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ABSTRACT Debugging programs require program comprehension. To acquire this comprehension, developers explore the
program execution, a task often performed using interactive debuggers. However, exploring a program execution through
standard interactive debuggers is tedious and costly. In addition, standard debuggers are generic tools that are inflexible and
difficult to use in domain-specific contexts. In this paper we propose Time-Traveling Queries (TTQs) to ease and customize
program exploration. TTQs is an extensible mechanism that automatically explores program executions to collect execution
data. This data is used to time-travel through execution states, facilitating the exploration of program executions. Queries can
be created or extended for problem-specific or domain-specific debugging scenarios. TTQ have been successfully used on a
real-world example of a bug, which shows that in practice the TTQ system is usable. To evaluate more in depth the impact of
TTQs on program comprehension activities, we conducted a user study with 34 participants on program comprehension tasks.
Results show that compared to traditional debugging tools, TTQs improve developers’ precision (39% more correct answers)
while reducing required time (27% faster to finish tasks) and effort (45% less debugging actions) when performing program
comprehension tasks.
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1. Introduction
Debugging is a difficult and costly activity (Planning 2002).
When a program fails, developers resort to standard debuggers
in the first place. Debugging is an iterative process: developers
first make an observation and then formulate a hypothesis about
the cause of the failure. To test their hypotheses, they try to
reproduce the bug by observing data and behavior supporting
such hypotheses. Facing a wrong hypothesis forces developers
to formulate new, more refined ones, iteratively narrowing down
the possible cause (Spinellis 2018; Zeller 2009; O’Dell 2017;
E. T. Barr & Marron 2014; Phang et al. 2013).

Formulating hypotheses requires to understand programs.
Typically, developers ask themselves questions about the exe-
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cution of their program (Sillito et al. 2008), e.g., why is this
variable in an incorrect state? Then, they try to answer these
questions by exploring that execution.

Exploring program executions is important to produce good
hypotheses, especially when faced with unfamiliar bugs (O’Dell
2017), and it is commonly performed using interactive debug-
gers. However, it is not an easy task. Traditionally, this is done
by selectively stepping executions, instruction by instruction. It
is a manual operation, and there is a risk for taking a step too far
and therefore to miss critical information (E. T. Barr & Marron
2014). Furthermore, stepping is a generic operation that does
not translate directly questions asked by developers to test a
hypothesis to a stepping sequence (i.e., how many steps should
we perform to find that information?). Developers therefore
face the challenge of translating their questions into sequences
of debugging actions. This translation process is far from direct
and gives rise to an abstraction gap. This gap issue is alleviated
by domain-specific debugging tools, which offer debugging ac-
tions closely aligned with the application domain (Chiş et al.
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2014). However, this specialization comes with a trade-off: it
sacrifices generalizability, demanding tailored debugging tools
for each unique domain. Developing specialized debugging
tools or extending existing ones is a difficult task. This hin-
ders the availability of these tools to address problem-specific
scenarios.

To help developers explore their program executions, we
argue that we need a mechanism that transforms a question
formulated by the developer into a direct action that interrogates
the execution of a program.

To address this problem, we propose Time-Traveling Queries.
Time-traveling queries are queries that developers express to
extract specific information from a program execution to answer
program comprehension questions. A specialized debugger an-
swers these requests by executing the program instructions, one
at a time. Thus, the debugger traverses all states of the program
to collect the required data from the execution. Developers then
use these results to time-travel to the point in time in the execu-
tion where the results data were retrieved. When facing singular
or domain-specific problems, developers can write their own
queries tailored for their specific problem/domain.

This paper is an extension of (Willembrinck et al. 2021).
We first describe the difficulties of exploring program execu-
tions with standard debugging tools (Section 2). Then, we
present contributions from our previous work on time-traveling
queries (Willembrinck et al. 2021) (contributions 1 and 5 with
an extended experiment results analysis) extended by 3 new
contributions (contributions 2, 3 and 4):

1. We present a definition of time-traveling queries and how
they support program exploration, along with their require-
ments in terms of run-time infrastructure and capabilities
(Section 3).

2. We selected from the literature (Sillito et al. 2008) six
questions developers ask to understand their programs,
from which we defined a library of ready-to-use queries
(Section 4). We illustrate how to write and use real queries,
we describe their implementation, and how we integrate
and execute these queries in the Pharo debugger. This
shows that our query system is extendable and can be used
to customize debugging tools.

3. We propose an implementation of time-traveling queries
in Pharo (Black et al. 2009) based on a rudimentary time-
traveling debugger (Section 5). Specifically, we highlight
the implementation points that the back end should provide
for the implementation of our query system.

4. We report a real-world usage of TTQs by developers work-
ing on a meta-compiler (Section 6). This report shows
that, even if slow, TTQs are usable in practice, and are
applicable to real-world programs.

5. We conducted a user study with 34 participants, asking
them to solve a set of program comprehension tasks based
on these questions (Section 7). We asked participants to
answer these questions with and without time-traveling

queries. Compared to (Willembrinck et al. 2021) we pro-
vide an extended analysis which confirms our original re-
sults. We conclude that compared to traditional debugging
tools, time-traveling queries significantly improve devel-
opers’ precision (39% more correct answers), time (27%
faster), and efforts (45% less debugging actions) while
performing program comprehension tasks. Our analysis of
the observed data supports this conclusion.

Finally, we study related work in Section 11 and conclude.

2. Background and motivation: live exploration
of program executions

The simplified scientific method (Zeller 2009; Spinellis 2018)
is a common debugging method. It consists in formulating
hypotheses regarding the cause of a bug. Then, developers
selectively observe their program execution to confirm or dis-
card those hypotheses. Ultimately, the correct hypothesis is
confirmed and the bug is found. It is an iterative process in
which developers systematically test and observe their program
to understand it better. The more they understand, the more
they clarify their hypotheses and the more they narrow down
the cause of the bug.
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Figure 1 Exploring an execution with breakpoints and man-
ual backward and forward steps.

The most standard tools and techniques shipped with every
debugger are breakpoints and instruction stepping (Figure 1).
Developers use breakpoints to break the execution, then observe
the state of the interrupted program. They decide to either
resume the execution until the next breakpoint or to step forward
one program instruction to observe the evolution of the program
state (Zeller 2009). They repeat these operations until they find
the information they were looking for, or until the program ends.

These tools have three main problems:

– Manual/Tedious. Developers have to manually choose
where to put breakpoints and how to step the execution
when it breaks. Choosing efficiently where to put break-
points requires already understanding parts of the program.
Developers, therefore, have to perform preliminary investi-
gations of the program (Ressia et al. 2012), e.g., through
source code reading.

– Missing critical points. It is common to miss a critical
point in the execution (E. T. Barr & Marron 2014), e.g.,
the missed program state in Figure 1. Developers have
to restart and explore again the execution to look for the
information they missed.
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– Abstraction gap. To understand a program, developers
have to reason with abstractions among the specific do-
main of the program and the available debugging actions.
Standard debuggers are generic tools, inadequate for spe-
cific contexts such as debugging domain-specific problems.
Debugging questions cannot be easily translated into se-
quences of breakpoints and stepping actions. Because de-
buggers’ implementations are inflexible, they are difficult
or impossible to extend to cope with new contexts.

With Time-Traveling Debuggers, developers travel backward
and forward in their program execution. In Figure 1, a step-back
operation allows developers to travel back in time to observe
an execution point they missed with the standard stepping. Be-
cause of that, if developers stepped one step too far and missed a
piece of important information, they can immediately step back
and observe that information. However, looking for a piece of
information by stepping back and forth in a recorded execu-
tion remains a manual operation. Without additional means to
explore recorded executions, it is as tedious as standard break-
points and stepping.

With scriptable debuggers, developers build problem-specific
debugging tools to explore their executions, and scope debug-
ging to a set of problems. Developers build these tools through
highly customizable scripting APIs (Phang et al. 2013; Dupriez
et al. 2019), that can be combined with time-traveling debug-
gers (Phang et al. 2013). Every state of an execution can be
attained, but what to do for each state (observing, collecting
data...) must be specified in the scripts. This implies that devel-
opers already gathered a sufficient understanding of the program
to know what to look for to write scripts. Developers must also
understand and reason within several abstraction domains in-
cluding the program itself, the scripting API, etc. Sometimes, it
also requires deep knowledge of the execution model (Dupriez
et al. 2019). On top of that, they must translate their debugging
questions into debugging scripts. If developers try to reduce this
abstraction gap by making their debugging tools closer to their
program domain, they will encounter an additional difficulty
since debuggers are not usually designed with a focus on their
extensibility and flexibility to create new tools.

Problem summary and research question. To explore pro-
gram executions, standard interactive debugging tools and tech-
niques have the following limitations:

1. They require a prior understanding of the program to effi-
ciently explore an execution,

2. they are imprecise and miss critical information while ex-
ploring an execution (Figure 1),

3. there is difficulty in translating developer debugging ques-
tions to debugging actions,

4. they are generic and are difficult to use in (or to extend for)
domain-specific contexts.

Therefore, in the scope of this paper, we investigate the
following research questions:

RQ: Can we express general program comprehension ques-
tions as extensible queries over program executions, and does
that improve program exploration regarding developers’ efforts,
time spent, and precision, compared to standard debugging
tools?

3. Time-Traveling Queries
We propose to combine time-traveling debugging with script-
able debugging techniques to express program comprehension
questions as queries over program executions. We call these
queries Time-traveling queries (TTQs). TTQs bridge the pro-
grammatic gap between developers’ program comprehension
questions and the search for their answers in program execu-
tions. TTQs explore the whole program execution to extract
information answering these questions. This information is
presented to developers, who can time-travel, in the program
execution, to the point where that information was obtained.
There, developers can observe the information in its original
context. They can deepen their understanding of the execution
by time-traveling to other results or by performing standard
forward or backward steps.

We argue that TTQs enable in-depth live program exploration.
Developers will directly use pre-existing queries available on
the shelves, or express their questions as programmatic queries.
Program exploration will require less preliminary investigation,
and consequently improve developers’ debugging efficiency.

In this section, we provide a high-level description of TTQs.
We describe how to define a query, how to execute that query,
and how to time-travel in that query’s results. We then state
the properties of a time-traveling back end required to execute
TTQs. To be consistent with our implementation (Section 5)
and our evaluation (Section 7), we write our examples with
the Pharo language1. We use without detailing it the API of
our time-traveling debugger, e.g., for accessing the program
execution state. However, the concepts described in this section
are fully independent of Pharo.

3.1. Time-Traveling Queries definition and execution
We consider program executions as sequences of program states.
A program state "consists of the values of the program variables,
as well as the current execution position (formally, the program
counter). Each state determines subsequent states, up to the
final state..." (Zeller 2009). A TTQ is a query over a program
execution that selectively collects information from every pro-
gram state. It is then possible to time-travel to the execution
context from which information was collected.

Defining queries. A time-traveling query is an object specify-
ing a data source, a selection function, and a projection function.

1 For readers unfamiliar with Pharo, a comparison with Java-like syntax:
- Assignments use :=.
- The message-send notation uses spaces: state isMessageSend is equiva-
lent to state.isMessageSend().
- Arguments are specified by colons instead of parentheses:
Query from: states is equivalent to Query.from(states).
- Square brackets [:x:y|] delimit lexical closures, x,y are arguments.
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The data source is an iterable object that represents a se-
quence of program states, from where to select (i.e., filter) and
collect (i.e., transform) data. The data source is either the se-
quence of program states of a program execution or the selected
program states resulting from an executed query. In the follow-
ing Pharo script, we instantiate a query that will iterate over all
the program states of a program execution. In this code, the se-
quence of program states is referred to as programStates and
should be generated by the underlying debugger. The query we
created is just an object and is not executed yet. We will manip-
ulate this query to define a selection function and a projection
function before execution.

query := Query from: programStates

The selection function is a method that implements a condi-
tion to decide if a program state is of interest for a given query.
The function is evaluated for each item of the data source (in the
same way as the OCL selection clause). When evaluated, this
condition returns true if the program state should be selected
and false otherwise. In the following script, we configure our
query to select program states corresponding to message sends:

query select: [ :state | state isMessageSend ].

Listing 1 A selection function that finds all states
corresponding to message-sends.

The projection function is a method that collects execution
data for each selected program state, in a form specified by the
developer. The function is evaluated for each item of the data
source selected by the selection function. In the following script,
for each selected message send, we gather in a dictionary the
class of the receiver, the selector of the message sent, and its
arguments:

1 query collect: [ :state |
2 {(#receiverClass -> state receiverClass).
3 (#selector -> state msgSelector).
4 (#args -> state arguments)} asDictionary ].

Listing 2 A projection function that records every message
send data (receiver class, selector, and arguments).

The query is then executed on-demand by sending the query
object the execute message.

TTQ execution. When a query is executed (Figure 2), the
debugger starts and executes the program, instruction by instruc-
tion, advancing from program state to program state. For each
state, the debugger tests the query selection function over that
state. If the state is selected, the debugger collects the data as a
result item by applying the projection function to that state.

Time-traveling from query results. From any result item,
and at any moment when debugging, developers are free to
time travel. Time-traveling to a result item restores a program
execution to the program state denoted by the time index (a
timestamp) from which that item was collected (Figure 3). After
time travel, they can continue navigating the execution with
conventional tools and techniques (e.g., stepping, breakpoints,
etc.) or time-travel to another result item.
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Figure 2 Time-traveling query collecting time-indexed data
from the program states of a program execution.
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Figure 3 Exploring an execution by time-traveling from the
result items of a query. After time travel, developers can per-
form conventional stepping or another time travel.

3.2. Time-Traveling Queries requirements

TTQs require a time-traveling debugger back end that provides
the following features:

1. An iterable object that represents the sequence of program
states of an execution.

2. A unique time index for every executed instruction (byte-
code, opcode, abstract syntax tree...), that the debugger
records.

3. A sequence of program states that is well-ordered:

(a) The back end must control the execution of concur-
rent instructions and order their associated program
state with unique and sequential time indexes,

(b) the back end must enforce deterministic re-execution
(or replay) order of those instructions.

4. The back end should be able to restore a program execution
to any past program state.

In the scope of this paper, we assume we have such a debug-
ger back end, without considering technical details and limi-
tations. We use a virtual machine step-based implementation
that executes programs step by step, then entirely restarts and
replays step by step the execution to time travel. We provide
implementation notes in Section 5.
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4. Off-the-Shelf Time-Traveling Queries
In this section, we present a list of key queries that we elaborated
on from the literature. We propose these queries as a standard
library for developers to explore their program execution. We
describe how we implement a representative selection of these
queries, using the formalism described in section 3. Further-
more, we show how to execute queries and how to script custom
queries directly from the debugger. By writing queries or by
scripting queries in the debugger, developers can customize
their debugger to target domain-specific problems.

4.1. Key Time-Traveling Queries
We studied the key program comprehension questions that are
important for developers (Sillito et al. 2008). We focus on ques-
tions developers ask in object-oriented programming (Kubelka
et al. 2014). We selected 6 questions, for which we use the same
numbering as in (Sillito et al. 2008):

13. When during the execution is this method called?
14. Where are instances of this class created?
15. Where is this variable or data structure being accessed?
19. What are the values of these arguments at run time?
20. What data is being modified in this code?
32. Under what circumstances is this method called or excep-

tion thrown?

We analyzed these questions and defined 12 time-traveling
queries organized in 4 categories, that aim to support answering
those questions. We provide these queries to developers so
that they do not need to write them manually to answer their
program comprehension questions:

I. Queries over messages (questions 13, 32)

I.1 Find all messages sent during the execution
I.2 Find all messages sent with a given selector
I.3 Find all received messages by any object

II. Queries over instances Creation (questions 14, 32)

II.1 Find all instance creations
II.2 Find all instance creations of a class with a given name
II.3 Find all instance creations of exceptions

III. Queries over assignments (questions 15, 19, 20)

III.1 Find all assignments of any variable
III.2 Find all assignments of variables with a given name
III.3 Find all assignments of instance variables for instances of

a given class

IV. Queries over assignments for a specific object (questions
15, 19, 20)

IV.1 Find all assignments of instance variables for the receiver
of the currently executed method

IV.2 Find all assignments of instance variables for a particular
object

IV.3 Find all assignments of a given instance variable for the
receiver of the currently executed method

4.2. Implementation of Key Time-Traveling Queries
The API to write selection and projection functions (described
in Section 3) and for executing queries is implemented in the
Query class. Developers subclass that Query class to imple-
ment their own queries, and override a select: and project:
methods to implement the selection and the projection functions.
In the following, we describe how we implemented two repre-
sentative queries of our library from Section 4.1: query III.3
(Section 4.2.1) and query I.2 (Section 4.2.2).

4.2.1. Finding all assignments to the instance vari-
ables of a class. This query must find all assign-
ments to instance variables of any instance of a target
class. We first subclass the Query class with a new class
AssignmentsOfInstVarsOfClassName. Then, we imple-
ment a selection function to filter out all program states cor-
responding to assignments. Finally, we implement a projection
function to build and return a dictionary with information ex-
tracted from the filtered assignments.

The selection function. To implement the selection function,
we override the select: method of the Query class ( Listing 3).
We first use the API of the program state to determine if it
corresponds to an instance variable assignment (line 2). If that
is the case, we compare the class name of the receiver in which
the assignment occurs with a targetName variable (line 3).
That variable is defined as an instance variable of the query
under execution. We use it to store the target class name for
which we want to find assignments.

1 AssignmentsOfInstVarsOfClassName>>select: pState
2 ^ pState isAssignmentOfInstVar and: [
3 pState receiverClass name == targetName ]

Listing 3 Selection function implementation of query III.3
AssignmentsOfInstVarsOfClassName.

Projection functions. To implement the projection function,
we override the project: method of the Query class ( List-
ing 4). We implement a simple projection function that maps
specific fields of program states into a dictionary. We use the
program state API to collect various execution data about the
assignment, such as the method, class, and package where it
occurs, the variable name, its current value and new value being
assigned, and a technical field named bytecodeIndex. This
bytecode index is used by the time-traveling back end when
replaying execution, to navigate to the execution point where
the assignment took place. We collect the execution data in a
dictionary, where we associate each piece of information with a
human-readable symbol.

Returning dictionaries makes it easy for external tools or
users to build and extend tools on top of query results. For
instance, these results are easily displayable in tables, and the
bytecode index is a single value that can be transmitted to the
time-traveling debugger to replay the execution.

1 AssignmentsOfInstVarsOfClassName>>project: pState
2 ^ { (#selector -> pState methodSelector).
3 (#class -> pState receiverClass).
4 (#package -> pState receiverPackage).
5 (#varName -> pState variableName).
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6 (#currentValue -> pState readVariableValue).
7 (#newValue -> pState assignmentValue).
8 (#bytecodeIndex -> pState bytecodeIndex).
9 } asDictionary

Listing 4 Projection function implementation of query III.3
AssignmentsOfInstVarsOfClassName.

4.2.2. Finding all sendings of a specific message. This
query must find all occurrences of a specific message send,
represented by a selector given by the developer. Following
the same method as in Section 4.2.1, we implement a query
class AllMessagesSentWithSelector and its selection and
projection functions.

In the selection function (Listing 5), we first check if the
current program state corresponds to a message sending (line 2).
If that is true, we return the result of the comparison between
the message selector with the one given by the developer (stored
in the instance variable selector of the query).

1 AllMessagesSentWithSelector>>select: pState
2 pState isMessageSend ifFalse: [ ^ false ].
3 ^ pState messageSelector == selector

Listing 5 Selection function implementation of query I.2
AllMessagesSentWithSelector.

In the projection function (Listing 6), we collect information
about the selected message sends. Similarly, as in Listing 4, we
collect and return this information in the form of a dictionary.

1 AllMessagesSentWithSelector>>project: pState
2 ^ {
3 (#selector -> pState messageSelector).
4 (#arguments -> pState messageArguments).
5 (#receiver -> pState messageReceiver).
6 (#bytecodeIndex -> pState bytecodeIndex).
7 } asDictionary

Listing 6 Projection function implementation of query I.2
AllMessageSends.

4.3. Executing Queries
To experiment with Time-Traveling Queries, we implemented a
debugger prototype in Pharo named Seeker (Figure 4, and Fig-
ure 5). Seeker is composed of a time-traveling back end satis-
fying the properties presented in subsection 3.2, and dedicated
query tools integrated into the Pharo debugger (menus, visu-
alizations, time-travel control, etc.). There are two ways to
execute queries: by selecting a query from the debugger menu
and by writing them directly in the debugger.

Executing queries from the debugger menu. The debugger
queries menu is populated from different sources. Off-the-shelf
queries (Section 4) are statically added to the menu. Users
can also define custom queries using a specific user interface
UserTTQ. We call these queries user-defined queries. User-
defined queries are dynamically added to the debugger menu.

To use queries from the debugger menu, the user starts debug-
ging a program with Seeker. The Seeker debugger opens with
the standard debugger view on the left and the time-traveling
queries view on the right (Figure 4).

The code presenter (on the left) exposes a contextual Seek-
erQueries menu. In this menu, users will find queries from the
query library proposed in section 4 and all user-defined queries.

Some queries require parameters from the execution context.
Parameters are obtained from the code pane or the object inspec-
tor, e.g., variables, symbols, strings... For example, in Figure 4
we selected the query All messages sent with a given selector
(query I.2 from Section 4.1) from the contextual menu, and this
query requires a selector as a parameter. We selected the add:
selector in the code pane to provide it as input to the query.

Query results are displayed on the right pane of the debugger
(Figure 4). The results are displayed according to the projection
function of the executed query, which we defined in Listing 6.
The result table lists this projected information, i.e., the byte-
code index, the message receiver, the selector, and the message
arguments. The bytecode index is displayed in the column la-
beled step and serves as a control for time-traveling operations.
When clicking on the step of a query result line, the debugger
time-travels to the moment at which the associated instruction
was executed and updates the debugger views (code, stack, etc.)
accordingly. From there, developers can perform any standard
debugging actions (such as stepping forward and backward),
time-travel again, or execute another query.

Writing Time-Traveling Queries in the scripting presenter.
The scripting presenter is available in the right pane of the
debugger (Figure 5). There, developers can write and execute
queries on the fly directly in the debugger. Developers can
therefore ask new questions while exploring an execution.

To write queries in the scripting pane, developers have access
to a variable named programStates, which represents the col-
lection of all possible program states of the debugged program
execution. Scripted queries written in the debugger take the
custom selection and projection functions defined in closures.

For example, in Figure 5, we manually stepped the execution
until we reached the body of a loop. From there, we defined a
query in the scripting pane. This query selects all assignments
and projects the name of the variable in which a value is as-
signed. When we execute this query, the debugger restarts the
execution, runs the query over the entire program execution, and
displays the results in the query pane (Figure 4). The debugger
then sets back the execution to the point where we ran the query,
i.e., in the loop line 6 in Figure 5.

5. Implementation
Figure 6 shows a simplified overview of time-traveling-queries
and the supporting debugger back end2. In the context of this
paper, we describe the debugger back end then the query model
implementation. We then list limitations of our implementation.

5.1. The debugger back end implementation
In the scope of this paper, we used a naive time-traveling de-
bugger implementation satisfying the required properties enu-
merated in Section 3. In particular, this implementation did not

2 The complete implementation of our solution is publicly available at
https://github.com/maxwills/SeekerDebugger
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account for concurrency, primitive execution (i.e., i/o calls), or
non-determinism. This did not impact our experiment, since we
carefully chose tasks not involving these aspects. An updated
implementation takes care of these aspects (Willembrinck San-
tander 2023). In the following, we describe the implementation
used in the context of this paper.

We use a bytecode interpreter that executes each program
bytecode step by step. That debugger exposes the Debugger
interface from Figure 6.

The counter. A unique time index corresponding to the total
number of bytecode steps performed since the beginning of the
program execution. In our implementation, it is an integer. It
starts at zero.

The programStates() interface. An interface to the debugger
internal state that generates ProgramState objects. The current
counter is generated for each generated instance of program
state. Clients of the debugger interact with this interface.

The currentState() accessor. The accessor to the last gen-
erated program state, i.e., the program state representing the
current execution state after the last bytecode execution.

The restoreProgramInitialState() method. This method
restarts the entire execution to its original state, flushing out all
existing state. It sets the current state as the original execution
state and sets its counter to 0. If the execution starts for the
first time, this method just configures the current state and the
counter.

The timeTravelTo(timeIndex) method. This method moves
the execution forward or backward to attain a time index corre-
sponding to a program state. Clients of the debugger use this
method to time-travel to a specific program state.

The step() method. Interprets a new bytecode. Each inter-
preter step increments the counter by one and generates a new
program state.

The program state generation procedure. Clients obtain
program states from the debugger back end by using the
do(aBlock) method of the programStates() interface. The
executed procedure is shown in Listing 7. The debugger first
reloads the initial state of the execution. Then the states of the
program are advanced one at a time by stepping the debugged
execution. Each step advancement is composed of two steps:

1. The debugger applies the iteration block over each program
state represented by the ProgramState object and is obtained
by calling the currentState() method on the debugger. In the
context of this paper, the block is actually a query object.

2. The debugger calls its step() method.

1 ProgramStates >> do: aBlock
2 debugger restoreProgramInitialState.
3 [debugger isFinished] whileFalse:
4 [aBlock value: debugger currentState.
5 debugger step]

Listing 7 Iterable ProgramStates object. Iteration routine.

This same API can be implemented in other back ends, es-
pecially replay-based back ends. Replay-based back ends re-
construct a past state by executing forward from an older saved
state (Engblom 2012) (i.e., a snapshot). Depending on the im-
plementation, debuggers choose to sparsely capture snapshots
on specific program events (e.g., method calls), to repeatedly
snapshot after a certain amount of time has passed, or to do
both (Engblom 2012; UDB 2023).

To reverse an execution to a past state, instead of restart-
ing the entire execution and reconstructing the target state by
stepping all instructions until that state is reached (Listing 7),
these debuggers reconstruct the closest snapshot to the target
past state then they advance the execution deterministically from
that snapshot until the target state is reached, thus reconstructing
the target execution state.

In practice, most replay-based back end implementations
follow this approach (Arya et al. 2017; E. T. Barr & Marron
2014; E. Barr et al. 2016; King et al. 2005; Montesinos et al.
2008; O’Callahan et al. 2017; Phang et al. 2013; Pothier &
Tanter 2011; UDB 2023; Vilk et al. 2018) and are therefore
potential candidates to serve as alternative debugger back ends
for TTQ.

5.2. The query model implementation
Queries are declared by specifying a data source, a selection
predicate, and a projection function, which are stored in the data-
Source, selectionBlock, and projectionBlock fields, respectively.
The dataSource can be either a ProgramStates object, or another
Query. A ProgramStates is a collection of ProgramState, and it
is generated by the Debugger by stepping through the execution
from the initialState. A ProgramState is basically an API over the
call stack. Each state of each frame in the call stack is reified as
a ProgramState, whose API we use to answer queries. Because
we use a step-based debugger back end, it is easy to capture all
possible frame states by creating a new program state after each
debugger step.

The execution of a Query produces a QueryResult, which is a
collection of ResultItem. Each ResultItem stores a timeIndex, i.e.,
a timestamp to identify a unique program state of an execution,
and a value, i.e., an object that is produced by the projection
function of a query for each selected program state.

Debugger ProgramStates

do(aBlock)

ProgramState
counter

programStates()
restoreProgramInitialState()
timeTravelTo(timeIndex)
currentState()
step()

selectionBlock
projectionBlock

do(aBlock)
asTTQResult()

QueryResult 
ResultItem

 timeIndex      
 value (projected object)

0…*

0..1

0..1

node()
isMessageSend()
…

\timeIndex
0…*

Query

1
debugger

1 initialState

1programState

dataSource

dataSource

programStates

1

1currentState1debugger

Figure 6 TTQ and supporting debugger model.
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The evaluation of a Query is performed by calling its asT-
TQResult() method. First, the query’s dataSource items are iter-
ated. If an item satisfies the selection predicate (selectionBlock),
a ResultItem is instantiated with a timeIndex corresponding to
the current program state. The value of this result is computed
by applying the projection function (projectionBlock) to the item.
Second, ResultItems are aggregated into a QueryResult, which is
returned by the query.

ProgramState objects contain no fields, besides a reference
to the debugger, i.e., they store no execution data. Instead,
these objects offer an API to access data on the current state of
an execution. Program states provide accessors that internally
use the debugger to obtain the requested data of the current
execution state, such as the time index of the state, the currently
executed AST node, etc.

Nothing about the execution is automatically stored (except
the timeIndex). It is the projection function of queries, defined by
developers, that determines which information will be recorded
in the results.

5.3. Discussion
Our rudimentary time-traveling debugger poses important limi-
tations that prevent taking our current time-traveling queries im-
plementation to production debugging environments (Lienhard
et al. 2008). Nonetheless, time-traveling queries are agnostic
of the debugger implementation as long as (1) the back end
provides the API specified in Section 5.1 and (2) the back end
provides sufficient means to reify program states and provide
their API. Basically, the queries we implemented in Section 4.1
require from program states to know the current frame’s cur-
rent receiver and its class (all queries), if the current frame is
about a message send (queries I.1, I.2) with its receiver and its
arguments, the current frame’s method (query I.3) with its argu-
ments, if the current frame is about a variable access (queries I I I
and IV ) with the name of the variable and its value and if the
current frame is instantiating an object (queries I I). All query
variations are conditionals over this information and do not re-
quire a specific implementation or back end. Time-traveling
debuggers usually easily obtain this information as they need to
store similar execution data to restore executions later. Script-
able debuggers are also able to provide such information, and
in our implementation, we directly use the Sindarin scriptable
debugger API (Dupriez et al. 2019) to build our program states.
To scale this solution, we could therefore use production-level
time-traveling back-ends instead of Seeker.

6. A Real World Scenario: Debugging a meta
compiler

Seeker has been used by the developers of Druid3, a meta-
compiler for Just In Time compiler code generation. When
compiling, Druid uses an intermediate representation (IR) in the
form of a Control Flow Graph (CFG). During the compilation
process, Druid runs combinations of multiple optimizations
called optimization passes. Sometimes, an optimization pass

3 https://github.com/Alamvic/druid

introduces wrong changes in the CFG which then produces a
compilation error.

This scenario has been encountered by Druid developers
when executing one of Druid’s unit tests. This test takes as input
the Abstract Syntax Tree AST of the primitive method named
primitiveSize, generates the IR, optimizes it, generates the
target code, and finally runs the code to verify the behavior.
However, the test assertion detects an anomaly in the behaviour
of the code at run time. After a first investigation using the
Pharo debugger, CFG visualizations, and Druid’s machine code
debugger, developers have been able to determine that this error
comes from the optimization phase. The optimization phase
introduces a NULL value in the intermediate representation (Fig-
ure 15, Appendix A). From there Druid developers had to find
which optimization pass among all the optimization passes in-
troduces the NULL value.

The challenge of identifying faulty compiler optimizations.
Most of the time, we cannot easily determine which optimiza-
tion pass breaks the CFG. Indeed, the optimization passes are
destructive, i.e., they apply several transformations, modifying
or deleting certain parts of the CFG. Because they are destruc-
tive, these passes cannot be reverted and reapplied several times
on the same CFG. Therefore, to find the faulty pass using con-
ventional tools developers have to put a breakpoint before and
after each optimization to observe the transformed CFG. If de-
velopers miss the exact point where that faulty optimization
is applied, e.g., if they do not put the correct breakpoint, or if
they step too far in the debugger, they have to restart the whole
debugging process. Moreover, to seek information from the
CFG, Druid developers rely on a visualization (Figure 15, Ap-
pendix A). Using this visualization, identifying the problematic
NULL value in the CFG is demanding to the developer because
the value can be in any of the statements of the intermediate rep-
resentation (represented by colored squares in the CFG). In our
scenario, the test applies 7 optimizations passes and in total 48
optimizations to the CFG. Using conventional tools developers
could end up inspecting manually the CFG 48 times or more in
case of errors.

Identifying faulty compiler optimizations using Seeker. To
reduce the effort required to find the faulty optimization of our
scenario, Druid’s developers run the generation of the interme-
diate representation and optimization using Seeker. To identify
the optimization pass causing the bug they performed the query
I.2 - Find all messages sent with a given selector from our Time-
Traveling Queries library 4.1. Druid’s developers chose this
query because they know that applying an optimization pass to
a CFG requires executing the method ControlFlowGraph »
#applyOptimisation:.

Figure 7 shows the results of the query. The results are
presented in a table, with some details about each call to
the method ControlFlowGraph » #applyOptimisation:.
The interesting information for Druid developers is displayed
in the first column named Step. This column contains the
time travel index, an identifier for the moment in the exe-
cution where each call to the method ControlFlowGraph »
#applyOptimisation: occurred. By clicking on a time travel
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Figure 7 Seeker results to the query I.2 - Find all messages
sent with selector #applyOptimisation:

index in the table, one can navigate to the moment where the
optimization was performed. This is the main reason why Druid
developers chose Seeker to debug their unit test. This function-
ality allows developers to visualize the state of the intermediate
representation in the form of CFG after any optimization pass
without requiring the use of breakpoints.

To search for the faulty optimization pass, they manually
performed a binary search among the query results. At first,
developers clicked on the fourth time travel index. It brought
them to the point in the execution of the test where the fourth
optimization was triggered.

1 self previousOptimizations do: [ :opt |
2 cfg applyOptimisation: opt
3 ]

Listing 8 Code displayed by Seeker after a click on a time
travel index in the result table 7.

Listing 8 shows the code displayed in Seeker whenever a
developer clicks on a time travel index from Figure 7. After
clicking on the fourth time travel index, Druid developers in-
spected the content of the variable cfg at line 2, which opened
a CFG visualization (such as in Figure 15, Appendix A). The
visualization did not show any unexpected NULL value. It means
that the optimization passes up to the third one were not faulty.
When inspecting the CFG after clicking on the sixth time travel
index from the result table in Figure 7, Druid developers ob-
served the NULL value. It meant that the faulty optimization pass
was either the fourth or the fifth one. With this approach, Seeker
allowed Druid developers to narrow down their research for the
faulty optimization pass without the need for using breakpoints
or inspecting the state of the intermediate representation after
every optimization.

Once Druid developers found the optimization pass causing
the bug (which turned out to be the fourth one) they wanted to

precisely identify where in the source code the NULL value was
introduced. To do so, they used the query II.2 - Find all instance
creations of a class with a given name from our Time-Traveling
Queries library 4.1 with the class of the NULL value as argument.
The query provided the list of moments in the execution where a
NULL value has been created. It returned two results from which
Druid developers were able to time travel (see Figure 8).

Figure 8 Seeker results to the query II.2 - Find all instance
creations of class NULL.

On a click on either of the two results of the query, Druid
developers have been able to identify the faulty code. As we
can observe in Listing 9, the NULL value was introduced at line
15 of the method phiWithVariables:.

1 phiWithVariables: vars
2

3 | finalVars allPossibleVars phi |
4 controlFlowGraph buildDominatorTree.
5

6 allPossibleVars := vars asOrderedCollection copy.
7 self predecessors size > vars size ifTrue: [
8 self predecessors size - vars size
9 timesRepeat: [allPossibleVars :=

allPossibleVars , vars]].
10

11 finalVars := self predecessors collect: [ :b |
12 allPossibleVars
13 detect: [ :i | b checkLivenessOf: i ]
14 ifFound: [ :i | allPossibleVars remove: i ]
15 ifNone: [ DRNULLValue new ] ].
16

17 phi := self instructionFactory
18 phiWithVariables: finalVars.
19 ^ self addInstruction: phi

Listing 9 Code displayed by Seeker after a click on a time
travel index in the result table 8

Once they understood the problem and causes of the bug,
Druid developers used the standard debugger to fix it. Therefore
in this scenario, the TTQs came as a complementary tool to
the standard debugger to obtain important knowledge about a
bug. While other time-traveling debuggers could be used the
same way and be as effective, this experience shows that our
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off-the-shelf queries are usable in practice.
In this example, each query execution and each time travel

between a query result took about ten minutes. However, the
time-traveling queries remained attractive to the Druid’s devel-
opers. The queries avoided them having to manually go through
the entire optimization sequences to find a problem in a method
optimization.

7. Empirical Evaluation
For the investigation of the second part of RQ, we formulate the
following hypothesis:

H: Compared to standard debugging tools, program compre-
hension questions expressed as queries over program executions
improve program exploration.

We ran a quantitative evaluation (Elmqvist & Yi 2015) fol-
lowing repeated measures design (Seltman 2012) with 34 par-
ticipants. We asked participants to solve a set of program com-
prehension tasks with standard debugging tools (i.e., the most
common tools shipped with development environments) and
another set of similar tasks using our set of queries defined in
Section 4. For each participant, we measured for each task
the time taken to solve that task, the precision of the partici-
pant’s answer, and the number of debugging actions. We then
compared measures using TTQs and those using standard de-
bugging tools. We discuss other advanced techniques and how
they might compare in Section 11.

7.1. Objectives of the experiment
Our objective is to investigate if assisting program exploration
with TTQs improves program comprehension compared to
using standard debugging tools (abbreviated in the following
as SDT). We investigate H along three dimensions of program
exploration (time, precision, and debugging actions). We
therfore derive RQ into three Experimental Research Questions:

ERQ1: Do TTQs improve the precision of answers of
program comprehension tasks compared to SDT?
ERQ2: Do TTQs reduce the time spent to answer program
comprehension tasks compared to SDT?
ERQ3: Do TTQs reduce the number of actions performed to
answer program comprehension tasks compared to SDT?

7.2. Experimental design
Our experiment is two-fold: first a tasks-solving part, following
a repeated measures design (Christensen et al. 2011), immedi-
ately followed by a survey.

Experimental setup. A pilot participant performed the same
sets of tasks prior to the participants to ensure there was no
technical problem with the experimental and technical setups.
We then asked 34 participants to perform two sets of tasks with
Pharo 9, under an informal time limit of 90 minutes. Participants
performed the experiment remotely, without supervision.

We informed participants that the Pharo images they received
were instrumented to log their actions. However, they were not
informed about what was going to be measured, such as the
number of actions they performed to resolve a task or the time

spent debugging. We suggested participants to use queries dur-
ing the TTQs tasks, without hinting which ones, and without
enforcing their usage. Participants did not have to manually
write or compose queries: the default debugger menu exposed
all queries developed in Section 4. Figure 4 shows the integra-
tion of time-traveling queries and their results in the default
Pharo debugger4. Participants perform all their debugging tasks
within this debugger.

Each task is a program comprehension question, for which
participants must provide an answer. To solve a task, partici-
pants had to open a debugger on a unit test and answer one or
two program comprehension questions.

The two sets of tasks are:

– The control set is composed of five tasks. We asked par-
ticipants to provide an answer using exclusively standard
Pharo debugging tools.

– The TTQ set is composed of five tasks. We asked partici-
pants to provide an answer using TTQs in addition to the
standard Pharo debugging tools.

Each task in a set has a similar counterpart in the other set, i.e.,
we ask a similar question in an equally difficult task between
the control and the TTQ sets.

The pilot first performed the tasks following the {control,
TTQ} order, and reported a carryover effect. It seemed to the
pilot that performing the control set first helped them understand
what to look for in the TTQ set when answering similar tasks.
To limit this learning effect, we randomly assigned 50% of the
participants to the {control, TTQ} order, and the other 50% to
the opposite {TTQ, control} order.

Participants. We gathered 34 participants and one pilot.
Most of them are Pharo developers with experience ranging
from a few months to 20 years (Figure 9). Some of them have
Pharo development experience but work outside of the Pharo
world. Participants had no previous experience with TTQs and
thus discovered it during the experiment. We provided them
with a two-minute video on TTQs and their usage, along with
TTQs reference material consisting of a 5 slide presentation.

Tasks. We defined 14 tasks (Table 3) based on the questions
described in Section 4. The number of 14 tasks is motivated
by covering each possible TTQ defined in the TTQ library we
built 4.1. There are at least 2 tasks for each question covered by
a set of possible TTQ, except tasks 7 and 8 which are variations
of 5 and 6, for which there are possible TTQ variations in the
library.

When defining tasks, we made sure that each question we
asked was connected to what participants saw when opening
the associated test with a debugger. We also made sure that
participants would not have to write too much text as an answer,
e.g., hundreds of values.

We distributed the 14 tasks in different task groups, each
group containing 5 tasks. We can see these groups in Table 1.
We chose to not distribute tasks in groups of 7 to save partic-
ipants’ time and avoid them to spend too much effort in the

4 During the experiment, participants used a prototype version of the Seeker
debugger (Willembrinck Santander 2023).
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control phase and being fatigued while starting the TTQ se-
quence. Therefore, we tried as much as possible to pair each
control task with an equivalent treatment task, both targeting
the same program comprehension question. We also tried, as
much as possible, to make every task equally distributed as a
control and as a TTQ task. We then randomly assigned a task
group to each participant, with an experiment order ({control,
TTQ} or {TTQ, control}).

As we can see in Table 1, this led us to define eight groups of
ten tasks, five as control and five as TTQ tasks. Some tasks are
not equally distributed nor equally paired between control and
TTQ, such as 13 and 14. This is to limit the number of groups
and combinations of tasks. Because groups are randomly as-
signed to participants, depending on the number of participants
there could be groups that are never or almost never assigned.
Because of the choice of limiting groups, there can be some
conflicts when distributing paired tasks among the groups. 13
and 14 are, in our opinion, the most difficult tasks as they ask
to recover specific values in a program execution. We therefore
chose to avoid conflicts by moving these tasks together when
they cannot be distributed equally between control and TTQ.
For example in groups g1a, 14 appears in TTQ but in g1b ap-
pears in control. In group g4b, 13 and 14 are grouped together
in the TTQ group to avoid biasing the control in favor of our
hypotheses.

Table 1 and 2 respectively show how many times each group
has been assigned to a participant and how many times each
equivalent tasks were assigned in control and TTQ.

Table 1 Groups of tasks: each participant is randomly as-
signed one of the groups. The Nb column shows how many
times each group has been assigned to a participant.

Group Control TTQ Nb

g1a 02, 04, 08, 10, 12 01, 03, 05, 09, 14 6

g1b 01, 03, 05, 09, 14 02, 04, 08, 10, 12 6

g2a 02, 03, 07, 10, 11 01, 04, 06, 09, 13 5

g2b 01, 04, 06, 09, 13 02, 03, 07, 10, 11 4

g3a 03, 04, 05, 06, 07 08, 11, 12, 13, 14 4

g3b 03, 05, 07, 11, 13 04, 06, 08, 12, 14 2

g4a 01, 05, 07, 11, 13 03, 06, 08, 12, 14 1

g4b 01, 03, 05, 06, 07 08, 11, 12, 13, 14 4

Metrics and measurements. To answer ERQ1, 2 and 3, we
defined three metrics: Score (precision), Time, and Debugging
Actions. We measured (through execution logs) and calculated
these metrics two times for each participant: for control and
TTQ tasks. Participants did not know the measured metrics,
and data was collected anonymously. All participants gave their
consent for the collection of the experimental data.

The score is the number of tasks with correct answers. It is an
integer value between 0 and 5, calculated as the count of tasks

Table 2 Distribution of each task over the task sequences
performed by participants.

Task Control TTQ

1, 2 26 21

3, 4 35 24

5, 6, 7, 8 51 35

9, 10 21 21

11, 12 14 29

13, 14 13 30

with 100% answer correctness. The correctness C of a task t
of a participant p is calculated as: C(p, t) = (cv(p, t)/ev(t))
where cv(p, t) is the number of correct values provided in the
participant’s answer for task t, and ev(t) is the number of ex-
pected values for task t. To reach 100% correctness, a partici-
pant’s answer needs to include all the expected values. To define
the list of expected values, we first performed all tasks using
TTQ and recorded the results. We then compared participants’
answers to this list of results. If an answer differed from our list,
we analyzed it to understand why the participant arrived at that
conclusion. If it could be due to a reasonable level of ambiguity
of the question, then we registered it as an additional accepted
correct value of the answer. Finally, tasks for which no answer
was provided (e.g., the participant failed to answer or had not
enough time) are counted as 0%.

Time corresponds to the time in minutes a participant took to
answer a task. It is the chronological time span (obtained from
logs) from the beginning of a task until it is answered. The be-
ginning of a task corresponds to the moment a participant starts
that task. Participants were not able to see a task description
before manually starting it through a graphical control. The
end of a task corresponds to the moment a participant provides
an answer for that task. We considered that the time to write
an answer did not affect our measurements so we included it.
Finally, we removed periods of inactivity > 5 minutes. For ex-
ample, if the mouse of a participant did not move for 15 minutes,
we considered that the participant was idle for 10 minutes. 2
participants fell in that case, e.g., one participant had a 10 hours
period without any event. For a given participant, the control
time is the sum of all control task times and the TTQ time is the
sum of all TTQ task times.

Debugging Actions is an integer representing the sum of pro-
gram exploration actions performed by a participant to answer
a given task. We considered the following actions: configur-
ing breakpoints, modifying methods, executing code, opening
debuggers, stepping in the debugger, executing TTQs, time-
traveling, and filtering TTQ results. For a given participant, the
control actions value is the sum of all control task actions and
the TTQ actions value is the sum of all TTQ task actions.

Post-study survey. We requested participants to fill out a
survey after they performed the experiment. First, we gath-
ered factual information such as the participants’ professional
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Table 3 Tasks in the controlled experiment
T Method Question SQ

1 RSMonitorEventsTest>>#testNoTarget From which domain method is the exception signaled? S32

2 STONJSONTest>>#testUnknown From which domain method is each exception signaled S32

3 MetacelloVersionNumberTestCase>>#testApproxVersion02 How many times is #asMetacelloVersionNumber called and from which method? S13

4 GeneratorTest>>#testAtEnd How many times is generator>>#atEnd called and from which methods? S13

5 MicToPillarBasicTest>>#testHeader How many instances of PRHeader are created? and from which methods? S14

6 MicToPillarBasicTest>>#testCodeBlock How many instances of PRCodeblock are created? and from which methods? S14

7 MicOrderedListBlockTest>>#testSingleLevelList2 Which classes from the Microdown package are instantiated? S14∗

8 HiRulerBuilderTest>>#testCycle Which classes from the Hiedra package are instantiated S14∗

9 NSPowScaleTest>>#testSqrt What are the classes of every object receiving the #scale: message? S19

What are the values of the arguments in each message?

10 RSNormalizerTest>>#testBasic What are the classes of every object receiving the #color: message? S19

What are the values of the arguments in each message?

11 RSCameraTest>>#testPosition What instance variables of the RSCanvas object are modified during this test? S20

12 RSAttachPointTest>>#testVerticalAttachPoint What instance variables of ‘RSBox‘ b1 are modified during this test? S20

13 OCPragmaTest>>#testPragmaAfterBeforTemp What are the different values assigned to the instance variables: ‘pragmas’ ‘source’
and ‘keywordsPositions’ of aRBMethod object, during the execution?

S15

14 ContextTest>>#testSteppingReturnSelfMethod What are the different values of the ‘pc‘ instance variable of the ‘newContext‘ object
during this test?

S15

T is the task id, SQ refers to the question types of (Sillito et al. 2008) selected in Section 4.
∗: the task question is a variation of the original SQ.

background and programming experience. Second, we gathered
subjective information through the following questions:

– TTQ: do you find TTQs useful?
– TTQ: do you find TTQs intuitive?
– Control: what is your confidence level for your answers?
– Control: what would be your perceived difficulty level for

completing the tasks?
– TTQ: what is your confidence level for your answers?
– TTQ: what would be your perceived difficulty level for

completing the tasks with TTQs?

Our objective in gathering these subjective data is to contrast
how participants perceived and trusted TTQs regarding their
measured efficiency during the experiment.
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Figure 9 Histogram of participants’ years of experience in
Pharo.

8. Results
In this section, we analyze the data collected from the experi-
ment5. We then analyze the data collected from the post-study
survey.

8.1. Experiment results
From the experiment data, we rejected the results of two par-
ticipants who did not follow the experimental protocol. Logs
show these participants did not use TTQs at all. One of them
also loaded external advanced tools to perform the tasks. This
makes any comparison unreliable. The following analysis is
therefore based on results from 32 participants out of the 34
who performed the experiment.

Figures 10, 11, and 12 show the differences for each par-
ticipant respectively for the score, time, and debugging action
metrics. For example, in Figure 10, 24 participants over the 32
have a greater score with TTQs than with SDT, 6 have the same
score, and only 2 a lower with TTQs. Compared to standard
debugging tools, most participants using TTQs seem to reach a
better score, in less time, and by performing fewer debugging
actions.

Figure 13 shows the averages over all participants for each
one of these metrics. On average and compared to standard de-
bugging tools, participants using TTQs obtained a 39% higher
score, invested 27% less time, and performed 45% less debug-
ging actions.

5 The data and their reproduction package are publicly available at https://
github.com/StevenCostiou/2024-TTQ-Extended-Analysis.
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Figure 10 Participants scores. In the horizontal axis, partic-
ipants are sorted in ascending order by their years of experi-
ence in Pharo.
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Figure 11 Participants total time per sequence, in minutes. In
the horizontal axis, participants are sorted in ascending order
by their years of experience in Pharo.
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Figure 12 Participants total debugging actions. In the hori-
zontal axis, participants are sorted in ascending order by their
years of experience in Pharo.

8.2. Results analysis
To check if the differences between participants are significant,
we formulate the null hypotheses corresponding to our experi-
mental research questions ERQ1, ERQ2, and ERQ3:

H01 for ERQ1: The precision of program comprehension
tasks is the same with or without TTQs.
H02 for ERQ2: The time employed solving program com-
prehension tasks is the same with or without TTQs.
H03 for ERQ3: The number of debugging actions to solve
program comprehension tasks is the same with or without
TTQs.

Due to the relatively small data sample, we cannot make
assumptions about the distribution of the data. Therefore, we
performed the non-parametric Wilcoxon signed-rank6 test to
compare the paired differences between the two measurements
(control and TTQ). We applied the same methodology for every
formulated null hypothesis, considering the differences TTQ −
control per participant, for each metric (Table 4). All p-values
are < 0.05, the data therefore seem to support the rejection of
all null hypotheses. We measure the effect size using the Rank-
Biserial Correlation (Jané et al. 2024). All reported values show
a large effect (> |0.3| (Funder & Ozer 2019)), suggesting that
TTQ significantly enhances program comprehension.

Table 4 Wilcoxon signed-rank test results for H0.

N p-value effect size

H0 EQ1 - Score 26 <0.001 -0.937

H0 EQ2 - Time 32 0.014 0.496

H0 EQ3 - Debug. Actions 32 0.018 0.602

The data therefore seem to support our hypotheses that to
answer program comprehension questions, TTQs improve pro-
gram exploration regarding developers’ efforts, time spent, and
precision compared to standard debugging tools.

8.3. TTQ usage analysis
To assess if and how participants used TTQs, we first computed
the number of TTQ actions that they performed during their
TTQ tasks. For each participant’s TTQ task, we extracted from
the logs all actions related to TTQs. We divided these actions in
three types: queries, filters over queries’ results, and time-travel
actions from a query result. We counted how many actions of
each type each participant did over all their TTQ tasks, then
computed a per-type average over all participants. We excluded
three outliers, one from the time-travel type and two from the
queries type.

Results are shown in Figure 14. On average (rounded num-
bers), participants performed 22 queries, 29 time-travel opera-
tions, and 3.7 filter operations over queries’ results when doing
TTQ tasks.

6 We used JASP (JASP Team 2024) to perform statistical tests. JASP files are
available at https://github.com/StevenCostiou/2024-TTQ-Extended-Analysis.
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Figure 13 Average experiment results for each metric, with 95% confidence intervals.
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Figure 14 Average number of TTQ actions during TTQ tasks,
with 95% confidence intervals and separated by action type.

These results show that participants did use TTQs, but only
provide a general overview of how they used TTQ tools to an-
swer the program comprehension questions of their tasks. In
particular, we observe that on average, multiple TTQs seem to
be necessary to answer a single program comprehension ques-
tion (i.e., 22 queries on average for 5 program comprehension
questions).

Appendix B shows which queries were performed by partici-
pants for each group of tasks. Each diagram gathers the used
TTQs for two to four different tasks, regrouped by task groups
(Table 3). For each task in a diagram, we see the total number of
the queries used by all participants. Each radius corresponds to
a TTQ as presented in section 4.1. The point corresponding to
the most used TTQ is always on the external disk, regardless of
the diagram’s tasks. The points corresponding to the other TTQs
used for the tasks of the diagram are then proportionally placed,
from 0 in the middle to the maximum value in the external disk.
For example, for task 1, considering all participants, 9 TTQs
have been used. The most used TTQ for this task is II.3 (i.e.,
II.3 Find all instance creations of exceptions), then followed by
TTQ I.I (i.e., Find all messages sent during the execution) and
so on. For Task 2, 8 TTQs have been used. The most used one

is I.I and the second most used TTQ is I.3 (i.e., Find all received
messages by any object). The larger the area covered by the
dots, the greater the number of different TTQs. We observe the
following:

– Several TTQs have been used for each task.
– For each task, there is always a TTQ that has been more

used than the others, and that TTQ belongs to the expected
TTQ family with regard to the questions asked in the tasks.
In other words, when we designed the tasks with a specific
question we expected participants to use a specific query
family, and each time they did. We can explain this by the
fact that each TTQ has a specific purpose that was adapted
to the question asked in the task. This suggests that for
each task participants used specific TTQs because they
believed these TTQs were adapted for the task, and not
randomly because they were advised to do so.

– For each pair of equivalent tasks (except tasks 1 and 2) the
diagrams are similar, or at least the most used TTQ is the
same (e.g., TTQ II.2 for Tasks 5 and 6, TTQ II.1 for tasks
7 and 8). Since equivalent tasks have been performed by
different participants, this reinforces the idea that TTQs
have specific purpose and have been used relevantly.

– The usage frequency of the TTQs of the same family (I
to IV) per task varies a lot according to the families. For
example for task 1, the most frequent TTQs are in the order,
I.1, I.3, II.1, IV.1, I.2, and II.3 (with values relatively close
for II.3, I.2, and IV.1). For task 4, the most used TTQ
is I.2 and just after IV.2 and then I.1. In these examples,
each TTQ inside families I and II are very distinctly used
by the participants. For tasks 11 to 14 relative to variable
assignments, it is always TTQ IV.2 that is the most used
but the only other used TTQs belong to families III and IV.

– Some TTQs have not been largely used in the experiment.
It is mostly the case for the TTQs over assignments in
general or on a specific object (family III and IV). The
proposed tasks certainly do not cover all the TTQ. Indeed,
over all the TTQs relative to assignment, only TTQ IV.2
(Find all assignments of instance variables for a particular
object) has been largely used.

These observations suggest the equivalence of the tasks, i.e.,
for each task group the same TTQ family was used and that
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Table 5 Post study survey: participants’ evaluation of the tool (Debugger with TTQs).

TTQ Reception
Participants confidence

in their answers

Perceived difficulty

of Sequence

Rating (More

is Better)
Usefulness

Intuitive

Usage

Rating (More

is Better)
Control TTQ

Rating (Less

is Better)
Control TTQ

Poor: 1 6% 3% Not sure at all: 1 6% 6% Easy: 1 0% 38%

Fair: 2 6% 0% 2 34% 3% 2 12% 28%

Satisfactory: 3 25% 18% 3 28% 19% 3 22% 25%

Very good: 4 44% 28% 4 19% 41% 4 41% 9%

Excellent: 5 19% 50%
They are for sure

the correct ones: 5
12% 31% Difficult: 5 25% 0%

the TTQs have been used relevantly, i.e., the TTQ usage is
not due to chance or to a trial-and-error behavior from partici-
pants. However, we must consider that in four of the task groups
(namely g1a, g1b, g2a and g2b) tasks 1 and 2 are always per-
formed first in the TTQ treatment. This is where in diagrams the
areas covered by TTQs are the largest, which could suggest a
learning effect where participants poked around in the available
TTQs before understanding what to do and how to use TTQs.
On the one hand, this could influence the results in favor of
the control groups as participants would lose time trying TTQs.
On the other hand, the rest of the diagrams seem to show that
participants learned which TTQ to use which would actually
benefit to the TTQ group (which is the researched effect).

8.4. Post-study survey
Table 5 summarizes the results of the post-study survey. Most
participants found that TTQs were useful and of intuitive usage.
Most participants were more confident in the precision of their
answers with TTQs than with standard debugging tools. Most
participants perceived the tasks as less difficult with TTQs than
with standard debugging tools. This is a positive reception,
considering the fact that participants were not exposed to the tool
before the experiment. This suggests that to answer program
comprehension questions, our tool is easier to learn and use than
standard debugging tools.

9. Threats to validity
In this section, we discuss and mitigate threats to validity. In par-
ticular we analyse alternative hypotheses that could explain our
results, and perform robustness tests to see how our hypothesis
resist to variations in the data.

9.1. General design threats
Answers correctness. We produced the list of expected cor-
rect values to decide if a task answer was correct using TTQs
in addition to participant answers, in an iterative process. We
tested each listed value by manually finding them in their re-
spective test case, and consequently, we considered them as

correct. However, it is not possible to prove the completeness
of this list.

Remote participation modality. Participants went through the
experience remotely. They performed the experiment in full
autonomy, using their own equipment and in their own environ-
ment. We accounted for inactivity time longer than 5 minutes
and we removed two inactivity periods from the data, one of
15 minutes and one of several hours (the participant interrupted
the experiment and continued it later). However, we did not
monitor participants for small interruptions and distractions that
might affect the results.

9.2. Carryover effect on the experiment order
We balanced the order of the experiment in two sequences
({control, TTQ} or {TTQ, control}) to avoid a learning effect
between the control and the TTQ tasks such as the one reported
by the pilot. However, at first glance, the data suggest a learning
effect in favor of the control tasks. Participants performed better
on all metrics in their control tasks with the {TTQ, control}
sequence. In particular, they are almost 2 times faster while
obtaining a slightly better precision (score) and performing
slightly fewer debugging actions. This suggests a learning
effect: participants would have learned while doing the TTQ
tasks first because of the questions and therefore they were
more efficient during the following control tasks. This could
be explained by the fact that TTQs remove part of the burden
of finding out what to look for in the program execution, such
as understanding that one should look for state changes in a
specific object. Furthermore, multiple questions (or TTQ) can
be asked with no additional cognitive cost by using the debugger
menu until a TTQ yields interesting results. Therefore, when
performing a similar control task participants might be informed
about what they should look for, although they have to find the
same information with the standard debugger.

Another way to look at this would be that for the {control,
TTQ} sequence, participants have two learning phases (one
per experiment). Participants were not familiar neither with
the comprehension tasks nor with the TTQs. Starting with the
TTQ experiment they learned both during the first part of the
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experiment.
Both theories could explain the apparent difference in results

between the two sequences, and both would disturb the observa-
tion of accurate data in favor of our hypothesis (i.e., because it is
in favor of the control, it could mask the true effect of the TTQ).
We therefore formulate the following alternative hypothesis:

Ha1: There is a learning effect in favor of control tasks when
the experiment is done with the {TTQ, control} sequence.

To find out if the data support this hypothesis, we sepa-
rated the data of both sequences and compared them using a
Mann-Whitney U test, suitable when comparing two indepen-
dent groups. Table 6 presents the means of the score, time, and
debugging actions metrics for the two sequences and the results
of the statistical tests. Each time, we compare the control and
the TTQ groups of each sequence – each group being composed
of 16 data points (i.e., 16 for each sequence). Except for the
time metric when comparing the control groups, the data does
not seem to support Ha1, or put another way that the observed
data does not seem different between each control-control or
TTQ-TTQ groups comparisons. For the time metric, the Mann-
Whitney U test yields a p − value of .00782 < .05, which
would indicate that the time data does support Ha1. We could
accept Ha1 for the time metric, if we refine our theories above
by saying that participants learned what they should look for in
their program executions using TTQ, but they should still do
it with a standard debugger in the control, involving as much
actions as if they did the control tasks first. They would perhaps
also be more confident with their abilities to answer the task,
as they learned during the TTQ tasks. They would therefore be
faster, without necessarily getting a better score or performing
fewer actions.

However, one must be cautious with the interpretation of
these results. We divided the number of participants by two
(16 instead of 32) to be able to compare the control and TTQ
groups as independent groups. Therefore there is a risk that
the statistical tests are underpowered because the number of
data points is too small. Instead of accepting Ha1 we leave it
open, meaning that the presence of a learning effect in favor of
half of the control tasks could mask the true effect of the TTQ.
This does not change our acceptance of our main hypothesis
H, but opens interesting research prospects: could TTQ help
developers acquire stronger debugging skills through a learning
effect?

9.3. Tasks equivalence
Every control task has an equivalent TTQ task in terms of diffi-
culty. This makes it possible to compute per-participant means
over the control tasks and over the TTQ tasks, and then com-
pute the means difference. However, we assessed this difficulty
equivalence based on our own development experience (three
of the authors have more than 10 years of professional develop-
ment experience). The pilot did not report anything related to
tasks difficulty. Formally proving this equivalence is not pos-
sible in practice. Potentially, there might be small differences
in task difficulties. We tried to distribute the tasks between
control and TTQ to mitigate the potential observation of data
influenced by small differences in task difficulty. If an easy task

is assigned to a control group and its slightly harder counterpart
is assigned to a TTQ group, those would be reversed in another
group. However, this would not suffice to mitigate the threat of
significant differences in task difficulty. We therefore formulate
the following alternative hypothesis that could also explain our
results:

Ha2: The tasks are not equivalent, i.e., their difficulty is
significantly different, and participants’ results are influenced
by luck depending on the task order they were assigned to.

Comparing per-task means suggesting this equivalence
(score, time, and debugging actions). Still, there are not enough
samples for each task individually to tell if the data support Ha2
or not.

Table 1 shows the different task groups assigned to partic-
ipants. These task groups represent enough data to perform
statistical tests. We performed a jackknife robustness test (Neu-
mayer & Plümper 2017) to see how well our original hypothesis
resists to changes in the data when removing task groups. We
started by excluding data corresponding to the first group of
tasks (g1) and then performed the same Wilcoxon test as in Sec-
tion 8.2. We then reinserted the g1 data, removed the g2 data,
performed the statistical test, and so on until all task groups had
been excluded once.

If tasks are not equivalent (Ha2), removing task groups from
the data should impact the results of the statistical tests. The
group removal should especially yield strong differences for
g1a and g1b and g2a and g2b. First, these four groups cumu-
late 21 participants out of the 32 of the experiment. The data
corresponding to these groups should weigh significantly in the
results. Second, they have reversed groups of tasks between
their control and TTQ tasks (Table 6). For example, The tasks
of g1a and g1b are the exact same, but their control and TTQ
tasks are reversed. Let us imagine that tasks 01 and 02 are not
equivalent while they should be: task 01 is significantly harder
than task 02. This means that doing task 01 as control in g1a
is harder than doing its counterpart task 02 later with TTQ in
g1a, which would bias the observed results in favor of our base
hypothesis H. This reasoning applies to each group of equivalent
tasks reported in Table 3.

Results are shown in Table 7. The score is always higher in
TTQ than in control, and time and actions are always smaller
in TTQ than in control. All p − values remain < .05, there-
fore still supporting our original hypothesis H. Results are very
similar between groups such as g1a, g1b, suggesting that g1a
and g1b have the same impact and therefore that their tasks are
equivalent between their control and TTQ groups. We observe
the same with g2a, g2b. We also observe these similarities
between g3a, g3b and g4a, g4b with the exception of a 12%
difference in the number of actions between g3a and g3b. For
these four groups, the tasks are not exactly reversed between the
control and TTQ groups (some are, some are not). This suggests
that even with different tasks, the potential difficulty difference
is not big enough to be measured and have an impact on the
overall results. The jackknife robustness test results therefore
do not seem to support of Ha2, and we conclude that the effects
measured in the primary analysis are robust with regards to the
threats to validity emerging from Ha2.
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Table 6 Results according to the experiment order.

Metric Sequence
Sequence Order

(A) Control→TTQ (B) TTQ→Control Difference (B − A) p − value

Score

Control 2.13 2.63 +0.5 (+23%) .31732

TTQ 3.59 4.25 +0.66 (+18%) .08012

Time

Control 59.9 32.9 -27 (-45%) .00782

TTQ 30.5 36.3 +5.8 (+19%) .86502

Actions

Control 206.7 192.7 -14 (-7%) .83366

TTQ 80.4 139.8 -59.4 (+74%) .28914

Table 7 Results of the jackknife robustness test based on tasks
groups. Group column: the removed group before testing. N:
the number of data points after removal of the group.

Group Metric
Results

TTQ/Control p − value

g1a (N=26)

Score +67% .00012

Time -27% .0466

Actions -44% .01242

g1b (N=26)

Score +60% .00014

Time -26% .03

Actions -48% .00236

g2a (N=27)

Score +74% <.00001

Time -28% .02382

Actions -37% .01242

g2b (N=28)

Score +74% < .00001

Time -30% .01684

Actions -43% .01078

g3a (N=28)

Score +61% .0001

Time -28% .03078

Actions -42% .0114

g3b (N=30)

Score +61% < .00001

Time -25% .01552

Actions -54% .00034

g4a (N=31)

Score +64% < .00001

Time -29% .01684

Actions -45% .0048

g4b (N=28)

Score +58% .00012

Time -30% .01242

Actions -43% .00694

9.4. Habits and trust
The question of the impact of participants’ previous debugging
habits and experience has to be discussed. Indeed, if partici-
pants had all one or two years of development experience in
Pharo, the results could be less significant in the sense that,
for someone not used to debug a program or used to a given
debugger, a new tool can be as easy/difficult as a traditional
one. The participant population described in Figure 9 ensures
that we do not have such bias. Figure 9 presents the years of
experience in Pharo of the participants. It shows that we have
nearly an equal number of participants with 0 to 4 years than 4
to 25 years of development with Pharo and related environments
such as Squeak (the ancestor of Pharo). It is worth seeing that
Pharo is not taught at the University around the place where
our experiment happened, therefore having already 4 years of
Pharo developing experience exhibits a solid experience with
the system including debugging.

Post-survey results showed that the debugging tool was
trusted by most participants. However, some experienced Pharo
developers manifested that to trust the tool result, they would
have to validate the results using other tools, but in doing so,
they would break the experiment protocol. This puts the partici-
pant in a problematic situation, which can potentially affect the
experiment results. As stated in Section 8.1, we discarded one
participant’s results for this reason. We acknowledge the need
to minimize these scenarios for future experiments.

10. Discussion
In the following, we briefly discuss and contextualize our re-
sults.

Answering the research question. RQ: Can we express gen-
eral program comprehension questions as queries over program
executions, and does that improve program exploration regard-
ing developers’ efforts, time spent, and precision, compared to
standard debugging tools? The experiment results positively
answer it. Nonetheless, it is important to remark that the ex-
periment tasks were based on a subset of common questions
developers ask while debugging a program. They do not cover
the complete set of problems developers face during their de-
bugging sessions. Even though the experiment results support
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the time-traveling queries approach, the specific measure im-
provements are significant only in the context of these questions.
To conclude whether TTQ improves debugging in other areas,
new focused evaluations are needed.

The proposed TTQs. While the program comprehension ques-
tions selected from the literature are simple to understand, an-
swering them presents a difficult and time-consuming challenge.
In this article, we proposed a solution along with its evalua-
tion. Our contribution is composed of the TTQs mechanism
for program exploration and a set of key queries supporting
common debugging questions. We propose these queries not as
a final all-purpose debugging solution, but as a starting point
from which to build more specialized queries and debugging
tools, seeking to cover actual debugging needs of developers to
improve debugging efficiency.

11. Related Work
Many debugging approaches offer the possibility to perform
assertions over the state of a program. For example, debugging
techniques and tools offer the means to analyze and reason about
a program. Depending on the nature of the debugged scenario
(i.e. the programming environment, language, etc.), certain
techniques present advantages over others. The key differences
between such work and ours are:

– We support the access to and assertions over any program
state within a program execution,

– we provide an extensible framework to craft domain and
problem-specific program comprehension tools.

In the following, we focus in addition on solutions offering
tracing, back-in-time, or time-traveling support.

11.1. Queries Over Objects
For object-oriented programming languages, there are several
approaches that account for object-specific aspects. While not
directly in the debugging area, in (Jorgenson & Erickson 1994)
the authors argue that testing object-oriented software should
not focus on units but on the message exchange between them
in a scenario.

Object-centric debugging. Object Miners (Costiou et al.
2020) is an object-centric approach for acquiring, capturing,
and replaying objects to localize bugs. Developers manually
select expressions in the source code from which Object Miners
gathers objects at run time. Developers can then navigate the
history of captured objects using a filter over the objects’ state.

The practical object-oriented back-in-time debugging ap-
proach (Lienhard et al. 2008) builds an object changes history
based on how objects are passed through the control flow of the
execution. Developers navigate back and forth in the lives of
objects throughout history.

Both approaches implicitly allow developers to query objects,
by filtering or navigating object histories. These approaches
can be expressed as time-traveling queries by selecting objects
from specific program states (e.g., object read, write, passed as
parameter...) and building histories from the collected results.

However, the known implementations of these approaches re-
quire highly reflective language features (Costiou et al. 2020) or
virtual machine specialization (Lienhard et al. 2008). The level
of expertise required to use such language features increases
the cost of adapting the presented approaches to a specific do-
main or problem different from the one they were designed for.
In contrast, time-traveling queries allow developers to write
queries to tackle dedicated problems. However, they require a
deterministic time-traveling backend exposing the state of the
program to the time-traveling query system. Whenever such a
deterministic time-traveling backend is available in a system,
it is easier to use time-traveling queries to tackle a domain-
specific problem rather than relying on the reflective features of
that system.

Logic-based event debugging queries. Some debuggers
based on logic programming use queries to explore program
executions. For example, OPIUM (Ducassé 1999b) and
Coca (Ducassé 1999a) base their queries on event traces, and
Query-based debugging (Lencevicius et al. 1997, 1999) base
their queries on logic expressions to find objects satisfying par-
ticular conditions. These solutions do not provide means to
query past states of objects for asking program comprehension
questions.

Auguston (Auguston 1998, 1995) proposes a language to
analyze a program execution trace based on a model of events.
The events describe the attributes of procedural statements dur-
ing execution, such as the code of the statement or its return
value. This is similar to the program state API used by the
time-traveling queries, which models for example the message
sends and the assignments that are executed.

Although not focused on debugging, TESTLOG (Ducasse et
al. 2006) reifies execution traces and uses logic programming to
express tests on them (Ducasse et al. 2006). Thereby, it avoids
the need to bring the system to a specific state for the test and
to gather knowledge about the program behavior before the test
execution. However, according to the authors, the language
used to express and perform the logic tests on the traces is not
well suited for end users. Similarly, Caffeine (Guéhéneuc et al.
2002) uses the Java debugging API to capture execution events
and uses logic programming to express and execute queries
on a dynamic trace (Ducasse et al. 2006). However, Caffeine
do not provide state reification such as the ones required by
time-traveling queries.

TTQs could be expressed on top of Prolog-based trace reifi-
cation. However, the fundamental aspect of our work is to
expose developers with a library of key time-traveling queries
capturing important questions supporting debugging sessions.
This library is usable by end users as supported by the results of
our user study experiment. In addition, time-traveling queries
are extensible and can be seamlessly composed and mixed with
traditional debugging tools (breakpoints, step-by-step execution,
etc.).

11.2. Time-Traveling Debugging
Through the years, time-traveling debuggers have presented
attractive means for improving debugging. An important part
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of the research in the field focuses on solving different imple-
mentation challenges, contributing with highly performant solu-
tions (E. T. Barr & Marron 2014; E. Barr et al. 2016; Miraglia
et al. 2016; Lienhard et al. 2008).

On the other hand, there are other projects that do research
on how to exploit time-traveling debuggers for program compre-
hension and debugging (Ko & Myers 2004, 2008; Phang et al.
2013). This is where we position our work, and compare simi-
larities against related research projects listed in the following
paragraphs.

Time-traveling queries. Our work shares similarities with
Expositor (Phang et al. 2013). Like our solution, Expositor
combines scripting and time-traveling debugging to allow pro-
grammers to automate complex debugging tasks. Expositor
uses GDB (UndoDB n.d.) as an execution logging backend,
which grants time-traveling capabilities. In contrast, we use an
execution-level debugging API (Dupriez et al. 2019; Willem-
brinck Santander 2023) offering similar capabilities. One of
Expositor’s main contributions is the abstraction of the execu-
tion trace, which is a time-indexed sequence of program state
snapshots or projections. Programmers can manipulate traces as
if they were simple lists with operations such as map and filter.
Our query model follows the same idea: execution traces can be
created and operated with time-traveling queries, and like Ex-
positor, are lazily evaluated to generate the results. Compared to
Expositor, we provide an extensible list of ready-to-use queries
that are mapped to common developer questions asked during
debugging. Finally, Expositor was only evaluated on examples.
Our empirical experiment provides new insights, suggesting
that tools like our queries or Expositor have the potential to
significantly enhance program comprehension activities.

Program-comprehension in debugging. During debugging
sessions, developers require knowledge of a program to for-
mulate good hypotheses, and then to write effective queries
to answer their questions. Whyline (Ko & Myers 2004, 2008)
offers to developers contextual queries to simplify the hypoth-
esis formulation and querying activity. In contrast, our query
proposal features a different approach by offering commonly
needed general-purpose execution queries. Even though it does
not directly support hypothesis formulation, it relieves the bur-
den of writing queries from the developer which translates into
increased efficiency as shown in our evaluation. Another point
of comparison is the extensibility of the solution. In Whyline,
only two queries can be performed, Why did? and Why didn’t?
and they cannot be extended. In contrast, with time-traveling
queries, developers have the means to create new specialized
queries, optionally reusing existing ones, to answer their own
debugging questions.

Querying executions for dynamic analysis. Queries are used
in dynamic analysis to obtain program execution information. In
the context of Reverse Engineering and Design Recovery, static
and dynamic program queries are performed over programs to
create high-level views of its components, and their connections
(Richner 2002; Richner & Ducasse 1999).

Nowadays, it is not uncommon for debuggers to provide

visualization enhancements. They use dynamic information to
display traces, providing visualizations of a program behavior.
As discussed in Section 11.2 we relate our work to visualiza-
tion because TTQs provide a simple mechanism to generate
program traces. Visualizing debuggers can work directly via
instrumentation on the program being executed, or are based
on post-mortem traces (Consens & Mendelzon 1993; Lange &
Nakamura 1995). DePauw et al. (De Pauw et al. 1998) and
Walker et al. (Walker et al. 1998) use program events traces
to visualize program execution patterns and event-based object
relationships such as method invocations and object creation.

Queries to support dynamic analysis. Program comprehen-
sion is gained by performing static analysis of a program code
and dynamic analysis of its execution (Richner 2002; Richner &
Ducasse 1999; Cornelissen 2007). Several tools and techniques
offer support for these activities. Nowadays, popular IDEs are
shipped with interactive debuggers, and developers use them to
perform program comprehension tasks. Our contribution seeks
to support the interactive debugging workflow, by enhancing
dynamic analysis capabilities. Time-traveling queries can be
used to produce trace information to feed dynamic analysis tech-
niques and visualizations, incorporating their advantages within
an interactive debugging workflow.

12. Conclusion
There are different tools and methodologies through which de-
velopers gain program understanding. Program exploration
using interactive debuggers remains a common, yet difficult
and tedious approach. To improve program exploration, we
proposed time-traveling queries an extensible query mechanism
based on a time-traveling debugger. Time-traveling queries help
developers answer program comprehension questions, and craft
debugger extensions to domain and problem-specific debugging
scenarios.

We conducted a controlled experiment to evaluate how
queries help to answer common program comprehension ques-
tions. Results show that with time-traveling queries, developers
perform program comprehension tasks more accurately, faster,
and with less effort than with standard debugging tools. The
positive reception of the tool suggests that our solution is eas-
ier to learn and use for program comprehension than standard
debugging tools. This represents a promising research step,
from where we acknowledge the importance of exploring time-
traveling queries to ease debugging activities.
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A. Druid control flow graph with an error

Figure 15 Druid generated control flow graph with an error.

B. Distribution of queries during tasks
The following graphics show which TTQs from our queries
were used during each task. Tasks are regrouped by groups
targeting a specific question from Silito.
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