction with alt as top operator
is reduced to its second alternative, here ∅ (position 12),
which by definition accepts only the empty trace and
consequently avoids lifeline l3. As can be seen from
Fig.3a, the process of pruning an interaction is a local
transformation guided by the lifelines to be avoided.

In Def.4 below, we define pruning w.r.t. a subset L′ ⊆ L

of lifelines. The two pruning relations ××L′
−→ and ×̸×L′

−→ are
defined inductively on the term structure of interactions.
For any interactions i and i′:

– i××L′
−→ i′ signifies that i′ is an interaction which specifies

exactly all the behaviors specified by i that do not
involve any action occurring on a lifeline of L′.

– i ×̸×L′
−→ signifies that it is impossible to find such an

interaction i′ because all the behaviors specified by i
involve at least one action occurring on a lifeline of
L′.

Definition 4 (Pruning). The pruning relations ××−→ ⊂ I ×

P(L) × I and ×̸×−→ ⊂ I × P(L) are s.t. for any L′ ⊆ L, any
f ∈ {strict} ∪

⋃
r⊆L{coregr} and k ∈ {S} ∪

⋃
r⊆L{Cr}:

∅××
L′
−→ ∅

θ(a) < L′

a××L′
−→ a

θ(a) ∈ L′

a ×̸×L′
−→

i1××
L′
−→ i′1 i2××

L′
−→ i′2

alt(i1, i2)××
L′
−→ alt(i′1, i′2)

i1 ×̸×
L′
−→ i2 ×̸×

L′
−→

alt(i1, i2) ×̸×
L′
−→

i j×
×L′
−→ i′j i j′ ×̸

×L′
−→

{ j, j′} = {1, 2}

alt(i1, i2)××
L′
−→ i′j

i1××
L′
−→ i′1 i2××

L′
−→ i′2

f (i1, i2)××
L′
−→ f (i′1, i′2)

i j ×̸
×L′
−→

j ∈ {1, 2}

f (i1, i2) ×̸×
L′
−→

i1××
L′
−→ i′1

loopk(i1)××
L′
−→ loopk(i′1)

i1 ×̸×
L′
−→

loopk(i1)××
L′
−→ ∅

The pruning relations are defined inductively in the
style of Plotkin (Plotkin 2004):

– the empty interaction ∅ can always be pruned into

∅ w.r.t. any subset L′ ⊆ L of lifelines (i.e. ∅××L′
−→ ∅)

because it expresses no action occurring on L′

– for any action a, we have a××L′
−→ a if θ(a) < L′ and a ×̸×L′

−→

otherwise because a must be expressed

– having alt(i1, i2) ×̸×
L′
−→ (resp. strict(i1, i2) ×̸×

L′
−→) requires

that both (resp. one of the two) i1 ×̸×
L′
−→ and i2 ×̸×

L′
−→ hold

– all other cases are handled similarly.

We define the execution relation i
a@p
−−−→ i′ - which makes

interactions executable - in the same way as the pruning
predicates. Executing an atomic action a ∈ A simply
consists in replacing it with the empty interaction ∅ be-
cause once action a is expressed, nothing remains to be
expressed. If an action can be expressed within a branch
of an alternative, then it can also be expressed from the
alternative itself but its expression forces the choice of
the branch on which it occurs to be made. An action
which can be expressed on the left branch of a scheduling
operator (strict or any coregr which implies also seq and
par) can always be expressed from the scheduling operator
itself and what remains to be expressed is the scheduling
of what remains of the left branch w.r.t. the initial right
branch.

Defining i
a@p
−−−→ i′ for executing actions from the right

branch of i can be more challenging. Indeed, it is not
always possible to express an action on the right branch
of a scheduling operator, and, if it is possible, then it
often requires pruning the left branch so as to remove
inconsistencies in the follow-up interaction.

When an action is expressed inside a loop, we have
in the follow-up a certain scheduling of what remains to
be executed of the instance of the sub-behavior w.r.t. the
initial loop (which, serving as a specification of the repeat-
able instance, remains the same). Due to the peculiarities
of weak sequencing (as evoked in (Mahe et al. 2022)), in
particular to the fact that the first action that is executed
does not necessarily come from the first instance of the
loop (as ordered by the operator which schedule different
instances of the loop), the rule for loopCr is somewhat more
complex. It involves scheduling a pruned version of the
initial loop before the remainder of the executed instance.

Definition 5 (Execution). The execution relation →⊂ I ×

(A× {1, 2}∗) × I is defined as follows:

a a@ε
−−−→ ∅

i1
a@p
−−−→ i′1

alt(i1, i2)
a@1.p
−−−−→ i′1

i2
a@p
−−−→ i′2

alt(i1, i2)
a@2.p
−−−−→ i′2

i1
a@p
−−−→ i′1

strict(i1, i2)
a@1.p
−−−−→ strict(i′1, i2)

i1
a@p
−−−→ i′1

coregr(i1, i2)
a@1.p
−−−−→ coregr(i′1, i2)

i1××
L
−→ ∅ i2

a@p
−−−→ i′2

strict(i1, i2)
a@2.p
−−−−→ i′2

i1××
{θ(a)}\r
−−−−−−→ i′1 i2

a@p
−−−→ i′2

coregr(i1, i2)
a@2.p
−−−−→ coregr(i′1, i′2)

Tooling ORV against Interaction Models : recognizing sliced behaviors using parameterized simulation 7

i1
a@p
−−−→ i′1

loopS(i1)
a@1.p
−−−−→ strict(i′1, loopS(i1))

i1
a@p
−−−→ i′1 loopCr(i1)×

×
{θ(a)}\r
−−−−−−→ i′

loopCr(i1)
a@1.p
−−−−→ coregr(i′, coregr(i′1, loopCr(i1)))

In (Mahe et al. 2022), the reader can find detailed expla-
nations on the rules concerning most operators (strict, par,
alt, seq and loop). In addition, Def.5 includes the use of
positions which is not the case in (Mahe et al. 2022). Using
those decorations @p comes at no cost given the inductive
nature of→’s definition. Moreover, it removes all ambigu-
ities related to having several executable occurrences of

the same action (i.e. i
a@p1
−−−→ i1 and i

a@p2
−−−→ i2 with p1 , p2

and i1 , i2).

l1!m2@12111 l2!m3@12121

l1!m1@1111 l3!m4@2111

Figure 4 Follow-ups of the interaction from Fig.2

Fig.4 illustrates the use of the execution relation on the
example from Fig.2. Four distinct actions can be immedi-
ately executed, leading to four follow-up interactions.

This process of computing follow-up interactions can
be repeated recursively so that we obtain a tree which root
is the initial interaction i0. This tree, called an execution
tree represents the semantics is i0 i.e. its set of accepted
behaviors. behaviors expressed by i0 can indeed be ob-
served via the succession of the actions that are executed
on any path of the tree starting from i0 and ending with
an interaction that can express the empty behavior.

Finally, the set of multi-traces σC(i0) accepted by an
interaction i0 can be built using the execution relation→.

A multi-trace µ belongs to σC(i0) iff it can be written as:

µ = a1
→

⊙ a2
→

⊙ . . .
→

⊙ an
→

⊙ εC

and if there exist n interactions i1, . . . , in s.t.:

– ∀ j ∈ {0, 1, . . . , n− 1}, i j
a j+1@p j+1
−−−−−−−→ i j+1

– and εC ∈ σC(in).

This last point (i.e. whether or not εC ∈ σC(in)) can be
determined statically using the pruning relation. Indeed,

if there exists i′n such that in××
L
−→ i′n then this means that in

has at least a behavior which does not involve any action
that occurs on lifelines of L. L being the set of all lifelines,
this behavior can only correspond to the empty multi-trace
εC and hence εC ∈ σC(in).

Definition 6. Let C ∈ Part(L) and let i ∈ I.
The semantics σC(i) of i is the least subset of MC s.t.:

i××L
−→ i′

εC ∈ σC(i)
µ ∈ σC(i′) i

a@p
−−−→ i′

a →⊙ µ ∈ σC(i)
with µ ∈MC, a ∈A, p ∈ {1, 2}∗ and i′ ∈ I.

3.3. Soundness of the operational semantics
In (Mahe et al. 2022) we have given a denotational se-
mantics for the interaction language without the coreg
and loopC operators. The semantics is based on the use
of composition and algebraic operators as in (Knapp &
Mossakowski 2017). In (Mahe et al. 2022), we used the ||
(interleaving) and ×× (weak sequencing) operators on sets
of traces. In order to include coreg we have to define a
new operator on sets of traces as follows. The first step is
to define a conditional conflict predicate t ××|r l meaning
that the trace t contains an action on a lifeline l < r:

ε ××|r l = ⊥

(a.t) ××|r l = ((θ(a) = l)∧ (l < r))∨ (t ××|r l)

If t ××|r l = ⊤, we say that the trace t has conflicts w.r.t. the
lifeline l in the region covered by L \ r where r ⊆ L is the
concurrent region. By overloading the symbol ××|r, the set
t1
××|r t2 of conditional sequencing of t1 and t2 is defined

by:

ε ××|r t2 = {t2}

t1
××|r ε = {t1}

(a1.t1) ×
×
|r (a2.t2) = {a1.t | t ∈ t1

××|r (a2.t2)}

∪

a2.t

∣∣∣∣∣∣∣∣ t ∈ (a1.t1) ×
×
|r t2,

¬(a1.t1
××|r θ(a2))


This conditional sequencing operator entirely covers

previous notions of weak sequencing and interleaving
as we have || = ××|L and ×× = ××|∅. Formal proofs of those
statements are given in Appendix A.1 which follows the
structure of the Coq proof available in (Mahe 2023a).

8 Mahe et al.

We denote by ; the concatenation (strict sequencing)
operator on multi-traces, and by ∪ the set-theoretic union.

Then, in order to define the semantics of loops, we
extend the Kleene star notation for our new scheduling
operator. For any ⋄ ∈ {; , ××|r} and any set of traces T, the
Kleene closure T⋄∗ of T is defined by T⋄∗ =

⋃
j∈N T⋄ j with

T⋄0 = {ε} and T⋄ j = T ⋄ T⋄(j−1) for j > 0.
Finally, we define a denotational semantics ρ : I →

P(T|L) of interactions as a set of global traces - i.e. traces
defined on the partition Ct = {L} - associated to a specific
interaction term:

– ρ(∅) = {ε} and ρ(a) = {a} for any action a ∈A

– and for any i1 and i2 in I:

- ρ(alt(i1, i2) = ρ(i1)∪ ρ(i2)
- ρ(strict(i1, i2)) = ρ(i1);ρ(i2)
- ρ(coregr(i1, i2)) = ρ(i1)××|rρ(i2)
- ρ(loopS(i1)) = ρ(i1);∗

- ρ(loopCr(i1)) = ρ(i1)
××|r∗

The pruning and execution relations are then charac-
terized w.r.t. this denotational formulation in Th.1 and
Th.2.

Theorem 1. For any L′ ⊆ L and any i and i′ from I we have:

(i××L′
−→ i′) ⇒ (ρ(i′) = {t ∈ ρ(i) | ∀ l ∈ L′, ¬(t ××|∅ l)})

(i ×̸×L′
−→) ⇒ (∀ t ∈ ρ(i), ∃ l ∈ L′, t ××|∅ l)

Proof. A detailed proof is given in Appendix A.2 and
corresponds to the Coq proof available in (Mahe 2023a).

□

Th.1 states that transformations i×× L′
−→ i′ characterize

interactions i′ which specify behaviors that are exactly
those specified by i with no action occurring on a lifeline

of L′. By contrast, i ×̸×L′
−→ stands for "all the behaviors of i

involve at least one action occurring on a lifeline of L′". Let
us observe that if we choose L′ = L in Def.4, the expression

i××L
−→ ∅ (resp. i ×̸×L

−→) means that the interaction i accepts
(resp. does not accept) the empty multi-trace εC. We take
advantage of this observation in Def.6 to provide a more
compact presentation of the operational semantics than
the one in (Mahe et al. 2022).

Theorem 2. For any i ∈ I, a ∈A and t ∈ T|L:

(a.t ∈ ρ(i))⇔
(
∃ i′ ∈ I, (i a

−→ i′)∧ (t ∈ ρ(i′))
)

Proof. A detailed proof is given in Appendix A.3 and
corresponds to the Coq proof available in (Mahe 2023a).

□

Th.2 characterizes the execution relation→ w.r.t. the
denotational-style semantics ρ. It states that the follow

ups i′ s.t. i
a@p
−−−→ i′ indeed specify all the continuations of

the behaviors specified by i.

Finally, in Th.3 we justify the correctness of our
operational-style semantics from Def.6 for the particu-
lar case of the partition Ct = {L} w.r.t. the denotational
semantics ρ inspired by (Knapp & Mossakowski 2017).

Theorem 3. For any i ∈ I, we have σCt(i) = ρ(i)

Proof. Implied by Th.1 (for L′ = L) and by Th.2. See
Appendix A.4 and the Coq proof in (Mahe 2023a). □

Th. 3 states that both definitions of ρ and σCt coincide
on the trivial partition Ct = {L} which preserves the
most information on partial orders between events. For
other partitions C ∈ Part(L), the analogy of denotational
and semantic semantics is obtained by observing that
σC(i) corresponds to a projection of σCt(i) from finer to
coarser multi-traces, and thus corresponds also to the
same projection applied on ρ(i).

3.4. Application to multi-trace analysis
Accepted multi-traces of a certain interaction i are defined
via their semantics σC(i) in Def.6. If, in a practical setting,
a multi-trace µ is observed during a system execution, the
conformance of µ to i can be brought back to a problem of
membership as in (Mahe et al. 2021) i.e. verifying whether
or not µ ∈ σC(i).

In (Mahe et al. 2020), we have proposed an algorithm for
analyzing traces w.r.t. interactions, which corresponds to
a single co-localization in our present framework, i.e. with
the trivial partition Ct = {L}. These analyses determine
whether or not a behavior given as a trace is accepted. The
principle of the algorithm is to consider the first element
a1 of the trace t to be analyzed (therefore of the form a1.t′),
to execute it in the reference interaction i0 and to remove
it from the trace. This allows us to start again with all the

interactions i1 verifying i0
a1@p
−−−→ i1 for (possibly several)

positions p and the remaining trace t′. If the original trace
t of length n can be emptied (via n such steps), then it
means that it is accepted by the original interaction i0 iff ε
is accepted by the last interaction in. If this is not possible
then this means that the behavior t deviates from i0.

This principle can be directly adapted to multi-traces as
demonstrated with the algorithm defined for the discrete
partition Cd = {{l} | l ∈ L} in (Mahe et al. 2021). The
latter algorithm can be easily extended to consider any
partition C ∈ Part(L) and to consider global prefixes. Let
us illustrate this with our running example i.e. let us
analyze the multi-trace from Fig.1c w.r.t. the interaction
from Fig.2 which semantics we have illustrated in Fig.4.

The application of the algorithm is represented on Fig.5.
In order to analyze the multi-trace, we try to reconstruct a
global behavior (global trace) from the execution tree (e.g.
Fig.4) of the interaction which can be projected into the
multi-trace. To that end, we use the execution relation→
from Def.5 (the operational semantics). If an action is at
the beginning of one of the multi-trace’s local traces, and
if it is immediately executable in the interaction model,
the algorithm performs a step in which it both consumes

Tooling ORV against Interaction Models : recognizing sliced behaviors using parameterized simulation 9

l1!m1@1111 l3?m1@..

l3!m4@..

l2?m1@..l2?m4@..Ok

Figure 5 Illustrating multi-trace analysis algorithm adapted (to co-localizations) from (Mahe et al. 2021).

it from the multi-trace and executes it in the interaction.
This enables one to replay a behavior characterized by the
multi-trace in the model. If it is possible then it means
that the multi-trace satisfies the specifying interaction.
Otherwise this means that the multi-trace violates it. The
analysis itself is represented graphically under the form of
a graph on Fig.5. Every node on this graph contains both
an interaction (on the left) and a multi-trace (on the right),
the initial node containing the initial interaction i0 (Fig.2)
and multi-trace µ0 (Fig.1c). As a visual aid, a � (white
flag) symbol appears under components c ∈ C of the multi-
trace whenever, at this moment in the reproduction of the
behavior in the model, observation has started on c. The
number following the flag then represents the number
of actions which have been observed. A v (black flag)
symbol marks the end of observation.

However, this general principle is insufficient for an-
alyzing multi-traces in the case of partial observability.
In this context, partial observation signifies that the multi-
trace logged by the instrumentation does not characterize
the entire execution of the DS. More concretely, some
events may be missing from the multi-trace w.r.t. an
ideal multi-trace which would have been observed with
ideal conditions of observation. The notion of multi-trace
slice from Sec.2.2 proposes a specific definition of partial
observation, where events may be missing at the begin-
ning and/or the end of each local trace component of the
multi-trace (independently).

As a means to understand how partial observation is
challenging for RV we consider the example from Fig.1d,
which is a partial observation of the multi-trace from Fig.1c.
If we were to reorder actions globally, this observation

l1!m1.l3?m1.l2?m1.l3!m4.l2?m4

(a) Missing actions in the multi-trace from Fig.1d transposed in the
global scenario from Fig.1a

Ko

(b) The analysis yields a Fail because of unobserved actions

Figure 6 Limitation of the approach from (Mahe et al. 2021)
under partial observation.

could be described as in Fig.6a. Missing actions, i.e.
actions that are not observed by the instrumentation, are
not necessarily at the beginning or the end globally but
there may be several sub-words missing from the global
trace (here l1!m1 and l2?m1.l3!m4 inserted in light gray in
the global trace given in Fig.6a). The fact that such missing
actions may be located anywhere in a globally sequential
behavior (here the broadcast of m1 from l1 to l2 and l3
followed by the passing of m4 from l3 to l2) is particularly
challenging for ORV. Using the algorithm from (Mahe et
al. 2021) this would yield a Fail verdict - as illustrated

10 Mahe et al.

on Fig.6b - because this algorithm cannot differentiate
between the system going out of specification and it being
partially observed.

This motivates the definition of an ORV algorithm that
is tolerant to partial observation, which is the object of the
next section.

4. ORV algorithm with bounded simulation
As we have seen with the example from Fig.1d and Fig.6,
DS executions can be partially observed due to issues of
synchronization between local observers. As a result, a
correct behavior may be observed as a slice µ′ ∈ µ̃ of an
accepted multi-traceµ ∈ σC(i)with missing elements at the
beginning and/or the end of the traces corresponding to co-
localizations of C. Then, because we might haveµ′ < σC(i),
membership is not enough to verify conformance. The
property which we have to verify is rather whether or not
µ′ ∈ σ̃C(i).

Simulation is a straightforward answer to partial obser-
vation in so far as actions missing from the multi-trace may
simply be simulated in the model. In order to identify
a slice µ′ of an accepted multi-trace, we may simulate
actions a that occur either before the first action of the
corresponding component µ′

|θC(a)
or after its last action i.e.

outside of the period of (continuous) observation of the
component. Simulating such actions hopefully enables
the consumption of further actions in the multi-trace (in
the same component or any other). The approach that
we propose is optimistic in so far as that it suffices that
there exists some missing actions that can be be simulated
which explain the observed behavior. In other words, this
means that if, during an execution, what we observe of it
can be explained by a behavior without violations of the
specification, then, it is accepted even though a violation
might have happened in some unoberseved part of the
behavior.

Simulation explores possible missing actions that could
have been executed in order to explain the behavior ob-
served via the multi-trace w.r.t. the specifying interaction.
However, the presence of loops in interaction models
makes it possible to simulate arbitrarily many actions, mak-
ing a naive simulation-based algorithm non-terminating.
As a practical solution, we should bind simulation up to
a certain criterion so that we can hope to find missing
actions within a finite search space.

Defining pertinent stopping criteria on simulation being
no trivial matter, we firstly formalize a simulation-based
algorithm using an abstract criterion.

4.1. Algorithm initialization
Our algorithm relies on two mechanisms: one for exe-
cuting actions and consuming them from the multi-trace
and one for simulating actions without a corresponding
consumption. It then consists in exploring a graph to find
possible explanations of an observed multi-trace. From

a finite number of starting nodes, the mechanism of exe-
cution can only yield a finite number of steps given that
the multi-trace is finite (in terms of number of actions)
and, for each such action, there can only be finitely many
manners to interpret it in the interaction term (see (Mahe et
al. 2021)). However, this is not the case for the mechanism
of simulation. In order for the algorithm to be terminating,
we have to limit the simulation steps using a criterion.

We define a generic algorithm which relies on three
notions:

– flags defined by a function γ which aim is to keep
track of whether or not observation has started on the
co-localizations c ∈ C;

– a space of measures J fitted with a strict order relation
<J which can be parameterized and serves as a means
to limit the number of simulation steps;

– an initialization function κwhich sets the initial value
of the measure at the start of the algorithm process.

Flags γ In the algorithm, execution steps and simula-
tion steps may be interleaved. Execution steps can be
taken at any moment, provided that there is a match
between an action at the beginning of the multi-trace
and an immediately executable action of the interaction.
However, an additional condition is required for applying
a simulation step. Indeed, the goal of simulation is to
reconstruct parts of behaviors that were not observed at
the beginning and the end of the period of observation on
a given co-localization. As a result, we need an additional
condition to ascertain that we are outside this period of
observation.

To that end, we define γ : C→ B (where B = {⊥,⊤} is
the usual set of Boolean values) such that for any c ∈ C,
γ(c) = ⊥ if observation has not started and γ(c) = ⊤ if it
has. We denote by γ⊥ the case where observation has not
started on any co-localization i.e. ∀c ∈ C, γ⊥(c) = ⊥. For
any γ ∈ BC and c ∈ C, we denote by γ+ c the function s.t.
∀ c′ ∈ C \ {c}, (γ+ c)(c′) = γ(c′) and (γ+ c)(c) = ⊤. We
use this notation to update the observation status on c (i.e.
that it has started).

Parameterizable measure J In the sequel, we consider:

– a set J of measures fitted with a strict order relation
<J which admits no infinite descending chains, i.e.
which admits no infinite sequences (ji)∈N of elements
in J verifying ∀i ∈N, ji+1 < ji;

– and a relation⇁⊆ J × (I × {1, 2}∗) × J verifying that

for any j, j′ ∈ J, i ∈ I and p ∈ {1, 2}∗, if j
i,p
⇁ j′ then

j′ <J j. We note j ̸
i,p
⇁ if there does not exist j′ s.t.

j
i,p
⇁ j′.

From a pair (i, j) where i is an interaction and j a

measure, given an action at position p in i, if j ̸
i,p
⇁ then we

cannot simulate this action starting form i. If however

there exists j′ s.t. j
i,p
⇁ j′ then we may simulate it and,

Tooling ORV against Interaction Models : recognizing sliced behaviors using parameterized simulation 11

given i
a@p
−−−→ i′ with a action at position p in i, reach the pair

(i′, j′). In this manner, we can bind simulation to a strictly
decreasing measure. In the context of our ORV algorithm,
and because (J,<J) has no infinite descending chain, this
will imply that, in any run of our algorithm, there can only
be finitely many consecutive steps of simulation.

Example 1. For instance, we can consider J = N (positive
integers), < the classical inequality on positive integers, and the
relation⇁ s.t. for any j ∈ N, any i ∈ I and p s.t. ∃i′ ∈ I s.t.

i
i|p
−→ i′ we have j

i,p
⇁ j− 1. With this example, we decrement by

1 each time we simulate any action.

Parameterizable measure (re-)initialization κ The
measure being now defined, it still needs to be initialized.
For that, we consider any arbitrary function κ : I → J.
Because consecutive sequences of unobserved actions can
occur in between observed actions, whenever an action
is executed and consumed in the multi-trace instead of
being simulated, we may reset the measure to κ(i′) given

the execution i
a@p
−−−→ i′.

Example 2. For instance, following Ex.1, we can consider κ
s.t. for any i ∈ I we have κ(i) = 5. With this example criterion,
we may simulate successively a number of actions which is at
most 5.

In practice, however, so as to be able to define a wide
variety of criteria, the definition of κmay also depend on
other variables (besides the interaction i) such as the (size
of the) multi-trace µwhich is analyzed, the current state of
the flags γ etc. This is reflected in the tool implementation.
However, for the sake of simplicity, we consider I→ J as
the signature of κ.

4.2. Analysis graph
Let us define a directed search graph G which set of
vertices is V = (I ×MC ×BC

× J) ∪ {Ok, Ko} i.e. which
vertices are:

– either of the form (i,µ,γ, j) with i an interaction, µ a
multi-trace, γ a flag and j a measure (the latter two
defined as in Section 4.1);

– or can be one of the two verdicts Ok or Ko.

The arcs of G are defined using 4 rules: Rp (for "pass
verdict"), R f (for "fail verdict"), Re (for "execute") and Rs
(for "simulate") which are defined in Def.7.

Definition 7. The graph G = (V,{) is defined by:
− the set V = (I×MC ×BC

× J)∪ {Ok, Ko}
− the relation{⊆ V×V s.t. ∀ v, v′ ∈ V, v{ v′ holds iff it
can be derived by applying2 the four following rules:

(Rp)
(i, εC,γ, j){ Ok

2 the notation (R) H
v{v′ signifies that v{ v′ can be inferred by applying

rule R if we suppose that hypothesis H holds.

∃ p s.t. i
a@p
−−−→ i′

(Re)
(i, a

→

⊙ µ,γ, j){ (i′,µ,γ+ θC(a),κ(i′))

(µ , εC)∧


∃ a, p s.t.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(i
a@p
−−−→ i′)

∧(j
i,p
⇁ j′)

∧

 (γ(θC(a)) = ⊥)

∨(µ|θC(a) = ε)




(Rs)

(i,µ,γ, j){ (i′,µ,γ, j′)

(µ , εC)∧


 ∀ a, p, i′ s.t.

(i
a@p
−−−→ i′)


∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(∄ µ′ s.t. µ = a
→

⊙ µ′)

∧


(j ̸

i,p
⇁)

∨

 (γ(θC(a)) = ⊤)

∧(µ|θC(a) , ε)





(R f)

(i,µ,γ, j){ Ko

where i and i′ are interactions, µ and µ′ are multi-traces, γ
is a flag, j and j′ are measures, a is an action and p is a position.

Rules Rp and R f define edges from nodes of the form
(i,µ,γ, j) to verdicts (i.e. resp. Ok and Ko). Their condi-
tions of application are exclusive to that of all the other
rules which imply that if v{ Ok (or v{ Ko) then there
is no other edge originating from v.

– Given that the objective of the algorithm is to recog-
nize slices of accepted multi-traces and because the
empty multi-trace εC is a slice of any other multi-trace,
rule Rp (for "pass") yields a Ok verdict.

– R f (for "fail") yields a Ko verdict if the multi-trace is
not empty and if it is not possible to apply any of the
other two rules Re or Rs.

Based on the machinery of execution i
a@p
−−−→ i′ (Def.5),

rules Re and Rs specify edges of G of the form (i,µ,γ, j){
(i′,µ′,γ′, j′) in which an action occurs:

– the application of Re corresponds to the identification
of an action a which can simultaneously be consumed
at the head of a component of µ and be executed
from i. When rule Re applies, γ is updated into
γ+ θC(a) to reflect that observation has started on
the co-localization θC(a) on which action a has been
observed.

– with Rs the action is simulated in the interaction
without a corresponding consumption in the multi-
trace. Action a can be simulated if and only if at
this moment in the global scenario we are outside
of the period of observation on the corresponding
co-localization θC(a) i.e. it has either not started
(γ(θC(a)) = ⊥) or has already finished (µ|θC(a) = ε).

Note that the conditions of application of Re and Rs are
not mutually exclusive. The same action a may be either
executed or simulated in case observation has not yet
started on θC(a). This allows considering any missing
prefix of the multi-trace.

12 Mahe et al.

Theorem 4 (Finite reachable sub-graph). From any vertex
v = (i,µ,γ, j), the sub-graph of G reachable from v is finite.

Proof. We prove this in two steps: (1) all paths in G from
v are of finite length and (2) there is a finite number of
distinct paths in G from v.

To prove (1) this let us consider a measure on vertices of
V given as a tuple by |Ok| = |Ko| = (−1, j0) (with j0 any
element of J) and, for any vertex v of the form (i,µ,γ, j),
|v| = (|µ|, j) where |µ| is the length of the multi-trace (in
total number of actions). Considering the lexicographic
order on the tuple (with the relations < on integers for
the first element and <J for the second), each one of the 4
rules decreases strictly this measure:

– for Rp and R f because (−1, j0) < (|µ|, j) given that
|µ| ≥ 0 for any multi-trace

– for Re because (|µ|,κ(i′)) < (|a →

⊙ µ|, j) given that
|a →⊙ µ| = |µ|+ 1

– for Rs because (|µ|, j′) < (|µ|, j) given that j
i,p
⇁ j′ by

the definition of the rule Rs.

In addition (−1, j0) is a global minimum for this measure
and because there are no infinite descending chains in J,
there are also none for this measure on nodes of G. Hence,
by construction any path in G is finite.

To prove (2) we remark that, from any given node v =
(i,µ,γ, j) there are at most 2 ∗ |i|+ 1 (where |i| designates
the total number of actions in i) edges of the form v{ v′

with v′ < {Ok, Ko} (this is in the worst case, when every
action can be both executed and simulated). □

Th.4 states that only a finite sub-graph of G can be
reached from any given vertex v ∈ G. Let us also remark
that any sink (i.e. any vertex without any outgoing transi-
tion) of G must either be Ok or Ko. They are indeed sinks
because there are no rules specifying edges of the form
Ok { v or Ko { v and they are the only ones because
for any vertex of the form v = (i,µ,γ, j), if µ = εC then
Rp applies and v is not a sink and if µ , εC then: (1) if
there is a match between an action that can be executed
from i and the head of a component of the multi-trace then
rule Re applies. (2) if there is some action of i that can be
simulated, then rule Rs applies. (3) if neither condition 1
nor condition 2 hold then rule R f applies. Indeed, by con-
struction, the conditions of application of R f are defined
as complementary to the conditions of application of the
other 3 rules Rp, Re and Rs.

4.3. Verdicts and properties of the generic algorithm
The ORV algorithm consists in exploring reachable vertices
of a graph G using { (cf. Def.7) from an initial vertex
v = (i,µ,γ⊥,κ(i)) where µ is the multi-trace which we
want to analyze, i is the interaction which serves as the
reference specification andγ⊥ is the flag set to⊥ on each co-
localization c ∈ C. In this starting node, we choose the flag
γ⊥ since observation has not started on any component

and we initialize the measure for simulation using any
arbitrary function κ : I→ J.

This algorithm is generic given that the measures J, the
relation ⇁ and the functions κ are kept generic i.e. are
only defined through their profiles and properties.

Because of Th.4 and because Ok and Ko are the only two
possible sinks, we can conclude that at least one of them is
reachable from v. In any case, because the reachable part
of G is finite, it is always possible to determine in finite
time if Ok is reachable from v (which we may denote by
v ∗
{ Ok) or not.
In the context of our ORV algorithm we return a Pass if

we can ascertain that v ∗
{ Ok and an Inconc (meaning an

inconclusive verdict) otherwise. The algorithm is defined
as a function ω in Def.8 and is well-founded given the
previous remark linked to Th.4.

Definition 8. For any C ∈ Part(L), we defineωC : I×MC →

{Pass, Inconc} s.t. for any i ∈ I and µ ∈MC:

– ωC(i,µ) = Pass iff there exists a path in G from
(i,µ,γ⊥,κ(i)) to Ok

– ωC(i,µ) = Inconc otherwise

Th.5 states that a Pass verdict ensure the identification
of a multi-trace as a slice of an accepted multi-trace of the
initial interaction. However this property is not as strong
as e.g. the correctness of the algorithm from (Mahe et al.
2021) i.e. we are not guaranteed to have a Pass for any and
all slices of an accepted multi-trace.

Theorem 5 (Soundness). For any interaction i ∈ I, partition
C ∈ Part(L) and multi-trace µ ∈MC, we have:

(µ ∈ σC(i))⇒ (ωC(i,µ) = Pass)

(ωC(i,µ) = Pass)⇒ (µ ∈ σ̃C(i))

Proof. For the first point: if the multi-trace µ that is ana-
lyzed is in σC(i) then there is a corresponding path in the
execution tree of i (via Def 6, see also Fig.4). Using only
rule Re (and never Rs) it is then possible to consume µ in
its entirety. As the application of Re is not constrained by
the value of the measure j, the analysis is close to that of
the algorithm from (Mahe et al. 2021).

For the second point we can reason as follows. Given
the nature of Re and Rs, which both execute actions in
the current interaction, any path v = (i,µ,γ⊥,κ(i)) ∗{ Ok
exactly corresponds to a path in the execution tree (see
Fig.4) of i and hence to a full multi-trace µ0 accepted by i
i.e. s.t. µ0 ∈ σC(i). Then, µ is a partial observation (i.e. a
slice) of µ0 given that: (1) it contains all the actions of µ
corresponding to Re steps while those corresponding to
Rs are missing and (2) Rs being only applicable outside
the period of observation of the components of µ, those
missing actions are either before the start or after the end
of those corresponding components. Hence µ ∈ µ̃0 and
therefore µ ∈ σ̃C(i). □

Tooling ORV against Interaction Models : recognizing sliced behaviors using parameterized simulation 13

While the Pass verdict ensures that the multi-trace
analyzed is indeed a slice of the considered interaction,
the other global verdict Inconc only means an inconclusive
verdict and not a Fail one because it does not necessarily
mean that the multi-trace which is analyzed is not a slice
of an accepted multi-trace. Depending on the structure
of the input interaction and depending on the criterion
that is selected to bind the simulation, we may not have
simulated enough the interaction to bring it to states which
would allow the entire consumption of the multi-trace.

5. Implementation and assessment
5.1. Instantiating the parameters
Our approach for simulation-based analysis, as presented
in Sec.4, requires a parameterization to be concretized. It
consists in defining J,⇁ and κ (in Sec.4 those were only
characterized through their properties).

A variety of criteria could be used. For instance, with
J = N (positive integers), we could use an arbitrary
maximum number of actions that can be successively
simulated. And whenever an action i|p, at position p in

interaction i is executed, we would have j
i,p
⇁ j− 1.

Many such trivial criteria may be defined. However, in
the following, we propose a slightly more subtle criteria
which tries to strike a balance between a good coverage rate
(the ability to identify most if not all slices) and efficiency
(via taking care of not simulating too many actions, and
hence decreasing the complexity/size of graph G).

Let us consider a concrete criterion for binding simula-
tion in the form of a tuple of integers (i.e. J = N2) which
we denote by (λ,α) such that:

– λ represents a maximum number of loops which can
be instantiated in a consecutive sequence of simula-
tion steps

– and α relates to a number of actions.

This set J is fitted with the lexicographic order.
In order to initialize and update this criterion, let us

consider two functions: η : I→N which gives the total
number of actions occurring outside loops and β : I→N

which gives the maximum depth of nested loops. More
precisely, β(i) = maxp∈pos(i) β(i, p) where β(i, p) is the
number of nested loops above position p in interaction
i (see Appendix B for a complete definition). We then
define κ(i) as the couple (β(i), η(i)).

We define the relation⇁⊆ J× (I× {1, 2}∗)× J by: for any

(λ,α) ∈ J, any i, i′ ∈ I, a ∈A and p ∈ pos(i) s.t. i
a@p
−−−→ i′,

– if β(i, p) = 0, we are in the case where we simulate an
action outside a loop. Here λ stays the same while α
decreases. Indeed at least one action (the one which
is executed) is removed from i (more may be removed
due to pruning or choosing alternatives etc) and none
are added (because no loops are instantiated). Here

we have (λ, α)
i,p
⇁ (λ, η(i′)) with 0 ≤ η(i′) ≤ α− 1 by

construction.

– if β(i, p) > 0, we instantiate β(i, p) loops which

requires that λ ≥ β(i, p). Then (λ, α)
i,p
⇁ (λ −

β(i, p), η(i′)). Here we reset the value of α because
loop instantiation may change the total number of
actions outside loops.

λ guarantees that we can instantiate at least once every
loop in the interaction (although not necessarily in the
same path). This limit on the number of loops is sufficient
to guarantee termination because there can only be a finite
number of actions existing outside loops and each of those
can be simulated at least once (which corresponds to α).
Our definition of J and⇁ ensures the required properties,
i.e. that it is strictly decreasing within a space which
has no infinite descending chains. This guarantees the
termination of the parameterized algorithm.

This proposal for κ is independent of the size of the
analyzed multi-trace. It only depends on the reference
interaction. This is advantageous in so far as, in practice,
the size of the interaction is small compared to the size
of the multi-trace. Thus, this measure allows one to
calibrate the number of simulation steps according to the
complexity of the interaction while drastically limiting
their number.

Once κ is properly defined, the multi-trace analysis
algorithm essentially boils down to a traversal of a finite
graph. Different traversal heuristics (depth/breadth-first,
with priorities on the application of the rules etc.) can be
implemented. This is mentioned in Sec.7.3 in the context
of our tool HIBOU.

In the following, we illustrate on a small example how
κ comes into play for the construction of the graph G.

5.2. Illustration on the running example
Applying our algorithm with this criterion on our initial ex-
ample i.e. analyzing the multi-trace µ from Fig.1d against
the interaction i from Fig.2 yields the graph (partially
drawn) on Fig.7. In this particular case, we effectively
conclude that µ is a slice of a behavior accepted by i. Here,
the global scenario which is reconstructed during the anal-
ysis and that match µ corresponds to the path leading
to Ok displayed on Fig.7. This path corresponds to the
trace l1!m1.l3?m1.l3!m4.l2?m1.l2?m4. Notice that is uses a
different interleaving of the simulated actions l3!m4 and
l2?m1 w.r.t. the global scenario described on Fig.1a and
Fig.6a.

Let us comment this path in the graph. Each vertex
in this path is annotated with a circled number (from
0O to 5O). Vertex 0O corresponds to the initial vertex
(i0,µ0,γ⊥,κ(i0) = (λ0,α0)) from which the analysis starts,
where µ0 is the input multi-trace from Fig.1d which we
want to analyze and i0 is the input interaction from Fig.2
which serves as a specification. We initialize the measure
to κ(i0) = (β(i0), η(i0)), hence λ0 = β(i0) = 1 because the
maximum depth of nested loops is 1 and α0 = η(i0) = 3
because there are 3 actions outside loops.

14 Mahe et al.

(λ,α) = (1, 3)

0

(λ,α) = (0, 3)

Rs l3!m4

· · ·

(λ,α) = (0, 4)

Rs l2!m3

· · ·

(λ,α) = (0, 3)

6

Rs l3?m3

Ko

(λ,α) = (0, 1)

Rs l1!m2

· · ·

(λ,α) = (0, 0)

Rs l2?m2

(λ,α) = (1, 2)

1

Rs
l1!m1

(λ,α) = (1, 1)

2

Re
l3?m1

(λ,α) = (0, 4)

3

Rs l3!m4

(λ,α) = (0, 3)

4

Rs
l2?m1

(λ,α) = (1, 2)

5

Re l2?m4

Ok

Figure 7 Multi-trace slice analysis

From the initial vertex 0O, rules Rp and Re cannot be
applied. Indeed, Rp is not applicable because the multi-
trace is not empty. As for Re, it is because we cannot
execute in the interaction any of the actions that are at the
heads of the components of the multi-trace (i.e. neither
l2?m4 nor l3?m1 can be immediately executed, cf. Fig.4
which enumerates all immediately executable actions).
However, Rs can be applied on any of the four immediately
executable actions (cf. Fig.4). Actions l3!m4, l2!m3 and
l1!m2 are at depth 1 w.r.t. loops. Hence, because λ0 = 1
we can simulate them. Action l1!m1 is outside all loops
and can be simulated because α0 = 3. Because Rs can be
applied, R f cannot be applied from 0O.

The simulation of action l1!m1 (at position 1111) leads
to vertex 1O. In this vertex (i1,µ1,γ1, (λ1,α1)) we have i1
s.t. i0

l1!m1@1111
−−−−−−−−→ i1 because the corresponding action is

executed in the model, µ1 = µ0 because no action has been
consumed in the multi-trace, γ1 = γ0 because observation
has not started on any additional co-localization, λ1 = λ0
because no action inside a loop has been simulated and
α1 = α0 − 1 = 2 because one action outside loops has been
simulated. Here, we have one step of simulation before the
start of observation on component {l1, l2}. As a visual aid,

on Fig.7 a p (white clover) symbol indicates the beginning
of simulation before the start of observation. This p is then
followed by the number of simulated actions.

From vertex 1O, rule Re can be applied on action l3?m1
i.e. we can execute this action and consume it from the
multi-trace. The previous step of simulation has put the
initial model i0 to a state i1 from which this action can
be executed. In the next vertex 2O, γ2({l3}) = ⊤ because
observation has then started on the co-localization {l3}.
Moreover, because the entire trace component on {l3}
has been consumed, we have on Fig.7 both the � and
v visual aids. In 2O the measure is also reset to λ2 = 1
and α2 = 1 because of the loop depth and number of
actions outside loops in i2.

From vertex 2O, neither Rp nor Re can be applied. How-
ever, it is possible to simulate actions l1!m2, l2?m1, l2!m3
and l3!m4 because of the current values of λ2 and α2 and
for the following reasons: for the first three actions, simu-
lation is possible because observation has not yet started
on co-localization {l1, l2}; for action l3!m4, it is possible
because observation has already ended on co-localization
{l3} (because the corresponding trace component is already
empty).

Tooling ORV against Interaction Models : recognizing sliced behaviors using parameterized simulation 15

The simulation of l3!m4 leads to vertex 3O. On Fig.7,
the visual aid ♣ (black clover) denotes the number of
simulation steps after the end of observation. The measure
is updated so that λ3 = λ2 − 1 = 0 because l3!m4 was at
depth 1 (hence it is not possible to instantiate new loops in
simulation) and α3 = 4 because there are 4 actions outside
loops in i3.

From vertex 3O an additional simulation step leads to
4O. Because the simulated action l2?m1 is outside all loops,
it is αwhich is decremented. Finally, from vertex 4O, rule
Re can be applied so that the entire multi-trace is emptied
in vertex 5O. Then, Ok can be reached by the application
of Rp from 5O.

Due to having several choices in the applications of rules
Re and Rs, several distinct paths may be opened during
the analysis (as illustrated by the paths towards the left of
Fig.7 which leads to Ko and by the · · · representing other
paths which are not drawn). However, via the use of some
heuristics and by terminating the analysis as soon as a Ok
is reach, one can limit the size of the part of G which is
explored.

At the bottom of Fig.7 we have also annotated one of
the vertices as 6O so as to illustrate the application of rule
R f . Here, the two previous simulation steps have lead to
a vertex (i6,µ6,γ6, (λ6,α6)) in which: (1) the multi-trace
is not empty i.e. µ6 , εC, (2) there are no immediately
executable actions that match the heads of µ6 and (3)
we have λ6 = 0 and there are no actions outside loops
remaining in the interaction. Therefore, neither Rp, Re nor
Rs can be applied. As a result, we apply rule R f which
leads to Ko.

5.3. Further remarks on the approach

(a) Specifying diagram

l1!m1.l1!m1.l2?m1.l2?m1.l1!m2.l2?m2

(b) Global execution which occurred [l1] l1!m1

[l2] l2?m2

(c) Observed multi-trace

l1!m1.l1!m2.l2?m1.l2?m2

(d) Minimal reconstructible global execution

(λ,α) = (1, 2)
(λ,α) = (1, 3)

Re
l1!m1

(λ,α) = (0, 2)

Rs
l1!m2

(λ,α) = (0, 1)

Rs
l2?m1

(λ,α) = (0, 0)

Re
l2?m2

Ok

(e) Path found in the analysis graph

Figure 8 Filling-in missing sections optimistically & a minima

Simulation steps are used to find possible replacements
for missing sections in what is observed of the global

scenario. As we have seen, depending on the architecture
of the system, those missing sections can be temporally
interspersed in-between sections that are observed in the
global scenario.

Another example is described on Fig.8. Here a global
execution characterized by the trace from Fig.8b was
observed and recorded into the multi-trace from Fig.8c.
The observation on l1 both started too late and ended
too early while that on l2 started too late. The actions
which have not been observed are grayed-out in Fig.8b.
The global execution is correct w.r.t. the input interaction
from Fig.8a and hence this multi-trace is an accepted
slice. Analyzing it w.r.t. the interaction yields the graph
given on Fig.8e. The algorithm tries to find a global
scenario which fits the observed multi-trace. However,
this global scenario may not necessarily correspond to the
one which effectively occurred. It is sufficient that it both
conforms to the specification and explains the observed
multi-trace. Ideally it should then look for such a minimal
reconstructible scenario such as the one from Fig.8d which
indeed corresponds to the one unveiled by the analysis
graph on Fig.8e.

We may remark that our simulation-based approach
is optimistic. Indeed, it suffices to find a reconstructible
global scenario that both fits the interaction model and the
input multi-trace. It may be possible that unwanted behav-
iors occurred but their detection is not possible from what
was observed of the execution. From another perspective,
the simulation is optimistic because we only simulate
actions which do not deviate from the specification.

The conditions for the application of rules Re and Rs are
not mutually exclusive. Hence the same action at the same
position within an interaction might be both simulated or
executed from the same vertex. We consider an example
global scenario in which a first message m1 is transmitted
from l1 to l2 and then a second one transits from l1 to
l2 before a final message m2 is send from l2 to l1. We
then suppose that this behavior is observed through the
multi-trace which is analyzed on Fig.9. In this multi-trace,
only the second instance of l1!m1 is observed. If we start
the analysis by executing l1!m1, we consume the second
instance of l1!m1 from the multi-trace instead of the first.
This later leads to a Ko as illustrated by the path on the
left of Fig.9. The correct first step in Fig.9 is to simulate
l1!m1 instead of executing it. It is therefore important to
allow the same action to be both simulated and executed,
which explains having non mutually-exclusive conditions
for the application of rules Re and Rs.

We may also remark that the problem of speculating
which actions to simulate incurs a high complexity. The so-
lution which we have presented here tackles this problem
using brute force because we explore possible simulated
actions exhaustively up to a certain bound which makes
the search space finite. Various optimizations can be en-
visioned e.g. via a static analysis of the multi-trace when
choosing between alternative branches, loops, etc.

In the algorithm, transitions allowed by rule Re are of

16 Mahe et al.

(λ,α) = (1, 2)

(λ,α) = (1, 3)

Re l1!m1

(λ,α) = (1, 2)

Re l2?m1

Ko

(λ,α) = (0, 1)

Rs l2!m2

(λ,α) = (0, 0)

Rs l1?m2

Ko

(λ,α) = (0, 3)

Rs l1!m1

(λ,α) = (1, 4)

Re l1!m1

· · ·

Ok

Figure 9 Pertinence of non mutually exclusive Re and Rs

the form (i, a →⊙ µ,γ, j) { (i′,µ,γ+ θC(a),κ(i′)) i.e. we
reset the measure j to a new value which depends on the
follow-up interaction i′. With the examples on Fig.10, we
illustrate the motivation behind this reset of the measure.

In Fig.10a, we simulate two instances of l1!m1 in order
to be able to execute the two instances of l2?m1 in the multi-
trace. Instead of using an arbitrary criterion of size 2 for the
number of loops, we can use our proposal criterion on the
maximum loop depth (which is 1 here) but reset it every
time an action is executed. Here, because lifelines l1 and
l2 are on different co-localizations, this allows alternating
between steps of simulation on co-localization {l1} and
steps of execution on co-localization {l2} so as to consume
the multi-trace in its entirety. Here, the reset of the measure
enables us to recognize any repetition of l2?m1. With this
reset, the initialization of the measure does not need to
depend on the size of the multi-trace µ but only on the
structure of the interaction i.

In the analysis from Fig.10b, the initial interaction has
a maximum loop depth of 2. However, due to pruning
operations, after the first step, which is an execution (rule
Re), the follow-up interaction only has a maximum loop
depth of 1. Hence it is pertinent to reset the measure to
reflect this change and so as not to allow more simulation
than necessary.

5.4. Limitations related to inconclusiveness
Our algorithm returns either a Pass verdict or an Inconc
verdict. When a Pass verdict is returned, the analyzed
multi-trace is indeed a slice of an accepted multi-trace.
However, the Inconc verdict do not necessarily reflect
a failure. This is because, by bounding the number of
simulation steps, it may well be that a correct slice can not
be recognized, as its recognition would have required more
simulation steps. In particular, the use of certain specific

(λ,α) = (1, 0)

(λ,α) = (0, 1)

Rs l1!m1

(λ,α) = (1, 0)

Re l2?m1

(λ,α) = (0, 1)

Rs l1!m1

(λ,α) = (1, 0)

Re l2?m1

Ok

(a) Simulating enough

(λ,α) = (2, 1)

(λ,α) = (1, 0)

Re l3!m3

(λ,α) = (0, 1)

Rs l1!m1

(λ,α) = (1, 0)

Re l2?m1

Ok

(b) Not simulating too much

Figure 10 Motivation behind the reset of the measure

constructs of the interaction language, in combination
with certain architectures of observation, may yield to
situations where some correct slices are misidentified (i.e.
an Inconc is returned instead of a Pass). We provide three
such examples in Fig.11.

Let us consider the example from Fig.11a. Because
of the use of the parallel loop loopP, several instances of
seq(l!m1, l?m2) can be executed in parallel. In particular the
trace l!m1.l!m1.l!m1.l?m2.l?m2.l?m2 is thus specified by the
interaction. Hence, l?m2.l?m2.l?m2 is a slice of an accepted
behavior. However, in order to recognize this slice, the
action l!m1 should be simulated three times consecutively
in order to reproduce the prefix missing from the slice.
Using the criterion from Sec.5, we can only execute the
action once because the maximum loop depth is 1 (it would
be the same if we used the total number of loops). Hence,
as illustrated on Fig.11a, the analysis fails. This problem
is inherent to the loopP construct as long as the content
of the loop (the sub-interaction within it) may express a
behavior which contains several distinct actions (here l!m1
and l?m2).

The loopW construct is more forgiving in the general
case. In particular it may not pose any problem when
analyzing classical multi-traces (defined up to the discrete
partition, as illustrated on Fig.10a). However, if distinct
lifelines appearing in the sub-interaction underneath a
loopW are co-localized it may pose a problem, as illustrated
with the example from Fig.11b. Here the fact that l1 and l2

Tooling ORV against Interaction Models : recognizing sliced behaviors using parameterized simulation 17

(λ,α) = (1, 0)

(λ,α) = (0, 1)

Rs l!m1

(λ,α) = (1, 0)

Re l?m2

Ko

(λ,α) = (0, 0)

Rs l?m2

Ko

(a) Example with a loopP construct.

(λ,α) = (1, 0)

(λ,α) = (0, 1)

Rs l1!m

(λ,α) = (1, 0)

Re l2?m

Ko

(λ,α) = (0, 0)

Rs l2?m

Ko

(b) Example with a loopW construct under a specific architec-
ture (l1 and l2 co-localized).

(λ,α) = (1, 0)

(λ,α) = (0, 1)

Rs l1!m2

(λ,α) = (1, 0)

Re l2?m2

(λ,α) = (0, 0)

Rs l1!m2

Ko

(λ,α) = (0, 0)

Rs l2?m2

Ko

(λ,α) = (0, 1)

Rs l1!m1

(λ,α) = (0, 0)

Rs l2?m1

Ko

(c) Example with a coreg construct and two loops.

Figure 11 Examples where the proposed criterion does not allow enough simulation to recognise correct slices.

are co-localized prevents the algorithm from alternating
between simulation steps and execution steps (as it is
done in Fig.10a) because simulation steps can only be
taken outside the period of observation on a given co-
localization.

The example from Fig.11c shows a similar problem.
Due to the presence of the co-region, lifeline l2 may receive
incoming m1 and m2 messages in any order. However,
lifeline l1 must emit all the m1 messages before it can emit
the first m2 message. In the specific multi-trace which we
analyze on Fig.11c, l2 receives one message m2 and then
one m1. Because the maximum loop depth is 1, we can
only simulate one emission consecutively. If we simulate
l1!m1 first then we can’t do anything afterwards because
m1 can’t be received by l2 yet and we cannot simulate
l1!m2 due to the limitation on loops. If we simulate l1!m2

first then, due to transformations of the interaction (which
specifies that l1 must emit all the m1 messages before it
can emit the first m2 message), we can not simulate l1!m1
afterwards and hence the analysis fails. In order for this
specific analysis to succeed we would need to be able to
instantiated 2 loops.

Let us remark that taking the total number of loops
instead of the maximum depth of loops would help for
this specific example (as the total number of loops is 2) but
would not help in all cases. For instance, if a multi-trace µ
with µ|{l1} = ε and µ|{l2} = l2?m2.l2?m2.l2?m1 is analyzed,
instantiating 3 loops is required.

5.5. Experimental assessment
We present a small experimental assessment of an im-
plementation of our algorithm parameterized with the

18 Mahe et al.

16 accepted
multi-traces on {{l1}, {{l2, l3}}
via exhaustive exploration
with ≤ 3 loop instances

7996 slices
via exhaustive slicing

7996 mutants
via adding random actions

7996 mutants
via swapping actions randomly

7996 mutants
via swapping local components min 0.0000244

q1 0.0006778

med 0.0013147

mean 0.0015983

q3 0.0022617

max 0.0169286

sd 0.00123059

(a) Example with shallow but exhaustive exploration and exhaustive slicing.

199 accepted multi-traces
on {{l1, l2, l3}}
via random exploration
≤ 30 loop instances
≤ 10000 nodes

6124 wide slices
(length ≥ 1/3 of original)
via random selection

6088 mutants
via adding
random actions

6132 mutants
via swapping
actions randomly

5743 mutants
via swapping local components

min 0.000110

q1 0.002094

med 0.006858

mean 0.041766

q3 0.015368

max 14.637815

sd 0.3170166

(b) Example with partial and random but in depth exploration and random selection of wide slices (length ≥ 1/3 of original). Time in log scale.

Figure 12 Some experiments (length and time resp. in x and y axes, blue and orange representing Pass and Inconc verdicts).

Tooling ORV against Interaction Models : recognizing sliced behaviors using parameterized simulation 19

criterion shown in Sec.5.1. The results of those experiments
are summarized on Fig.12. We exploit two interactions
and for each one of them which we denote by i:

1. we generate a finite set T(i) ⊆ σC(i) of accepted multi-
traces given a certain partition C of lifelines.

2. for every accepted multi-trace µ, we generate a set of
slices. Hence, we obtain a certain S(i) ⊆ T̃(i).

3. we then generate three sets of mutants from those
slices Msa(i), Msc(i), and Mia(i). Those sets of mutants
are obtained from S(i) as follows:

– Msa(i) is obtained by swapping the relative
positions of actions within a local trace. For
instance, given µ = (l1!m1.l1!m2, l2?m1.l2?m2),
µ′ = (l1!m2.l1!m1, l2?m1.l2?m2) is one such mu-
tant. Here, we have swapped the positions of
l1!m1 and l1!m2 on local trace µ|{l1}.

– Msc(i) is obtained by swapping local traces be-
tween two distinct slices related to the same com-
ponent. For instance, given µ1 = (l1!m1, l2?m1)
and µ2 = (l1!m2, l2?m2), µ′ = (l1!m1, l2?m2) is
one such mutants.

– Mia(i) is obtained by inserting random actions.
For instance, given µ = (l1!m1, l2?m1), µ′ =
(l1!m1.l1!m3, l2?m1) is one such mutant.

The generated multi-trace sets i.e. T(i), S(i), Msa(i),
Msc(i), and Mia(i) are used as input to feed our analysis
algorithm. The median times (based on 5 tries) required
to analyze each of them are plotted on Fig.12. Each point
corresponds to a multi-trace, with on the x axis its length
and on the y axis its median analysis time. This time is
in seconds, and for Fig.12b, we use a logarithmic scale.
The color of the point corresponds to the verdict of the
analysis: blue and orange respectively denote Pass and
Inconc.

For each interaction example (i.e. i1 on Fig.12a and i2
on Fig.12b), the 5 plots correspond to the five sets T(i),
S(i), Msa(i), Msc(i), and Mia(i). Legends written on each
plot describe how the corresponding multi-traces have
been generated. The corresponding interaction diagram
is drawn on the right of each figure, and statistics on the
analysis time are given.

The experiments were performed using an Intel(R)
Core(TM)i5-6360U CPU (2GHz) with 8 GB of RAM. All the
material required to reproduce them is publicly available
in (Mahe 2023b).

We can at first notice that the algorithm’s performances
are highly dependent on the nature of the input interaction.
The more the interaction offers branching choices (loops,
alternatives) and possible interleavings (weak sequencing
and interleaving), the greater can the size of graph G

be, with, as a consequence, worse performances. While
example i1 (Fig.12a) is rather sequential, this is not the
case for i2 (Fig.12a).

The dependence w.r.t. the size of the input multi-
trace appears linear for interaction i1 (Fig.12a) and is less
noticeable for interaction i2 (Fig.12b). The analysis time
is much more dependent on the structure of the input
multi-trace w.r.t. the interaction rather than on its size.

Slices Our criterion is capable of correctly identifying
slices in most cases, as illustrated with S(i1) and S(i2) (top
middle plot in both Fig.12a and Fig.12b). S(i1) contains
all the possible slices (7996) of the multi-traces from T(i1),
and all of them are correctly identified (drawn in blue
color). Even though S(i2) contains slices of much larger
multi-traces (up to 30 instances of the loops of i2), most of
those are still correctly identified. The few Inconc verdicts
correspond to cases where the criterion does not allow
enough simulation steps, as illustrated in Sec.5.4.

Mutants by adding random actions In most cases,
when we add a random action to a multi-trace which
is conform to a specification, it becomes non-conform.
This is reflected on the top right plots of both Fig.12a
and Fig.12b by the fact that most multi-trace analyses are
inconclusive (Inconc verdict drawn in orange color). Let
us recall that because of the limitations of our criterion
illustrated in Sec.5.4, we cannot return a Fail verdict. In
terms of performances, in the case of Mia(i1) and Mia(i2),
we can obtain the Inconc verdicts more quickly on average
than the Pass verdicts. This is because we use some
optimizations on the exploration of the graph (we use
local analyses to cut parts of G).

Mutants by swapping actions Suppose the specifying
interaction allows many possible interleavings of actions.
In that case, swapping the positions of actions of a conform
slice is more likely to yield a new multi-trace which is
also conform. This is reflected on the bottom left plots of
Fig.12a and Fig.12b, where we can see that those mutants
are conform in many cases.

Mutants by swapping local components This family
of mutants is quite interesting given that for any such
mutant obtained from two conform slices, the local com-
ponents of the mutant are still all locally conform to the
specification. This makes techniques such as using local
analyses to reveal non-conformities useless. If the mutant
is non-conform, then only a global analysis - i.e. matching
the multi-trace to an accepted global scenario - can identify
this non-conformity. In any case, most of those mutants are
conform because we only consider a labeled language (i.e.
no message passing and no value passing). With message
passing, there are likely mismatches between the messages
that are passed between non-co-localized lifelines. Still, in
our purely labeled framework, some inconclusive verdicts
are present for interaction i2 (Fig.12b).

Concluding remarks Let us remark that the presence of
inconclusiveness is related to the fact that we have to iden-
tify strict slices of multi-traces and to the expressiveness

20 Mahe et al.

of the specification language (co-regions, parallel loops
etc.) and the trace language (multi-traces with co-localized
lifelines). If we restrict the prerequisites of the analysis, we
can use algorithms that do not return Inconc verdicts. The
algorithms from (Mahe et al. 2020) and (Mahe et al. 2021)
can respectively identify full accepted global traces and
full accepted multi-traces. In (Mahe et al. 2023), we define
an algorithm which, instead of using simulation, applies a
lifeline removal operation on no-longer-observed lifelines
in order to identify multi-prefixes of multi-traces defined
on the discrete partition. Multi-prefixes are multi-slices in
which missing actions are only located at the end of the
local trace components of multi-traces.

For the algorithm based on simulation, these few ex-
periments show that our tool can analyze representative
multi-traces with respect to interactions with reasonable
performances. In the presence of an inconclusive verdict,
the user may:

– revert to using one of the other aforementioned algo-
rithms, if their prerequisites are valid (e.g. synchro-
nization at the start etc.),

– start again with a more liberal criterion,
– or analyze the multi-trace by hand.

One such more liberal criterion would consist in having
the measure λ = β(i) being multiplied by the size of the
multi-trace |µ| without resetting the measure whenever
rule Re applies. In essence, this amounts to instantiating
the (nested) loops as many times as the number of actions
in the multi-trace. With this criterion we would be able
to recognize all the examples from Fig.11. However, this
criterion can produce exponentially larger analysis graphs
G, with a strong impact on the algorithm’s performance.
This increases the interest in looking into more selective
criteria, such as the one which we proposed, at the expense
of the completeness of the analysis.

6. Related works
The aim of Runtime Verification (RV) (Bartocci et al. 2018;
Sánchez et al. 2019) is to test the conformity of an im-
plemented system against a formal specification which
may define a set of accepted and/or unwanted behaviors.
To do so, traces - characterizing system executions - are
collected by an instrumentation of the system and then
confronted to the formal specification. If one such trace
deviates from the specification (i.e. does not characterize
an accepted behavior or do characterize an unwanted
behavior) then the tester has found a bug in the imple-
mented system. RV techniques include offline and online
RV. In online approaches the confrontation to the formal
specification takes place at the same time the system is
being monitored via the instrumentation. This has the
advantage of being able to monitor live reactive system
as they are being executed (and expressing behaviors that
can be extended arbitrarily many times). However online
RV is quite constrained by requirements on the efficiency

of the monitoring algorithm. Indeed, observed events
must be analyzed quickly enough so that they don’t stack
and cause a memory overflow. By contrast, in offline
approaches, a trace is collected in a first step and then
confronted to the specification. As a result, only finite
traces can be analyzed but Offline Runtime Verification
(ORV) has fewer constraints than its online counterpart.
In the following, we only consider ORV.

6.1. RV for DS
In the literature, most approaches for applying ORV to
DS can be categorized as either (1) based on global re-
ordering or (2) based on a synthesis of local analyses.
Fig.13a and Fig.13b respectively describe those two kinds
of approaches.

(1) ORV approaches based on global reordering are of-
ten found for solving the Oracle problem in Model Based
Testing (MBT). Despite the fact that MBT is supposed
to be used at the design phase while RV more naturally
concerns the operational phase of a system, algorithms
to solve the oracle problem in MBT are technically very
similar to offline RV algorithms: they both consist in
analyzing an execution to detect non-conformance to a
specification. In such MBT approaches, DS behaviors can
be modeled using e.g. Input/Output Transition Systems
(IOTS) (Hierons et al. 2008, 2011) or Communicating Se-
quential Processes (CSP) (Cavalcanti et al. 2011). In those
works, local observations are intertwined to associate them
with global traces that can be analyzed w.r.t. models. This
is described on Fig.13a as "reordering". Those approaches
however require local observations to be synchronized,
based on the states in which each of the logging processes
terminate (e.g. based on quiescence states (Hierons et al.
2008), termination/deadlocks (Cavalcanti et al. 2011) or
pre-specified synchronization points (Hierons et al. 2011)).
The works (Dan & Hierons 2014; Nguyen et al. 2012) fo-
cus on verifying distributed executions against models of
interaction (While (Dan & Hierons 2014) concern MSC,
(Nguyen et al. 2012) considers choreographic languages).
Similarly to the MBT approaches, they rely on synchro-
nization hypotheses and on reconstructing a global trace
by ordering events occurring at the distributed interfaces
(by exploiting the observational power of testers (Dan &
Hierons 2014) or timestamp information assuming clock
synchronization (Nguyen et al. 2012)). In both MBT and
RV inspired approaches, synchronization hypotheses re-
strict the conditions under which DS can be verified.

(2) ORV approaches based on a synthesis of local anal-
yses are often found whenever local monitors are syn-
thesized from a global property. Using temporal logic
properties as specifications for RV of DS has been widely
studied. In particular, using (variants of) the Linear Tem-
poral Logic (LTL). For example, (Sen et al. 2004) extends
the LTL in a framework where formulas relate to sub-
systems and what they know about the other sub-systems
(e.g. in which local states they are). There is a collection
of decentralized observers sharing information about the

Tooling ORV against Interaction Models : recognizing sliced behaviors using parameterized simulation 21

l1 l2 l3

multi-trace reordering

trace
(global)trace

(global)

•• •

trace
(global)

analysismodel
(global)

verdict
(global)verdict

(global)

•• •

verdict
(global)

restrictions on the conditions
under which DSs can be verified

(a) ORV based on global reordering

trace
trace

trace
l1

l2
l3

analysis

analysis

analysis

model
(local)model

(local)model
(local)

verdict
(local)

verdict
(local)

verdict
(local)

synthesis

verdict
(global)

restrictions on the nature of verdicts
or requires additional mechanisms

(b) ORV based on local analyses

Figure 13 ORV approaches from the literature

sub-system executions affecting the validity of the for-
mula. In other works (Bauer & Falcone 2016; El-Hokayem
& Falcone 2017), the reference properties are expressed
at the (global) system level. A collection of decentralized
observers is generated from such properties, using LTL
formula rewriting, so that there is no need for a global
verifier gathering all information on the execution of the
system. Approaches based on logics derived from modal
µ-calculus (e.g. safety Hennessy-Milner Logic sHML)
also implement synthesis of monitors. In (Attard & Fran-
calanza 2017; Attard et al. 2021), instrumentation and
monitors for programs running on the Erlang Virtual Ma-
chine are synthesized from properties written in sHML.
Behavioral models can also be used in such approaches.
For instance (Bocchi et al. 2017) proposes local online RV
against projections of multiparty session types satisfying
some conditions that enforce intended global behaviors
(possibly combined with analysis through a global safe
router). More generally, the fact that every local behavior
is conform w.r.t. its corresponding local specification,
does not generally implies that the global behavior is
conform. Hence, the synthesis step described on Fig.13b
generally requires additional mechanisms. In most cases
this consists in having local monitors communicate with
one another (e.g. in (Bauer & Falcone 2016)). This in return
requires a very specific instrumentation which goes well
beyond simply logging traces.

(Falcone et al. 2021) provides a taxonomy of RV tools.
Specification languages which are most commonly found
and fitted with tools derive from Temporal Logic. Unlike
such logics, behavioral models of interactions, which are
particularly adapted for specifying DS, are more rarely
used. The works (Dan & Hierons 2014; Nguyen et al. 2012;
Bocchi et al. 2017; Inçki & Ari 2018) focus on verifying dis-
tributed executions against models of interaction (While
(Dan & Hierons 2014; Inçki & Ari 2018) concern MSC,
(Nguyen et al. 2012) considers choreographic languages,
(Bocchi et al. 2017) session types and (Ancona et al. 2018)
trace expressions).

6.2. RV under partial observation

In this context, partial observation signifies that the multi-
trace logged by the instrumentation does not characterize
the entire execution of the DS. More concretely, some
events may be missing from the multi-trace w.r.t. an
ideal multi-trace which would have been observed with
ideal conditions of observation. The notion of multi-trace
slice from Sec.2.2 proposes a specific definition of partial
observation, where events may be missing at the beginning
and/or the end of each local trace component of the multi-
trace (independently).

In the literature, ORV approaches for DS which are
tolerant to partial observation are rare. In (Ancona et al.
2018), the authors are interested in generating monitors for
distributed RV and in particular, how those monitors can
be adapted for a specific definition of partial observation.
Here, messages are exchanged via channels which are
associated to an observability likelihood. (Ancona et al.
2018) uses trace expressions as specifications and proposes
transformations that can adapt those expressions to partial
observation by removing or making optional a number of
identified unobservable events.

The fact that such missing actions may be located any-
where in a globally sequential behavior (as illustrated in
Fig.6a) is particularly challenging for ORV. Indeed, if we
base ORV on the recognition of a global behavior against
a behavioral model (e.g. choreographies (Nguyen et al.
2012), MSC (Dan & Hierons 2014) or interactions (Mahe
et al. 2020)) then the observed behavior must match a
behavior that can be run through the model. This is not
possible in the presence of missing actions.

In (Mahe et al. 2023), a partial solution to this problem
is given via the use of a lifeline removal operation which
is applied on no-longer-observed sub-systems. During
the analysis, once a local trace component is entirely re-
enacted, the behavioral model is simplified by removing
all behavior that concerns the no-longer-observed compo-
nent. This enables the analysis to be pursued even if the
observation on some components has ceased too early.

22 Mahe et al.

6.3. Position of the contribution
We propose an approach for ORV which confronts ob-
served multi-traces to positive requirements in the form
of behavioral models. Our approach does away with
synchronization hypotheses on the beginning and the end
of observation in between distant observers. As a result,
the observed multi-traces can be slices of multi-traces
that fully characterize executions of the DS (as defined in
Sec.2). We use interactions (Mahe et al. 2022) as formal
specifications.

Neither monitorability nor implementability are in the
scope of this paper. Implementability refers to whether or
not a DS specified by an interaction can be implemented
concretely e.g. for HMSC in (Lohrey 2003; Alur et al. 2001).
DS specified by interactions which are not implementable
cannot consistently produce traces which are conform to
the specification. Monitorability is generally associated to
properties written in temporal logic or Hennesy-Milner
logic and refers to whether or not is possible to validate
or invalidate the satisfaction of a property via monitoring
(e.g. see partial monitorability in (Aceto et al. 2019)).

We propose an algorithm which checks whether or not
an input multi-trace is a slice of a multi-trace that belong
to the semantics of an input interaction. Instrumentation
or recording methodology, which covers the manner with
which such multi-traces can be obtained, is out of the
scope of this paper. Because we do not have strong
hypotheses on the synchronization of observers, a very
simple and lightweight instrumentation could be used.
Depending on the usecase and its level of abstraction, we
could either use logs printed by the different machines
(which correspond to co-localizations) or capture and filter
network traffic in and out of those machines e.g. with
the pcap library (McCanne 2011) or Wireshark (Wireshark
2023) as demonstrated in e.g. (Fowler & Hammel 2014).

7. The tool
Our tool HIBOU (for Holistic Interaction Behavioral Oracle
Utility)3 provides utilities for drawing, manipulating and
exploiting interaction. The version which we describe in
this paper is version 0.8.4. Its code (written using Rust) is
hosted on GitHub in (Mahe 2022).

7.1. Encoding of interactions and traces
The specification language of our tool covers different
notions:

– system signatures are defined in ".hsf" (hibou signa-
ture file) files as illustrated on Fig.14. In those files,
we declare the set of messages M and lifelines L that
constitute the signature of the Distributed System.

– interaction terms are specified in ".hif" (hibou interac-
tion file) files as illustrated on Fig.15.

– multi-traces are encoded in ".htf" (hibou trace file)
files as illustrated on Fig.16

3 The word "hibou" stands for owl in French.

1 @message{
2 m1;m2;m3;m4;m5
3 }
4 @lifeline{
5 l1;l2;l3
6 }

Figure 14 Declaration of a signature.

On Fig.15 we provide the encoding of the interaction
model that is drawn on Fig.2a. This textual format (found
in ".hif" files) is similar to the notations used in Sec.3. The
basic building blocks are the empty interaction ∅ encoded
as "o" (lowercase letter o) and communication actions. For
actions, we use notations inspired by WebSequenceDia-
grams (WebSequenceDiagrams 2022) / PlantUML (Plan-
tUML 2022):

– instead of l1!m we write l1 -- m ->|
– instead of l1?m we write m -> l1
– strict(l1!m, seq(l2?m, l3?m)) becomes l1 -- m ->(l1,l2)

The strict, seq, par, coregr, alt, loopS, loopW and loopP con-
structors directly match text labels in the encoding (we
use parentheses to specify concurrent regions e.g. coreg
(l2) for coreg{l2}) and we use parentheses to enclose sub-
interactions. For any associative operator, we allow n-
ary notations. For instance, seq(i1, i2, i3) is interpreted as
seq(i1, seq(i2, i3)).

1 seq(
2 coreg(l2)(
3 alt(
4 l1 -- m1 -> (l2,l3),
5 o
6),
7 loopW(
8 alt(
9 l1 -- m2 -> l2,

10 l2 -- m3 -> l3
11))
12),
13 loopP(
14 seq(
15 l3 -- m4 -> l2,
16 l2 -- m5 -> l3
17)))

Figure 15 Encoding of the interaction from Fig.2

The encoding of multi-traces (within ".htf" files) is
straightforward, as illustrated on Fig.16. Co-localizations
are declared between square brackets:

– either in plain text or via a keyword:
– [#all] signifies that all lifelines are in this co-

localization and thus we have a global trace
– [#any] signifies that the lifelines appearing on the

actions of the trace component are taken into account
to define the co-localization

Tooling ORV against Interaction Models : recognizing sliced behaviors using parameterized simulation 23

– if a lifeline from L is left without any co-localization
that contains it, then a dedicated co-localization with
an empty trace component is created for it

1 [#any] l1!m1.l2?m1.l2?m4;
2 [l3] l3?m1.l3!m4

Figure 16 Encoding of the multi-trace from Fig.1c

7.2. Command line interface
The HIBOU tool takes the form of a Command Line
Interface which includes the following commands:

– "hibou draw <.hsf file> <.hif file>" draws an
interaction in a graphical form (which we have used
in this paper);

– "hibou explore<.hsf file><.hif file><.hcf file>?" ex-
plores the semantics of an interaction i.e. it computes
and may display parts of the execution tree of that
interaction as well as generate accepted multi-traces;

– "hibou analyze<.hsf file><.hif file><.htf file><.hcf
file>?" analyzes a multi-trace against an interaction
i.e. it computes and may display parts of an analysis
graph related to that analysis and returns a global
verdict.

For the "explore" and "analyze" commands we may
also provide a ".hcf" (hibou configuration file) file to further
configure the exploration or analysis process (so as to
replace the default configuration).

7.3. Semantics exploration & heuristics
The operational semantics from Sec.3.2 is implemented
in the tool which enables exploring execution trees for
any interaction via the "hibou explore" command. This
exploration can be configured via a ".hcf" file, within a
@explore_option section, as illustrated on Fig.17.

1 @explore_option{
2 loggers = [graphic[svg,vertical],
3 tracegen[generation = exact,
4 partition={(l1,l2),(l3)}]
5];
6 strategy = HCS;
7 filters = [max_depth = 35,
8 max_loop_depth = 4,
9 max_node_number = 250];

10 priorities = random
11 }

Figure 17 An example configuration for an exploration

From each new node of the tree, immediately executable
actions are determined and their execution scheduled for
the exploration. This scheduling order is by default the
lexicographic order of their positions (hence actions "at
the top" are prioritized over those "at the bottom"). We

can change this by setting either a random order or some
priorities (e.g. prioritizing emissions over receptions or
actions outside or within loops). The exploration of the
tree is then performed according to a certain (deterministic)
search strategy, which can be Breadth First, Depth First or
a High Coverage Search that favors paths sharing fewer
common prefixes. As interactions may contain loops,
an exploration without constraints would not terminate.
With HIBOU, we can set some limits on the exploration
(e.g. a maximum depth, a maximum number of loops or
of nodes).

This process can be observed by loggers, which can
write outputs describing the exploration of the execution
tree. A graphic logger provides a graphical representation
of the analysis graph. It is enabled via loggers = [graphic
[svg,vertical]]. We can configure its output format (svg
or png) and we can decide whether the drawing is drawn
from top to bottom (vertical) or left to right (horizontal).
A trace generation logger can be set up via the tracegen[
generation = exact,partition=..]. For each path in the tree
it may generate a ".htf" file containing a multi-trace which
corresponds to this path. The keyword exact signifies that
only exactly accepted traces will be generated (as opposed
to using prefix for generating all prefixes or terminal for
generating a trace only on terminal nodes of the explored
tree). partition=.. is used to specify the partition of lifelines
on which the multi-traces are generated (we can use the
discrete and trivial keywords for the Cd and Ct partitions).

7.4. Multi-trace analysis
HIBOU implements several configurable algorithms for
analyzing multi-traces w.r.t. interactions. This process
corresponds to the "hibou analyze" command and can
be configured via a @analyze_option section as illustrated on
Fig.18. Most options are defined in common with those
of the exploration process. However, some are specific to
analyses.

1 @analyze_option{
2 loggers = [graphic[svg]];
3 analysis_kind = simulate
4 [before = true,
5 loop max depth,
6 reset = true,
7 multiply = false,
8 act num = 10];
9 strategy = DFS;

10 priorities = [simu = -1];
11 goal = WeakPass
12 }

Figure 18 An example configuration for an analysis

"analysis_kind" can be set to specify which analysis al-
gorithm should be used. Among others it proposes:

– "analysis_kind = accept" which identifies exactly ac-
cepted multi-traces and corresponds to the algorithm
from (Mahe et al. 2021). It returns Pass if this is the
case and Fail otherwise.

24 Mahe et al.

– "analysis_kind = prefix" which identifies behaviors
which are projections of prefixes of accepted global
traces. It is adapted from (Mahe et al. 2021) and
returns Pass if the behavior is exactly accepted,
WeakPass if it corresponds to such a prefix and Fail
otherwise.

– "analysis_kind = eliminate" which identifies prefixes of
accepted multi-traces (events missing at the end of
local components) defined over the discrete partition.
Prefixes in the sense of multi-traces are not necessarily
projections of prefixes of global traces. As such, to
underline this difference, we may call them multi-
prefixes. It corresponds to the algorithm from (Mahe
et al. 2023) which is based on the use of a lifeline
removal operation which is applied on no-longer-
observed sub-systems. This algorithm returns Pass
if the behavior is exactly accepted, WeakPass if it
corresponds to a multi-prefix and Fail otherwise.

– "analysis_kind = simulate[...]" which implements the
algorithm from this paper. It can be configured with
a number of options:

- the "loop" option sets up a stopping criterion
on the number of loops that can be instantiated
in simulation. It can either correspond to the
maximum number of loops in the interaction,
the maximum depth of its nested loops or to a
specific ad-hoc number.

- the "act" option sets up a stopping criterion on
the number of actions that can be executed in
simulation. It can either correspond to the num-
ber of actions outside loops or a specific ad-hoc
number.

- if set, the "before" option activates simulation be-
fore the beginning of observation in addition to
after the end of observation on local components.
With this option we can recognize slices and
without it we can only recognise multi-prefixes.

- if set, the "multiply" option multiplies the criteria
on loops and actions by the size of the multi-trace
to analyze.

- if set, the "reset" option makes so that the mea-
sure is reset after a step of execution (if not, then
we have a set number of simulation steps for the
whole analysis, independently of the use of Re)

This algorithm may return a Pass or WeakPass if the
multi-trace is exactly accepted or either a prefix or a
slice of an accepted one or return WeakFail if this is
not the case.

With the "goal" option, we can force the termination of
the search once a sufficient verdict is found e.g. WeakPass.

8. Conclusion
In this paper, we propose a new ORV approach which
can be adapted to various observation architectures and
is tolerant to the absence of synchronization between

local observers. Different sub-systems deployed on the
same computer can be modeled by several co-localized
lifelines. The notion of co-localization allows us to use
the same approach to treat the analysis of both global
traces (in the case where the system is centralized i.e.
all sub-systems are deployed on the same machine and
hence all corresponding lifelines are co-localized) and
multi-traces (when the system is fully distributed i.e. all
sub-systems are deployed on distinct machines and no
two lifelines are co-localized). Moreover, our handling of
partial observation allows taking into account situations
where the executions of some sub-systems are not (or
are partially) observable due to technical limitations, in
particular related to missing observers or the absence of
synchronization mechanisms between distant observers.

Multi-trace analysis combines steps of consumption of
actions present in the multi-trace and simulation steps
to guess missing (i.e. unobserved) actions. The simu-
lation steps are controlled by a criterion to ensure that
the analysis is performed in a finite time. At then end of
the analysis, two verdicts may be emitted: Pass when a
slice is recognized and Inconc if not. Because actions may
be missing at the beginning of local traces and because
interactions may include loops, further characterizing the
inconclusive verdict may require arbitrarily many simula-
tion steps and is thus not tractable in all generality. Since
accepted multi-traces of an interaction are determined via
an operational-style semantics, we can visualize follow-
up interactions. Our approach being implemented into
the HIBOU tool, this allows users to write and debug
interactions at the design stage.

Acknowledgements The research leading to these re-
sults has received funding from the European Union’s
Horizon Europe programme under grant agreement No
101069748 – SELFY project.

References
Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A.,

& Lehtinen, K. (2019, jan). Adventures in monitorability:
From branching to linear time and back again. Proc.
ACM Program. Lang., 3(POPL). doi: 10.1145/3290365

Alur, R., Etessami, K., & Yannakakis, M. (2001). Realizabil-
ity and verification of MSC graphs. In F. Orejas, P. G. Spi-
rakis, & J. van Leeuwen (Eds.), Automata, languages and
programming, 28th international colloquium, ICALP 2001,
crete, greece, july 8-12, 2001, proceedings (Vol. 2076, pp.
797–808). Springer. doi: 10.1007/3-540-48224-5_65

Ancona, D., Ferrando, A., Franceschini, L., & Mascardi,
V. (2018). Coping with bad agent interaction proto-
cols when monitoring partially observable multiagent
systems. In Y. Demazeau, B. An, J. Bajo, & A. Fernández-
Caballero (Eds.), Advances in practical applications of
agents, multi-agent systems, and complexity: The paams
collection (pp. 59–71). Cham: Springer International
Publishing.

Tooling ORV against Interaction Models : recognizing sliced behaviors using parameterized simulation 25

Attard, D. P., Aceto, L., Achilleos, A., Francalanza, A.,
Ingólfsdóttir, A., & Lehtinen, K. (2021). Better late
than never or: Verifying asynchronous components
at runtime. In K. Peters & T. A. C. Willemse (Eds.),
Formal techniques for distributed objects, components, and
systems (pp. 207–225). Cham: Springer International
Publishing.

Attard, D. P., & Francalanza, A. (2017). Trace partitioning
and local monitoring for asynchronous components. In
A. Cimatti & M. Sirjani (Eds.), Software engineering and
formal methods (pp. 219–235). Cham: Springer Interna-
tional Publishing.

Bannour, B., Gaston, C., & Servat, D. (2011). Eliciting
unitary constraints from timed sequence diagram with
symbolic techniques: Application to testing. In T. D. Thu
& K. R. P. H. Leung (Eds.), 18th asia pacific software
engineering conference, APSEC 2011, ho chi minh, vietnam,
december 5-8, 2011 (pp. 219–226). IEEE Computer Society.
doi: 10.1109/APSEC.2011.40

Bartocci, E., Falcone, Y., Francalanza, A., & Reger, G. (2018).
Introduction to runtime verification. In E. Bartocci
& Y. Falcone (Eds.), Lectures on runtime verification -
introductory and advanced topics (Vol. 10457, pp. 1–33).
Springer. doi: 10.1007/978-3-319-75632-5_1

Bauer, A., & Falcone, Y. (2016). Decentralised LTL mon-
itoring. Formal Methods Syst. Des., 48(1-2), 46–93. doi:
10.1007/s10703-016-0253-8

Benharrat, N., Gaston, C., Hierons, R. M., Lapitre, A., &
Le Gall, P. (2017). Constraint-based oracles for timed
distributed systems. In N. Yevtushenko, A. R. Cavalli,
& H. Yenigün (Eds.), Testing software and systems (pp.
276–292). Cham: Springer International Publishing.

Bocchi, L., Chen, T., Demangeon, R., Honda, K., & Yoshida,
N. (2017). Monitoring networks through multiparty
session types. Theor. Comput. Sci., 669, 33–58. doi:
10.1016/j.tcs.2017.02.009

Cavalcanti, A., Gaudel, M., & Hierons, R. M. (2011).
Conformance relations for distributed testing based on
CSP. In B. Wolff & F. Zaïdi (Eds.), Testing software and
systems - 23rd IFIP WG 6.1 international conference, ICTSS
2011, paris, france, november 7-10, 2011. proceedings (Vol.
7019, pp. 48–63). Springer. doi: 10.1007/978-3-642-24580
-0_5

Dan, H., & Hierons, R. M. (2014). The oracle problem
when testing from mscs. Comput. J., 57(7), 987–1001. doi:
10.1093/comjnl/bxt055

El-Hokayem, A., & Falcone, Y. (2017). Monitoring de-
centralized specifications. In T. Bultan & K. Sen (Eds.),
Proceedings of the 26th ACM SIGSOFT international sym-
posium on software testing and analysis, santa barbara,
ca, usa, july 10 - 14, 2017 (pp. 125–135). ACM. doi:
10.1145/3092703.3092723

Engels, A., Mauw, S., & Reniers, M. (2002). A hierarchy
of communication models for message sequence charts.
Science of Computer Programming, 44(3), 253-292. doi:
10.1016/S0167-6423(02)00022-9

Falcone, Y., Krstic, S., Reger, G., & Traytel, D. (2021).

A taxonomy for classifying runtime verification tools.
Int. J. Softw. Tools Technol. Transf., 23(2), 255–284. doi:
10.1007/s10009-021-00609-z

Faria, J. P., & Paiva, A. C. R. (2016). A toolset for confor-
mance testing against UML sequence diagrams based on
event-driven colored petri nets. Int. J. Softw. Tools Technol.
Transf., 18(3), 285–304. doi: 10.1007/s10009-014-0354-x

Fowler, C. A., & Hammel, R. J. (2014). Converting pcaps
into weka mineable data. In 15th ieee/acis international
conference on software engineering, artificial intelligence,
networking and parallel/distributed computing (snpd) (p. 1-
6). doi: 10.1109/SNPD.2014.6888681

Hierons, R. M., Merayo, M. G., & Núñez, M. (2008). Con-
trollable test cases for the distributed test architecture.
In S. D. Cha, J. Choi, M. Kim, I. Lee, & M. Viswanathan
(Eds.), Automated technology for verification and analysis,
6th international symposium, ATVA 2008, seoul, korea, oc-
tober 20-23, 2008. proceedings (Vol. 5311, pp. 201–215).
Springer. doi: 10.1007/978-3-540-88387-6_16

Hierons, R. M., Merayo, M. G., & Núñez, M. (2011).
Scenarios-based testing of systems with distributed
ports. Softw. Pract. Exp., 41(10), 999–1026. doi: 10.1002/
spe.1062

Inçki, K., & Ari, I. (2018). A novel runtime verification
solution for iot systems. IEEE Access, 6, 13501–13512.
doi: 10.1109/ACCESS.2018.2813887

ITU. (2011, 08). Message sequence chart (msc). itu.int/rec/
T-REC-Z.120.

Katoen, J.-P., & Lambert, L. (1998). Pomsets for
message sequence charts. In (pp. 197–207). (For-
male Beschreibungstechniken fuer verteilte Systeme,
8. GI/ITG-Fachgespraech)

Knapp, A., & Mossakowski, T. (2017). UML Interactions
Meet State Machines - An Institutional Approach. In
F. Bonchi & B. König (Eds.), 7th conference on algebra
and coalgebra in computer science (calco 2017) (Vol. 72,
pp. 15:1–15:15). Dagstuhl, Germany: Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik. doi: 10.4230/LIPIcs
.CALCO.2017.15

Lamport, L. (2019). Time, clocks, and the ordering of
events in a distributed system. In D. Malkhi (Ed.),
Concurrency: the works of leslie lamport (pp. 179–196).
ACM.

Lohrey, M. (2003, dec). Realizability of high-level message
sequence charts: Closing the gaps. Theor. Comput. Sci.,
309(1), 529–554. doi: 10.1016/j.tcs.2003.08.002

Mahe, E. (2022). Hibou tool. github.com/erwanM974/
hibou_label.

Mahe, E. (2023a, 02). Coq proof for the equivalence of
the semantics with co-regions. erwanm974.github.io/coq
_interaction_semantics_equivalence_with_coregions/.

Mahe, E. (2023b, 03). Experiments on the simulation-
based algorithm implemented in hibou for recognising multi-
trace slices. github.com/erwanM974/hibou_simulation
_usecases_for_slice_recognition.

Mahe, E., Bannour, B., Gaston, C., Lapitre, A., & Gall, P. L.
(2023). Interaction-based offline runtime verification of

26 Mahe et al.

itu.int/rec/T-REC-Z.120
itu.int/rec/T-REC-Z.120
github.com/erwanM974/hibou_label
github.com/erwanM974/hibou_label
erwanm974.github.io/coq_interaction_semantics_equivalence_with_coregions/
erwanm974.github.io/coq_interaction_semantics_equivalence_with_coregions/
github.com/erwanM974/hibou_simulation_usecases_for_slice_recognition
github.com/erwanM974/hibou_simulation_usecases_for_slice_recognition

distributed systems. In H. Hojjat & E. Ábrahám (Eds.),
Fundamentals of software engineering (pp. 88–103). Cham:
Springer Nature Switzerland.

Mahe, E., Bannour, B., Gaston, C., Lapitre, A., & Le Gall, P.
(2021). A small-step approach to multi-trace checking
against interactions. In (p. 1815–1822). New York,
NY, USA: Association for Computing Machinery. doi:
10.1145/3412841.3442054

Mahe, E., Gaston, C., & Gall, P. L. (2020). Revisiting
semantics of interactions for trace validity analysis. In
H. Wehrheim & J. Cabot (Eds.), Fundamental approaches
to software engineering - 23rd international conference, FASE
2020, held as part of the european joint conferences on the-
ory and practice of software, ETAPS 2020, dublin, ireland,
april 25-30, 2020, proceedings (Vol. 12076, pp. 482–501).
Springer. doi: 10.1007/978-3-030-45234-6_24

Mahe, E., Gaston, C., & Le Gall, P. (2022). Equivalence
of denotational and operational semantics for interac-
tion languages. In Y. Aït-Ameur & F. Crăciun (Eds.),
Theoretical aspects of software engineering (pp. 113–130).
Cham: Springer International Publishing.

Mauw, S., & Reniers, M. A. (1997). High-level message
sequence charts. In SDL ’97 time for testing, sdl, MSC
and trends - 8th international SDL forum, proceedings (pp.
291–306). Elsevier.

McCanne, S. (2011). libpcap: An architecture and optimization
methodology for packet capture.

Micskei, Z., & Waeselynck, H. (2011). The many meanings
of uml 2 sequence diagrams: a survey. Software &
Systems Modeling, 10(4), 489–514.

Mouakher, I., Dhaou, F., & Attiogbé, J. C. (2022). Event-
based semantics of UML 2.x concurrent sequence dia-
grams for formal verification. J. Comput. Sci. Technol.,
37(1), 4–28. doi: 10.1007/s11390-021-1673-5

Nguyen, H. N., Poizat, P., & Zaïdi, F. (2012). Passive
conformance testing of service choreographies. In
S. Ossowski & P. Lecca (Eds.), Proceedings of the ACM
symposium on applied computing, SAC 2012, riva, trento,
italy, march 26-30, 2012 (pp. 1528–1535). ACM. doi:
10.1145/2245276.2232020

OMG. (2017, 12). Unified modeling language. omg.org/spec/
UML/.

Parrow, J. (2001). An introduction to the π-calculus. In
J. A. Bergstra, A. Ponse, & S. A. Smolka (Eds.), Handbook
of process algebra (pp. 479–543). North-Holland /Elsevier.

PlantUML. (2022). plantuml.com/.
Plotkin, G. (2004, 07). A structural approach to operational

semantics. The Journal of Logic and Algebraic Programming,
60-61, 17-139. doi: 10.1016/j.jlap.2004.05.001

Pratt, V. (1986, feb). Modeling concurrency with partial
orders. Int. J. Parallel Program., 15(1), 33–71. doi: 10.1007/
BF01379149

Sánchez, C., Schneider, G., Ahrendt, W., Bartocci, E., Bian-
culli, D., Colombo, C., . . . Weiss, A. (2019). A survey of
challenges for runtime verification from advanced appli-
cation domains (beyond software). Formal Methods Syst.
Des., 54(3), 279–335. doi: 10.1007/s10703-019-00337-w

Sen, K., Vardhan, A., Agha, G., & Rosu, G. (2004). Efficient
decentralized monitoring of safety in distributed sys-
tems. In A. Finkelstein, J. Estublier, & D. S. Rosenblum
(Eds.), 26th international conference on software engineer-
ing (ICSE 2004), 23-28 may 2004, edinburgh, united king-
dom (pp. 418–427). IEEE Computer Society. Retrieved
from https://doi.org/10.1109/ICSE.2004.1317464 doi:
10.1109/ICSE.2004.1317464

WebSequenceDiagrams. (2022). websequencediagrams
.com/.

Wireshark. (2023, 03). wireshark.org.

A. Details on the denotational semantics
with co-regions

A.1. Operators on sets of traces
Definition 9 (Interleaving). The set t1||t2 of interleavings of
traces t1 and t2 is defined by:

ε||t2 = {t2}

t1||ε = {t1}

(a1.t1)||(a2.t2) = {a1.t | t ∈ t1||(a2.t2)} ∪ {a2.t | t ∈ (a1.t1)||t2}

Property 1. For any traces t1 and t2 we have:

t1||t2 = t1 ×
×
|L t2

Proof. For proving t1||t2 ⊆ t1
××|L t2 we can rea-

son by induction on trace t1. See lemma
cond_seq_covers_interleaving_1 in Coq proof
(Mahe 2023a).

For proving t1
××|L t2 ⊆ t1||t2 we can reason by in-

duction on the conditions for t ∈ t1
××|L t2. See lemma

cond_seq_covers_interleaving_2 in Coq proof (Mahe
2023a).

□

Definition 10 (Conflict). We define a conflict operator ×× :
T|L × L→ {⊤,⊥} such that:

ε××l = ⊥ and (a.t)××l = (θ(a) = l)∨ (t××l)

Property 2 (Conflict is conditional conflict with empty
concurrent region). For any traces t and lifeline l we have:

(t××l)⇔ (t ××|∅ l)

Proof. We can reason by induction on trace t. See lemma
no_condconf_no_lifelines_charac in Coq proof (Mahe
2023a). □

Definition 11 (Weak Sequencing). The set t1×
×t2 of weak

sequencings of traces t1 and t2 is defined by:

ε××t2 = {t2}

t1×
×ε = {t1}

(a1.t1)×
×(a2.t2) = {a1.t | t ∈ t1×

×(a2.t2)}

∪ {a2.t | t ∈ (a1.t1)×
×t2, ¬(a1.t1×

×θ(a2))}

Tooling ORV against Interaction Models : recognizing sliced behaviors using parameterized simulation 27

omg.org/spec/UML/
omg.org/spec/UML/
plantuml.com/
https://doi.org/10.1109/ICSE.2004.1317464
websequencediagrams.com/
websequencediagrams.com/
wireshark.org

Property 3. For any traces t1 and t2 we have:

t1×
×t2 = t1 ×

×
|∅ t2

Proof. For proving t1
××t2 ⊆ t1

××|∅ t2 we can
reason by induction on trace t1. See lemma
cond_seq_covers_weak_seq_1 in Coq proof (Mahe
2023a).

For proving t1
××|∅ t2 ⊆ t1

××t2 we can reason by
induction on the conditions for t ∈ t1

××|∅ t2. See
lemma cond_seq_covers_weak_seq_2 in Coq proof
(Mahe 2023a).

□

A.2. Characterization of the pruning relations
Theorem 6 (An interaction that can’t be pruned has con-
flicts on all accepted traces). For any L′ ⊆ L and any i ∈ I

we have:

(i ×̸×L′
−→)⇒ (∀ t ∈ ρ(i), ∃ l ∈ L′, t ××|∅ l)

Proof. At first we remark that as per Prop.2,
××|∅ = ××. We can then reason by induction
on the structure of interaction i. See theorem
cannot_prune_characterisation_with_sem_de in Coq
proof (Mahe 2023a). □

Property 4 (An interaction which can be pruned on all
lifelines accepts the empty trace). For any i, i′ ∈ I we have:

(i××L
−→ i′)⇒ (ε ∈ ρ(i))

Proof. We can reason by induction on the structure of in-
teraction i. See lemma prune_all_equiv_accept_nil_1

in Coq proof (Mahe 2023a). □

Property 5 (An interaction which accepts the empty trace
can be pruned on all lifelines). For any i ∈ I we have:

(ε ∈ ρ(i))⇒ (∃ i′ ∈ I, i××L
−→ i′)

Proof. We can reason by induction on the structure of in-
teraction i. See lemma prune_all_equiv_accept_nil_2

in Coq proof (Mahe 2023a). □

Property 6 (Prune does not introduce new behaviors). For
any L′ ⊆ L, any i, i′ ∈ I and any t ∈ T|L we have: (i××L′

−→ i′)

∧(t ∈ ρ(i′))

⇒ (t ∈ ρ(i))

Proof. We can reason by induction on the
structure of interaction i. See lemma
prune_characterisation_with_sem_de_1 in Coq
proof (Mahe 2023a). □

Property 7 (Prune conserves behaviors without conflicts).
For any L′ ⊆ L, any i, i′ ∈ I and any t ∈ T|L we have:

(i××L′
−→ i′)

∧(t ∈ ρ(i))

∧(∀ l ∈ L′, ¬(t××l))

⇒ (t ∈ ρ(i′))

Proof. We can reason by induction on the struc-
ture of interaction i and use Th.6. See lemma
prune_characterisation_with_sem_de_2 in Coq proof
(Mahe 2023a). □

Property 8 (Prune removes conflicts). For any L′ ⊆ L, any
i, i′ ∈ I and any t ∈ T|L we have: (i××L′

−→ i′)

∧(t ∈ ρ(i′))

⇒ (∀ l ∈ L′, ¬(t××l))

Proof. We can reason by induction on the condi-

tions that make hypothesis (i×× L′
−→ i′) valid. See

lemma prune_removes_conflicts in Coq proof (Mahe
2023a). □

Theorem 7 (Prune characterization in denotational seman-
tics). For any i, i′ ∈ I, for any L′ ⊆ L we have:

(i××L′
−→ i′)⇒ (ρ(i′) = {t ∈ ρ(i) | ∀ l ∈ L′, ¬(t ××|∅ l)})

Proof. At first we remark that as per Prop.2, ××|∅ =
××. Then we use Prop.6, Prop.7 and Prop.8. See
theorem prune_characterisation_with_sem_de in Coq
proof (Mahe 2023a). □

A.3. Characterization of the execution relation
Property 9. For any i, i′ ∈ I, for any t ∈ T|L and a ∈A|L we
have:  (i a

−→ i′)

∧(t ∈ ρ(i′))

⇒ (a.t ∈ ρ(i))

Proof. We can reason by induction on the condi-
tions that make hypothesis (i a

−→ i′) hold. This
proof uses Prop.4, Prop.6, Prop.8. See lemma
execution_characterisation_with_sem_de_1 in Coq
proof (Mahe 2023a). □

Property 10. For any i ∈ I, for any t ∈ T|L and a ∈ A|L we
have:

(a.t ∈ ρ(i))⇒

∃ i′ ∈ I, s.t.

 (i a
−→ i′)

∧(t ∈ ρ(i′))




Proof. We can reason by induction on the structure of in-
teraction i. This proof uses Prop.5, Prop.7. See lemma
execution_characterisation_with_sem_de_2 in Coq
proof (Mahe 2023a). □

28 Mahe et al.

A.4. Equivalence of the semantics
Theorem 8. For any i ∈ I we have:

σCt(i) ⊆ ρ(i)

Proof. We can reason by induction on a trace t ∈ σCt(i)
and use Prop.4 for the case t = ε and Prop.9 for the case
t = a.t′. See theorem op_implies_de in Coq proof (Mahe
2023a). □

Theorem 9. For any i ∈ I we have:

ρ(i) ⊆ σCt(i)

Proof. We can reason by induction on a trace t ∈ ρ(i) and
use Prop.5 for the case t = ε and Prop.10 for the case
t = a.t′. See theorem de_implies_op in Coq proof (Mahe
2023a). □

B. Details on the proposal criterion
In this paper we propose in Sec.5 a specific criterion to
limit the amount of simulation steps which can be taken
during the analysis of a multi-trace. This criterion is a
concretization of the abstract criterion used in Sec.4 for
defining the analysis algorithm.

B.1. Maximum loop depth
We set a maximum number of loops which can be instan-
tiated during a continuous sequence of simulation steps.
A loop is instantiated if an action within it is executed.
For nested loops, we consider that the number of loops
which are instantiated corresponds to the depth of the
action within these nested loops. For instance, within
loopS(seq(alt(a1, o), loopS(a2))), a1 is at a loop depth of 1
while a2 is at a loop depth of 2. An action that is not within
any loop is at loop depth 0. This notion of loop depth of a
certain action is captured by the β function from Def.12,
where, for any interaction i ∈ I and any one of its position
p ∈ pos(i), β(i, p) gives the loop depth of the node (within
the tree structure of the interaction) at position p (hence
this is particularly true for actions).

At the beginning of a sequence of simulation steps,
starting from a certain interaction i0, this maximum num-
ber of loops is initialized at a value which corresponds to
the maximum depth of nested loops in i0 which we denote
β(i0) (see Def.12). This allows every action occurring in
the interaction to be simulated at least once in at least one
path starting from this initial interaction i0.

Definition 12 (Loop depth). β defined over
⋃

i∈I({i} × pos(i))
is the function s.t.:

– for any i ∈ I, β(i, ε) = 0
– for any i1, i2 ∈ I2 and any p1 ∈ pos(i1), p2 ∈ pos(i2), for

any f ∈ {str, alt} ∪
⋃

r⊆L{coregr}:

- β(f (i1, i2), 1.p1) = β(i1, p1)
- β(f (i1, i2), 2.p2) = β(i2, p2)

– for any i ∈ I, p ∈ pos(i) and k ∈ {S} ∪
⋃

r⊆L{Cr},
β(loopk(i), 1.p) = β(i, p) + 1

We then define: β : I→N s.t. ∀ i ∈ I:

β(i) = maxp∈pos(i)β(i, p)

We illustrate this with Fig.19 in which we explore the
semantics of an initial interaction i0 (i.e. its execution
tree) with a limitation on the number of loops which can
be instantiated. Here this limit is initialized at 2 which
is the maximum loop depth of the initial interaction i.e.
β(i0) = 2. We can see that this allows all the actions
occurring in the initial interaction to be expressed at least
once in at least one path of the part of the tree that is
explored. Within the context of multi-trace analysis with
simulation, if the next action in the multi-trace which
might be executed needs to be "unlocked" via performing
some simulation steps, because this action must in any
case appear in the interaction, it might then suffice to take
advantage of this remark to parameterize simulation.

l1!m1@.. l1!m3@..

l1!m2@..

l1!m1@..

l1!m3@..

l1!m3@..

Figure 19 Semantics exploration (execution tree) with a limi-
tation on the loop depth (here 2, which is the maximum loop
depth of the initial interaction β(i0) = 2).

B.2. Number of actions outside loops
Setting this limitation on the number of loops is sufficient to
ensure termination of the algorithm because an interaction
term being finite, there can only be a finite number of
actions outside loops which may be simulated and because
once such an action is simulated, it disappears from the
follow-up interaction, in which the number of actions
outside loops therefore diminishes by (at least) once. Yet
by only considering the number of loop instantiation in
our measure (i.e. by only considering λ), we do not have
a strictly decreasing measure. Indeed, after steps where

Tooling ORV against Interaction Models : recognizing sliced behaviors using parameterized simulation 29

an action outside a loop is simulated, λ stays the same. In
order to reflect this decreasing number of actions, which
appear in the interaction but not in λ, we introduce α as
the number of actions outside loops, as defined in Def.13.

Definition 13 (Number of actions outside loops). We define
η : I→N as follows:

– η(∅) = 0 and for any a ∈A, η(a) = 1
– for any i1, i2 ∈ I2:

- for any f ∈ {strict} ∪
⋃

r⊆L{coregr},
η(f (i1, i2)) = η(i1) + η(i2)

- η(alt(i1, i2)) = max(η(i1), η(i2))

– for any i ∈ I and k ∈ {S} ∪
⋃

r⊆L{Cr}, η(loopk(i)) = 0

By considering the tuple (λ,α) as a measure, we guar-
antee that successive simulation steps are bounded by a
strictly decreasing measure (see Sec.5).

30 Mahe et al.

