
Journal of Object Technology | RESEARCH ARTICLE

MaGiC: a DSL Framework for Implementing Language
Agnostic Microservice-based Web Applications

Antonio Bucchiarone∗, Claudiu Ciumedean†, Kemal Soysal•, Nicola Dragoni†, and Václav Pech‡

∗Fondazione Bruno Kessler, Trento, Italy
†Technical University of Denmark, Kongens Lyngby, Denmark

•LS IT-Solutions GmbH, Berlin, Germany
‡JetBrains, Czech Republic

ABSTRACT The status quo of software applications is in a constant evolution due to emerging of new technologies, performance
improvements, and new business requirements. In the past years a new architectural style named microservice architecture
emerged which takes an approach to develop application characterised by a suite of small services each running in its own
process being decoupled from the other application’s components. Nevertheless, implementing a microservice architecture is
not trivial and it also comes with several downsides such as a higher complexity of configuring and developing the services,
proper componentisation for supporting a single business capability, and implementing the appropriate related software design
patterns. Additionally, it requires writing of boilerplate code templates to configure the communication with the services and
their deployment. State of the art research tries to address these issues by providing domain-specific languages that enable
users to specify and generate microservice applications. However, these solutions do not provide a tool for specifying and
generating a microservice-based application similar to any other software application. This paper proposes MaGiC, a DSL
framework for implementing language agnostic microservice-based web applications. The framework can be used to specify
and deploy to Docker containers microservice-based software applications from end-to-end which can be used as any other
application on the internet.

KEYWORDS Microservices, Domain Specific Language, MPS, Web Applications

1. Introduction
Software applications are constantly evolving due to business
requirements, performance improvements, and emerging of new
technologies (Okwu & Onyeje 2014). One of the emerging
architectural trends for building software applications is the
microservice architecture (Di Francesco et al. 2017). The mi-
croservice architecture paradigm is an approach for developing
an application as a suite of small services, each running in its
own process and communicating through lightweight mecha-
nisms. Division of the application in a suite of services allows

JOT reference format:
Antonio Bucchiarone, Claudiu Ciumedean, Kemal Soysal, Nicola Dragoni,
and Václav Pech. MaGiC: a DSL Framework for Implementing Language
Agnostic Microservice-based Web Applications. Journal of Object
Technology. Vol. 23, No. 1, 2023. Licensed under Attribution 4.0
International (CC BY 4.0) http://dx.doi.org/10.5381/jot.2023.23.1.a2

for implementing loosely coupled components which can be
scaled and deployed independently. Furthermore, it allows
for development flexibility as each service can be owned and
maintained by different teams, and the services are technology
and language agnostic, meaning that each team can implement
each service using different technologies and programming
languages (Irudayaraj & P. 2019) (Bucchiarone et al. 2019).
Nevertheless, implementing a microservice architecture prop-
erly is not a trivial task as the componentisation of the software
application is highly dependent on how well the software can
be split in components and it is difficult to define their con-
text boundaries (Martin Fowler 2014). Moreover, in a complex
microservice-based application with a big number of services
the communication might become an overhead and potentially
a source of errors. Additionally, configuring the microservice
architecture is a complex, cumbersome, and time consuming

An AITO publication

http://dx.doi.org/10.5381/jot.2023.23.1.a2


Figure 1 Diagram illustrating the workflow for specifying and generating MSA identified in the state of the art research.

task requiring writing of boilerplate code (Terzić et al. 2017).
The literature consists of several attempts which try to address
the above mentioned issues from different angles. (Guidi et al.
2017) proposes a language-based approach which focuses on
making available in the Jolie (Montesi et al. 2014) programming
language, a mechanism to provide first-class citizens that can
be used for building microservice architectures.
A different method is put forward by MicroBuilder (Terzić et
al. 2017) and AjiL (Sorgalla et al. 2018) which provide domain-
specific languages (DSLs) that enable users to specify and gen-
erate microservice based applications with ease. Figure 1 illus-
trates an example of the process designed by the researchers
(Terzić et al. 2017) when using the DSL. From the picture, it
can be observed that the user of the DSL is able to specify the
microservice-based application (MSA) then use the generator
to produce an actual executable code which can be built and run
as the application server.

However, the generated application is not an application which
can be used similar to any other web application available on
the internet but rather just a part of it, particularly the server
side of the application.
Therefore, this article aims to address this issue further and to
propose MaGiC, a DSL framework for implementing language
agnostic microservice based web applications, that allows users
to specify and generate end-to-end MSA web applications
using a suite of DSLs which have the same lexical root.
Figure 2 presents the workflow process of the proposed MaGiC
framework where its users are able to use the three DSLs to
specify and generate a MSA consisting of an application server,
a communication layer (gateway), and an user interface.

The structure of this article is as follows. Section 2 introduces
the essential concepts used in this research. Section 3 illustrates
state of the art research into the area of MSA generation by
using a DSL. Section 4 presents a set of considerations for de-
veloping the MaGiC framework, then in section 5 the design
and implementation process of the MaGiC framework is de-
scribed. Respectively, section 6 illustrates the validation process
of the MaGiC framework, and in section 7 the conclusion of the
overall work is drawn. Lastly, Section 8 depicts the future work
of the project.

2. Concepts and Background

To set the article terminology, this section briefly describes the
context of the work and the main concepts used.

2.1. Domain-Specific Language
A domain-specific language is a programming language or a
specification language which offers through proper notations
and abstractions an expressive capacity focused on, and typ-
ically restricted to, a certain problem domain (Mernik et al.
2005) (Gray et al. 2008). As DSLs are tailored for a particu-
lar application domain (Borum et al. 2021), through notations
and constructs they offer substantial gains for expressiveness
and ease of use compared to general-purpose programming lan-
guages (GPLs) .
The literature (Mernik et al. 2005) provides some general guide-
lines about when and how to design a DSL, and splits the de-
velopment phases into several stages decision, analysis, design,
and implementation, and the main takeaways are:

– To develop a new DSL is not easy and evident of its neces-
sity (Bennett & Rajlich 2000).

– The most accessible way to design a DSL is to base it on
an already existing language as the implementation might
be easier (Mernik et al. 2005).

– Implementing a domain-specific language is a hard task as
one has to deal with compilers and interpreters. However,
language workbenches can be used to ease the process
(Costa et al. 2018).

2.2. Metaprogramming System
The following section describes the concept of metaprogram-
ming and metaprogramming systems. It important to note that
there are several metaprogramming systems available however
in the scope of this document only Jetbrains’ MPS1 will be
described.
A language workbench is a way of doing language oriented pro-
gramming such as metaprogramming (Fowler 2005). Metapro-
gramming is a programming method that allows computer pro-
grams to treat other programs as data. With other words, a
metaprogram reads another program, manipulates it, and returns
a modified program.
One example of such a program is Jetbrains’ MPS, which is a
language workbench and supports the design and implementa-
tion of DSLs. Languages written in MPS are projected rather
than textually represented, known as projectional editing, imply-
ing that instead of entering plain text to program a language, the
user of the language workbench selects from a list of concepts
that are valid in their respective contexts.
A DSL developed in MPS is formed of a multitude of entities
that represent different aspects of the language. The entities can

1 https://www.jetbrains.com/mps/

2 Bucchiarone et al.

https://www.jetbrains.com/mps/


Figure 2 Diagram illustrating the workflow for specifying and generating a MSA using the MaGiC framework.

be split in two categories, the semantical category and structural
(Bucchiarone et al. 2021).

2.3. Microservice Architecture

Microservices have been around for a while now, nevertheless
they are still considered to be a new trend despite their
popularity and that the software design principles on which they
are based on have been developed before this trend emerged.
When describing microservices they are often compared
to a different architecture style in particular the monolith
architecture paradigm, which is on the opposite spectrum, as the
microservice architecture is characterised by small independent
services, while the monolith architecture is defined as a single
indivisible unit (Blinowski et al. 2022). An illustration showing
the difference between the two architectures can be seen below
in Figure 3.

The microservice architecture enables componentization
of an application via services by design, meaning that an
application is divided in a suite of components, often called
services, that are different than the traditional components (e.g.
libraries) in an object-oriented (OO) program as they run in
different processes and communicate through a mechanism
such as a web service request (e.g. HTTP request) or remote
procedure call, rather than using in-memory function calls
(Karabey Aksakalli et al. 2021).
By splitting the system in multiple services rather than libraries
brings benefits to the overall application as each single service
is an autonomous unit which can be deployed and scaled
independently. In addition to this, the boundaries between the
components, in this case services, are better defined leading to
loosely coupled components and with more explicit interfaces
preventing misuse of services and possible production outages
(Martin Fowler 2014) (Blinowski et al. 2022).

Figure 3 Illustration between the monolithic and microser-
vice architecture. In the monolithic architecture it can be seen
that the system as a whole is an indivisible unit which con-
sists of the user interface, business logic, and data access layer.
While in MSA the application the system is divided into small
divisible units, each unit having a single focus. Image source
https://octopus.com/blog/monoliths-vs-microservices.

Moreover, the microservice architecture provides decentralisa-
tion governance, meaning that the software does not have to
be built on a single standard technology stack which is used
across allover the company but rather on multiple stacks. To
stress this further, microservices are organised around business
capabilities meaning that each service focuses on the implemen-
tation of software for a specific business area. Different business
areas have different problems which can be better solved with
specific technologies, thus making the decentralisation gover-
nance aspect of the microservice architecture quite beneficial
(Martin Fowler 2014).
Lastly, in a microservice architecture the communication in-
frastructure between the services is characterised by the "smart
endpoints and dumb pipes" (Martin Fowler 2014) approach,

3



meaning that communication between the different microser-
vices is choreographed using simple REST protocols rather
complex protocols (Martin Fowler 2014)

2.4. Microservice Architecture Design Patterns
There are several design patterns for implementing the microser-
vice architecture and when the MaGiC framework was devel-
oped a handful of design patterns were researched. Patterns
such as Circuit Breaker, Load Balancer, are a good fit for a
complex system where the suite of microservices is large and
horizontal scaling techniques are employed, but in the context
of the MaGiC framework this is not the case. In addition to this,
patterns such as Publish/Subscribe were not implemented due
to the scope of this project as the focus was not on facilitating
asynchronous communication with the services (Di Francesco
et al. 2017).
Nevertheless, the generated MSA can be deployed on both mo-
bile and desktop clients, and the user of the DSL might choose
to serve a different UX depending on the client. Therefore,
BFF design pattern fits perfectly for this scenario. Henceforth,
only the microservice software design patterns employed for
the project will be described.

2.4.1. API Gateway The API Gateway pattern is charac-
terised, as its name asserts, by a gateway though which a num-
ber of various services are accessible. The gateway acts as a
single entry point for all client requests and based on the request
type the message is forwarded to the appropriate microservice
(Zhao et al. 2018). An illustration of the pattern can be seen
below in Figure 4.

Figure 4 The image illustrates the API Gateway pattern
where the client communicates with the gateway which in
turn communicates with the suite of microservices in order to
fulfil the client’s request.

Implementing the API Gateway in the MSA has many benefits
some of them being, the client is not concerned about commu-
nicating with each microservice at the right endpoint as there is
only the gateway endpoint, thus simplifying the client logic. The
overall performance is increased as the number of requests and
round-trips are significantly reduced in a scenario where data
is aggregated from multiple services. Additionally, by using
a variation of this pattern it can provided specifically tailored
APIs for each particular client (Zhao et al. 2018).

2.4.2. Backend For Frontend (BFF) Backend For Fron-
tend (BFF) is an architectural pattern is an extension of the API
Gateway pattern and proposes an approach where each client
application (frontend) has a dedicated server-side component

(backend) in furtherance of enhancing and improving the over-
all UX. This pattern emerged as a consequence of the fact that
different client applications (e.g. desktop, iOS mobile client,
Android mobile client) provide different APIs (Application Pro-
gramming Interfaces) and therefore the user experience from
one platform to another changes.
Similar to the API Gateway pattern the BFF is used as a com-
munication delegator between the client and the suite of mi-
croservices. However, in the BFF case the set of microservices
provide specifically tailored user experience depending on the
client platform as each client’s request is propagated through a
specific and isolated API (Pavlenko et al. 2020). An illustration
of the BFF design pattern can be seen below in Figure 5.

Figure 5 The image illustrates the BFF pattern where the
desktop client communicates with its related service, the desk-
top BFF, and the mobile communicates with the mobile BFF,
in turn both BFFs communicate with the suite of microser-
vices providing a platform specific user experience.

2.5. Software Containerization
Software containerization is an approach in software develop-
ment where an application along with its dependencies, and set
of configurations, are bundled together as a container image
and deployed to a host operating system. As the software is
deployed together along with its dependencies the containeriza-
tion approach is highly beneficial as it eliminates issues related
to inconsistent environment setups and moreover, it enables fast
application horizontal scalability due to the ease of spawning
new container instances when required (Jaramillo et al. 2016).
In the context of this article Docker2 was used as a software con-
tainerization tool. Docker is a platform for shipping and running
software applications with ease by offering a lightweight con-
tainerization platform making available a suite of tools which
makes application deployment and management effortless.
Docker containers naturally fit MSA as each microservice can
be deployed as a self-contained container unit. The microservice
suite can be easily deployed and managed since the creation
and launching of Docker containers is done through scripting
thus enabling for automation techniques. Furthermore, as mi-
croservices are language and technology agnostic they can be
independently deployed as separate containers and owned by
different software development teams which can work on the
implementation of a given service choosing the most suitable
technology or language for solving a given problem, and in the
same time allowing for collaboration with other services as the

2 https://www.docker.com/

4 Bucchiarone et al.

https://www.docker.com/


communication over the network is effortless (Jaramillo et al.
2016).

2.6. Microservices in Practice
Implementation of microservice architectures have become
quite popular in the last years. However, despite the fact that
the concept of a microservice is novelty, when it comes to the
actual implementation of a microservice it relies on already
established technologies such as HTTP protocol (Martin Fowler
2014).
The long term goal for the MaGiC framework is to be language
agnostic so that in theory the microservice based web appli-
cation can be generated to any general-purpose programming
language. The current state of the framework supports gener-
ating the microservice suite to Node.Js and Python program-
ming languages, and they were chosen due to their popularity,
as according to a survey made by StackOverflow (Overflow
2021). The following listings showcase a minimal sample of a
microservice implementation in both programming languages
which serve as an example of how simple microservices are
implemented in practice and can be used as a comparison with
a microservice specified using MaGiC and its subsequent gener-
ated code which can be found in following GitHub Repository
(Bucchiarone et al. 2023).

1 const express = require("express");
2 const app = express ();
3

4 app.get("/order −list", (req ,res)=>{
5 res.status (200).json(orders);
6 });
7

8 app.get("/order", (req ,res)=>{
9 res.send(order);

10 });
11

12 const port = 8081;
13 app.listen(port)

Listing 1 Sample implementation of a microservice written
in Node.js using the Express framework. The microservice
deals with the orders business logic and exposes two HTTP
methods which are used to send information related to orders.

1 from flask import Flask , request , jsonify ,
send_file

2 from flask_cors import CORS
3 import uuid
4 import json
5

6 app = Flask(__name__)
7 CORS(app)
8 app.run()
9 @app.route(’/order −list’, methods =[’GET’])

10 def getOrders ():
11 return jsonify(orders)
12 @app.route(’/order’, methods =[’GET’])
13 def getOrders ():
14 return jsonify(order)

Listing 2 Sample implementation of a microservice written
in Python using the Flask framework. The microservice
deals with the orders business logic and exposes two HTTP
methods which are used to send information related to orders.

3. Related Work

The following section reports the relevant studies related to
the DSLs for microservices. Additionally, it includes works
which were used as inspiration towards developing the MaGiC
framework.

3.1. MicroBuilder: A Model-Driven Tool for the Specifica-
tion of REST Microservice Architectures

Terzić et al. (Terzić et al. 2017) developed a software tool,
MicroBuilder, for generating code for a REST MSA using a
model-driven approach. Their focus was on developing a soft-
ware which provides a set of tools for developing a microservice
based application while taking care of the challenging tasks such
as configuring the microservice architecture, load-balancing,
microservice auto-discovery and registering, but also reduce
the amount of time spent to develop such an application by
eliminating the need of writing redundant code templates. The
MicroBuilder tool is divided in two modules, namely MicroDSL
which is a DSL used for constructing the REST microservice
software architecture, and MicroGenerator which consists of a
set of generators that are used for generating actual executable
code from the programme written using the MicroDSL.
In more details, the MicroDSL enables users of the language
to specify, by using the DSL’s concrete syntax, a microservice
based application using a set of concepts related to the domain
of REST MSA development. The programme specification
written using the MicroDSL is then fed as an input for the Mi-
croGenerator module of the MicroBuilder software tool and
an executable program code is generated for a given platform,
in this case for the Java programming language (Terzić et al.
2017). An illustration of the development process using the
MicroBuilder software tool can be seen below in Figure 6.

Figure 6 Illustration of the development process of a REST
MSA using MicroBuilder (Terzić et al. 2017).

To validate the software tool, the research team developed the
specification for a REST MSA web shop using the MicroDSL
concrete syntax which later on was generated / transformed into
the Java programming language.
Additionally, the team decided to validate their solution further
and compared the lines of code for each microservice necessary
to specify the web shop using the MicroDSL, with the lines of
code required to program the web shop manually while using
best programming principles and reducing the amount of empty
lines (Terzić et al. 2017). The difference between the amount of
lines of code can be seen below in Figure 8.

5



Figure 7 Table representing the difference between the
amount of lines of code necessary to build the webshop ap-
plication with and without using MicroDSL. Image source
(Terzić et al. 2017).

3.2. AjiL: A Graphical Modeling Language for the Devel-
opment of Microservice Architectures

Sorgalla et al. (Sorgalla et al. 2018) developed a graphical lan-
guage and toolkit for implementing model-driven microservice
architecture. The language name is AjiL (Aji Modeling Tool)
and the research group aim is to reduce the effort of redun-
dantly and inconvenient manual process when implementing
a microservice architecture using a Model-driven Engineering
approach. The tool allows developers to specify diagrams for
a given microservice suite and generate pre-configured system
foundations (Sorgalla et al. 2018), based on the respective dia-
grams.
AjiL consists of three main pillars, the Aji modelling language
(AjiML) which is a lightweight graphical domain-specific mod-
elling language (DSML), the AjiEditor responsible for creating
diagrams based on the AjiML using a dedicated Eclipse work-
bench, and Aji Spring Cloud Generator used for transforming
the modelled diagrams into actual source code written in the
Java programming language using the Spring Cloud framework
(Rademacher et al. 2020) (Sorgalla et al. 2018).
Using the AjiEditor the user of the Aji modelling language is
able draw the microservice suite along with their interactions
and internal specifications, which in turn are generated to the
Java programming language and the Spring Cloud framework,
a lightweight event-driven framework to quickly build microser-
vice based applications. It is worth mentioning, all the modelled
interfaces of the services are generated to REST controllers
exposing CRUD (Create Read Update Delete) operations.
Furthermore, despite the fact that the study team focused on
generating the code base to the Java programming language the
models were designed so that they are language and technology
agnostic thus enabling for generation to other programming
languages if the functionality was to be added (Sorgalla et al.
2018).

3.3. Sliceable Monolith: Monolith First, Microservices
Later

A different approach called sliceable monolith is put forward
by (Montesi et al. 2021) who chose to implement a MSA based
application by first implementing it as monolith then use an
automated tool, called Jolie Slicer, to slice it into its subsequent
microservices. Additionally, the tool outputs the required con-
figuration for containerisation and deployment of the services
to the cloud using Docker. Another important aspect of the

software tool is its technology-agnostic characteristic which is
enabled by the nature of the Jolie programming language, thus
allowing the users of the sliceable monolith software to use dif-
ferent general purpose programming languages for developing
the microservice suite. Furthermore, the tool also allows for
unit and integration testing of the entire application architec-
ture with minimal effort by providing a configuration JSON file
therefore ensuring the correct functionality of the implemented
application (Montesi et al. 2021).

Figure 8 Illustration of the workflow methodology for using
the Sliceable Monolith software tool. Image source (Montesi
et al. 2021).

While the Sliceable Monolith tool deals with the development of
MSA based applications the approach proposed by the research
team is different than the methodology proposed by the MaGiC
framework. The research team put forward a way of deploy-
ing a microservice-based application by implementing it as a
monolith first then use an automated tool to slice it and deploy
it as suite of microservices but the application consists of the
microservice suite only. Additionally, the methodology and the
generated application is different compared to the one offered
MaGiC. Nevertheless, the technology-agnostic and Docker con-
tainerisation aspects are valuable for both approaches.

3.4. Microservice DSL (MDSL)

Microservice DSL represents a domain-specific language to
describe microservice contracts along with their data repre-
sentation and API endpoints, and was constructed based on
abstractions from domain-specific interface definition language.
The design goals of the MDSL are to facilitate agile modelling
practices, that is to focus on the readability of the DSL over
the parsing efficiency of the abstract syntax of the language, as
well as to be platform decentralised meaning that the language
features which aid in the specification of a given microservice
suite should not be limited to a single communication proto-
col (e.g. HTTP). The abstract syntax of the DSL is based on
the domain model and concepts of MAP3 consisting of several
features such as endpoints, operations, and elements for repre-
senting data. The concrete syntax of API endpoints is elaborate
consisting of a set lexicon elements to enable a detailed API
specification, and in contrast the data representation lexicon
is compact and simple abstracting from data formats such as

3 https://microservice-api-patterns.org/

6 Bucchiarone et al.

https://microservice-api-patterns.org/


XML4 and JSON5, but also from service-oriented languages
(Zimmermann et al. 2022).
Figure 9 provides an example of an API specification using the
Microservice domain-specific language.

Figure 9 API example specified using MDSL. Image
source https://microservice-api-patterns.github.io/MDSL-
Specification/primer.

According to the author of MDSL (Zimmermann et al. 2022)
the language ought to be used in contexts where a suite of mi-
croservices are to be described along with their several commu-
nication protocols (e.g. HTTP, message queuing). Furthermore,
the DSL can be used to represent their subsequent request and
response messages, as well as the interface endpoint. The differ-
ent language specifications of MDSL represented using hexagon
diagrams can be see below in Figure 10.

Figure 10 Illustration of the usage context of MDSL
specification. Image source https://microservice-api-
patterns.github.io/MDSL-Specification/primer.

Nevertheless, MDSL is a tool intended for only specifying mi-
croservices and not actual development, the generated code
to either Java or Jolie (Montesi et al. 2014) programming lan-
guages represents a skeleton of given specified service and the
actual functionality needs to be implemented by a developer
(Zimmermann et al. 2022).

4 https://developer.mozilla.org/en-US/docs/Web/XML/
XML_introduction

5 https://www.json.org/json-en.html

3.5. LEMMA: A Language Ecosystem for Modeling Mi-
croservice Architecture

LEMMA is an extensive language ecosystem used for modeling
MSA based applications in terms of their design, development,
and deployment. The language ecosystem has a distributed
nature as it consists of multiple modeling languages called
viewpoint-specific MSA modeling languages, each language
addressing a different sub-domain of microservice architecture
(Rademacher, Sachweh, & Zündorf 2019).

Domain Data Viewpoint, represents the modelling language
designated for domain experts and service developers for
describing domain-specific data models using the lan-
guage structures and concepts (Rademacher, Sorgalla, et
al. 2019).

Service Viewpoint, as its name asserts the service viewpoint
is the modelling language for specifying the complete be-
haviour of a microservice in terms of its communication
protocol with other services and the data format, its end-
points, and its operations (Rademacher, Sorgalla, et al.
2019).

Operation Viewpoint, deals with the configuration and
deployment of microservices to Docker containers
(Rademacher, Sorgalla, et al. 2019).

Technology Viewpoint, is the modelling language for the
MSA technology. LEMMA, similar to MSA, promotes
technology heterogeneity thus it offers two technology spe-
cific aspects in the form of a built-in technology and custom
technology. These two technology aspects can be divided
into different elements such as the deployment technol-
ogy, data format, infrastructure, programming languages,
and communication protocol (Rademacher, Sachweh, &
Zündorf 2019).

In terms of the generation of the modeled MSA application
using LEMMA, the ecosystem enables users of the language to
use a generator to derive Jolie APIs (Montesi et al. 2014) from
the defined LEMMA models. However, similar as in the case
of MDSL (Zimmermann et al. 2022) the generated APIs do not
provide actual functionality but rather the skeleton of the MSA
application in terms of its operation concepts which developers
can use as a guidance for the implementation (Giallorenzo et al.
2022).

3.6. Wasp
Wasp is a software tool for building full-stack web applications
and it can be used to develop all three main application’s pil-
lars: (1) client-side; (2) server-side; (3) deployment. It was
developed with the aim to enable developers to build web appli-
cations writing less code and without web technology-specific
knowledge. The software tool consists of a DSL for specifying
web application specific terms (e.g. page, route) for declaring
a high-level overview structure of the application. The web
application specification written using the DSL represents the
input of the Wasp’s compiler / generator which along with the

7

https://developer.mozilla.org/en-US/docs/Web/XML/XML_introduction
https://developer.mozilla.org/en-US/docs/Web/XML/XML_introduction
https://www.json.org/json-en.html


actual programming language code written by the developer, are
compiled into a functional web application (see Figure 11). As
the Wasp authors mentioned, the tool is not a no-code solution
(Wasp 2022) meaning that the DSL is used only for describ-
ing the structure of the web application in terms of pages and
routes, and as for the functionality of the application actual
development is necessary (Wasp 2022).

Figure 11 Diagram illustrating the development process of a
web application using the Wasp software tool (Wasp 2022).

The abstract syntax of Wasp DSL is declarative and statically
typed, each declaration describing a part of the web application.
The declaration syntax consists of three main components: (1)
declaration type, representing one of the types offered by the
Wasp DSL (e.g. app, route, page); (2) declaration name, the
identifier of the declaration; (3) declaration body, the definition
of the declaration itself which is specific to the declaration type.
(Wasp 2022). Figure 12 provides and example of the Wasp DSL
syntax.

Figure 12 Example declaring an application with a route, a
page, and an action using the Wasp DSL (Wasp 2022).

According to the authors of Wasp, the tool is in alpha version
not production ready and there are still a suite of features that
need to be developed and tested (Wasp 2022). However, the
Wasp DSL for specifying the web application structure in terms
of pages, routes, and other declaration types, is simple and
declarative allowing the user to specify the application structure
with ease.

4. Considerations

To begin with, the reason it was decided use MPS to create the
MaGiC framework rather than reusing some of the existing
DSLs from the literature which focus on the microservice
domain is due to the fact that in general DSLs are unfortunately
not reusable or extensible when created with different soft-
ware tools, for example the Eclipse integrated development
environment (IDE) used by (Terzić et al. 2017) to develop
MicroBuilder. However, due to the evolution of DSLs the
language workbench paradigm was born to provide a common
platform to reuse. Therefore, Jetbrain’s MPS language
workbench was a great option for implementing the MaGiC
framework since it is specialized to provide needed aspects for
defining concepts, editors, behaviors, constraints, type system,
refactoring, intentions, find usages, data flow, tests, migrations,
versioning, runtimes, generators, build, deployment, and more
importantly it allows for reusability.

The research projects MicroBuilder (Terzić et al. 2017)
and AjiL (Sorgalla et al. 2018) are trying to address the several
issues encountered when implementing a microservice-based
application. Their solution is to provide a DSL which can be
used to specify a suite of microservices and generate them to a
lower level programming language.
In the case of LEMMA (Rademacher et al. 2022), it represents
an extensive language ecosystem which offers users a large
variety of functionalities the current state of the language does
not allow for generating actual functional applications but
rather only the interfaces of the MSA based on the specified
models which aid the developers with the implementation of
the application.

To the authors best knowledge there is no state of the
art research which focuses on providing a DSL framework
for specifying and generating a microservice-based web
application which consists of a client-side, a communication
layer / gateway, and a microservice suite, which allows for
generation of a fully functional MSA based web application.
Starting from the work of MicroBuilder (Terzić et al. 2017)
and AjiL (Sorgalla et al. 2018), the focus of our research is to
develop a DSL-based framework for specifying and generating
all three parts of the MSA, which means that for each of the
three parts of the application a DSL needs to be provided.

Each abstraction level to a specific domain builds its own
ubiquitous language. The domain in this article is software in
general. But software does not exist without the need for it. Its
stakeholders are not only developers. The non developer stake-
holders should use a DSL to provide the main requirements that
the targeted software application should fulfill. Each domain
expert has an own set of DSLs to describe his domain in the
whole project. So refinement and reuse of already modeled
domain objects or interactions by other domains experts is easy.
Such a collaboration of DSLs is provided in our MaGiC paper.
Due to the time limitation we concentrated on DSLs we strictly
needed, others DSLs could or should be of interest or beneficial.

8 Bucchiarone et al.



Therefore, the goal of this article is to present the MaGiC
framework for developing MSAs which consists of three differ-
ent domain-specific languages:

– A microservice DSL that allows for specifying the mi-
croservice suite.

– A client side DSL used for constructing the UI of the
application.

– A gateway DSL for specifying an efficient communication
design pattern between the client-side and microservice
suite.

Similar as in the case of the Sliceable Monolith approach, and
LEMMA, the focus for our research is to develop a tool able to
generate applications programmed in various programming lan-
guages, thus leveraging the technology heterogeneity aspect of
microservices. Additionally, in MSA software containerisation
is a highly beneficial approach where the produced generated
code artefacts are deployed into Docker containers.
Moreover, since one of the research goals is to ease the devel-
opment of microservice-based web applications which can be
translated into the effort of building and maintaining the applica-
tion, the DSL readability is ought to be considered. According
to Aggarwal et al. (Aggarwal et al. 2002): "the readability of
source code or quality of various documents greatly influences
software maintainability", thus when designing the syntax of the
three DSLs of the MaGiC framework an emphasis on readability
is placed in furtherance of creating a framework which aligns
with the research’s goals.
Ultimately, to the extent of the author’s knowledge, it can be
stated that the research project in concern has a novelty as-
pect since there are no projects which focus on building a DSL
framework to enable users to model a microservice based web
application from end-to-end including the functionality.
Table 1 presents the differences between our proposal and the
most relevant solutions proposed in the previous sections.

MB AjiL MaGiC SM LEMMA

REST MSA DSL ✓ ✓ ✓ ✗ ✓

Gateway DSL ✗ ✗ ✓ ✻ ✓

Client-side DSL ✗ ✗ ✓ ✗ ✗

Docker deployment and containerisation ✗ ✗ ✓ ✓ ✓

Language / Technology Agnostic ✱ ✱ ✓ ✓ ✓

Table 1 Comparison in terms of features between state of the
art research projects and the MaGiC framework.
MB = MicroBuilder; SM = SliceableMonolith; ✱= supported,
but not implemented; ✻= supported due to language primi-
tives but not human readable;

To conclude, based on the research and considerations previ-
ously presented a set of functional and non-functional require-
ments were constructed for the MaGiC framework illustrated in
Table 2.

Functional Non-functional

Provide a DSL for generating the client side of the MSA Ease the process of implementing a MSA

Provide a DSL for generating the gateway of the MSA The generated microservices should

be organised around business capabilities

Provide a DSL for generating the microservice suite of the MSA The building of the MSA and deployment

to Docker containers should be done with ease

Allow for deploying and building in Docker containers The DSLs syntax should focus on readability

Allow for generation of the MSA to different

programming languages

Table 2 The set of functional and non-functional require-
ments for the MaGiC framework.

5. Design and Implementation
The following section presents the design and implementation
of the MaGiC framework. To remind the reader, it consists of
three DSL pillars and all of them were implemented using Jet-
brains’ MPS. The complete MaGiC framework implementation
as well as the user manual of the framework can be found at
the following GitHub repository (Bucchiarone et al. 2023). The
manual consists of the syntax of the language, as well as the
language documentation. Additionally, it provides a guide for
using MaGiC to specify, generate, and deploy a Hello World
microservice based web application.

– Microservice DSL, which is used to model and generate
the microservice suite.

– Gateway DSL, used for specifying the communication
layer between the client-side / UI and the microservice
suite.

– Client DSL, representing the DSL for specifying the client-
side of the web application.

It is important to mention that the MaGiC framework is uni-
form. Particularly, MaGiC is an abstraction which can be used
to describe a microservice, BFF, and UI, in any general-purpose
programming language and the syntax of each pillar was de-
signed so that it describes the entities of the system from a
higher-level and abstract perspective.
Moreover, the decision of splitting the MaGiC framework into
three DSL pillars was inspired from the concepts of microser-
vice architecture. In MSA each service is focused on a single
business capability, therefore as MaGiC addresses the MSA
domain the authors decided on splitting the framework so that
each DSL pillar is focused on a single capability. That is a DSL
for building the microservice suite, gateway / BFF, and the user
interface.

5.1. Microservice DSL
The Microservice DSL represents the domain-specific language
used to specify a REST MSA, particularly users can express
a microservice suite where each microservice exposes CRUD
operations which are used to interact with a particular set of
data.

5.1.1. Syntax The syntax of the DSL is inspired from
a subset of features of MDSL (Zimmermann et al. 2022)
due to its high readability and microservice domain-specific
focus, to which several alterations were added. The DSL

9



consists of several properties which are used to specify
metadata about the microservice. In addition to this, a
microservice can be configured to expose several opera-
tion methods each operation supporting CRUD operation
types. Figure 18 from the Appendix illustrates a formal
representation of the DSL features’ abstract syntax using
Backus–Naur form (BNF) notation (McCracken & Reilly 2003).

The abstract syntax features are then incorporated in the
DSL concrete syntax where a strong focus on readability
over parsing efficiency is emphasised similar as in the MDSL
(Zimmermann et al. 2022) case. Figure 19 from the Appendix
shows the specification of a microservice expressed through the
Microservice DSL concrete syntax.

5.1.2. Design The design choices are strongly related to the
concepts of language readability, and technology and program-
ming language decentralisation. Therefore, as stated before,
the syntax of the language is inspired from a subset of fea-
tures from MDSL (Zimmermann et al. 2022) but also several
additions were made in furtherance of constructing a verbose
enough language and simple in the same time to allow DSL
users to specify a microservice with ease. In addition to this, mi-
croservice implementation examples were surveyed from which
common patterns were abstracted in order to come up with a
model which can be used as a matrix for generating a microser-
vice into any GPL.
The GPL chosen for microservice generation are Node.Js 6

using the Express framework 7, and Python 8 using the Flask
framework 9. Moreover, as one of the requirements for the
MaGiC framework is to enable software containerisation, the
Microservice DSL comes with an additional feature, particularly
deployment of microservices to Docker containers. Addition-
ally, it was decided to automatically provide the documentation
of the microservice API endpoints using SwaggerUI 10 so that
DSL users can easily interact with the microservice endpoints
and set up the communication layer.

5.1.3. Implementation The implementation was done using
DSL Jetbrains’ MPS which made the process easier due to
its several helpful features. The MPS aspects were heavily
employed in implementing the DSL as the language consists
of several structures which use several editors, behaviours and
generators. Thus, as the Microservice DSL is split in several
structures they are then integrated in the microservice main
DSL structure using OO (object-oriented) principles as MPS
follows the object-oriented paradigm. As for the syntax of the
DSL, it was defined using MPS editor aspect which allows for
declaration of the concrete syntax and integration of the abstract
syntax defined as MPS structures. An illustration of MPS editor
aspect used to declare the syntax of the Microservice DSL can
be seen below in Figure 20 from the Appendix.

6 https://nodejs.dev/learn
7 https://expressjs.com/
8 https://www.python.org/about/
9 https://flask.palletsprojects.com/

10 https://swagger.io/tools/swagger-ui/

5.1.4. Generation The generation of the microservice is
done to a lower level programming language, as well as the
configuration for deployment to Docker containers specified in a
Dockerfile. Additionally, the SwaggerUI configuration files, are
produced which are used for documenting the microservice’s
REST API endpoints exposing CRUD operations and can be
visualised by accessing the /api-documentation microservice
route. Furthermore, in order for the user of the DSL to deploy
the microservice with ease a Shell script build is provided, thus
hopefully enhancing the overall UX of the DSL.
In terms of how the generation process works, MPS implies
the model-to-model transformation approach, with other words
the MPS generator specifies translation of constructs encoded
in the input language, the DSL in this case, into constructs
encoded in the output language usually denoted by a general
purpose programming language (Team 2021). However, for the
generation of the MaGiC framework DSLs the model-to-text
generation approach was used since the Python language
has not been implemented for MPS, thus the MPS native
model-to-model generator could not be used. Therefore, MPS
Plaintextgen 11 model-to-text generator was used which makes
this direct model-to-text transformation easier rather than the
MPS model-to-text generator.

Figure 13 provides an example of the form of a given
microservice specified in the MaGiC DSL, with its generated
counterpart in the Node.js programming language. It is
important to note that this generation functionality applies to all
three DSL pillars that the MaGiC framework consists of.

5.2. Gateway DSL
The Gateway DSL is used to specify and generate the commu-
nication layer between the server-side / suite of microservices
and the client-side / application’s user interface, and it is imple-
mented using Backend for Frontend (BFF) design pattern.
The BFF design pattern was chosen due to the fact that the
generated MSA can be deployed on both mobile and desktop
clients, and the user of the DSL might choose to serve a different
UX depending on the client.
It is important to note that when designing the Gateway DSL
for implementing BFF a strong focus was placed on the perfor-
mance of the application as the user is able to specify the exact
information to be sent from the microservice to the client.
Best practices for mobile web application include conservative
use of resources and to implement a highly performant appli-
cation that runs smoothly with low latency the memory of the
device, processor power, and network bandwidth ought to be
minimized (Aldayel & Alnafjan 2017). Therefore, the Gateway
DSL was designed so that when specifying the communication
layer DSL users are able to specify what exact properties are
expected to be sent to the client-side, rather than sending all the
properties, thus reducing the network bandwidth. An example
of this would be to query a given service for a user’s name,
in this case the DSL user would be able to specify that only
the name should be sent over to the client and not all the user
information.

11 https://github.com/DSLFoundry/mps-plaintextgen

10 Bucchiarone et al.

https://nodejs.dev/learn
https://expressjs.com/
https://www.python.org/about/
https://flask.palletsprojects.com/
https://swagger.io/tools/swagger-ui/
https://github.com/DSLFoundry/mps-plaintextgen


Figure 13 Illustration exemplifying a microservice written using the MaGiC DSL (left) and its generated form written in Node.js
(right). As it can bee seen, in the left side of the illustration the CustomerService microservice is specified, exposing a method for
fetching a particular customer from the stored list of customers based on its ID. Respectively on the right it can be seen that the
behaviour specified using MaGiC is translated and generated into the Node.js programming language.
It is important to note that users of MaGiC are able to choose to generate the microservice to either Node.js or Python program-
ming languages. For a more detailed documentation please refer to the user manual from the following repository (Bucchiarone et
al. 2023).

5.2.1. Syntax The syntax of the Gateway DSL is similar
to the Microservice DSL and the reason for using the same
syntax is due to the fact that the two domains are closely
related and their concepts can be expressed naturally using
the same lexicon. Additionally, by sharing a similar syntax
same concepts of the two DSLs can be reused thus easing the
implementation. An additional benefit is that by constructing
the DSLs with more or less the same syntax users of the
framework would not have to accommodate to three different
language syntaxes but rather make use of one syntax for
declaring a MSA from end-to-end.
Similar as in the Microservice DSL case, the DSL consists of
several properties which denote metadata about the gateway but
also configuration specific information. Furthermore, the DSL
exposes different operations each supporting CRUD operations
communicating with a referenced microservice API endpoint.
Figure 21 from the Appendix illustrates the Gateway DSL’s
abstract syntax in Backus-Naur form.

The abstract syntax features of the Gateway DSL are
then incorporated in the DSL concrete syntax where similar in
the Microservice DSL and MDSL (Zimmermann et al. 2022)
a strong focus on readability is placed. Figure 22 from the
Appendix shows the syntax of specifying a gateway using the
Gateway DSL.

5.2.2. Design The design choices are strongly related to
the Microservice DSL, as they were made in order to promote
readability over parsing efficiency thus fulfilling one of the non-
functional requirements, particularly technology and program-
ming language decentralisation. Nevertheless, as the Gateway
DSL is used to specify the communication layer between the
microservice suite and the client-side several simplifications
and changes were made. Furthermore, the BFF gateway can be
generated to either Node.Js using the Express framework, or
Python using the Flask framework. In addition to this, same
as in the Microservice DSL case the generated code can be

deployed to Docker containers using the generated Shell script.

5.2.3. Implementation The implementation of the DSL was
done using Jetbrains’ MPS making use of its several useful
features. In addition to this, the already created models for
the Microservice DSL were employed since the two languages
share common aspects. Figure 23 from the Appendix showcases
the defined structure of the Gateway operation which uses the
same concepts as the ones declared for the Microservice DSL.

5.2.4. Generation The generation of the BFF based on the
specification written using the Gateway DSL are the same as
in the case of the Microservice DSL. Thus, the BFF can be
generated to either Node.Js or Python programming languages,
and additionally a Dockerfile is automatically generated which
can be used to deploy the BFF to Docker containers using a Shell
script. The generation phase of the BFF DSL, as well as the
other DSLs, is heavily relied upon on MPS template switchers
which allow implementing decision trees for generating the
right code depending on the context.

5.3. Client DSL
The Client DSL represents the language for specifying and
generating the client-side / UI of the microservice based web
application. In section 3 several projects were presented and one
of them focusing on developing a DSL for generating a clide-
side application is Wasp (Wasp 2022) from which inspiration
was drawn to design the Client DSL of the MaGiC framework.
Additionally, as the Client DSL communicates with the gate-
way which forwards client requests to the microservice suite,
microservice-domain specific aspects from the other two DSL
pillars were extracted and incorporated in the Client DSL.

5.3.1. Syntax The syntax of the DSL is based on concepts
extracted from the Wasp DSL, particularly the structure of the
client-side application which is split in pages and routes, and
additionally it consists of microservice-domain rest specific
aspects extracted from the Gateway DSL and respectively

11



Microservice DSL, particularly the client pages support CRUD
operations, but also from client-side application specific
features. The Client DSL also consists of a configuration
structure used to specify the port in which the client application
is running and which one of the client types (desktop / mobile)
it exposes. Figure 24 presents the abstract syntax of the Client
DSL.

Furthermore, the Client DSL has an additional syntax
for specifying the UI components, denoted by <Component>
in Figure 24 from the Appendix, of the application which is
inspired from HTML, which the standard markup language for
documents designed to be displayed in a web browser, thus
fitting the requirements for the MaGiC framework as it is used
to build microservice based web applications. The syntax of
each of the UI component is illustrated in Figure 25 from the
Appendix.

In terms of the concrete syntax of the Client DSL, it is
important to mention that same as in the case of the other two
DSLs of the MaGiC framework a strong emphasis was placed
upon readability. Figure 26 from the Appendix illustrates the
abstract syntax used to specify the client-side of the MSA.

5.3.2. Design First of all, as it was previously mentioned
the Client DSL has features extracted from the Wasp DSL and
microservice domain-specific aspects. Additionally, the user
of the DSL is able to specify UI components using a syntax
similar to how HTML elements are declared.
Furthermore, as the focus of the project is to build a framework
for implementing language and technology agnostic microser-
vice based web applications the design choices are strongly
related to this concept.
In terms of the generated application it was decided to generate
a single-page application (SPA), which is a web application
implementation that loads only a single HTML document and
then its content is updated accordingly via JavaScript APIs
which serve resources such as JSON. The reason why it was
chosen to generate a SPA is due to the fact that SPAs are
somewhat the new normal in the web applications world and
they offer a more dynamic experience and performance gains
compared to traditional web application with multiple pages
(Fink & Flatow 2014).

It is important to mention that there are several JavaScript UI
frameworks which aid with the development of single-page
applications using best practises. However, due to the scope
of this project and time constraints it was decided to generate
the specified SPA using the React framework. React is an
open-source JS library for building interactive UIs with ease
and it is component-based meaning that each UI component
is encapsulated and manages its own state allowing for
composability and building of highly complex and performant
user interfaces (Gackenheimer 2015).

Additionally, for the actual design of the client-side ap-
plication it was decided to use the design system of Bootstrap

(Gaikwad & Adkar 2019), which is one of the most popular UI
frameworks for styling web applications. Particularly, React
Bootstrap was used which is a UI Boostrap library specifically
develop for styling React based single-page applications.

It is highly important to mention that the name of the
UI components which are part of the Client DSL are based
on the naming used by the Boostrap design system, and this
is due to the fact that no general taxonomy of naming UI
components was found. Therefore, despite the fact that the
focus is to build a technology agnostic framework when it
comes to the actual names of the UI components this goal is not
necessarily reflected. Lastly, similar to the other two DSLs of
the MaGiC framework, the generated client-side application
can be deployed to Docker containers using the Shell script,
in furtherance of eliminating the need for the user to manually
deploy the application and hopefully increasing the overall UX
of the framework.

5.3.3. Implementation The implementation of the Client
DSL is similar as in the two other DSLs, Jetbrains’ MPS was
used due to its numerous helpful features. The Client DSL uses
certain MPS structures declared in the Microservice and BFF
DSLs, however since the underlying technology is different than
the one used to implement the microservice suite and gateway
there are several client domain-specific structures.

5.3.4. Generation The generation of the client-side appli-
cation using the Client DSL outputs .jsx files, a React specific
file format. These files are then compiled and built by Webpack,
an open-source module bundler for modern JavaScript appli-
cations, using the CreateReactApp command line framework.
Additionally, once the application is compiled and built it is
deployed to Docker containers and can be accessed using the
chosen process destination port.

6. Validation
The following section presents the validation of the software
artefact created for the project in concern, namely the MaGiC
framework.

6.1. Application Development
For the validation of the framework, a REST microservice based
web shop application was implemented. Furthermore, to evalu-
ate the language and technology agnostic aspect of the DSLs,
both the microservice suite and gateways were generated to
Node.js and Python programming languages.
Lastly, in order to test the functionality of the application, the
application was deployed and built into Docker containers. The
MSA consists of several microservices which are in charge of
different business capabilities, such as:

– CustomerService, responsible for handling the data re-
lated to the customers of the web shop.

– OrdersService, responsible for the data related to cus-
tomer orders.

– ItemsService, responsible for the data related to items
available in the web shop.

12 Bucchiarone et al.



Additionally, the MSA includes two BFF gateways components
for each client platform of the application (mobile and desktop),
in furtherance of employing best practices when it comes to
implementing a microservice architecture and fully validating
the web shop application on multiple platform types.
Figure 14 presents an overview of the architecture of the
microservice based web shop application.

It is important to mention that for implementing the mi-
croservice based web application using the MaGiC framework
the bottom-up approach must be employed. The bottom-up
approach refers to the implementation order of each component
of the microservice based web application, particularly the
microservice suite has to be specified first, then the BFF
gateways, and lastly the mobile and desktop clients (see Figure
15).

Figure 14 Illustration of the architecture of the microservice
based web shop application specified using the MaGiC frame-
work.

The complete MaGiC framework implementation, as well as
the specified MSA code base can be accessed in the respective
GitHub repository (Bucchiarone et al. 2023). Additionally, the
repository contains a user manual for MaGiC which presents a
tutorial of building a Hello World application using the frame-
work.

6.2. Results

In order to validate the MaGiC framework and determine
whether or not the initially set goals of this project were achieved
several approaches documented in the literature for software
implementation metrics were explored. Additionally, since the
framework is focused on the MSA domain, the generated ap-
plication is analyzed based on the microservice architecture
key design principles identified by (Neri et al. 2020) to assess
whether the MaGiC framework meets the criteria for being
microservice oriented.

6.2.1. Microservice-Orientedness In the study conducted
by (Neri et al. 2020), the research team put forward a compre-
hensive analysis for microservice architectures in terms of key
design principles and architecture problems, which can be used
to determine whether the implementation of a MSA meets the
criteria for being microservice oriented.

Independent deployability In MSA each microservice should
be operationally independent from other services in terms of its
deployment. A common issue identified in MSA is the deploy-
ment of multiple services in a single container which is against
the independent deployability principle since services deployed
to the same container are affected when one of the microser-
vices in the container needs to be redeployed. In the context of
MaGiC when generating a microservice the Docker configura-
tion is generated as well which configures the packaging and
deployment of the service to its own container.

Horizontal scalability The term refers to the ability of a sys-
tem to add or remove copies of a microservice, a functionality
usually implemented by a load balancer. Under this concept, the
research team identified to architecture smells, endpoint-based
service interactions and no API gateway.
The endpoint-based service interactions traces back directly to
the load balancing ability of a system and occurs when the com-
munication between the services is hardcoded and a specific
microservice is always called rather than its replicas. For the
MaGiC framework this is not an issue due to the fact that the
current state of the system does not implement load balancing,
but since the infrastructure for enabling it is in place with further
development this could be achieved.
Secondly, since MaGiC includes a DSL for generating a BFF
which by design is an API gateway from this perspective MaGiC
meets the criteria of microservice-orientedness.

Isolation of failures As its name asserts the concept refers to
the failure resilience property of a microservice suite so that
when a failure happens a service is still able to serve another
microservice without creating a snow-balling effect where all
the services become unresponsive due to their dependability on
each other. When it comes to the MaGiC framework isolation
of failure was not a focus point since due to its current state the
microservices do not communicate with each other and only the
gateway communicates with a given service resulting in a small
number of communication requests.

Decentralisation By definition microservice architecture must
implement decentralization by design in terms of the system
functionality, business logic where each service serves a single
domain logic, and a dedicated database. Furthermore, decentral-
isation not only applies to the functionality of a microservice
but also to the implementation technologies and the teams that
own a suite of microservices. In the case of MaGiC, the Mi-
croservice DSL allows for specifying a service which deals with
only a single business domain logic and interacts with a specific
database. Additionally, the framework is language agnostic
and currently supports generation of services to both Node.js
and Python programming languages, additionally it allows for
different teams to own different services.

6.2.2. End-To-End testing End-To-End testing has been
used to determine whether or not the generated MSA actu-
ally works, once the application was generated the two clients
were tested using the end-to-end software testing (Waseem et al.
2020) approach.
This approach has been selected due to the fact the method

13



validates the entire software from starting to end, as its purpose
is to test the whole application dependencies, communication
with different services, databases, in a production like scenario
(Waseem et al. 2020).
Moreover, it can be argued that by implementing the web shop
MSA using the MaGiC framework, an end-to-end test was per-
formed on the framework itself as all the different components
of the framework were used in order to specify and generate the
microservice based web shop application. Additionally, the de-
ployment and building of the application into Docker containers
was tested as well.
Furthermore, by performing the end-to-end tests the language
and technology agnostic aspect of the MaGiC framework was
evaluated as well due to the fact that the different components
of the application were generated to different underlying tech-
nologies. Thus, by performing the test cases it was determined
whether or not despite the fact that the services are implemented
in different technologies they are able to work seamlessly to-
gether. The end-to-end test cases for both desktop and mobile
platforms can be seen below in Tables 3 and respectively 4.

Figure 15 Illustration of the bottom-up approach for imple-
menting a microservice based complete application using the
MaGiC framework.

Scenario Test Case

Login Login in the webshop with one of the customers

credentials, email "test@john.dk" and password 12345.

Navigation Test navigation to Items and Cart pages.

Single item view Access a single item page by clicking the "See more button" in the Items page.

Buy item Access single’s item page by clicking the "See more button" in the Items page.

Buy an item by clicking "Buy Item" button and navigate to the Cart page

to determine that the item was added to cart.

Delete item Access single’s item page by clicking the "See more button" in the Items page.

Delete an item by clicking "Delete" button and navigate to the Items page

to determine that the item was deleted.

Table 3 Desktop end-to-end test cases.

Scenario Test Case

Login Login in the webshop with one of the customers

credentials, email "test@john.dk" and password 12345.

Navigation Test navigation to Items, Cart, Create Item pages.

Single item view Access a single item page by clicking the "See more button" in the Items page.

Buy item Navigate to Items page and buy an item by clicking "Buy Item" button

and navigate to the Cart page to determine that the item was added to cart.

Create item Navigate to Create Items page and create an item by introducing the required information

and pressing "Create item" button. Navigate to Items page to determine the item was added in the shop.

Table 4 Mobile end-to-end test cases.

Additionally, as the Client DSL allows for declaring UI
components which use the Bootstrap design language an
emphasise was placed on the aspects of the two clients, mobile
and desktop, in terms of their design and use of responsive
web design (RWD), which refers to the development of web
pages that look good on devices with different sizes (Bryant &
Jones 2012). Figure 16 presents two illustrations of the client
platforms where it can be seen that the layout of the page shifts
from one client platform to another indicating a responsive web
design.
Lastly, it is important to mention that despite the two clients
communicate with their own respective BFF and the operation
APIs were designed for data performance, the network
bandwidth of the different client platforms was not measured
due to the minimal amount of data sent over the network.

The results of the end-to-end tests were positive mean-
ing that all the performed test cases on the generated
microservice based web shop application passed. Additionally,
as the MaGiC framework was used to implement, deploy, and
build the whole MSA it can be stated that end-to-end test
for the MaGiC framework passed as well. Furthermore, the
technology and language agnostic aspect of the framework was
validated as well due to the fact the end-to-end tests of the MSA
passed which components are implemented using different
technologies. In addition to this, deployment and building of
the application into Docker container was also validated when
end-to-end testing the implemented web shop MSA.

Figure 16 Illustration of the web shop application running on
two different client platforms.

6.2.3. Cycle Time Cycle time refers to the span of time
required for an engineer to deploy the implemented code to
production from the moment he started working on it, that

14 Bucchiarone et al.



is after the formal requirements have been identified. With
other words, cycle time indicates the time required to complete
a particular development task. The cycle time is used for
determining the development velocity of teams as well as their
efficiency and ability to deliver a working piece of software
within a confined time frame (Agrawal & Chari 2007).

In the context of validating the MaGiC framework the
cycle time was tracked for implementing the microservice
based web shop application using the three main DSL pillars.
The evaluation was conducted by only one of the authors of
this paper on an Apple MacBook Pro 2017, and the following
required software was pre-installed:

MPS , version 2021.2
Node.js , Node.js 16.14.0
Docker , 4.11.1

In the context of the evaluation the cycle time is defined as the
span of time required from the creation of the sandbox solution
in MPS to the point in time when the application was deployed
to Docker containers and ready to be used, and it was tracked
using the Apple iOS Stopwatch application.
The results of the evaluation concluded that the required cycle
time to implement the MSA web shop for a single developer
was approximately 3h 27m.

The cycle time can be considered low for developing
the whole application compared with the manual process,
nevertheless the result is influenced by several variables and
therefore is biased. This is due to the fact that the skill of person
using the MaGiC framework is highly impacting the cycle time
result, meaning that a more skilful person would require less
time to implement the microservice based web application.
However, implementing the MSA manually, without using the
DSL, would require several skills such as knowledge of mi-
croservice architecture and its related software design, Node.js
and Python programming languages, React SPA development,
and lastly Docker deployment configuration. Thus, it can be
stated that as the user would have to have experience with the
MaGiC framework to implement a microservice based web
application, which requires time, making the learning curve
steeper and therefore increasing the cycle time.

7. Conclusion
In this article we propose MaGiC a DSL-based framework
which allows for specifying a microservice-based web applica-
tion that consists of a microservice suite (server-side), a com-
munication layer / gateway, and a client-side. Additionally, it
was decided that the framework must be language agnostic,
eliminate the need of writing boilerplate code templates for
configuration the microservice suite, as well as to provide a tool
for building and deploying the application to Docker contain-
ers. Furthermore, it was determined that the generated MSA
must be developed employing the best practices and software
design patterns when it comes to implementing a microservice
architecture, and the MaGiC framework should ease the overall

development process of a MSA.
In terms of the syntax of the three DSLs of the MaGiC frame-
work only textual notation was considered. However, Jetbrains’
MPS allows for other notation as well such as tabular or graphi-
cal notations. Due to the scope of this article, other notations
than textual were not considered however they could aid at in-
creasing the overall readability of the DSLs thus accomplishing
one of the projects goals even further.
Having implemented the MaGiC DSL framework, in order to
determine whether the framework meets the outlined objectives
of the paper it was decided to perform a validation process by
implementing an MSA based web application from end-to-end.
Initially, the microservice-orientedness of the generated MSA
was assessed based on the criteria put forward by (Neri et al.
2020) and it can be concluded that in the current state of the
framework meets most of the requirements but further MaGiC
versions, horizontal scalability and isolation of failures ought to
be implemented.
In terms of the end-to-end testing, it was completed without
issues, and based on the fact that the different components of
the MSA were generated to different programming languages
the language agnostic aspect of the MaGiC framework was val-
idated as well. Additionally, the results for the required cycle
time to implement the MSA, which was approximately 3h 27
m, suggests the framework does ease the development process
of MSA.
It is worth mentioning that another experiment that could have
been performed is to compare the readability of the DSLs with
the readability of the actual generated programming language,
which would give the authors of the article additional insights
about the developed framework.
To conclude, it can be stated that the objective of developing a
framework which eases the process when it comes to develop a
MSA was met due to the fact that implementing a MSA man-
ually would require knowledge of microservice architecture,
suitable software design patterns, single-page application devel-
opment, as well as Docker deployment and configuration.

Figure 17 Illustration of the architecture of the MSA support-
ing both East/West and North/South microservice communica-
tion.

15



8. Future work

Due to the scope of the article aspects such as security,
availability, asynchronous message queuing, and monitoring
were not a focal point. Therefore, for the further development
of the MaGiC framework these aspects of MSA development
ought to be considered and incorporated in the framework.
The current implementation of the microservice suite facilitates
only a North/South communication, that is the services are
able to communicate only with external components, in
this case the BFF gateway. However, in a more complex
MSA the services communicate with other services as well,
East/West communication (Amaral et al. 2015) (see Figure 17).
Additionally, the communication between the microservices
could be extended to use an asynchronous communication
model such as publish / subscribe messaging (Sachs et al. 2010)
to align with industry modern standards of implementing MSA.

Moreover, the Client DSL provides a limited amount of
UI components therefore the complexity of the UI in terms
of its design its also limited. Thus, in order to further add
value to the MaGiC framework more UI components could be
implemented in the language. The current implementation of
the MaGiC framework does not support the use of database
management systems. Particularly, the data with which the
microservices interact is stored in a locally stored JSON file
which is somewhat limited. Therefore, it would be highly
beneficial for the MaGiC framework to allow storing of data
in a database system and expose the necessary operations for
interacting with the data.

Additionally, despite the fact that throughout the paper
the concept of DevOps was not described, the MaGiC
framework would highly benefit on employing DevOps
techniques. DevOps is a concept for integration of operational
and development infrastructure that merges software roles in
order to enhance communication, improve deployment rate,
and maintain a high quality of the software. Moreover, it helps
teams to increase confidence in the applications they build,
respond better to customer needs, and achieve business goals
faster, as well as continually provide value to customers by
producing better, more reliable products.

Two important aspects of DevOps are Continuous deliv-
ery and Continuous integration (CI / CD) techniques (Jha &
Khan 2018). In the context of MaGiC, CI / CD techniques ought
to be used for the framework itself allowing the developers of
the framework to frequently provide updates and prevent issues
by detecting potential integration errors through automated
build pipelines. Furthermore, same practices could be facilitated
by the framework for the users of the MaGiC DSL allowing
them to easily deploy their MSA based application and verify
their correctness.

When it comes to the development practice envisioned
for the MaGiC framework, the goal is to maintain the
language-agnostic aspect of the framework. This means that

in the future the framework will have to evolve so it supports
building more complex applications. Nevertheless, the research
group does understand that the framework cannot accommodate
for all development use cases, therefore, in the future, the
framework could support embedding of add-ons written in
a general-purpose language so it allows framework users to
achieve the desired functionality.

Lastly, the MaGiC framework does not provide any
guarantees that the functionally of the specified MSA based
web application works as expected. Therefore, similar as in the
case of Sliceable Monolith approach by (Montesi et al. 2021) ,
the framework would highly benefit of automatically generating
integration tests and model checking approaches to determined
that the generated architectural model is sound.

References

Aggarwal, K., Singh, Y., & Chhabra, J. (2002). An inte-
grated measure of software maintainability. In Annual re-
liability and maintainability symposium. 2002 proceedings
(cat. no.02ch37318) (p. 235-241). doi: 10.1109/RAMS.2002
.981648

Agrawal, M., & Chari, K. (2007, 04). Software effort, quality,
and cycle time: A study of cmm level 5 projects. Software
Engineering, IEEE Transactions on, 33, 145-156. doi: 10
.1109/TSE.2007.29

Aldayel, A., & Alnafjan, K. (2017). Challenges and best prac-
tices for mobile application development: Review paper. In
Proceedings of the international conference on compute and
data analysis (p. 41–48). New York, NY, USA: Association
for Computing Machinery. doi: 10.1145/3093241.3093245

Amaral, M., Polo, J., Carrera, D., Mohomed, I., Unuvar, M., &
Steinder, M. (2015). Performance evaluation of microservices
architectures using containers. In 2015 ieee 14th international
symposium on network computing and applications (p. 27-
34). doi: 10.1109/NCA.2015.49

Bennett, K., & Rajlich, V. (2000, 05). Software maintenance
and evolution: a roadmap. In (p. 73-87). doi: 10.1145/
336512.336534

Blinowski, G., Ojdowska, A., & Przybyłek, A. (2022). Mono-
lithic vs. microservice architecture: A performance and scal-
ability evaluation. IEEE Access, 10, 20357-20374. doi:
10.1109/ACCESS.2022.3152803

Borum, H. S., Niss, H., & Sestoft, P. (2021). On designing
applied dsls for non-programming experts in evolving do-
mains. In 2021 acm/ieee 24th international conference on
model driven engineering languages and systems (models)
(p. 227-238). doi: 10.1109/MODELS50736.2021.00031

Bryant, J., & Jones, M. (2012). Responsive web design. In Pro
html5 performance (pp. 37–49). Berkeley, CA: Apress. doi:
10.1007/978-1-4302-4525-4_4

Bucchiarone, A., Cicchetti, A., Ciccozzi, F., & Pierantonio, A.
(2021). Domain-specific languages in practice with jetbrains
mps (1st ed.). Springer Publishing Company, Incorporated.

Bucchiarone, A., Ciumedean, C., Soysal, K., Dragoni, N.,
& Pech, V. (2023, May). magic-dsl-framework. Zen-

16 Bucchiarone et al.



odo. Retrieved from https://doi.org/10.5281/
zenodo.7971803 (MaGiC: a DSL Framework for Imple-
menting Language Agnostic Microservice-based Web Appli-
cations) doi: 10.5281/zenodo.7971803

Bucchiarone, A., Dragoni, N., Dustdar, S., Lago, P., Mazzara,
M., Rivera, V., & Sadovykh, A. (2019). Microservices: Sci-
ence and engineering (1st ed.). Springer Publishing Company,
Incorporated.

Costa, P. H. T., Canedo, E. D., & Bonifácio, R. (2018).
On the use of metaprogramming and domain specific lan-
guages: An experience report in the logistics domain. In
Proceedings of the vii brazilian symposium on software
components, architectures, and reuse (p. 102–111). New
York, NY, USA: Association for Computing Machinery. doi:
10.1145/3267183.3267194

Di Francesco, P., Malavolta, I., & Lago, P. (2017). Research
on architecting microservices: Trends, focus, and potential
for industrial adoption. In 2017 ieee international conference
on software architecture (icsa) (p. 21-30). doi: 10.1109/
ICSA.2017.24

Fink, G., & Flatow, I. (2014). Introducing single page appli-
cations. In Pro single page application development: Using
backbone.js and asp.net (pp. 3–13). Berkeley, CA: Apress.
doi: 10.1007/978-1-4302-6674-7_1

Fowler, M. (2005). Language workbenches: The killer-
app for domain specific languages? Retrieved 2022-09-
16, from https://martinfowler.com/articles/
languageWorkbench.html

Gackenheimer, C. (2015). What is react? In Introduction
to react (pp. 1–20). Berkeley, CA: Apress. doi: 10.1007/
978-1-4842-1245-5_1

Gaikwad, S. S., & Adkar, P. (2019). A review paper on bootstrap
framework. IRE Journals, 2(10), 349–351.

Giallorenzo, S., Montesi, F., Peressotti, M., & Rademacher, F.
(2022). Model-driven generation of microservice interfaces:
From lemma domain models to jolie apis. In M. H. ter Beek
& M. Sirjani (Eds.), Coordination models and languages (pp.
223–240). Cham: Springer Nature Switzerland.

Gray, J., Fisher, K., Consel, C., Karsai, G., Mernik, M., &
Tolvanen, J.-P. (2008, 10). Dsls: The good, the bad, and the
ugly.
doi: 10.1145/1449814.1449863

Guidi, C., Lanese, I., Mazzara, M., & Montesi, F. (2017, 07).
Microservices: A language-based approach.. doi: 10.1007/
978-3-319-67425-4_13

Irudayaraj, P., & P., S. (2019, 09). Adoption advantages of
micro-service architecture in software industries. Interna-
tional Journal of Scientific & Technology Research, 8, 183-
186.

Jaramillo, D., Nguyen, D. V., & Smart, R. (2016). Leverag-
ing microservices architecture by using docker technology.
In Southeastcon 2016 (p. 1-5). doi: 10.1109/SECON.2016
.7506647

Jha, P., & Khan, R. (2018, 06). A review paper on devops: Be-
ginning and more to know. International Journal of Computer
Applications, 180, 16-20. doi: 10.5120/ijca2018917253

Karabey Aksakalli, I., Çelik, T., Can, A., & Tekinerdogan,

B. (2021, 06). Deployment and communication patterns in
microservice architectures: A systematic literature review.
Journal of Systems and Software, 180, 111014. doi: 10.1016/
j.jss.2021.111014

Martin Fowler, J. L. (2014). Microservices.
(https://martinfowler.com/articles/
microservices.html (visited: 2022-09-13))

McCracken, D. D., & Reilly, E. D. (2003). Backus-naur form
(bnf). In Encyclopedia of computer science (p. 129–131).
GBR: John Wiley and Sons Ltd.

Mernik, M., Heering, J., & Sloane, A. (2005, 12). When and
how to develop domain-specific languages. ACM Comput.
Surv., 37, 316-. doi: 10.1145/1118890.1118892

Montesi, F., Guidi, C., & Zavattaro, G. (2014). Service-oriented
programming with jolie. In A. Bouguettaya, Q. Z. Sheng,
& F. Daniel (Eds.), Web services foundations (pp. 81–107).
New York, NY: Springer New York. doi: 10.1007/978-1
-4614-7518-7_4

Montesi, F., Peressotti, M., & Picotti, V. (2021). Sliceable
monolith: Monolith first, microservices later. In 2021 ieee
international conference on services computing (scc) (p. 364-
366). doi: 10.1109/SCC53864.2021.00050

Neri, D., Soldani, J., Zimmermann, O., & Brogi, A. (2020).
Design principles, architectural smells and refactorings for
microservices: a multivocal review. Software-intensive Cyber-
physical Systems, 35(1-2), 3-15. doi: 10.1007/s00450-019
-00407-8

Okwu, P. I., & Onyeje, I. N. (2014). Software evolution: Past,
present and future..

Overflow, S. (2021). Stack overflow developer sur-
vey 2021. Retrieved 2022-09-14, from https://
insights.stackoverflow.com/survey/2021
?_ga=2.115807297.675239690.1628167975
-2066421306.1628167975#technology

Pavlenko, A., Askarbekuly, N., Megha, S., & Mazzara, M.
(2020, 05). Micro-frontends: application of microservices to
web front-ends.
doi: 10.22667/JISIS.2020.05.31.049

Rademacher, F., Sachweh, S., & Zündorf, A. (2019). Aspect-
oriented modeling of technology heterogeneity in microser-
vice architecture. In 2019 ieee international conference
on software architecture (icsa) (p. 21-30). doi: 10.1109/
ICSA.2019.00011

Rademacher, F., Sorgalla, J., Sachweh, S., & Zündorf, A. (2019).
Viewpoint-specific model-driven microservice development
with interlinked modeling languages. In 2019 ieee inter-
national conference on service-oriented system engineering
(sose) (p. 57-5709). doi: 10.1109/SOSE.2019.00018

Rademacher, F., Sorgalla, J., Wizenty, P., Sachweh, S., & Zün-
dorf, A. (2020). Graphical and textual model-driven mi-
croservice development. In A. Bucchiarone et al. (Eds.), Mi-
croservices: Science and engineering (pp. 147–179). Cham:
Springer International Publishing. doi: 10.1007/978-3-030
-31646-4_7

Rademacher, F., Sorgalla, J., Wizenty, P., & Trebbau, S. (2022,
09). Towards holistic modeling of microservice architectures
using lemma..

17

https://doi.org/10.5281/zenodo.7971803
https://doi.org/10.5281/zenodo.7971803
https://martinfowler.com/articles/languageWorkbench.html
https://martinfowler.com/articles/languageWorkbench.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://insights.stackoverflow.com/survey/2021?_ga=2.115807297.675239690.1628167975-2066421306.1628167975#technology
https://insights.stackoverflow.com/survey/2021?_ga=2.115807297.675239690.1628167975-2066421306.1628167975#technology
https://insights.stackoverflow.com/survey/2021?_ga=2.115807297.675239690.1628167975-2066421306.1628167975#technology
https://insights.stackoverflow.com/survey/2021?_ga=2.115807297.675239690.1628167975-2066421306.1628167975#technology


Sachs, K., Appel, S., Kounev, S., & Buchmann, A. (2010).
Benchmarking publish/subscribe-based messaging systems.
In M. Yoshikawa, X. Meng, T. Yumoto, Q. Ma, L. Sun, &
C. Watanabe (Eds.), Database systems for advanced appli-
cations (pp. 203–214). Berlin, Heidelberg: Springer Berlin
Heidelberg.

Sorgalla, J., Wizenty, P., Rademacher, F., Sachweh, S., & Zün-
dorf, A. (2018, 09). Ajil: Enabling model-driven microser-
vice development.. doi: 10.1145/3241403.3241406

Team, J. M. (2021). Generator. Retrieved 2022-
09-04, from https://www.jetbrains.com/help/
mps/mps-generator.html#overview

Terzić, B., Dimitrieski, V., Kordić (Aleksić), S., Milosavljevic,
G., & Luković, I. (2017, 03). Microbuilder: A model-driven
tool for the specification of rest microservice architectures..

Waseem, M., Liang, P., Márquez, G., & Salle, A. D. (2020).
Testing microservices architecture-based applications: A
systematic mapping study. In 2020 27th asia-pacific soft-
ware engineering conference (apsec) (p. 119-128). doi:
10.1109/APSEC51365.2020.00020

Wasp. (2022). Wasp (web application specification language).
(https://wasp-lang.dev (visited: 2022-09-14))

Zhao, J., Jing, S., & Jiang, L. (2018, 09). Management of
api gateway based on micro-service architecture. Journal of
Physics: Conference Series, 1087, 032032. doi: 10.1088/
1742-6596/1087/3/032032

Zimmermann, O., Stocker, M., Lübke, D., Zdun, U., & Pautasso,
C. (2022). Patterns for api design - simplifying integration
with loosely coupled message exchanges. Boston: Addison-
Wesley Professional.

About the authors
Antonio Bucchiarone is a senior researcher in the Motivational
Digital Systems (MoDiS) research unit of FBK in Trento, Italy.
His main research interests are: Self-Adaptive Systems, Do-
main Specific Languages for Socio-Technical System, and AI
planning techniques for Automatic and Runtime Service Com-
position. He has been actively involved in various research
projects in the context of Self-Adaptive Systems, Smart Mobil-
ity and Constructions and Service-Oriented Computing. He is
an Associate Editor of IEEE Software, IEEE Transactions on
Intelligent Transportation Systems, and IEEE Technology and
Society Magazine. You can contact him at bucchiarone@fbk.eu.

Claudiu Ciumedean is a software engineer at Microsoft and a
fresh graduate from the Technical University of Denmark with
a M.Sc. degree in Computer Science and Engineering. He is
currently involved in several software development projects and
has a strong interest in web technologies, distributed systems,
and virtual reality publishing a couple of research papers within
the area. You can contact him at claudiuciumedean@gmail.com.

Kemal Soysal is a software professional at LS IT-Solutions
GmbH, Berlin, Germany. His main research interests are:
Model Driven Software Development, Domain Specific Lan-
guages, Software Architecture, Infrastructure Architecture. You
can contact him at kemal.soysal@ls-it-solutions.de.

Nicola Dragoni Nicola Dragoni is Professor in Secure Pervasive
Computing at DTU Compute, Technical University of Den-
mark, where he also serves as Head of Section (Cybersecu-
rity Engineering), Head of the DTU Center for Digital Secu-
rity (DIGISEC) and Deputy Head of the DTU Compute’s PhD
School. Nicola Dragoni received the M.Sc. (cum laude) and
Ph.D. degrees in Computer Science from University of Bologna,
Italy. His main research interests centre around pervasive com-
puting and security, with latest focus on Internet-of-Things,
Fog/Edge computing and mobile systems. He has co-authored
140+ peer-reviewed scientific papers in international journals
and conference proceedings. He has edited 3 journal special
issues and 1 book. He has been active in several national and
international projects. You can contact him at ndra@dtu.dk.

Václav Pech is a senior software developer at JetBrains and a
part-time lecturer at the Charles University in Prague. With
a M.Sc. degree from Charles’ University in Prague and more
than 20 years experience working as a software developer/con-
sultant, he’s keenly interested in server-side Java technologies,
modern programming languages, domain specific languages,
distributed and parallel systems and agile methodologies. He’s
currently involved in the JetBrains MPS project, developing a
projectional DSL workbench and building customized DSLs.
You can contact him at vaclav.pech@jetbrains.com.

18 Bucchiarone et al.

https://www.jetbrains.com/help/mps/mps-generator.html#overview
https://www.jetbrains.com/help/mps/mps-generator.html#overview
https://wasp-lang.dev
mailto:bucchiarone@fbk.eu?subject=Your paper "MaGiC: a DSL Framework for Implementing Language Agnostic Microservice-based Web Applications"
mailto:claudiuciumedean@gmail.com?subject=Your paper "MaGiC: a DSL Framework for Implementing Language Agnostic Microservice-based Web Applications"
mailto:kemal.soysal@ls-it-solutions.de?subject=Your paper "MaGiC: a DSL Framework for Implementing Language Agnostic Microservice-based Web Applications"
mailto:ndra@dtu.dk?subject=Your paper "MaGiC: a DSL Framework for Implementing Language Agnostic Microservice-based Web Applications"
mailto:vaclav.pech@jetbrains.com?subject=Your paper "MaGiC: a DSL Framework for Implementing Language Agnostic Microservice-based Web Applications"


A. Appendix

A.1. Microservice DSL

Figure 18 Representation of Microservice DSL features
using BNF notation.

Figure 19 Microservice DSL syntax.

Figure 20 Illustration of the MPS editor aspect used for
declaring the syntax of the Microservice DSL.

A.2. Gateway DSL

Figure 21 Representation of Gateway DSL features using
BNF notation.

Figure 22 Gateway DSL syntax.

19



Figure 23 Illustration of the defined structure of the Gateway
operation using MPS.

A.3. Client DSL

Figure 24 Representation of the Client DSL abstract syntax
using Backus-Naur form notation.

Figure 25 Representation of the Client DSL UI component
syntax.

20 Bucchiarone et al.



Figure 26 Representation of the Client DSL concrete syntax.

21


