Journal of Object Technology | RESEARCH ARTICLE

I I JOURNAL OF
OBJECT TECHNOLOGY

A flexible operation-based infrastructure for
collaborative model-driven engineering

Edvin Herac*, Wesley K. G. Assung¢ao*, Luciano Marchezan*, Rainer Haas®, and Alexander Egyed*
*Institute of Software Systems Engineering, Johannes Kepler University, Austria
*Linz Center of Mechatronics GmbH, Austria

ABSTRACT Collaborative model-driven engineering infrastructures are used to concurrently deal with models from diverse
engineering domains. However, studies within the industry have shown that existing infrastructures often offer insufficient
collaborative support or do not incorporate features to handle multiple engineering domains, which leads to inefficient collab-
oration and reduced team productivity. In this paper, we propose a flexible operation-based infrastructure for collaborative
model-driven engineering that addresses these issues. The infrastructure supports lock-free collaboration within co-existing
metamodels of different domains. It also allows engineers to arbitrarily push or pull changes of divergent versions and to deal
with appearing conflicts. To achieve those functionalities, the infrastructure relies on operations that represent atomic changes
on our simplified version of the Meta-Object Facility, such as creating and deleting new types, instances, or modifying properties.
The infrastructure manages those operations within a tree-like structure that grows incrementally. Sequences of operations,
going from the root to a leaf, represent different versions of a complete model history (including metamodels). Model versions
can be merged by concatenating their corresponding branches and handling occurring conflicts. We evaluated the infrastructure
by applying it in practical scenarios in collaboration with an industrial partner. These scenarios demonstrate the feasibility of our
infrastructure by complying with our derived requirements for collaborative model-driven engineering infrastructures.

KEYWORDS collaboration infrastructure, model-driven collaboration, collaborative engineering, synchronization, conflict handling, co-existing metamodels.

els, use different structures (e.g., metamodels) and are managed
in different tools, but somehow related to each other (Muccini
et al. 2018). Yet, even in the same domain, engineers may have
different preferences regarding which tools to use (Torres et al.
2020). For instance, a software engineer may choose to work
with Eclipse IDE! on source code, whereas another one can
decide for using IntelliJ IDEA” to work on the same source
code or in combination with Visio® on a class diagram, using
the same or different metamodels.

1. Introduction

Current engineering practices to create complex systems rely on
highly interdisciplinary teams, potentially globally distributed,
working with heterogeneous artifacts (Bucchiarone et al. 2021).
For instance, in a robotics project, collaboration from multiple
engineers across different domains such as mechanical, elec-
tronic, and software is required (Egyed et al. 2018). However,
achieving proper collaboration to correctly and efficiently de-
velop complex systems is not a trivial activity (Zissis et al. 2017;
Franzago et al. 2018; David et al. 2021; Trols et al. 2019). The

Engineers can also have different preferences regarding the
frequency in which they want to synchronize (push or pull)
their changes (e.g., make their changes visible to others or

artifacts developed in each domain, usually represented as mod-

JOT reference format:

Edvin Herac, Wesley K. G. Assuncao, Luciano Marchezan, Rainer Haas,
and Alexander Egyed. A flexible operation-based infrastructure for
collaborative model-driven engineering. Journal of Object Technology. Vol.
22, No. 2, 2023. Licensed under Attribution 4.0 International (CC BY 4.0)
http://dx.doi.org/10.5381/jot.2023.22.2.a5

receive changes from others). However, this can lead to time-
consuming reservations of artifacts (locks) or to conflicts due

! Eclipse: https://www.eclipse.org/ide

2 IntelliJ: https://www.jetbrains.com/idea

3 Visio: https://www.microsoft.com/en-us/microsoft-365/visio/flowchart
-software

An AITO publication

http://dx.doi.org/10.5381/jot.2023.22.2.a5
https://www.eclipse.org/ide
https://www.jetbrains.com/idea
https://www.microsoft.com/en-us/microsoft-365/visio/flowchart-software
https://www.microsoft.com/en-us/microsoft-365/visio/flowchart-software

to concurrent changes (e.g., synchronizing different versions
of not locked models). In this context, we argue that engineers
lack a collaborative model-driven engineering infrastructure
that supports multi-domains while providing synchronization
flexibility so that they can choose how and when to integrate
their work lock-free into the project.

To provide the infrastructure mentioned above, however, we
need to address several challenges. First, we need a common
representation of diverse artifacts such as a meta-metamodel,
that enables the generation of a multitude of metamodels. As
a result, this meta-metamodel allows us to handle co-existing
multi-domain artifacts (i.e., multiple metamodels). Second,
such an infrastructure must enable multiple users to share their
work, while providing lock-free versioning and conflict detec-
tion. Third, a versatile infrastructure must offer engineers the
flexibility of choosing when to make their work available to
other engineers (i.e., push their changes) and when to get the
most recent version of the artifacts (i.e., pull their artifacts with
changes from other engineers). We also should not rely on only
a fixed set of tools for the infrastructure, as users may have
preferred tools that lead them to be more productive. Thus, an
interface for users to adapt arbitrary tools for collaboration is
desired.

In this paper, we propose a more flexible model-driven infras-
tructure for collaborative engineering, that supports lock-free
multi-domain collaboration due to the handling of co-existing
metamodels. The infrastructure is based on operations that en-
able us fast communication, fine granular conflict detection, and
resolution during merges of different versions (Yohannis 2020).
Our infrastructure enables engineers to work with adapted tools
and arbitrary synchronization triggers, independently of their
working domain or the number of engineers. Hence, the infras-
tructure provides an interface for the possible reuse of familiar
single-user applications. Adapting them to become collabora-
tive applications contributes to higher collaboration acceptance
and faster delivery cycles, as engineers can still work with their
preferred tools. However, adapting tools for collaborative pur-
poses can be a complex task (Sun et al. 2006). The advantage of
our proposed infrastructure includes the flexibility of co-existing
metamodels and versions while providing generic conflict de-
tection during merges. Additionally, our infrastructure allows
engineers to choose their synchronization triggers (e.g., when
to push or pull their changes).

To show the infrastructure’s applicability, considering its
main features, plugins (extensions of single-user tools) and
metamodels for a set of engineering tools were created. We
describe the use of the adapted tools in four practical scenar-
ios, including two with an industrial partner. These practical
scenarios constitute cases, with a different number of domains,
engineers, tools, and configurations. The infrastructure was
able to provide the co-existence of metamodels while providing
synchronization flexibility among multi-users, addressing the
limitations of existing work.

The remainder of this paper is structured as follows: Sec-
tion 2 presents an illustrative example and the main requirements
desired in collaborative systems. Section 3 describes how the
infrastructure is designed to address the requirements. The sce-

2 Herac et al.

narios to evaluate the infrastructure are presented in Section 4.
Section 5 shows different attempts to implement those main
requirements. Lastly, Section 6 concludes our work, presenting
the future steps of our research.

2. Motivation and Problem Statement

Based on studies conducted in industry (Liebel et al. 2018; Ci-
cchetti et al. 2016; Jongeling et al. 2019, 2022), reports from
the literature (Franzago et al. 2017; Torres et al. 2020), and
our experience with industrial partners,” we argue that exist-
ing collaborative engineering tools/systems have insufficient
support or even missing collaboration features. To detail these
problems, this section describes an illustrative example of a col-
laborative engineering scenario and the core requirements (Req)
that should be implemented by a collaborative infrastructure.
The example relies on the project of a heartbeat monitor device
used in hospitals to inform the medical staff in case a patient’s
heart stops beating.

N Collaborative context
Engineerin ontext
X - Multi-users
based on edits - Muli-tools
~
uses,) Client-side:
finish A - Push/Pull

/uses before i - Confiict Resolution
pushes Modelling

Server-side:
- Versioning

instant pulls, but - Conflict Detection

A = £Qppushes on feature
ce Eclipse IDE . mish

edits

based on N
........ h A ClassB.java

! Java Metamodel |

o instant

pushes
pump.asm _J«—edits—| SolidWorks [€uses—
T

edits based on Carol

Component v
—uses: IntelliJ IDEA premeoobeeoooo]
ey instant i Featwre |
= pushes

o ! Metamodel

N 0
p— ClassA java

Programming Mechatronic

Figure 1 Collaboration context for the development of the
Heartbeat Monitor Project.

Figure 1 presents the overall context of the project develop-
ment. The heart monitoring device is composed of both software
and hardware components. More specifically, the project con-
sists of three different domains:

Modeling: Devoted to the specification and designing of
the structure and behavior of the heartbeat monitor. In this
domain, the main concerns are to reason on how to design
functional requirements (e.g., notifying medical staff in case a
patient’s heart stops beating) and non-functional requirements
(e.g., 24/7 operation and elimination of external interference
such as mobile phone networks). The stakeholders of the project
decided to rely on the Unified Modeling Language (UML), thus,
the design models are based on the UML metamodel.

Programming: Focuses on the realization of the structure
and behavior defined in the modeling domain. The goal is to
create a concrete piece of software for the heartbeat monitor.
For that, the stakeholders chose to use the Java programming
language, creating the source code according to the Java meta-
model.

4 Especially with Linz Center of Mechatronics GmbH, Austria. https:/www
Jem.at/en/

https://www.lcm.at/en/
https://www.lcm.at/en/

Mechatronic: Has the goal of designing the mechatronic
plan of the heartbeat monitor. It describes which electric com-
ponents (e.g., resistors, transistors, and opamps) are used or
how the machine parts look like (e.g., the features of a machine
part) and how they are assembled. The stakeholders decided to
use SolidWorks, which creates artifacts following the feature
metamodel.

We can see that the heartbeat monitor is a multi-domain
project, in which practitioners have to deal with artifacts/models
in three co-existing domains in accordance with the UML, Java,
and Schematic metamodels. Thus, a requirement is:

Reql: Infrastructures for collaborative model-driven engi-
neering must support work in multi-domains by coping with
co-existing metamodels.

In addition to multi-domains, to achieve the goal of the col-
laborative project, engineers have to work together on related
artifacts. For example, in Figure 1, three engineers, namely
Alice, Bob, Carol and Dina, work collaboratively. We can ob-
serve that even in the same domain (i.e., programming), Alice
+ Bob and Alice + Dina, work in the same artifacts (i.e., Java
source code or UML Models) concurrently without any reser-
vations or locking each other out. This configures a multi-user
collaborative environment. In addition to multi-domain, sup-
porting multi-user is a functional requirement of a collaborative
model-driven infrastructure. Hence, we can define another re-
quirement:

Req2: Infrastructures for collaborative model-driven engi-
neering must support concurrent work with multi-users by
allowing versioning and lock-free work.

In collaborative environments, engineers may have different
collaborative work styles. For example, Alice and Dina, with
Visio, may prefer to first finish their models related to one
feature before pushing them (making their changes visible to
the other engineers). Nevertheless, when Alice is working with
source code, her preference is to always pull from the remote to
keep her code in sync (locally) with visible model changes from
her colleagues. Alice still, however, only pushes her code after
one feature is finished. Similarly, Bob prefers to always push
his work instantly to stay in sync with changes because a push
involves always a preceding pull. Carol may desire to configure
her tool to also always stay in sync like Bob. Hence, we argue
that providing the possibility to work lock-free (no waiting time)
while allowing arbitrary pull and push is important to cope with
engineers’ collaborative preferences. This enables users to have
instant pulls while only sporadically pushing their work. Most
tools, however, focus on one single type of collaborative work
style (e.g., only synchronous or asynchronous work (Pietron et
al. 2021)). Thus our third requirement:

Req3: Infrastructures for collaborative model-driven engi-
neering must allow engineers to pull and push their models
anytime to cope with engineers’ collaborative work style pref-
erences along the engineering cycle.

Despite having three different metamodels, to work on the
artifacts, engineers have a myriad of tools available. For exam-

ple, the engineers responsible for the modeling domain, Alice
and Dina, work with Visio for the UML models. In addition to
dealing with UML models, Alice also works with Java source
code, preferring to use Eclipse IDE as a source code editor. Bob
is also an engineer working with Java code, but he prefers the
editing support offered by IntelliJ IDEA. Finally, for dealing
with the mechatronic models, Carol decided to use SolidWorks.>
This situation illustrates that in collaborative engineering, users
should be able to choose which tool they prefer or are familiar
with. It would be hard to define a guideline for how a multi-tool
environment or a tool interface should look like, regarding the
vast amount of tools and applications on the market. Thus, we
do not define it as a requirement. The underlying idea of a tool
interface is to allow the infrastructure to be used in an already
existing tool landscape. It allows engineers to develop new tools
and adapt their preferred tools for their own purpose. Therefore,
we defined an interface for our infrastructure to cope with a
multitude of possible scenarios which we consider sufficient.

3. Proposed Infrastructure

Our proposed solution is an infrastructure that supports co-
existing metamodels. This is achieved by providing our own
simplified Meta-Object Facility (MOF) (Object Management
Group 2022) and representing it with a history of change opera-
tions that are managed in a tree-like incrementally growing struc-
ture, as described in Section 3.3. Due to the lock-free concurrent
multi-user environment, model versioning is essential (Altman-
ninger et al. 2009). Each engineer has to modify their own
replicated version of the model until the versions are merged
and the change conflicts are presented in Section 3.4. Our in-
frastructure provides flexibility for collaborative work style pref-
erences. It allows engineers to arbitrarily push or pull changes
(i.e. merge model versions), as explained in Section 3.4.1. Also,
different types of tools, applications, standalone products, and
services can be integrated into our infrastructure at any time in
the engineering cycle, explained in Section 3.1.

3.1. Overview

We configured the infrastructure as a two-tier client/server sys-
tem (Oluwatosin 2014). The server handles all sessions of the
clients and their requests. Hence, acting as the central node for
handling all connections, versions, and changes (i.e., acts as
a central global unified state). The client/server configuration
allows us to centralize versioning and conflict handling, reduc-
ing the infrastructure’s overall complexity. The server uses the
paradigm of workspaces to handle model versions.

A Workspace acts as a container for a specific state of co-
existing metamodels and model versions, and all their not
pushed local changes. Its state is represented by a token on
a node of the operations handling tree-like structure. All data
can be held in an arbitrary number of private workspaces and
one central public workspace (parent of all private workspaces,
shared by all engineers). All connections from clients to the
server are aiming for a chosen private workspace. Only one en-
gineer can be connected to a private workspace simultaneously,

5 SolidWorks: https://www.solidworks.com/

A flexible operation-based infrastructure for collaborative model-driven engineering 3

https://www.solidworks.com/

in order to prevent inconsistencies and unmanaged conflicts.
The public workspace is a central node (i.e. parent workspace)
that allows the private workspaces to share their changes with
each other through pull and push commands, visible in Figure 2.

Workspace ...

<
<
Push
Iind

Workspace C
Carol

Workspace A
Alice

Workspace B
Bob

Figure 2 Workspaces collaboration star topology.

In contrast to the server, all clients are based on and con-
nected through our infrastructures software development kit
(SDK), see Figure 3. The SDK provides clients with a con-
nection handler, an invisible layer for the synchronization to
the server, and an object-relational mapping (ORM) of our
simplified MOF for any kind of data modifications (Keith &
Schnicariol 2009).

A client can connect to an existing private workspace or
create a new workspace at any given time. That connection starts
as a stream where the client replicates the private workspace’s
model. In the case of a new workspace, the current public
workspace’s model version is replicated, allowing us a lock-free
work environment for the new private workspace. Due to the
incremental growing history tree, described in Section 3.4, no
locks on the public workspace are required during replication.
Consequently, private workspaces grow to branched versions of
the public workspaces model. Branching branches (e.g., private
workspaces with child private workspaces) is future work and is
omitted in this approach due to complexity reasons.

We use gRPC® for the communication between the server
and the clients. The server uses a first in, first out (FIFO)
connection, which ensures the right order of incoming requests.
However, every engineer works on his/her own workspace, thus
no conflicts can be created due to local changes. Conflicts can
only appear during pushes or pulls, in which case the conflict
handling intervenes. Client change requests are executed on the
server, and the resulting operation sequence is sent over to the
client. This creates a stream of changes from the server to the
connected client to keep them consistent with the central source
of truth.

The infrastructure is composed of the server (where an in-
stance of our implemented infrastructure is running) and the
connected clients with their adapted engineering tools, illus-
trated in Figure 3.

6 gRPC - Remote Procedure Call Framework. https://grpc.io/

4 Herac et al.

Central Server { Client Alice

Workspace awareness Requests | SDK

Replicated model of the
connected workspace H
Arbitrary | 1

Change-Dispatcher Tool H

Model History Tree Operations |

Conflict Handling

==

Figure 3 Overview of the main components.

Workspace awareness: The server is aware of all existing
workspaces, their current version state in the model history
tree, and their connected clients.

Model History Tree: Persists all model changes as a history
of operations in a tree-like incrementally growing structure.
Complete branches of this tree represent different variants of
a model with workspace states as tokens typically at the leave
nodes. Every node on the branch represents a model version.

Conflict Handling: When two branches are merged (one pri-
vate and the public workspace) through a pull command, a
conflict handling analyzes the corresponding branches’ opera-
tions to detect possible conflicts and resolves them by creating
resolution operations. These operations are added to the leaf
node of the private workspace’s branch in the model history tree
(i.e., new private changes).

SDK: The SDK uses ORM for converting the model data to the
heap of an object-oriented programming language. This allows
us to use a virtual object database within Java or C# to modify
metamodels and models. The client SDK receives changes (i.e.,
operations) that are executed on the locally cached model and
notifies the plugins of its changes. In other words, it provides
an invisible layer between the server and the client. The SDK
can be used to create plugins for arbitrary tools. These plugin
implementations can combine various domains and functionali-
ties like implementing scenario logic or combining co-existing
metamodels to a multi-view. Thoroughly showcased in Sec-
tion 4.

Replicated model of the connected workspace: Every client
has its own replicated model of the connected workspace locally
cached. The server is the central source of truth for its state. So
any changes to the model on the server are reflected in the client
by receiving and executing the received operations locally.

Change-Dispatcher: The change-dispatcher executes all in-
coming operations from the server to local changes on the
cached model. It also transforms the changes on the locally
cached model (by the ORM and the plugin) into requests to the
server.

3.2. Workflow

In this section, we illustrate the workflow of our infrastruc-
ture, to understand the basic behavior of the components and
how engineers may interact. As shown in Figure 4, Alice and
Bob are connected to their private workspaces with arbitrarily

https://grpc.io/

Figure 4 The workflow of collaborating engineers.

adapted engineering tools. They are working synchronously
(pushing and pulling as soon as there are changes). Next, we
describe a simple workflow that may happen when considering
this scenario.

Step 1: Alice connects to her workspace and starts changing an
artifact inside her tool. Alice’s tool reacts to the change and sets
the value inside of Client A cached model through the SDK.

Step 2: The SDK transforms the model changes into a request
and sends it to the server. It is also important to execute the
change locally too, without waiting for the response operations.
This leads to a faster response time. The server receives the
change request, creates operations, and adds those changes to
the leaf of the corresponding workspace’s branch of the model
history tree.

Step 3: The connected Client A is notified of the new operations.
It receives the same operations that are already cached. In
case something went wrong, those operations could change
the model back to the old state. Alice pushes those changes
instantly to the public workspace as intended by the plugin.

Step 4: Client B pulls as soon as there are new visible changes
on the public workspace and receives an operation sequence
which is executed on its local model. However, in case of con-
flicts, the conflict handling activates, described in Section 3.4.

Step 5: The adapted tool of Client B pulls the internal artifacts
corresponding to the pulls local model for Bob.

Step 6: Alice keeps working on her tool.

3.3. Model Management

Our data structure is persisted as a change-based model his-
tory. That technique is called change-based persistence (CBP)
(Yohannis et al. 2017). This makes all model changes be repre-
sented and persisted as a finite sequence of changes, instead of
saving their current model state (state-based) like EMF (Stein-
berg et al. 2008) uses (e.g., Ecore files). State-based persistence
saves and loads the whole model. Thus it is computationally
expensive and can specifically affect large models and collabora-
tion. CBP enables faster detection of changes and speeds up the
merging of model versions (Rath et al. 2012; Ogunyomi et al.
2015). However, CBP can still build up large and ever-growing
change history files, where loading times get significantly higher
and the current model state has to be reconstructed from the
model history (Yohannis et al. 2017).

The persisted metamodels and models can be handled in dif-
ferent ways (e.g., MOF or EMF). Meta-Object Facility (MOF)
is a standard specification developed by the Object Management
Group (OMG). It defines metamodels in the field of software en-
gineering by providing a framework for creating, manipulating,
and exchanging metamodels and models (Object Management
Group 2022).

By utilizing our simplified MOF, we provided students with
a more accessible and understandable approach (but not as
expressive) to designing metamodels for various tools. The
simplified MOF still offers sufficient expressive power to im-
plement a wide range of metamodels for our evaluations and
industry cases. Our primary goal is to strike a balance between
simplicity and expressive power (to our experience) to facilitate
metamodel design and usage in our infrastructure and to show
feasibility of combining the three requirements for collaborative
engineering infrastructures.

All changes on the metamodels and models generated from
our simplified MOF are represented by operations defined by
our operation model, illustrated in Figure 5. The proposed sim-
plified MOF can be considered an explicit definition of how
a domain-specific metamodel is built. It is the key data struc-
ture to our domain flexibility (Reql). We created a simplified
MOF to be capable of representing a wide variety of software
engineering artifacts, as shown in our evaluation scenarios. A
more complex MOF would lead to a more complex operation
model and henceforth, to a higher overall system complexity.
It is an individual design decision between MOF completeness
and complexity to handle our evaluation scenarios and still be
capable to comply with all our infrastructure requirements.

Every client can create, change or delete a metamodel and
instantiate corresponding models within their private workspace
at any time. Each workspace can contain its own metamodels
and models, which can be shared by pushes and can be received
by pulls from the public workspace. Meta-metamodel classes
illustrated in Figure 5 are defined as follows.

Element: Is the basic abstract type of the metamodel and cannot
be instantiated. Every InstanceType and Instance is an Element.
It contains a unique id that is generated from the server. Any
request (e.g., create InstanceType) is sent to the server and
executed there. Thus the support of a centralized id generation.

InstanceType: The clients can create metamodel with Instance-
Types. Multi-inheritance is allowed. In this case, inheritance
means to inherit all PropertyTypes of all supertypes recursively.
If multiple PropertyTypes exist with the same name, only the
first one will be inherited.

Instance: The instantiated InstanceType containing Propertys
transformed from the InstanceTypes PropertyTypes.

Property: Contains the property name and object values, match-
ing the Cardinality and the PropertyType.

PropertyType: The type that represents an instantiated Prop-
erty. It may be an object value or a reference to another Instance
(REF). It is used to define which properties an Instance gets,
from a particular instantiated InstanceType

Cardinality: The cardinality of a Property. Any PropertyType

A flexible operation-based infrastructure for collaborative model-driven engineering 5

°
°
o
= Operation ElementUpdate PropertyUpdate Add ‘
<
=]
-] ElemetCreate PropertyCreate ‘ Delete ‘
s
o
j=3
o ElementDelete PropertyDelete ‘ Set ‘
8
SR ey properies 17T TTTTTTIT T
g e
= <
§ @_ clement . [<Element>> W Property

<
c
=
o

name: string

; property | value: object
subtypes
.* categol
PropertyType 1mg id .
1 << ation>>
3 cardinality Category
< <<enumeration>> VALUE
Cardinality REF
g COLLECTION
£ SINGLE
2
E-] Bkttt
A\ Source Code State UML
K
InstanceType InstanceType
-property[name]: "Class” N -property[name]: "Connector”
rethods]: List<R ce: N -propertytypel[shapes]: List<Shape>
[: : yp
S InstanceType . InstanceType
~propertylnamel; "Method I : [~properynamel Shape” | ||

instantiate

Instance . Instance

-property[namel: "Sampler” 1 . -propertylnamel: “print. i
-propertylmethods]: Ref e . rproperly[!s?e]: "Arrow -
-instanceOf: Class . -instanceOf: Connector

in-Model <

Instance

~property[name]; "printng heartbeat"
-propertyftype]: State
-instanceOf: Shape

Instance

~propertylnamel: "sampleHeartbeat'
-instanceOf: Method

D«

class Sampler {
private uint16 sampleF requency=600; .
private String heartBeatPinName="heartbeat"; :

represents

sampling
public uint8 sampleHeartbeat() { heartbeat
waitMilliSec(1/sampleF requency);

return readAdc(heartBeatPinName); }

Artifacts

}

class Display {

private uint16 resolution=1024;
private Sampler sampler;

void printHeartbeat() {

uint8 heartbeat =sampler;
sampleHeartbeat();
printOnDisplay(heartbeat, resolution);}

}

Figure 5 Operation-Model and our simplified Meta-Object-
Facility (MOF) with its representation of artifacts.

can be mapped either a single value or a collection of values
with different constraints.

The instantiation of an InstanceType is the most important as-
pect of the metamodel. Instantiating an InstanceType means
generating a real Instance of an abstract InstanceType. During
instantiation, all PropertyTypes of an InstanceType and its super-
types are transformed to properties and related to the Instance.
Thus, an InstanceType can have its own properties and Proper-
tyTypes. InstanceTypes and Instances can be created arbitrarily
during runtime.

3.4. Versioning and Conflict Handling

Enabling parallel development is crucial in large-scale software
development (Perry et al. 2001). To achieve this, a common
approach is to permit the modification of one artifact concur-
rently and merge the distinct modifications into a new version
of the artifact. Consequently, version control systems (VCSs)
must facilitate a merge process for concurrent evolved software
engineering artifacts. Thus, our infrastructure uses operations

6 Herac et al.

to represent versions of a model, transmit, and cache them. Any
possible state in the model history could be replicated at any
time. Our operation model contains a fixed amount of opera-
tions (see the bottom part of Figure 5). Those operations give us
the possibility to change models generated from our simplified
MOF and merge models with conflict detection and resolution.

We use incremental sequences of operations in a tree-like
structure to represent diverging model versions. Simple lists
cannot illustrate competing versions (i.e. branches) because con-
current changes on the same list cannot be persisted. Therefore,
we use a model history tree where every node is an operation,
and every branch acts as an alternative change sequence, i.e.,
another model version (Req2). The model history tree supports
branches and merging of branches, i.e. merging of model ver-
sions, similar to the proposed approach of Berlage et al. (Berlage
& Genau 1993). A branch can be created by a new change on a
predecessor node independent of other siblings (e.g., branching
nodes). When a new private workspace is created, it receives
the same node state in the model history tree as the public
workspace. A new change adds a new child node to the current
workspace’s state node.

3.4.1. Push & Pull Engineers might prefer sometimes to
not make their changes visible to others, thus they keep their
changes in their private workspace or to make them visible for
others by pushing them to the public workspace. Engineers can
select their preferred collaborative work style flexibly (Req3
in Section 2). For that purpose, we offer a flexible lock-free
pushing and pulling.

To receive new changes from the public workspace, the pri-
vate workspace has to pull. To make changes available to the
public workspace, the private workspace has to push. In the case
of a pull and already existing changes on the private workspace,
all operations will be conflict detected and resolved on the cen-
tral server. Necessary corrections will be sent to the users’
private workspace. Every push executes a pull beforehand to
synchronize the private workspace with the public including con-
flict resolution. The resolving operations can finally be pushed
to the public. At that point, the private and public workspaces
are in the same model state.

Figure 6 shows the three possible state exchanges between
the public and a child workspace after arbitrary pull and push
commands. The left push command executes a nonconflicting
push to send its state to the public workspace. The middle
pull command executes a nonconflicting pull to the private
child to get into the same state as the public workspace. The
right push is executed in conflicting states of the public and
private workspaces. It executes a preceding pull to solve the
conflict locally on the private workspace which creates a new
nonconflicting state. That state is pushed to the public. A pull
command on conflicting states is executed in the same way with
the difference of not pushing the resolved state to the public.

3.4.2. Model History Tree Figure 7 represents the behavior
of a visually simplified model history tree for a collaborative
scenario. Every node is an operation and the edges are pointing
to the previous change operation. A branch is a different model

Push with conflicts
(execute pull before
for local conflict handling)

Figure 6 Model state behavior during push and pull com-
mands.

history sequence and every blue circle represents a state token
of the labeled workspace.

To get a specific model state, the SDK executes all operations
of the corresponding workspace from the root to its state node.
For example, if we take Figure 7a, the public workspace P
operation sequence would be (P1, ..., Init). For the workspace A,
the operation sequence would be (P1, ..., Init, A1, A2, A3, A4).

Depending on the arbitrary changes, pulls, and pushes of the
engineer the model history tree behaves differently. Figure 7a,
shows the initial operations of the public workspace. They con-
tain all operations for the creation of our simplified MOF (e.g.,
ElementCreate(InstanceType), ElementCreate(Instance), etc.).
Following the additional three branches to the final state nodes
of workspaces A, B, and, C we can extract the corresponding
sequences for a complete model state recreation.

After a push from workspace B, we receive Figure 7b. Only
the public workspace state token switched to the same state as
the workspace B token. Displaying the same model state. The
public workspace was in no unknown state for workspace B,
thus no conflict handling or change propagation was necessary.
Subsequently, workspace A decides to pull the new visible
changes from the public workspace. However, the changes
(A1, A2, A3, A4), e.g., creating the "Shape" InstanceType, and
(B1, B2, B3), e.g., creating the "Class" InstanceType, had no
conflicting operations (e.g., just created a new metamodel for the
uml diagram and a new metamodel for java source code). The
whole branch of workspace A is reattached to the state node of
the public workspace. The changes (B1, B2, B3) are propagated
to the connected clients of workspace A. However, workspace
A finally adds a new change (AS5) to the newly received model
from workspace B visible in Figure 7c, e.g., changing the name
of a "Class".

After that workspace C decides to also pull the new changes
from the public workspace and add a new change to it (C5), e.g.,
changing the name of the same "Class". The tree behaves just
in the same way as in the pull from workspace A but we receive
Figure 7d.

Figure 7e can be achieved, when workspace A pushes all
changes to the public workspace and workspace C executes a
subsequent push. The public workspace receives the same state
as workspace A and afterward tries to conflict handle the two
new changes (AS5) and (C5). The conflict is recognized by the
implemented conflict detection (detailed in Section 3.4.3) and
resolved automatically by adding a new resolution operation

(CR) (see Section 3.4.4) to the private workspace C. Workspace
C instantly pushes the (CR) to the public workspace, where
workspace A can pull it again. Finally, workspaces P, A, and
B receive the same state of the model (P1, ..., Init, B1, B2, B3
Al, A2, A3, A4, A5, C1, C2, C3, C4, C5, CR) representing
the engineers’ metamodels and models. This scenario describes
how changes are transmitted from private workspaces over to
the public workspace, and then to other private workspaces
including conflict handling.

3.4.3. Conflict Detection On every pull command of a pri-
vate workspace, we detect conflicts between private and public
workspace change operations. Our conflict detection mechanism
is similar to how Yohannis et al. (Yohannis 2020) compare oper-
ation sequences. It iterates two operation sequences (branches)
with a common predecessor (branching) node, typically the
public state node. For instance, let us take the Figure 7d and
try to merge A and C. The conflict detection scans the opera-
tion sequences of (A1-AS5) and (C1-C5) for conflicts. Based on
our meta-metamodel (Section 3.3) conflicts can happen when
operations change the same element or the same property of
the same element. If such a case occurs, our detection logs
the corresponding operations from both branches, because they
are indicating possible conflicts. Conflicts are defined by our
conflict specifications in three cases: Case 1: The same element
is deleted in both branches; Case 2: An element is deleted in
one branch and the other branch creates or changes a property
of that same element; and Case 3: The same property of the
same element is changed or deleted in both branches. Those
cases are delivered to conflict resolution, which decides how
they are handled. Currently, our infrastructure does not include
a feature to display conflicts to the users. This is primarily
because our focus has been on providing a solid foundation for
collaborative modeling and addressing the core requirements
of tool integration and conflict management. We have utilized
existing conflict detection algorithms (Prakash 1999) as part of
this work.

3.4.4. Conflict Resolution The conflict resolution com-
putes overwriting changes for the private workspace, as visible
in Figure 7e. Typically engineers can decide what to overwrite
during a merge in a collaborative system. Single values are
overwritten by repeating an operation and collection values are
overwritten by undoing all changes and repeating them in the
correct order as mentioned in (Prakash 1999). In the evaluation
of our infrastructure, we employed a simple approach where a
flag was used to determine which user’s changes would over-
write the conflicting changes. This automatic conflict resolution
was implemented in the backend, without exploring different
conflict awareness or notification modes. The focus of this
proposed infrastructure is not on interactive conflict manage-
ment. It is simply to show, that conflicts can be detected and
handled. However, future work will delve into how users can ac-
tively engage in conflict resolution and explore various conflict
management strategies.

A flexible operation-based infrastructure for collaborative model-driven engineering 7

lolololoclololcl00

Resolution
Operations

(e) After a subsequent push from workspace A and afterward a pull from workspace B with a local conflict resolution of the new previous changes.

Figure 7 Behavior of a visually simplified model history tree for a collaborative scenario.

4. Evaluation

In this section, we present practical scenarios and also discuss
the complexity and performance of our approach. Every engi-
neer can work on single or multiple metamodels or models with
different interests reflected by different plugin implementations.
Henceforth, we want to give an insight into the challenges we
observed and had to solve while implementing the scenarios
and adapting the engineering tools.

As mentioned in Section 2, adapting tools can be a complex
and tedious task (Sun et al. 2006). Nevertheless, engineers like
their accustomed environment of tools so providing an interface
for them can be beneficial. Engineers can work with their ar-
tifacts with any tool they want. To provide such a feature, the
required tools must be transparently adapted to the collaborative
environment with a technique called Transparent Adaptation
(Sun et al. 2006). Such an adaptation can be faulty and take a
long time due to the complexity of the artifacts and the aspects
of collaborative work. Assessing the exact effort required

8 Herac et al.

for plugin implementation can be challenging due to various
factors, including the complexity of the tools” APIs, the specific
scenarios we considered, and the available documentation for
the tools. Each tool may have its own intricacies and learning
curve, which can impact the development effort. However, it is
important to note that our focus in this work was to demonstrate
the feasibility of our approach rather than providing a compre-
hensive analysis of the effort involved in plugin development.
We acknowledge that developing plugins for complex tools can
be a challenging and time-consuming task.

However, we implemented some transparent adaptation plu-
gins for different tools to use our infrastructure. During the
implementation, we observed many obstacles regarding the
tools SDKs and the adaptations that were not mentioned by
Sun et al. (Sun et al. 2006).

Our scenarios are more complex and have flexible collabo-
rative styles that caused us implementation challenges. Those
challenges could give some insights into the effort that is re-
quired for the transparent adaptation.

4.1. Challenges

A major challenge was the Granularity of events where the
SDKSs could only deliver coarse granular events. For example,
when a "method name" is changed, a "class changed" event is
fired. Such problems could lead to performance issues. On the
other hand, an even more complex problem is too fine for gran-
ular events. For example, when a "method name" is changed,
around twenty independent, possibly not ordered, events for
each character changed are fired. Furthermore, problems like
the Application state, where the user is in some unpredictable
state (e.g., OpenFileDialog), cause the application to lock and
some SDK calls will not work leading to crashes. The most
difficult problem was the Thread safety of the tools or SDKs.
Since the plugin listens asynchronously to incoming operations
of the infrastructure in its own thread, the MainThread thread
must be thread-safe. Otherwise calls and changes from the plu-
gin thread lead to exceptions and crashes. This is especially
important for CAD solutions since they are developed for single
users and were never required to run asynchronously or with
multi-users.

We were able to address these problems and adapt the in-
frastructure to provide thread-safe access to the tools and the
required object model space of the application. The following
section shows you engineering scenarios where we utilize the
adapted tools.

4.2. Practical Scenarios

In this section, we present four scenarios. Two of them were ap-
plied in collaboration with an industrial partner. These scenarios
are used to demonstrate how the main features of our infras-
tructure are used for different domains, tools, and a number of
engineers, allowing different preferences for collaborative work
styles.

Single domain/tool with multi-user concurrent work: One
of the simplest scenarios (used only for demonstrative purposes)
is when a single tool needs to be used by multiple users. The
scenario, presented in Figure 8, uses two instances of Visio
that work in a collaborative environment. In this scenario, both
instances are applying pushes and pulls as soon as there are
changes available either on the public or private workspace. This
means that any change performed in one instance is propagated
to all other instances almost instantly. This configuration allows
two engineers to work on the same project and see the changes
from their colleagues in real-time. In our project repository,
we also demonstrate other scenarios applying our infrastructure
using multiple instances of 4diac and IntelliJ.” This simple
scenario already demonstrates how our infrastructure addresses
(Req2), multi-users and allows synchronous work (Req3) if
preferred.

Collaboration in multi-domain/user/tool with co-existing
metamodels: One scenario in cooperation with our industrial
partner® where our infrastructure is applied allows collaborative

7 All our use cases demo videos are available at: https:/isse.jku.at/designspace/
index.php/Demos

8 Industrial partner: Linz Center of Mechatronics GmbH, Austria. https:/
www.lcm.at/en/

Figure 8 Collaboration between two instances of Visio work-
ing on a UML state machine.

slnlslaGs)

Figure 9 Collaboration using Techcalc and SolidWorks with
two different metamodels.

work with tools from different domains. In this scenario, Solid-
Works is used in collaboration with Techcalc.” The tools are
being used by different engineers working in different domains
with different metamodels, addressing requirements (Req1) and
(Req2) mentioned in Section 2. Figure 9 demonstrates an envi-
ronment where both tools (TechCalc on the left and SolidWorks
on the right) are used for collaborative work. More specifically,
in this scenario, changes performed in one tool, i.e., Solidworks,
are propagated to Techcalc (arrow number 1) when the engineer
pushes them (asynchronous). This propagation leads to Tech-
calc receiving as input the changes from the Solidworks model
and analyzing them to pull values on Techcalc’s model side
(arrow number 2). In the same scenario, it is also possible to
propagate changes in the opposite direction, e.g., from Techcalc
to Solidworks (arrow number 3). By allowing asynchronous
propagation of changes both for pushes and pulls, our infras-
tructure can give engineers the flexibility of deciding when their
changes should be shared with other tools.

Collaboration in multi-domain/user/tool with two different
metamodels: Figure 10 demonstrates another multi-domain,
multi-tool collaborative use case (for demonstrative purposes).
In this scenario, our infrastructure was applied in an architecture
project, allowing collaborative work between three tools: Excel
for financing management, Visio for sketching, and SolidWorks
for 3D representation. To understand the information exchanged

9 Techcalc is a tool used in mechatronics. Available at: https://www.lcm.at/en/
project/softwaretool-techcalc/

A flexible operation-based infrastructure for collaborative model-driven engineering 9

https://isse.jku.at/designspace/index.php/Demos
https://isse.jku.at/designspace/index.php/Demos
https://www.lcm.at/en/
https://www.lcm.at/en/
https://www.lcm.at/en/project/softwaretool-techcalc/
https://www.lcm.at/en/project/softwaretool-techcalc/

Graphical design

Sketching

aaaaaaaa

Figure 10 Collaboration using SolidWorks, Visio and Excel.

between the tools, we consider a scenario where a house is being
designed in the following way: I) a first sketch of the house is
created in Visio within its metamodel (right side of Figure 10)
which affects the graphical design in SolidWorks (arrow number
1); IT) based on the initial sketch, SolidWorks plugin reacts on
the Visio model changes and creates a 3D representation of
the house. This leads to a pull in Excel (arrow number 2);
IIT) the person responsible for the finances, applies a change
in the Excel model, e.g., pulls the price of the material used
to construct the walls of the house or the material itself. This
change impacts both the Visio sketch (arrow number 3) and the
3D representation created in SolidWorks (arrow number 4). IV)
the last change is the 3D rendering calculated by SolidWorks,
the image is propagated to Visio, giving real-time feedback on
the sketch including the color of the selected material on Excel.

Similar to the first case study, in this scenario our infrastruc-
ture can be used to propagate changes from/to tools of multi-
domains (Reql) while connecting the work of multiple users
(Req2). Moreover, in this example, all tools were working
synchronously as pulls were being propagated automatically
(Req3). We argue that supporting different preferences of how
to propagate changes is important as, in some scenarios, engi-
neers may want the flexibility to decide their preferred way of
collaboration (Techcalc and SolidWorks scenario). Whereas, in
other scenarios (SolidWorks, Visio, and Excel) synchronization
between tools is mandatory to keep the artifacts consistent.

Collaboration in multi-domain/user/tool with various meta-
models: Figure 11 depicts another case study (extracted
from (Ratiu et al. 2022)), with our industrial partner, where
five tools, namely a Requirements tool (implemented as a multi-
user tool), Techcalc, SolidWorks, Excel, and IntelliJ, are used
in a robot arm project. In this configuration, the environment
is hybrid, considering how pushes and pulls are propagated.
Firstly, every time a requirement is created or modified, changes
are propagated to Excel, Techcalc, and IntelliJ synchronously
(arrow number 1). This is necessary because changes in the
requirements must be immediately informed to other engineers.
The engineer responsible for Excel pulls the metrics for the

10 Herac et al.

Coordinates
........ isches Speichem @ »

Requirements

Pick-up coordinate: [1.0, 0.0, 0.0]
Drop coordinates: [0.7, 0.7, 0.0]
Maximum weight lifted: 5kg
Transition time: 4s

Physical
Computations

Source code

Graphical design

Figure 11 Collaboration using a Requirements tool, Techcalc,
SolidWorks, Excel and Intelli].

robot arm, which is also propagated to Techcalc synchronously
(arrow number 2). The engineer working with Techcalc, how-
ever, will only propagate changes once several changes are
manually performed to pull the drawing of the robot arm. Thus,
changes from Techcalc are propagated manually (asynchronous
push). Once these changes are propagated, they will automat-
ically pull the graphical design in SolidWorks (synchronous
pulled), represented by arrow number 3 connecting Techcalc
and SolidWorks in Figure 11. However, IntelliJ is not listening
to changes from Techcalc. This means that the engineer work-
ing with source code decided to perform manual pulls when
changes are coming from Techcalc (asynchronous pull). In this
case study, we have all possible collaboration commands de-
scribed Section 3.4.1, thus addressing (Req3). This case study
also deals with multi-domains (Req1) and multi-users (Req2).

4.3. Complexity and Performance

Computational complexity and performance are important for
collaboration systems, as they should be able to scale fast and
easily to be practically applicable. Thus, it is crucial to avoid
or at least minimize any delays when pulling visible changes
and pushing local changes. Those delays have a limit of 100 ms
under which users still have the feeling that the system reacts
instantly (Nielsen 1994). Thus, we apply all operations instantly
to the local model, before sending them to the central server. The
central server can decide to send correction operations back to
the local workspace afterward if necessary. The change request
concurrency problem (e.g., two concurrent push calls) can be
handled by model timestamps. The not up-to-date request gets
denied. Pull and push commands are reattaching branches of
the model history tree and notifying the local model of the new
n operations that are executed in O(n).

To measure the local model execution time of our infrastruc-
ture, we loaded multiple persisted operation sequences. The
model caching was executed on an Intel-Core 17-10700 pro-

Table 1 Number of elements, operations and execution time

UML models #elements #operations It* (ms)
RobotArm 1227 25193 387
ATM 1322 32705 491
WordPad 9193 535784 2904
TaxiSystem 11626 517871 2773
QuickUML 54530 2352647 10433

*loading time

cessor with 2.90 GHz on Windows 11 x64-based. To obtain
the results, we loaded different UML models'? into the infras-
tructure and represented them as elements. Table 1 shows the
number of model elements ranging from 1,227 to 54,530. As
shown, the number of operations created ranged from 25,193 to
2,352,647. The execution time is given in milliseconds, ranging
from 387 to 10,433 ms.

Regarding our purpose and evaluation, the infrastructure
works efficiently and without visible delays. Furthermore, the
model history tree is designed to support multi-core scalability.
Every private workspace on the server, could work on its own
core and mitigate the server bottleneck for incremental change
requests if necessary (new operations are just added to the end
of the workspace branch). However, too many pulls and pushes
(reattaching branches) could lead to a bottleneck on the model
history tree, leading to many denied commands. This case never
occurred in our scenarios. We have highlighted the loading
of operations as the most significant bottleneck in the current
prototype of the infrastructure. Thus the server and the client
were executed on the local network in the same room. The mem-
ory limitations of our prototype prevented the loading of larger
models, which indicates the need for technical improvements in
terms of memory management that we are actively working on.
While the current prototype may have limitations and memory
bottlenecks, it is essential to acknowledge that these are natural
hurdles encountered in the early stages of development. It does
not invalidate the main contribution of the proposed approach.

5. Related Work

Existing solutions for collaborative model-driven engineer-
ing are mainly implemented for specific scenarios or environ-
ments (Torres et al. 2020). Therefore, extending them with
new domains, additional features or tools gets difficult. Further-
more, despite the engineers’ preferred collaborative work styles,
such systems usually offer only synchronous or asynchronous
(mostly lock-based) sharing of produced artifacts or changes.
As reported in literature reviews, there is a lack of approaches
combining the requirements (Reql), (Req2), (Req3) mentioned
in Section 2 together (Franzago et al. 2018; Torres et al. 2020;
Sharbaf et al. 2022). Hence, in the following, we present related

10 The UML models used are available in an online repository (Herac et al. 2022)

works classifying them by their main active field. Approaches
that come closer to addressing the first three requirements are
described next.

Multi-domain collaborative systems: Collaboration for multi-
domain is explored in many approaches (Torres et al. 2020;
Kanagasabai et al. 2018; Kuryazov & Winter 2015; Sharbaf et
al. 2022). Koshima et al. (Koshima & Englebert 2015) present
an approach that is applied for conflict detection, reconcilia-
tion, and merging while collaboratively editing EMF models.
Debreceni et al. (Debreceni et al. 2018) present a collabora-
tion framework dealing with the adoption of secure views for
working in collaborative modeling. Such views use rule-based
access control on models. The authors address the protection of
intellectual property across heterogeneous teams as one of their
main concerns. Langlois et al. (Langlois et al. 2014) present
their approach Kitalpha. They propose to give engineers the pos-
sibility of focusing on the system architecture for Model-Based
Engineering. This involves the consideration of heterogeneous
model artifacts of different domains. These approaches allow en-
gineers to model artifacts from both native or custom tools that
may be integrated. They also give support to conflict handling.
However, the flexibility with synchronous and asynchronous
collaborative work styles is still not explored, limiting the flexi-
bility regarding engineers’ collaborative work style preferences.
We argue that the use of co-existing meta-models for multi-users
with arbitrary pulling and pushing is still missing from current
approaches.

Collaborative flexibility in engineering environments: Col-
laborative engineering environments that allow flexibility re-
garding users’ preferences are related to our study (Franzago et
al. 2018). Basic approaches like Git (Loeliger & McCullough
2012) are missing the collaborative work style flexibility and
can only handle text-based artifacts. Pietron et al. (Pietron et
al. 2021) acknowledged this problem and proposed a collabo-
rative engineering system for graphical modeling tools with
synchronous and asynchronous offline collaboration modes.
Their approach, however, is designed for graphical modeling
tools only, limiting its applicability in practice. Yohannis et
al. (Yohannis 2020) proposed an approach that combines state-
based and operation-based model transformations to deal with
the changes. Their approach, however, only gives support to
asynchronous collaboration as it requires the use of version-
control systems (VCS). The editor variEd (Kuiter et al. 2021)
also deals with synchronous and asynchronous pushes and pulls.
VariEd, however, was designed to support collaborative and
real-time feature modeling, limiting their work to this domain.
Schneider (Schneider 2007) also delivers the same support as
Pietron et al. (Pietron et al. 2021), but it is not capable of
branching versions and merging. Debreceni et al. (Debreceni
et al. 2017) also presents a framework for collaboration called
MONDO that provides a web-based modeling front-end and
asynchronous offline collaboration. MONDO is focused on
secure control access and is based on Subversion. It is not
lock-free and does not provide flexible switching between syn-
chronous and asynchronous work. With our infrastructure, how-
ever, we define collaborative work styles as different timings

A flexible operation-based infrastructure for collaborative model-driven engineering 11

for pushes and pulls, neglecting the possibility of offline work
as a mandatory requirement for collaborative engineering from
the user perspective.

Operation-based collaborative systems: Artifacts are often
described as models and serialized into textual files. A simple
way to allow collaboration among those files is to use a VCS.
However, understanding the changes and conflicts in such a sys-
tem could get too complex for human users as the models can
get illegibly large and hard to compare. EMF compare (Brun
& Pierantonio 2008) is a popular tool that elevates those con-
flicts to a graphical level where users can understand and work
with them. It is a state-based approach that instantiates each
model version and compares the entire models for conflicts,
which can be very time intensive. Yohannis et al. (Yohannis
2020), however, showed that an operation-based approach is
faster for version comparison. There are also other operation-
based collaborative systems, like CoObra (Schneider 2007) that
supports synchronous and asynchronous collaboration modes
but misses conflict handling. The Kotelett approach (Appel-
dorn et al. 2018) makes use of a Difference Language that is
used for representing deltas between two different versions of
a model. Their approach gives support to synchronous and
asynchronous collaboration, however, it also does not support
conflict handling.

Summary: Nevertheless, Franzago et al. (Franzago et al. 2018)
and Sharbaf et al. (Sharbaf et al. 2022) show that no work has
solved all our requirements together while focusing on a more
versatile collaborative infrastructure with multi-domains where
the engineers can work with their preferred collaborative work
style. We conclude that a lock-free operation-based infrastruc-
ture for collaborative MDE composed of support for conflict
detection, arbitrary pulling and pushing among concurrent users,
and co-existing meta-models of various domains is still missing.
Our infrastructure provides all those features together, explained
in the following section.

6. Conclusion

In this work, we presented an infrastructure that aims to sup-
port model-driven collaborative engineering for multi-domains
while being lock-free and allowing users to flexibly decide their
collaboration style. The infrastructure also allows engineers
to work concurrently with any desired adapted tool. This is
achieved by designing the infrastructure to be operation-based.
The created change operations are centrally managed in an incre-
mentally growing tree-like structure which enables us to merge
and conflict detection of changes. The main benefits of our
infrastructure include flexibility when dealing with multiple do-
mains (e.g., co-existing meta-models), arbitrary versioning for
multi-users, and the ability to flexibly trigger pulls and pushes
to cope with the engineers’ preferred collaborative work styles.
The combination of those benefits in one infrastructure is our
main contribution.

Furthermore, we demonstrated the applicability of our infras-
tructure with four practical scenarios, including two industrial
cases. The collaboration environment and tool variety in these
practical scenarios aids us to show our proposed capabilities

12 Herac et al.

regarding its support for multi-domain and multi-users while
adopting different collaborative work styles based on the en-
gineers/company preferences. Thus complying with all three
requirements mentioned in Section 2.

Nevertheless, it is also important to mention that in our cur-
rent infrastructure, we do not yet support the co-evolution of
models like other tools (Di Ruscio et al. 2011; Di Rocco et al.
2018). While conflicts arising from metamodel changes can
be resolved, the co-evolution of instances is not automatically
handled. As a result, when metamodel changes occur, only new
instances created after the changes are guaranteed to be valid
with respect to the new metamodel. However, our ongoing re-
search and development efforts focus on implementing services
within our infrastructure that will enable the co-evolution of
models.

Future work plans also include the extension of our infrastruc-
ture with more flexible and intuitive conflict resolution strate-
gies, allowing engineers to select their pushing and pulling
models and their overwriting changes in a finer granularity dur-
ing run-time or to switch to automatic modes. We also plan
to apply our infrastructure in additional industrial scenarios,
deriving further case studies to evaluate our infrastructure for
all requirements together. Furthermore, fine granular access
control and grouping mechanisms are still in research.

Acknowledgement

This work is funded the Austrian Science Fund (FWF), grand
no. P31989; and supported by the FFG-COMET-K1 Center
"Pro?Future" (Products and Production Systems of the Future),
Contract No. 881844.

References

Altmanninger, K., Seidl, M., & Wimmer, M. (2009). A survey
on model versioning approaches. International Journal of
Web Information Systems, 5(3), 271-304.

Appeldorn, M., Kuryazov, D., & Winter, A. (2018). Delta-
driven collaborative modeling. In Models workshops (pp.
293-302).

Berlage, T., & Genau, A. (1993). A framework for shared
applications with a replicated architecture. In Proceedings
of the 6th annual acm symposium on user interface software
and technology (pp. 249-257).

Brun, C., & Pierantonio, A. (2008). Model differences in the
eclipse modeling framework. UPGRADE, The European
Journal for the Informatics Professional, 9(2), 29-34.

Bucchiarone, A., Ciccozzi, F., Lambers, L., Pierantonio, A.,
Tichy, M., Tisi, M., ... Zaytsev, V. (2021). What is the future
of modeling? IEEFE software, 38(2), 119-127.

Cicchetti, A., Ciccozzi, F., & Carlson, J. (2016). Software evo-
lution management: Industrial practices. In 10th workshop on
models and evolution co-located with 19th international con-
ference on model driven engineering languages and systems
(models) (pp. 8—13).

David, I., Aslam, K., Faridmoayer, S., Malavolta, 1., Syriani,
E., & Lago, P. (2021). Collaborative model-driven soft-
ware engineering: A systematic update. In 2021 acm/ieee

24th international conference on model driven engineer-
ing languages and systems (models) (p. 273-284). doi:
10.1109/MODELS50736.2021.00035

Debreceni, C., Bergmann, G., Bdr, M., Rath, 1., & Varr6, D.
(2017). The mondo collaboration framework: secure collab-
orative modeling over existing version control systems. In
Proceedings of the 2017 11th joint meeting on foundations of
software engineering (pp. 984-988).

Debreceni, C., Bergmann, G., Rath, 1., & Varré, D. (2018).
Secure views for collaborative modeling. IEEE Software,
35(6), 32-38.

Di Rocco, J., Di Ruscio, D., Narayanankutty, H., & Pierantonio,
A. (2018). Resilience in sirius editors: Understanding the
impact of metamodel changes. In Models (workshops) (pp.
620-630).

Di Ruscio, D., Limmel, R., & Pierantonio, A. (2011). Au-
tomated co-evolution of gmf editor models. In B. Malloy,
S. Staab, & M. van den Brand (Eds.), Software language en-
gineering (pp. 143-162). Berlin, Heidelberg: Springer Berlin
Heidelberg.

Egyed, A., Zeman, K., Hehenberger, P., & Demuth, A. (2018).
Maintaining consistency across engineering artifacts. /[EEE
Computer, 51(2), 28-35. doi: 10.1109/MC.2018.1451666

Franzago, M., Di Ruscio, D., Malavolta, 1., & Muccini, H.
(2017). Collaborative model-driven software engineering: a
classification framework and a research map. IEEE Transac-
tions on Software Engineering, 44(12), 1146-1175.

Franzago, M., Ruscio, D. D., Malavolta, 1., & Muccini, H.
(2018). Collaborative model-driven software engineering: A
classification framework and a research map. IEEE Trans-
actions on Software Engineering, 44(12), 1146-1175. doi:
10.1109/TSE.2017.2755039

Herac, E., Assuncdo, W. K. G., Marchezan, L., Egyed, A.,
& Haas, R. (2022, October). A flexible operation-based
infrastructure for collaborative model-driven engineering -
Evaluation Data. Zenodo. Retrieved from https://doi.org/
10.5281/zenodo. 7198117 doi: 10.5281/zenodo.7198117

Jongeling, R., Carlson, J., & Cicchetti, A. (2019). Impedi-
ments to introducing continuous integration for model-based
development in industry. In 45th euromicro conference on
software engineering and advanced applications (seaa) (pp.
434-441).

Jongeling, R., Ciccozzi, F., Carlson, J., & Cicchetti, A. (2022).
Consistency management in industrial continuous model-
based development settings: a reality check. Software and
Systems Modeling, 21(4), 1511-1530.

Kanagasabai, N., Alam, O., & Kienzle, J. (2018). Towards
online collaborative multi-view modelling. In International
conference on system analysis and modeling (pp. 202-218).

Keith, M., & Schnicariol, M. (2009). Object-relational mapping.
In Pro jpa 2 (pp. 69-106). Springer.

Koshima, A. A., & Englebert, V. (2015). Collaborative editing
of EMF/Ecore meta-models and models: Conflict detection,
reconciliation, and merging in DiCoMEF. Science of Com-
puter Programming, 113, 3-28.

Kuiter, E., Krieter, S., Kriiger, J., Saake, G., & Leich, T. (2021).
varied: an editor for collaborative, real-time feature modeling.

Empirical Software Engineering, 26(2), 1-47.

Kuryazov, D., & Winter, A. (2015). Collaborative modeling
empowered by modeling deltas. In 3rd international work-
shop on (document) changes: modeling, detection, storage
and visualization (pp. 1-6).

Langlois, B., Exertier, D., & Zendagui, B. (2014). Development
of modelling frameworks and viewpoints with Kitalpha. In
Proceedings of the 14th workshop on domain-specific model-
ing (pp. 19-22).

Liebel, G., Marko, N., Tichy, M., Leitner, A., & Hansson, J.
(2018). Model-based engineering in the embedded systems
domain: an industrial survey on the state-of-practice. Soft-
ware & Systems Modeling, 17(1), 91-113.

Loeliger, J., & McCullough, M. (2012). Version control with
git: Powerful tools and techniques for collaborative software
development. " O’Reilly Media, Inc.".

Muccini, H., Bosch, J., & van der Hoek, A. (2018). Collabora-
tive modeling in software engineering. IEEE Software, 35(6),
20-24.

Nielsen, J. (1994). Usability engineering. Morgan Kaufmann.

Object Management Group. (2022). OMG Metaobject facility.
https://www.omg.org/mof/.

Ogunyomi, B., Rose, L. M., & Kolovos, D. S. (2015). Property
access traces for source incremental model-to-text transfor-
mation. In European conference on modelling foundations
and applications (pp. 187-202).

Oluwatosin, H. S. (2014). Client-server model. IOSRJ Comput.
Eng, 16(1), 2278-87217.

Perry, D. E., Siy, H. P., & Votta, L. G. (2001). Parallel changes
in large-scale software development: an observational case
study. ACM Transactions on Software Engineering and
Methodology (TOSEM), 10(3), 308-337.

Pietron, J., Fiig, F., & Tichy, M. (2021). An operation-based
versioning approach for synchronous and asynchronous col-
laboration in graphical modeling tools. In Proc. of the Ist
international workshop on foundations and practice of visual
modeling, bergen (pp. 21-25).

Prakash, A. (1999). Group editors. Computer Supported
Cooperative Work, Trends in Software Series, 7, 103—133.
Ratiu, C. C., Assuncdo, W. K. G., Haas, R., & Egyed, A. (2022).
Reactive links across multi-domain engineering models. In
25th international conference on model driven engineering
languages and systems (pp. 76—-86). ACM. doi: 10.1145/

3550355.3552446

Rath, 1., Hegediis, A., & Varro, D. (2012). Derived features
for emf by integrating advanced model queries. In European
conference on modelling foundations and applications (pp.
102-117).

Schneider, C. (2007). Coobra: Eine plattform zur verteilung
und replikation komplexer objektstrukturen mit optimistis-
chen sperrkonzepten (Unpublished doctoral dissertation).

Sharbaf, M., Zamani, B., & Sunyé, G. (2022). Conflict manage-
ment techniques for model merging: a systematic mapping
review. Software and Systems Modeling, 1-49.

Steinberg, D., Budinsky, F., Merks, E., & Paternostro, M. (2008).
Emf: eclipse modeling framework. Pearson Education.

Sun, C., Xia, S., Sun, D., Chen, D., Shen, H., & Cai, W. (20006).

A flexible operation-based infrastructure for collaborative model-driven engineering 13

https://doi.org/10.5281/zenodo.7198117
https://doi.org/10.5281/zenodo.7198117
https://www.omg.org/mof/

Transparent adaptation of single-user applications for multi-
user real-time collaboration. ACM Transactions on Computer-
Human Interaction (TOCHI), 13(4), 531-582.

Torres, W., van den Brand, M. G. J., & Serebrenik, A. (2020,
oct). A systematic literature review of cross-domain model
consistency checking by model management tools. Software
and Systems Modeling, 20(3), 897-916. doi: 10.1007/s10270
-020-00834-1

Trols, M. A., Mashkoor, A., & Egyed, A. (2019). Multifaceted
consistency checking of collaborative engineering artifacts. In
2019 acm/ieee 22nd international conference on model driven
engineering languages and systems companion (models-c)
(pp. 278-287).

Yohannis, A. (2020). Change-based model differencing and con-
flict detection (Unpublished doctoral dissertation). University
of York.

Yohannis, A., Kolovos, D., & Polack, F. (2017). Turning models
inside out. In 3rd flexible mde workshop at the 20th inter-
national conference on model driven engineering languages
and systems (pp. 430—434).

Zissis, D., Lekkas, D., Azariadis, P., Papanikos, P., & Xidias,
E. (2017). Collaborative cad/cae as a cloud service. Interna-
tional Journal of Systems Science: Operations & Logistics,
4(4), 339-355.

About the authors

Edvin Herac is a PhD student at the Institute of Software Sys-
tems Engineering (ISSE) at the Johannes Kepler University Aus-
tria, supervised by Prof. Dr. Alexander Egyed. He received his
master degree in Computer Science from the Johannes Kepler
University Linz (JKU). His research interests include Model-
Driven Software Engineering and Automated Software Engi-
neering. You can contact the author at e.herac @hotmail.com.

Luciano Marchezan is a PhD student at the Institute of Soft-
ware Systems Engineering (ISSE) at the Johannes Kepler Uni-
versity Austria, supervised by Prof. Dr. Alexander Egyed.
He received his master degree in Software Engineering from
the Federal University of Pampa (Unipampa - Brazil). His re-
search interests include Model-Driven Software Engineering,
Automated Software Engineering, Software Reuse and Em-
pirical Software Engineering. You can contact the author at
lucianomarchp @ gmail.com.

Wesley Klewerton Guez Assungio is currently a University As-
sistant at Johannes Kepler University Linz (JKU) - Austria, and
Post-Doctoral researcher at Pontifical Catholic University of
Rio de Janeiro (PUC-Rio) - Brazil. Wesley received his M.Sc.
in Informatics (2012) and Ph.D. in Computer Science (2017)
both from Federal University of Parand (UFPR) - Brazil. His
areas of interest are Software Modernization, Variability Man-
agement, Collaborative Engineering of Complex Systems, Soft-
ware Testing, and Search Based Software Engineering. You
can contact the author at wesleyklewerton @ gmail.com or visit
https://wesleyklewerton.github.io/.

14 Herac et al.

Rainer Haas is a senior researcher for Machine Design and
Hydraulic Drives at the Linz Center of Mechatronics GmbH
company. You can contact the author at rainer.haas @lcm.at.

Alexander Egyed is Professor for Software-Intensive Systems
at the Johannes Kepler University, Austria. He received his
Doctorate from the University of Southern California, USA
and worked in industry for many years. He is most recognized
for his work on software and systems design — particularly on
variability,consistency, and traceability. You can contact the
author at alexander.egyed @jku.at or visit http://www.alexander
-egyed.com/.

mailto:e.herac@hotmail.com?subject=Your paper "A flexible operation-based infrastructure for collaborative model-driven engineering"
mailto:lucianomarchp@gmail.com?subject=Your paper "A flexible operation-based infrastructure for collaborative model-driven engineering"
mailto:wesleyklewerton@gmail.com?subject=Your paper "A flexible operation-based infrastructure for collaborative model-driven engineering"
https://wesleyklewerton.github.io/
mailto:rainer.haas@lcm.at?subject=Your paper "A flexible operation-based infrastructure for collaborative model-driven engineering"
mailto:alexander.egyed@jku.at?subject=Your paper "A flexible operation-based infrastructure for collaborative model-driven engineering"
http://www.alexander-egyed.com/
http://www.alexander-egyed.com/

