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ABSTRACT
SysML is a UML profile used for multi-disciplinary systems engineering. The rise of Industry 4.0 modernizes industrial systems
with new technologies and consequently demands the SysML language to be extended to cover new specific concepts. Among
these new technologies, Open Platform Communication Unified Architecture (OPC UA) is a highly recommended standard for
the interoperability of industrial systems. OPC UA offers a data modeling mechanism that can represent an industrial system’s
resources in the form of an OPC UA information model. Technically, the OPC UA information model is the combination of the
basic information model proposed by the OPC Foundation and other companion specifications’ information models related to
the system’s specific domains. When refining a SysML design for such an OPC UA-based system, it can be challenging to
enrich the design model and integrate all the information from a companion specification. This paper aims to bridge the gap
between SysML engineering environments and OPC UA information models with two contributions. First, we propose to extend
SysML with a new UML profile corresponding to the OPC UA Robotics companion specification released by the joint working
group between the OPC Foundation and the Mechanical Engineering Industry Association. Second, we share our approach to
automatically generating OPC UA information models from high-level SysML design models. The two use cases in our robotic
cell, also presented in this paper, show the importance of this research in practice.
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1. Introduction
One of the prime requirements of Industry 4.0 is the interop-
erability between industrial systems. Interoperability means
that a system must be able to communicate and collaborate
with others, regardless of their differences in manufacturers or
functions. Regarding this need, OPC UA (Mahnke et al. 2009),
standing for the Open Platform Communication Unified Ar-
chitecture, emerges as a strong solution. Indeed, it facilitates
data exchange and management to meet all the requirements of
today’s automation without relying on individual suppliers.

OPC UA is a set of standards developed and maintained by
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the OPC foundation. Its goal is to allow information to be reli-
ably and securely exchanged between platforms from different
vendors and to allow seamless integration of those platforms.
In detail, it offers technical interoperability between industrial
systems by defining a set of well-structured communication pro-
tocols. Also, OPC UA provides semantic interoperability with
a common metamodel that can be used to model information of
all industrial system types. The latest version of the OPC UA
specification, version 1.05, has more than 24 parts1, and each
part reflects an aspect of the specification (OPC Foundation
2017). This paper focuses on the address space and information
model parts. The address space part provides a standard way for
a server to represent its industrial system’s resources to clients
in the form of OPC UA nodes. The information model part
provides a basic OPC UA information model vocabulary, which
contains the most fundamental OPC UA nodes for every OPC

1 https://reference.opcfoundation.org/
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UA information model. This basic OPC UA information model
can be called the base information model. Moreover, the OPC
Foundation and its partners provide many extensions for the
base information model. The extensions are called Companion
Specifications (CS). Each CS defines an extended vocabulary
for specific industries, devices, or use cases. Technically speak-
ing, a system’s OPC UA information model is the combination
of the base information model and the CSs’ information models
related to the system’s specific domains. The OPC UA modeling
language, as described in this paper, refers to the mechanism
utilized to standardize an OPC UA information model. It en-
compasses the address space component and incorporates the
vocabularies provided by the OPC Foundation and its partners,
as well as the information model part and CSs.

The OPC UA information model is undeniably a core com-
ponent of every OPC UA-based system. Unfortunately, when
the complexity and number of industrial systems grow along
with the rise of Industry 4.0, OPC UA information model im-
plementation becomes challenging while applying the OPC UA
standard. First, the OPC UA modeling language is complex and
non-visualized; thus, it is uneasy to learn and use, especially for
new modelers who lack experience in this language. Second,
the resources of an industrial system may grow over time; conse-
quently, its OPC UA information model must evolve. However,
designing and deploying an OPC UA information model is time-
consuming, and guaranteeing data model consistency between
different design versions are sometimes challenging. Regarding
the above challenges, using Model-Driven Engineering (MDE)
and Domain-Specific Languages (DSL) is promising to reduce
the complexity of modeling OPC UA information models (Gold-
schmidt & Mahnke 2012). MDE is a development methodology
that proposes to use a DSL to analyze and model different as-
pects of a specific domain as conceptualized models (Stahl et al.
2006). Once the conceptualized models are stable, they can be
converted into the other formats required by users.

The strong point of the MDE approach is that DSLs are usu-
ally simple and visualized, making them easily understandable
to all stakeholders involved in the project. Two languages com-
monly used in MDE are Unified Modeling Language2 (UML)
and System Modeling Language3 (SysML). Both are standards
developed and maintained by the Object Management Group
(OMG). Technically, SysML is a profile of UML version 2
(UML 2) and is specified for system engineering. It provides
a rich set of abstractions and notations that can be applied to a
wide range of domains.

This paper follows MDE and uses SysML to create high-level
design models for OPC UA-based systems. While OPC UA is
a widely recognized standard primarily in the industry domain,
UML and SysML are popular across all domains. Therefore, it
is more convenient for a novice modeler to develop a SysML
design model first and then produce an OPC UA information
model rather than starting from scratch to learn the OPC UA
modeling language. Moreover, the modeler can easily share
their designs with others, thus, improving the data model consis-
tency between different industrial systems or between different

2 https://www.omg.org/spec/UML/
3 https://www.omg.org/spec/SysML/

versions of an industrial system. This work presents a novel
approach for refining SysML models using OPC UA informa-
tion models, thus bridging the gap between the two worlds. By
leveraging the advantages of SysML, our approach enables a
more structured and formal representation of the system compo-
nents, information flows, interfaces, and relationships, resulting
in a more precise and rigorous system modeling. In contrast,
OPC UA models lack the global vision of the system and its
interactions. Therefore, our approach can potentially lead to sig-
nificant time and effort savings in the development of OPC UA
models. These findings provide valuable insights for systems
engineers who seek to optimize their modeling practices.

SysML is open, flexible, and well-supported; however, the
vocabulary of SysML is insufficient to encompass all the con-
cepts covered by OPC UA information models. Indeed, an
OPC UA information model may contain one or several domain-
specific CSs. An approach to resolve this problem is to develop
UML profiles to extend SysML with new vocabulary and model-
ing rules for the CSs. This paper particularly focuses on the CS
for Robotics (CS-Robotics) proposed by the joint working group
between the OPC Foundation and the Mechanical Engineering
Industry Association (VDMA) (VDMA 2019). Note that this
choice is motivated by some actual projects at CEA List. In
this sense, we propose to extend SysML models with the UML
profile covering the metadata provided by CS-Robotics. Also,
we share our strategy to automate the transformation of SysML
models into OPC UA information models using model-to-model
(M2M) transformation techniques.

The remainder of this paper is organized as follows. Section 2
captures the mandatory background of our research, which are
UML, the profile SysML 1.6, and the OPC UA modeling lan-
guage. Section 3 outlines our MDE approach to turn a SysML
design model into an OPC UA information model. This sec-
tion also reveals the steps to serialize an OPC UA information
model into a binary file that runs on an OPC UA server. Sec-
tion 4 introduces the UML profile for CS-Robotics. Section 5
describes our mapping and transformation rules from SysML
models to OPC UA information models. Section 6 details the
steps of our methodological approach. Section 7 presents the
strategy to evaluate and maintain our work, including two use
cases applying our contribution in practice. Next, some related
works are discussed in Section 8. Finally, Section 9 concludes
this paper with a discussion and an outlook on future works.

2. Background
The M2M transformation proposed by this paper receives
SysML design models as input and produces OPC UA informa-
tion models as output. First, the UML and its profile SysML 1.6
is the language to encode the input design models. Second, the
OPC UA modeling language encodes the output results. This
section respectively presents them in two following subsections.

2.1. UML and the Profile SysML 1.6
UML 2 identifies 14 diagrams to visualize, specify, construct,
and document different aspects of the software. Each diagram
has a set of elements, including the core elements and the ele-
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ments specified for the diagram. Fig. 1 shows the UML meta-
model including the core elements. UML has one metaclass
NamedElement from which all other elements, such as Class,
Datatype, Operation, and Property, are subtyped. The con-
nections between the elements are UML Relationships. They are
direct or indirect instances of the type Relationship. Their
job is to connect elements and describe the relationship between
elements. For example, there exists the UML Relationship
ownedOperation between Operation and Class, and the UML
Relationship ownedAttribute between Property and Class.
Moreover, MultiplicityElement supports Relationship
by defining the number of elements that participate in a relation-
ship, the order, and the uniqueness.

Classifier


 isAbstract:Boolean=false

Class DataType

StructuralFeature


 isReadOnly:Boolean

Operation

BehavioralFeature


 isQuery:Boolean

Feature

ownedAttribute *

class
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1

ownedOperation *
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0..1owningAssociation
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 aggregation:AggregationKind=none

MultiplicityElement
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 isUnique:Boolean=true
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 upper:Integer

Figure 1 Excerpt of UML Metamodel

SysML is a profile of UML 2. On one hand, SysML inherits
the relatively mature notation and widely-accepted semantics of
UML. On the other hand, it has been intentionally designed to
be less software-centric than UML and instead places greater
emphasis on systems modeling. In detail, while UML involves
modeling classes and addressing software engineering, SysML
involves modeling blocks and provides the vocabulary for sys-
tem engineering (Santos & Soares 2023). Technically, SysML
reuses a subset of UML 2 and provides additional extensions
addressing requirements for systems engineering. The subset is
called UML4SysML, and the extensions are called SysML’s ex-
tensions to UML (Casse 2017). The latest version of SysML is
1.6. Fig. 2 illustrates the relation between UML 2 and its profile
SysML 1.6. SysML supports designing, analyzing, and verify-
ing complex systems, including software and hardware com-
ponents. This language allows modeling various systems from
different perspectives: behavioral, structural, para-metrical, or
required views.

This work uses only two SysML diagrams. The first is the
Block Definition Diagram (BDD), where components are mod-
eled using the UML Stereotype Blocks. The second diagram is
the Internal Block Diagram (IBD), where the internal structure
of a Block is modeled using Ports, Parts, and Connections.

UML 2
SysML's

extensions to

UML

UML4SysML

SysML 1.6

Figure 2 Relation between UML 2 and SysML 1.6

Fig. 3 illustrates the metamodel of Blocks and Ports.
Blocks may include both structural and behavioral features,
such as Properties and Operations. The relationships be-
tween Blocks can be modeled with UML Relationship in-
stances of Association and Composition. Ports are con-
nection points between a Block and its external entities. Also,
in IBD, Blocks are extended to support FlowProperties,
which specify the items exchanged between a Block and its
environment. An example of such items is data flow.

<<stereotype>>

Block

 isEncapsulated:Boolean[0..1]

<<Metaclass>>

UML4SysML::Class<<Metaclass>>


UML4SysML::Port

<<stereotype>>

FullPort

<<stereotype>>

ProxyPort

<<stereotype>>

FlowProperty

 direction:FlowDirectionKind

<<Metaclass>>

UML4SysML::Property

<<enumeration>>

FlowDirectionKind


 in
 inout
 out

Figure 3 Block and Port metamodel of SysML 1.6

2.2. OPC UA Modeling Language
OPC UA provides a framework representing a system’s re-
sources as a set of OPC UA nodes logically stored in an OPC
UA address space. The set of OPC UA nodes is also called a
nodeset. Each OPC UA node is an instance of a NodeClass.
A NodeClass is a template containing information about at-
tributes, references, and standard properties that its instances
can represent. An attribute reveals a quality or characteristic
of a node; a reference connects the node with another; and
a standard property describes the node’s metadata. NodeID,
BrowseName, DisplayName, and Description are four es-
sential attributes of every NodeClass. The common NodeClass
types are Object, ObjectType, Variable, VariableType,
DataType, and ReferenceType. Variable represents a value
that can be read or written from the server. A Variable node
has an association to a DataType instance that defines the data
type, such as a string, integer, and structure, of its attribute
Value. Object and Variable respectively have a reference
HasTypeDefinition to ObjectType and to VariableType. A
reference is an instance of ReferenceType.
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Technically, a nodeset is encoded in a NodeSet file with
the XML format. Fig. 4 shows the base of the OPC UA
metamodel encoded in the NodeSet file. In the encoding, all
NodeClass have a prefix UA. For instance, the ObjectType
in the NodeSet file is UAObjectType. The root element is
the UANodeSetType, which contains all nodes of the informa-
tion model. All NodeClass types are direct or indirect sub-
types of UANode. UAObject and UAVariable are a subtype of
UAInstance and their instances are OPC UA instance nodes.
Note that a NodeClass instance is not the same as an instance
node. For example, a UAObject instance is an instance node;
however, a UAObjecType instance is not an instance node.

UAType


 isAbstract : Boolean=false

UAInstance


 parentNodeId:NodeID

UANode


 category : String

 documentation : String

 browsName : QualifiedName

 nodeID : NodeId

ListOfReferences

references 0..1

reference 0..*

UAVariable


 value : ValueType

 dataType : NodeId

 valueRank : Int32
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 accessLevel : Byte

 userAccessLevel : Byte

 minimumSampleInterval: Int32

 historizing : Boolean


UAMethod

Reference


 value : NodeId

 isForward : Boolean=true

 referenceType : NodeId
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 isAbstract : Boolean=true

 symmetric : Boolean=true

 inverseName : LocalizedText
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 isAbstract : Boolean


UAView


 containsNoLoop : Boolean

 eventNotifier : Byte


UAObjectType


 isAbstract : Boolean

UAVariableType


 value : ValueType

 dataType : NodeId

 arraySize : Int32

 isAbstract : Boolean


UAObject
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UANodeSetType


 nameSpaceUris : UriTable

 serverUris : UriTable

 models : ModelTable

 aliases : AlisTable

 extensions : ListOfExtensions

 uAObject : UAObject[0..*]

 uAVariable : UAVariable[0..*]

 uAMethod : UAMethod[0..*]

 uAView : UAView[0..*]

 uAObjectType : UAObjectType[0..*]

 uAVariableType : UAVariableType[0..*]

 uADataType : UADataType[0..*]

 uAReferenceType : UAReferenceType[0..*]


Figure 4 OPC UA metamodel in the NodeSet file

OPC UA Reference. The OPC Foundation proposes many
built-in ReferenceType instances. A ReferenceType in-
stance identifies the connection between a source node and
a target node. The source node holds the ReferenceType in-
stance and is the reference’s starting point. The target node is
the reference’s ending point. For example, in the expression
"X HasTypeDefinition Y": X is the source node that has the
ReferenceType instance HasTypeDefinition, and Y is the tar-
get node. Note that the OPC UA modeling language does not

support the loop mechanism, which means that if the source
node is X, thus the target node must be different from X. All
ReferenceType instances are either direct or indirect subtypes
of the instance References as shown in Fig. 5. Two types of
references are NonHierarchicalReferences and HierarchicalRef-
erences. Both of them are abstract. The subtypes of NonHier-
archicalReferences, including HasModelParent, HasTypeDefi-
nition, GenerateEvent, HasEncoding, HasModelingRule, and
HasDescription, must be used by a node that cannot span a
hierarchy. In other words, their target nodes have no references.
HierarchicalReferences implies that its subtypes can span a hi-
erarchy. Among these subtypes, only HasChild and Aggregates
are abstract; thus, they cannot be used directly by a node. The
rest are non-abstract. All ReferenceType instances have a
different meaning and should be used in an appropriate context.

Reference

HierarchicalReferences NonHierarchicalReferences

HasModelParent

GeneratesEvent

HasEncoding

HasModellingRule

HasDescription

HasTypeDefinition

HasEventSource HasChild Organizes

HasNotifier Aggregates HasSubtype

HasProperty HasComponent

HasOrderedComponent

Has Sub Type Legend:  ReferenceType

Figure 5 OPC UA ReferenceTypes instances

OPC UA Data Type. OPC UA defines 25 built-in DataType
instances. They are subtypes of the instance BaseDataType,
which also is an instance of DataType. Fig. 6 shows the hierar-
chy of all DataType instances. Among them, some correspond
to primitive data types such as Boolean, Float, Integer, and
String; some have a complex structure. For example, NodeId
is a structured DataType instance composed of three elements:
NamespaceIndex, IdentifierType, and Identifier.

BaseDataType Structure

TimeZoneDataType

Enumeration

String

LocaleId

XmlElement Number Boolean Guid DateTime ByteString

Integer Double UIntegerFloat UtcTime Image

SByte

Int16

Int32

Int64

Duration
Byte

UInt16

UInt32

UInt64

ImageGIF

ImageBMP

ImagePNG

ImageJPG

NamingRuleType

IdType

NodeClass NodeId

LocalizedText QualifiedNameArgument

Has Sub Type Legend:  DataType

Figure 6 OPC UA DataType instances

OPC UA Namespaces. A namespace is a logical domain of
OPC UA nodes. Using namespaces implies two advantages.
First, it is practical when grouping all OPC UA nodes with
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the same category into one namespace. Second, two OPC UA
nodes, even with the same BrowserName and Identifier,
are different if they are in two different namespaces. Thus, it
prevents overlapping issues while combining different infor-
mation models into a single coherence OPC UA information
model. An OPC UA namespace has a globally unique string
called a NamespaceURI, and a locally unique integer called
a NamespaceIndex. The NamespaceIndex of the base infor-
mation model is always 0, and its NamespaceURI is always
http://opcfoundation.org/UA/. Other CSs of a system’s OPC
UA information model can have the NamespaceIndex value
starting from 2. The index 1 is reserved for the OPC UA server.

3. A Model-Driven Engineering Approach for
the OPC UA Information Model Development

MDE is a widely-adopted approach to fostering abstraction
and coping with complexity. It is based on two principles:
Abstraction and Automation (Mohagheghi & Dehlen 2008).
First, Abstraction is about representing systems in the form of
models. Models are representations on various abstract levels
of a system’s structure and behaviors. Each model is based on a
formalism. The chosen formalism depends on the concerns and
goals of the modeler, as well as on the system to model. Second,
Automation means building software automatically from high-
level models. The purpose is to transform a general-purpose
system model into a platform-specific one. The automation
generation must guarantee the conformance between the source
and the target models.

Our MDE approach for Industry 4.0 systems is based on
Abstraction and Automation. As shown in Fig. 7, this approach
is divided into two main steps. The first step consists in using
SysML as a modeling language for designing the systems. We
choose SysML version 1.6 as a modeling language since it
is a standard language recognized by academics and industry
(Wortmann et al. 2020). These SysML models can be enriched
with new UML profiles that cover specific domains. In this
work, we implemented a UML profile to refine the SysML
model with the notions specified for CS-Robotics. However,
other CSs, such as Programmable Logic Controllers (PLC) and
End of Arms tools, could be covered with the same approach.

The second step is the automatic code generation from
SysML designs into OPC UA information models. It is a promis-
ing way to save time and cost for system development. The
M2M transformation is performed using the Query/View/Trans-
formation operational (QVTo) language (OMG 2011), a widely
used standard for model transformation due to its powerful and
flexible language, widespread tool support, and adoption by the
OMG’s Model-Driven Architecture (MDA) initiative (Höppner
et al. 2022). First, we define rules to implement the mapping
between source model elements into target model elements.
Then, we develop a QVTo code generator that allows us to
create OPC UA information models from SysML models au-
tomatically. Both the profile and the QVTo code generator are
implemented as an extension to the open-source UML modeling
tool Papyrus4.

4 https://www.eclipse.org/papyrus/
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Figure 7 Model-driven tool-chain architecture

The Papyrus’s extension is part of an automatic generation
chain of the OPC UA server. This chain of automation can
be called the server auto-generation process. Each time the
SysML model is modified, such as adding a new component and
variable, the OPC UA information model stored in a NodeSet
file is automatically generated. As shown at the bottom of Fig. 7,
the new NodeSet file is used as the input for the server auto-
generation process. In our work, we use the open-source library
open625415 and its toolset to convert XML NodeSet format
into C source code format files. Together with other existing
C source code files, these files are then compiled to produce a
binary file. Once launched, OPC UA clients, such as UaExpert6

can connect and access the OPC UA server.

4. UML Profile for CS-Robotics
This work focuses on the CS-Robotics depicted in Fig. 8. The
goal of its authors, the OPC Foundation and VDMA, is to
release CS-Robotics as a vocabulary that can describe various
robot types in the industry. However, its current version, part
1, supports only robotic arms. It is composed of four groups of
concepts: (1) the motion device or physical aspect of a robot,
(2) the controller or the software aspect of a robot, (3) the safety
state, and (4) the task control or working program of a robot.
All of them constitute a motion device system. Technically,
CS-Robotics reuses concepts from the CS for Devices (DI), a
vocabulary to model industrial devices (OPC Foundation 2021).
In turn, DI reuses concepts on the base information model. In
other words, CS-Robotics depends on DI, and DI depends on
the base information model. Moreover, the base information
model extends the UML metamodel. Fig. 9 illustrates these
dependencies. Note that the OPC UA profile in this figure
corresponds to the base information model. Thus, a UML profile
for CS-Robotics must inherit elements of the DI and the base
information model profiles.

5 https://open62541.org/
6 The UaExpert is a general purpose test client supporting OPC UA features such

as DataAccess, Alarms & Conditions, and Historical Access. It is available at:
https://www.unified-automation.com/downloads/opc-ua-clients.html
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Figure 8 The basic concepts of CS-Robotics
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Figure 9 Profiles Architecture of CS-Robotics

The UML profile for CS-Robotics is depicted in Fig. 10.
This profile extends the SysML model with specific information
from CS-Robotics. The following points are remarkable.

First, each ObjectType instance is translated into a cor-
responding UML Stereotype. Also, all relationships between
ObjectType instances are respected and translated into relevant
UML Relationships. The following example clarifies this point.
MotionDeviceSystemType is a subtype of ComponentType,
which is an ObjectType instance from DI. This relationship is
translated into a UML Generalization between the UML Stereo-
type MotionDeviceSystemType and ComponentType.

Second, the ParameterSet of an ObjectType instance
which contains a flat list of parameters, is translated into a UML
DataType. For example, in CS-Robotics, the AxisType Has-

Component ParameterSet. This ParamterSet is translated
into the UML DataType ParamterSetAxisType.

Third, each Enumeration data type in CS-Robotics is trans-
lated into a UML Enumeration. For example, the DataType
instance AxisMotionProfileEnumeration is translated into
the UML Enumeration AxisMotionProfileEnumeration.

Finally, the UML Multiplicity concept is used to describe
the Object instances that have a reference HasTypeDefinition
pointing to ModellingRuleType and FolderType in OPC
UA modeling language. The multiplicity of a UML Property
can have a lower and high bound. The lower bound equals 1
when an Object instance has the reference HasModellingRule
pointing to an Object instance Mandatory. The lower bound
equals 0 when an Object instance has the reference HasMod-
ellingRule pointing to an Object instance Optional. For ex-
ample, the PowerTrainType in CS-Robotics has the reference
HasComponent pointing to Motor and Gear. Since Motor is
mandatory; thus, the UML Stereotype PowerTrainType has a
property Motor with the low bound equaling 1. However, Gear
in CS-Robotics is optional; thus, the property Gear in UML has
the low bound equaling 0. The high bound equals "many" (*)
to represent in CS-Robotics a FolderType instance containing
multiple Object instances with the same type. For example,
in CS-Robotics, MotionDeviceType has the reference Has-
Component pointing to Axes, which has the type definition
FolderType. Thus, the UML Stereotype MotionDeviceType
has a property Axes with a high bound "many".

5. QVTo Transformation
This section describes the M2M transformation from SysML
design models to OPC UA information models using QVTo. We
use QVTo7 as transformation language because it is compatible
with UML. Also, it is widely adopted in both academia (Lee
et al. 2017; Commission et al. 2007) and industry (Gerpheide
et al. 2016). QVTo transforms models conforming to one or
several metamodels. The transformation declaration specifies
the source and target metamodels. Fig. 11 illustrates the QVTo
transformation process. It involves two levels: the metamodel
level and the model level. The metamodel level defines a set of
transformation rules that works with the mappings between the
input and the output metamodels8. In detail, it takes as input
the UML, SysML, and CS-Robotics metamodels. The output
is an OPC UA information model and a CSV metamodel. The
CSV metamodel contains a simple list of the generated nodes
with their corresponding NodeId and NodeClass information
encoding in the comma-separated values format. After defining
the mappings between the input and the output metamodels, the
transformation is executed at the model level to generate XML
and CSV files from SysML design models.

This section has two subsections. We first describe the trans-
formation from a SysML model to an OPC UA information
model. Then, we depict the transformation of a SysML model
enriched by the profile CS-Robotics.

7 https://www.omg.org/spec/QVT
8 Ecore is a metamodel included in the Eclipse Modeling Framework (EMF). It

is most often used as a meta-language to define languages.
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<<Stereotype>>
AxisType

+ MotionProfiles: AxisMotionProfileEnumaration [1]
+ AdditionalLoad: LoadType [0..1]
+ ParameterSetAxisType: ParameterSetAxisType [1]

<<Stereotype>>
MotionDeviceSystemType

+ MotionDevices: MotionDeviceType [1..*]
+ Controllers: ControllerType [1..*]
+ SafetyStates: SafetyStateType[1..*]

<<Stereotype>>
GearType

+ GearRatio: RationalNumber [1]
+ Pitch: Double [1]
+ IsConnectedTo: MotorType [1]

<<Stereotype>>
PowerTrainType

+ Motor: MotorType [1]
+ Gear: GearType [0..1]

<<Stereotype>>
ComponentType

(OPC_UA_Robotics_CS::OPC_UA_DI)

+ BrowseName: String [1]
+ Manufacturer: LocalizedText [1]
+ ManufacturerUri: String [0..1]
+ Model: LocalizedText [0..1]
+ SerialNumber: String [0..1]

<<Enumeration>>
OperationalModeEnumeration

MANUAL_REDUCED_SPEED
MANUAL_HIGH_SPEED
AUTOMATIC
AUTOMATIC_EXTERNAL
OTHER

<<Stereotype>>
SafetyStateType

+ EmergencyStopFunction: EmergencyStopFunctionType [*]
+ ProtectiveStopFunction: ProtectiveStopFunctionType [*]
+ ParameterSetSafetyStateType: ParameterSetSafetyStateType [1]

<<Stereotype>>
TaskControlType

+ ParameterSetTaskControlType: ParameterSetTaskControlType [1]

<<Stereotype>>
ControllerType

+ ParameterSetControllerType: ParameterSetControllerType [1]
+ Components: ComponentType [*]
+ Software: SoftwareType [1]
+ TaskControls: TaskControlType [1..*]

<<Stereotype>>
MotorType

+ ParameterSetMotorType: ParameterSetMotorType [1]

<<Enumeration>>
MotionDeviceCategoryEnumeration

ARTICULATED_ROBOT
SCARA_ROBOT
CARTESIAN_ROBOT
SPHERICAL_ROBOT
PARALLEL_ROBOT
CYLINDRICAL_ROBOT
OTHER

<<Enumeration>>
ExecutionModeEnumeration

CONTINUOUS
CYCLE
STEP

<<Enumeration>>
AxisMotionProfileEnumeration

ROTARY
ROTARY_ENDLESS
LINEAR
LINEAR_ENDLESS
OTHER

<<DataType>>
ParameterSetAxisType

+ ActualAcceleration: Double [0..1]
+ ActualPosition: Double [1]
+ ActualSpeed: Double [0..1]

<<DataType>>
ParameterSetMotionDeviceType

+ OnPath: Boolean [0..1]
+ InControl: Boolean [0..1]
+ SpeedOverride: Real [1]

<<DataType>>
ParameterSetMotorType

+ BrakeReleased: Boolean [1]
+ EffectiveLoadRate: Integer [1]
+ MotorTemperature: Real [1]

<<DataType>>
ParameterSetSafetyStateType

+ EmergencyStop: Boolean [1]
+ OperationalMode: OperationalModeEnumeration [1]
+ ProtectiveStop: Boolean [1]

<<DataType>>
ParameterSetTaskControlType

+ ExecutionMode: ExecutionModeEnumeration [1]
+ TaskProgramLoaded: Boolean [1]
+ TaskProgramName: String [1]

<<DataType>>
ParameterSetControllerType

+ TotalPowerOnTime: String [0..1]
+ StartUpTime: String [0..1]
+ UpState: String [0..1]
+ TotalEnergyConsumption: Double [0..1]
+ CabinetFanSpeed: Double [0..1]
+ CPUFanSpeed: Double [0..1]
+ InputVoltage: Double [0..1]
+ Temperature: Double [0..1]

<<Stereotype>>
MotionDeviceType

+ Axes: AxisType [1..*]
+ MotionDeviceCategory: MotionDeviceCategoryEnumeration [1]
+ ParameterSetMotionDeviceType: ParameterSetMotionDeviceType [1]
+ PowerTrains: PowerTrainType [1..*]
+ AdditionalComponents: ComponentType [*]
+ FlangeLoad: LoadType [0..1]

<<Stereotype>>
EmergencyStopFunctionType

+ Name: String [1]
+ Active: Boolean [1]

<<Stereotype>>
ProtectiveStopFunctionType

+ Name: String [1]
+ Enabled: Boolean [1]
+ Active: Boolean [1]

<<Stereotype>>
BaseObjectType

(OPC_UA_Robotics_CS::OPC_UA_DI::OPC_UA)

Figure 10 Excerpt of the UML profile for CS-Robotics

5.1. Transformation Rules from SysML to the OPC UA
Information Model

SysML Model to UANodeSetType. Fig. 12 shows the details
of the transformation. The transformation begins from the root
model element or any selected UML Element. In both cases, we
map the selected element to an instance of UANodeSetType.
Then, we create the nameSpaceUris defining an OPC UA
UriTable, and add the NameSpaceURI of the base informa-
tion model to the table by default. If the CS-Robotics profile is
applied to the model, we must also add the DI and CS-Robotics

NameSpaceURI. The resulting XML code is as follows.

1 <NamespaceUris>
2 <Uri>OrganicArchitecture</Uri>
3 <Uri>http://opcfoundation.org/UA/DI/</Uri>
4 <Uri>http://opcfoundation.org/UA/Robotics/</Uri>
5 </NamespaceUris>

UANodeSetType has an attribute containing the URIs and
the version of the information model. Thus, we create an
OPC UA ModelTable and add a ModelTableEntry element
to it. The element has modelUri, a publicationDate of type

Bridging the Gap between SysML and OPC UA Information Models for Industry 4.0 7



Meta-Object Facility (MOF)
MetaMetaModel (Ecore)


UML

Metamodel


OPC UA  Metamodel

(set/types.ecore)


OPC UA  Instance:

NodeSet .xml File


SysML / CS-Robotics
Models 

Metametamodel
Level

Metamodel Level

Model Level

CSV  Metamodel

(CSV.ecore)


Table of nodes

.csv File


SysML

Profile


CS-Robotics

Profile


instance ofinstance of

instance of instance of instance of

M2M

Transformation
QVTo

PIM PSM

Figure 11 Transformation from SysML to OPC UA information model artifacts using QVTo

model:Model

e: Element
1..*ownedElement

e: Package

e1: Element
1..*ownedElement

nodeset:OPCUA::UANodeSetType

1.Case e is a Package

2.Case e is a Class
2.a is not Stereotyped (Robotics)

2.b is not Stereotyped (Robotics)

e: Class/SysML::Block

e: Class/SysML::Block

3. an IntanceSpecification

e: Class/SysML::Block

eType:UAObjectType


e:UAObject


*uAObjectType

*uAObject

map

map

OPC UA conceptsSysML concepts

Figure 12 Transformation of a SysML Model

DateTime, and a version. The modelUri is assigned to be
the namespace of the first SysML::Package, or a SysML::Model
reached when we traverse the element tree upwards. Next,
we add the required ModelTableEntry to the Model. The
ModelTableEntry of the base information model is included
by default. If the CS-Robotics Profile is applied, then the DI
and the CS-Robotics ModelTableEntry are further added as
required models. The following example of the QVTo code adds
the CS-Robotics ModelTableEntry, where createDateTime
is a method to create a DateTime from a String.

1 modelTableEntry.requiredModel+= object
2 OPCUA::ModelTableEntry{
3 modelUri:="http://opcfoundation.org/UA/Robotics/";
4 publicationDate:=createDateTime("2019−01−23T00:00:00Z")
5 .oclAsType(DateTime);
6 version:="0.93"};

The resulting XML code of the transformation is as follows.
Note that "OrganicArchitecture" is the name of the super pack-
age of the selected element.

1 <Models>
2 <Model ModelUri="OrganicArchitecture"
3 PublicationDate="2022−01−17T15:44:15.200+01:00"
4 Version="1.0.0">
5 <RequiredModel ModelUri="http://opcfoundation.org/UA/"
6 PublicationDate="2020−07−15T00:00:00Z" Version="1.04.7"/>
7 <RequiredModel ModelUri="http://opcfoundation.org/UA/DI/"
8 PublicationDate="2020−06−02T00:00:00Z" Version="1.02.2"/>
9 <RequiredModel ModelUri="http://opcfoundation.org/UA/

Robotics/"
10 PublicationDate="2019−01−23T00:00:00Z" Version="0.93"/>
11 </Model>
12 </Models>

As shown in Fig. 12, we have different mapping options
corresponding to different types of the selected element.

– If the selected SysML element is a Package, then map the
owned elements of the package.

– If the selected element is a Block or UML Class and is not
stereotyped by CS-Robotics profile, then map the element
to a UAObjectType.

– If the selected element is a Block and is stereotyped by
the CS-Robotics profile: there is already a predefined
UAObjectType for this element in the CS-Robotics, then
consider the Block as an instance of this type. Thus, we
map the stereotyped element to a UAObject.

– If the selected element is an InstanceSpecification,
then map to a UAObject.

SysML Block to UAObjectType. Fig. 13 details the transfor-
mation from SysML Block to UAObjectType. This transfor-
mation is also applicable to UML Classes. To determine the
supertype of the output, we need to check if the Block has a

8 Rekik et al.



UML Generalization instance. If it is the case, then the general-
ization is mapped to a HasSubType reference, and the supertype
is the corresponding referenced UAObjectType instance. Oth-
erwise, the supertype is BaseObjectType. Next, the properties
of a Block are mapped as follows.

– If the property is typed by a UML PrimitiveType or an
Enumeration, then it is mapped to a UAVariable with a
HasComponent reference pointing to the UAObjectType
corresponding to the property’s Block. Table 1 shows
the mappings from UML to OPC UA data types. OPC
UA defines several types that do not exist in UML, such
as Int16, UInt16, or Int32. Thus, we implement a SyML
library containing the required OPC UA primitive data
types to enable the transformation.

– If the property is typed by a Block or if the associa-
tion is a UML Aggregation instance, then the property
is mapped to an UAObject instance, and the type is
mapped to UAObjectType instance. A HasComponent
reference is generated between the UaObject instance and
the UaObjectType instance.

– If the property is typed by a Block and its
associationKind is none, then a new reference is
generated between the parent UAObject instance and
the UAObject instance mapped from this Block typing
the property. The generated reference is a subtype of
NonHierarchicalReferences.

c:Class/SysML::Block

e: Element
*ownedElement

e.generalization


nodeset:OPCUA::UANodeSetType

1.If has generalization

2.Case e is a Property
2.a e.type is PrimitiveType or Enumeration

2.b e.type is Block/Class 

or e.association is aggregation/composite

e: Property

e: Class/SysML::Block

3. Case is a Port

op:Operation

e:UAObject


e:UAVariable


*uAObject

OPC UA conceptsSysML concepts

cType:UAObjectType

*uAObjectType

e.generalization.name:Reference

e:UAVariable


_references.reference

*uAVariable

e:UAObject


op:UAMethod

*uAObject

*uAObject

*uAVariable

e.association.name:Reference
_references.reference

*ownedOperation

2.c e.association is an association

3.b e.type is Block/Class

3.a e.type is PrimitiveType or Enumeration

Figure 13 Transformation of UML Class

Ports is Block’s connection points that specify features
available to the external entities via connectors. The type
of a Port represents the type of data flowing through the
Port. Ports inside a Block are mapped like properties to
an UAVariable if they are typed by a PrimitiveType or an
Enumeration. If the Port is typed by another Block, then
it is mapped to an UAObject instance, and a HasComponent
reference is generated between this UAObject and its parent
UAObject. Finally, Operations are mapped to UAMethods.

Table 1 Mapping of UML dataTypes

UML OPC UA

Real Double

Integer UInteger

String String

Enumeration Enumeration

DataType DataType

SysML Enumeration to OPC UA Enumeration. Each enu-
meration is mapped into a UADataType and a UAVariable.
The reason for this mapping relies on the mechanism of
modeling enumeration of OPC UA modeling language. In-
deed, an enumeration UADataType is defined with a list
of field names, but they are just fixed attributes. The
enumeration also needs to have a HasProperty reference
to a UAVariable EnumerationStrings containing the
ListOfLocalizedText representing the list of fields to se-
lect. Note that this list contains the same items or less than
the list of field names defined with enumeration. As shown
in Fig. 14, the generated DataType has Enumeration as Has-
SubType reference and HasProperty reference to the generated
UAVariable. The generated DataType contains DataTypeDef-
inition, which contains fields (DataTypeField), each of which
is the result of a mapping of a UML EnumerationLiteral. The
value of the field is the value of the literalInteger. As same,
we map each EnumarationLiteral to a LocalizedText inside the
ListOfLocalizedText, modeling the variable’s value.

e:Enumeration

0..*ownedElement

l:literalInteger
0..*specification

e::UADataType

+ value: Integer


e:DataTypeDefinition


el:DataTypeField


definition 1..1

*field

map

OPC UA concepts

el:EnumerationLiteral
+ name: String


 _references.reference+=
 Refrence(ReferenceType="HasSubtype",
	 	 value ="Enumeration")

 Refrence(ReferenceType="HasProperty",
                value ="nodeIdofUaVariable")


 name:el
 value:value

e::UAVaribale

ListOfLocalizedText
 value

 _references.reference+=
 Refrence(ReferenceType="HasTypeDefinition",
	 	 value ="PropertyType")

 Refrence(ReferenceType="HasModellingRule",
	 	 value ="Mandatory")

 Refrence(ReferenceType="HasProperty", 
   isForword=False, value ="NodeIdOfUaDataType")


LocalizedText


 local
 text:name

SysML concepts

Figure 14 Transformation of UML Enumeration
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5.2. Transformation from UML profile for CS-Robotics to
OPC UA Information Model

Beforehand, it is worth noting that this section uses the example
of a 6-axis robotic arm to illustrate the mapping from the UML
profile CS-Robotics to an OPC UA information model. It is still
correct for other robotic arms with more or fewer axes.

In CS-Robotics, MotionDeviceSystemType is the root
element to model a motion device system, such as a
robotic arm. The system modeler needs to create a
Block stereotyped by MotionDeviceSystemType as shown
in Fig. 15. A MotionDeviceSystemType instance con-
tains at least one property typed by MotionDeviceType,
ControllerType, and SafetyStateType. We apply the
stereotype MotionDeviceType to the property typed by a
MotionDeviceType, and we can assign corresponding val-
ues to its elements as in Fig. 16. If we have two different
motion devices, we assign different properties for each one.
Then for each MotionDeviceType, we need to specify the
Axes, the PowerTrains, and other sub-components. These
sub-components are added as properties. The 6-axis robot in
Fig. 17 has six axes, six powertrains, and six motors. Since the
profile has the same structure as the information model provided
by CS-Robotics, the mapping is one-to-one.

Figure 15 Mapping of MotionDeviceSystemType

Figure 16 MotionDeviceType properties

6. OPC UA Modeling Rules
When using the SysML language to model the OPC UA connec-
tivity information of an Industry 4.0 system, a system architect
should follow a methodological approach that combines model-
ing rules coming from the SysML language and modeling rules
coming from the OPC UA domain.

6.1. Block Definition Diagrams
The first step of the methodological approach is to create a BDD
diagram and populate it with the SysML blocks that correspond
to the main types of components composing the Industry 4.0
system. Blocks created in the BDD diagram can be simple
SysML Blocks that will be transformed into UAObjectTypes
as shown in Fig. 12. If system architects decide to refine the
SysML Block by applying a stereotype coming from a CS
UML profile, then modeling rules coming from the CS spec-
ification will be automatically applied since the UML profile
implements these rules. For example, in the CS for Robotics, a
GearType has three mandatory attributes: GearRatio, Pitch,
and isConnectedTo. This constraint is captured in the profile
(see Fig.10). At the stereotype GearType, the attributes GearRa-
tio, Pitch and isConnectedTo have a cardinality of exactly 1. By
applying the stereotype GearType, and assigning values to the
stereotype attributes, the Block will be correct by construction.
If the system architect does not assign exactly one value to each
attribute, it will get an error after triggering the model valida-
tion feature. The SysML model validation is required before
executing the model transformation into an OPC UA NodeSet
model.

6.2. Internal Block Diagrams
The second step of the methodological approach is to cre-
ate an IBD diagram that reflects the internal structure of a
SysML Block that was initially created in the BDD. If sys-
tem architects decide to follow an OPC UA CS to model
the internal structure, they have to follow the modeling rules
provided in the specification. For example, in the CS for
Robotics, a MotionDeviceSystemType is composed of at
least a MotionDeviceType, a SafetyStateType, and a
ControllerType. The IBD must follow this rule as shown
in Fig.15. For this, the system architects need to follow a user
guide that could be implemented as an eclipse cheat sheet in the
Papyrus Modeling tool. Additionally, all the structural model-
ing rules imposed by the CS have to be implemented as OCL
constraints and triggered when validating the SysML model.
The OCL constraint corresponding to the modeling rule of the
MotionDeviceSystemType is shown as follows.

1 context CSRocotics::MotionDeviceSystemType inv
2 MotionDeviceSystemTypeComposition
3 let properties: Set(UML::Element) = self.base_Class.attribute
4 in properties−>notEmpty()
5 implies
6 (properties−> exists(p |
7 let appliedStereotypes = p.type.getAppliedStereotypes() in
8 appliedStereotypes −> exists(s | s.name = ’MotionDeviceType’)
9 )) and

10 (properties −> exists(p |
11 let appliedStereotypes = p.type.getAppliedStereotypes() in
12 appliedStereotypes −> exists(s | s.name = ’SafetyStatetype’)
13 )) and
14 (properties −> exists(p |
15 let appliedStereotypes = p.type.getAppliedStereotypes() in
16 appliedStereotypes −> exists(s | s.name = ’ControllerType’)
17 ))

10 Rekik et al.



Niryo          

Figure 17 Mapping of MotionDeviceType

7. Testing and Maintenance

The strategy to evaluate our contributions has four levels: unit
testing, integration testing, system testing, and issue tracker.
While the first three testing methods are standard in traditional
software development, the last is a part of the modern approach
to maintaining and improving a product over time. The follow-
ing subsections present them respectively.

7.1. Unit Testing of the Model Transformation

To test and validate our transformation, we prepare different
input models:

– Models containing Blocks with Properties and Ports.
In each test case, the input model has different input data
types, which can be UML PrimitiveTypes, such as String,
Double, Boolean, Enumeration, DataType, or OPC UA
DataType, such as Int16 and Int32.

– Models with CS-Robotics stereotypes are Niryo Ned9 and
UR510. Both are 6-axis robotic arms.

For each input model, we first manually construct an ex-
pected output model using the OPC UA Modeler11. Then we
compare the generated information model with the expected
one using existing XML comparison tools. We verify that the
resulting model complies with the OPC UA specification; for
example, all the ReferenceTypes are present. Also, the gen-
erated information model perfectly reflects the input SysML
model. The expected and generated models have minor differ-
ences, such as the NodeId of the generated UAObject instances
and the order of the XML tags in the NodeSet files. Such
differences have no impact on the correctness of the tests.

9 https://niryo.com/products-cobots/ned-six-axis-robot-arm/
10 https://www.universal-robots.com/
11 https://www.prosysopc.com/products/opc-ua-modeler/

7.2. Integration Testing with an OPC UA Server
The integration testing takes an OPC UA information model as
the input and produces a running OPC UA server as the output.
Our developers prepare a script, called UaServerGenerator, to
automate the generation of the OPC UA server as the auto-
generation process presented in Section 3. The script relies on
the open62541 library and its tool NSCompiler. It runs only
when the input OPC UA information model has a correct format;
otherwise, an error appears. In other words, this tool helps to
validate the OPC UA information model’s syntax. Regarding the
OPC UA information model’s semantics, the OPC UA experts in
our laboratory use UaExpert to manually visualize and evaluate
the OPC UA information model.

Since the input of the integration testing is OPC UA informa-
tion models from the unit testing, the number of integration test
cases equals the number of unit test cases. To trace back if an
error is from the OPC UA information model or another module
of the OPC UA server, our developers read the log after running
the script UaServerGenerator. Technically, the script’s log re-
lies on the log generated by NSCompiler and the open62541
library. Fig. 18 includes two logging error samples. The upper
one shows an error in the information model. The second error
relates to the network module of the OPC UA server.

7.3. System Testing: Two Use Cases in Testbed
The extension for Papyrus developed from this research is a
strategic tool to develop the LocalSEA testbed (Nguyen, Rekik,
et al. 2022), a robotic cell managed by CEA List. One funda-
mental component of the testbed is an OPC UA server, in which
its OPC UA information model can be changed frequently ac-
cording to the use case deployed in the testbed. The extension
allows system developers to design OPC UA information mod-
els via a drag-and-drop user interface. Moreover, they can save
their designs as different versions and reload them from one
project to another.
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Error from the OPC UA Information Model module

Error from another module of the OPC UA server

Figure 18 Logging error samples after running the UaServer-
Generator script

This subsection presents two use cases using our contribu-
tions in its development. The first use case is to build a 3D
digital twin, and the second is to deploy a product assembly line
(PAL) monitoring system.

3D Digital Twin. The goal is to synchronize the movement
of a physical robot with its 3D digital version. The robot used
in this use case is Niryo Ned. Our developers created a tool,
called RvizUA12, to reuse the 3D Niryo Ned object proposed
by the Niryo company to make a 3D digital twin. Between the
physical and digital twins is an OPC UA server. It represents
the resources of the physical Niryo Ned, including its six joints’
position and rotation speed data, and publishes them to the 3D
Niryo Ned. Based on such information, the 3D Niryo Ned can
move synchronously with the physical Niryo Ned. Fig. 19
illustrates the architecture of the use case.

Address Space Robotic cell
 LAN connection
 Internet connection

Legends:

NET

11011101100100111

10001100111010110

0010101010010001

1101010100101010

11101010100101101

1110101010001010

0010101010010001

0010101010010001


Digital Twin

Figure 19 Architecture of the use case 3D Digital Twin

The development starts with analyzing the use case and pro-
ducing the system functional design using SysML. As men-
tioned in 2.1, this work focuses only on the two diagrams IBD
and BDD. The illustration on the left of Fig. 20 presents a
global view of the robotic cell and its digital twin. The Block
Cell represents the robotic cell, and the Block DigitalTwin
represents the digital twin. Cell exchanges with DigitalTwin
using connectors representing the data exchange between the
physical and digital worlds. The illustration on the right of
Fig. 20 presents the model of the robotic cell. It contains a
sub-Block Robot_Niryo representing Niryo Ned. The connec-
tors between the sub-Block and the Cell represent the data

12 RvizUA is a wrapper of Rviz, a 3D visualization tool for the Robot Operation
System (ROS), with an extension feature that supports reading data from OPC
UA nodes. The origin Rviz is available at http://wiki.ros.org/rviz.

exchange between the robot inside and components outside the
cell. In this case, Robot_Niryo has six ports to exchange the
actual_position data and six other ports to exchange the
actual_speed data of the six joints.

<<Block>>

System_with_DigitalTwin

 + actualSpeed: 
    Real [6]

 + cell: 

    Cell [1]


 + actualPosition: 
    Real [6]

     + actualSpeed: 
     Real [6]

 + digitalTwin: 

    DigitalTwin [1]


     + actualPosition: 
     Real [6]

<<Block>>

Cell

<<MotionDeviceSystemType>> 
+ robot_Niryo: Robot_Niryo [1]


+ actualSpeed: Real [6] + actualPosition: Real [6]

+ actualSpeed: Real [6]+ actualPosition: Real [6]

Figure 20 IBDs of the case study and the robotic cell

To recall, the SysML IBD model for Niryo Ned, presented
in Section 5.2, is already illustrated in Fig. 17. Using the QVTo
transformation presented in Section 5, our system modelers au-
tomatically generate the OPC UA information model from the
SysML model. The information includes the actual_speed
and actual_position, which are properties of the DataType
ParameterSetAxisType. They correspond to the data type of
the UML Property ParameterSetAxisType of the UML Stereo-
type AxisType in the UML profile CS-Robotics, as shown in
Fig. 10. Next, the OPC UA information model serialized in a
NodeSet file becomes the input of the script UaServerGener-
ator to generate the OPC UA server automatically. The OPC
UA server runs on a Raspberry Pi13 and manages an address
space containing OPC UA nodes corresponding to the available
resources of Niryo Ned.

Users control Niryo Ned in the local network using Niryo
Studio14, a tool to control Niryo’s robots proposed by the Niryo
company. The Niryo Ned communicates with the OPC UA
server using the OPC UA PubSub communication mechanism,
of which Niryo Ned is a publisher, and the server is a subscriber.
All information regarding the robot arm, such as the actual
position and actual speed data of the robot’s joints, is up-to-date
in the OPC UA server. Then, other devices can connect to the
server via an Internet connection, collect updated data, and use
them for any application.

Different stakeholders in the project use RvizUA to retrieve
data from the OPC UA server; then to visualize and evaluate the
synchronization between the physical and digital Niryo Neds.
They give feedback so we can fix bugs related to the system in
general or our M2M transformation specifically.
PAL Monitoring System. PAL is a manufacturing process in
which "the bill-of-material parts and components are attached
one by one to a unit sequentially by a series of workers to create
a finished product" (Thomopoulos 2014). This use case includes
three components: one robotic arm, one mobile robot, and one
conveyor belt. The robotic arm is Niryo Ned. The mobile
robot is TurtleBot3 Waffle Pi15. Fig. 21 illustrates the working
scenario of this use case. The scenario is simple: Niryo Ned, at
the first workstation, picks and places red covers on the conveyor

13 https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
14 https://niryo.com/fr/robots-collaboratifs/niryo-studio-controler-les-robots/
15 https://robotis.us/turtlebot-3-waffle-pi/
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belt. It picks and places green covers on TurtleBot3. The
two transporters TurtleBot3 and conveyor belt, deliver covers
from the first workstation to the second one. At the second
workstation, human workers assemble a cover with a box to
produce a final product. In this use case, an OPC UA server
must represent all resources of the PAL so users can access them
through OPC UA clients. The goal of this use case is twofold.
The first is to monitor all components of the PAL. Second, it is
to count the number of objects transported by the mobile robot
and conveyor belt.

WorkStation 1: Storage

WorkStation 2: Workspace

ParkNiryo Ned

Cover

Box

ProductTurtleBot3 Waffle Pi

Conveyor Belt

Figure 21 PAL for box manufacturing deployed in LocalSEA

The requirements of this use case are detailed in our pre-
vious publication (Nguyen, Dhouib, et al. 2022). To recap,
the information models for Niryo Ned and TurtleBot3 must
be the core of the PAL system’s OPC UA information model.
The other details, such as the conveyor belt and the counters
for red and green covers, can be considered additional com-
ponents to the core. Thus, they can be added manually to the
OPC UA information model as soon as the core is available.
There is no difference in generating an information model for
Niryo Ned as in the first use case. However, it requires some
changes to generate the information model for TurtleBot3. In-
deed, the current version of CS-Robotics only supports robotic
arms: it proposes the concepts to model robots’ joints and their
related components. A mobile robot like TurtleBot3 has no
joints but wheels instead. To profit from our contributions,
we need to modify and produce a SysML model that replaces
Axes with Wheels, MotionDevices with MobileRobots, and
MotionDeviceSystemType with MobileRobotSystemType.
Then, the generated information model for Niryo Ned combined
with the generated information model for TurtleBot3 is serial-
ized in a Nodeset file. Using OPC UA modeling language, our
modelers encode the necessary details into the file to form the
final OPC UA information model for the PAL system. Next,
system developers use the script UaServerGenerator to generate
and run the OPC UA server.

The stakeholders in the project use UaExpert to observe the
data updated in the OPC UA server and compare them with the
running system. They give us feedback so we can evaluate the
use case and fix bugs related to the system.

7.4. Maintenance and Issue Tracker

To facilitate research and further evaluation of our work, we
have released our code on the Eclipse Foundation under the EPL
open-source license. The transformation is implemented as a set

of Eclipse plugins constituting the Papyrus OPC UA Designer16.
It can be installed using an update site17. Otherwise, users can
use it through the Rich Client Platform (RCP) version available
on the Papyrus for Manufacturing’s site18.

Users who find a bug in our contribution can contact us
through the issue tracker Bugzilla19 also proposed by the Eclipse
Foundation. It is a practical channel for us to receive feedback
from the community.

8. Related work
Some MDE approaches for generating OPC UA address space
and information modeling already exist. The most relevant
work is mapping UML to OPC UA information model (Lee et
al. 2017; Pauker et al. 2018). Lee et al. (Lee et al. 2017) present
a metamodeling approach for transforming OPC UA address
spaces into UML models. It is a bidirectional transformation
between OPC UA information models and UML class diagrams.
They also use the Eclipse Modeling Framework and the Query
View Transformation (QVT) to implement their generator.

Rohjans et al. (Rohjans et al. 2010, 2013) also present an
MDE approach for transforming IEC 61850 and CIM into OPC
UA information models. They are the standard data models in
the energy domain described in UML. They also developed a
tool for automatic model transformation called CIMBAT. How-
ever, this approach is not generic. It addresses the energy do-
main and the UML model of the energy domain standards; thus,
it is difficult to be adopted to other domains.

Compared to the approaches of Lee et al. and Rohjans et al.,
Pauker et al. (Pauker et al. 2016) present a general approach
based on MDE. They propose a process model in addition to
the transformation. Their transformation deals with the use case
and the state-machine diagrams in addition to the class diagram.
However, many transformations are done manually, and no
sustainable linkage is given. In a second paper (Pauker et al.
2018), a transformation is described from class diagrams to OPC
UA information model with additional OCL (Object Constraint
Language)20 constraints to ensure the construction of UML
models that can be translated to OPC UA information models. In
this work, the transformation is implemented based on Eclipse
Modeling Framework (EMF)21 and the Atlas Transformation
Language (ATL)22.

In (Friedl et al. 2020), the authors focus on the creation of
the OPC UA information model and its description in a text
document. They implement a graphical tool to model OPC UA
information models based on the Eclipse Modeling Framework
(EMF) and also use an MDE approach for the generation.

To the best of our knowledge, there is no existing work
addressing the transformation of SysML models to OPC UA
information models. The generation of information models

16 https://wiki.eclipse.org/Papyrus/customizations/manufacturing/opcua
17 https://download.eclipse.org/modeling/mdt/papyrus/components/manufacturing/

OpcUA/latest/
18 https://www.eclipse.org/papyrus/components/manufacturing/downloadopcua.html
19 https://bugs.eclipse.org/bugs/
20 https://www.omg.org/spec/OCL
21 https://www.eclipse.org/modeling/emf/
22 https://www.eclipse.org/atl/
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compatible with CSs has not been covered so far. Additionally,
while there has been previous work done on transforming UML
models to OPC UA information models, such as the work done
by (Pauker et al. 2018), this work does not address the specific
challenge of generating information models compatible with
companion specifications.

Our work builds upon the plugin developed by (Pauker et al.
2018), which we have extended to enable the transformation
of SysML models into OPC UA. This is significant because
SysML offers a more structured and formal approach to system
modeling than UML and is better suited for modeling Industry
4.0 systems (Lin et al. 2019; Holt & Perry 2008). Additionally,
SysML is more system-centric and compact, which simplifies
communication between SysML and OPC UA modelers. This
enables a more precise and rigorous representation of the compo-
nents, information flows, functions, interfaces, and relationships
between the different elements of the system.

Another advantage of using SysML is that it provides a global
view of the system and its interactions, which seem to be limited
in OPC UA information models. By incorporating a SysML
model, this gap can be filled, resulting in a more comprehensive
representation of the system.

9. Summary and Future Directions
This paper presents an MDE approach to generating OPC UA
information models from SysML models. The approach in-
cludes two steps. The first step is to enrich SysML with UML
profiles for specific domains corresponding to CS’s information
models. In this paper, we specifically contributed a new UML
profile for CS-Robotics. The second step is to convert the output
SysML models of the first step into OPC UA information mod-
els. We shared our experiences of using QVTo transformation
to do this job. The two use cases deployed in our testbed in
CEA List prove the applicability and feasibility of our contribu-
tions. Moreover, the positive feedback from the stakeholders of
both use cases allows us to use this approach to contribute to a
demonstration at the showroom of List Tech Days 202323.

There are some further points to discuss. First, the paper
suggests a UML profile for CS-Robotics, but the same approach
can be applied to develop new UML profiles for other CSs
as well. The library of CSs is officially available on the OPC
Foundation’s document site24. The generation of the profiles
from the NodeSets could be automatized since the Foundation
provides the NodeSets and Other Supporting Files25 which may
facilitate the automation.

Second, the OPC UA modeling language proposes many spe-
cific datatypes that are non-existent in the SysML vocabulary.
For example, for the integer number, the OPC UA modeling lan-
guage proposes Int16, UInt16, Int32, UInt32, Int64, and
UInt64, while SysML has only UML PrimitiveType Integer.
It is logical since the OPC UA standard addresses low-level
hardware and software components that always demand the
optimization of resources. However, SysML inherits many

23 https://list.cea.fr/fr/event/list-tech-day-2023/
24 https://opcfoundation.org/developer-tools/documents
25 https://github.com/OPCFoundation/UA-Nodeset

concepts from UML’s vocabulary, which concerns high-level
software-centric components. The high-level software focuses
on user-friendly designs and hides the optimization in the back-
ground. Thus, to fully support the OPC UA information model,
it is necessary to have a UML library covering all OPC UA
DataTypes. This library is out of the scope of this current work
but is in our future work plan.

Third, one challenge of this approach is that sometimes the
generated OPC UA information model cannot fulfill the require-
ments of the expected system. One reason for this challenge is
that the CSs library is still developing, and its current version
cannot cover all industrial components. For example, the second
use case presented in Section 7.3 requires modeling many com-
ponents out of the scope of the UML profile for CS-Robotics,
such as a mobile robot, a conveyor belt, and two counters. Our
solution to overcome this obstacle relies on two points. First,
modelers modify the UML profile if possible. Second, modelers
can use the standard SysML language (BDD, IBD) to create
system models that will contain all the details of the specific
components of the model. Then the OPC UA information model
will be generated from this SysML model.

After this research, we plan some near future works. First,
the modified CS-Robotics for mobile robots presented in Section
7.3 are not mainstream. VDMA declares to update CS-Robotics
with the concepts for other robot types in subsequent parts
released in the future. Thus, we are waiting to improve our
UML profile accordingly. Second, there are new use cases in
the LocalSEA testbed that require the collaboration of multiple
robotic arms. We plan to apply this research’s contributions to
deploy these use cases. We also plan to include more detailed
evaluations of our approach with larger and more diverse sets of
use cases, as well as incorporating specific research questions
and metrics to evaluate the performance of our model generation
approach. Finally, we continue to share our future results and
updates with the community by maintaining the project under
Eclipse Papyrus.
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