
Journal of Object Technology | RESEARCH ARTICLE

Modelling Agile Backlogs as Composable Artifacts
to support Developers and Product Owners

Sébastien Mosser∗, Corinne Pulgar†, and Vladimir Reinharz‡

∗McMaster University, McSCert, Hamilton, Canada
†École de Technologie Supérieure (ETS), Montréal, Canada

‡Université du Québec à Montréal (UQAM), Montréal, Canada

ABSTRACT The DevOps paradigm combines (agile) software development and IT operations to deliver high-quality software,
thanks to a feedback loop where “ops” feed “devs” and vice versa. In this context, a central challenge is to reduce as much as
possible the duration of the feedback loop, allowing stakeholders to reduce their time-to-market and release process duration.
This paper describes how to model a product backlog (usually expressed as informal user stories in plain text in an agile context)
as a queryable graph-based model. This graph is automatically extracted from existing artifacts thanks to natural language
processing techniques. Then, developers and product owners can support their iteration planning process by leveraging the
model, enacting a short-range impact analysis feedback loop of their planning decisions. The approach considers the iterative
and incremental nature of agile methods through the definition of composition operators to incrementally build the models. We
have validated this approach on five industrial scenarios, on top of a reference open-source dataset of 22 product backlogs,
representing 1, 671 user stories.

KEYWORDS Agile, DevOps, Backlogs, Graphs

1. Introduction
The agile software development paradigm broke the wall that
classically existed between the development team and end-users.
Thanks to the involvement of a Product Owner (PO) who acts as
a proxy to end-users for the team, the product backlog (Sedano
et al. 2019) became a first-class citizen during the product devel-
opment. Furthermore, thanks to a set of user stories expressing
features to be implemented in the product in order to deliver
value to end-users, the development teams were empowered to
think in terms of added value when planning their subsequent
developments. The product is then developed iteration by itera-
tion, incrementally. Each iteration selects a subset of the stories,
maintaining a link between the developers and the end-users.
The DevOps paradigm (Kim et al. 2016), by considering IT

JOT reference format:
Sébastien Mosser, Corinne Pulgar, and Vladimir Reinharz. Modelling Agile
Backlogs as Composable Artifacts:to support Developers and Product
Owners. Journal of Object Technology. Vol. 21, No. 3, 2022. Licensed
under Attribution - No Derivatives 4.0 International (CC BY-ND 4.0)
http://dx.doi.org/10.5381/jot.2022.21.3.a3

operations (Ops) as developers’ equals (Dev), added another
tier to the previous interactions that existed between end-users,
POs and development teams. The ops are in charge of the de-
ployment of the product (static code, execution platform) and
its monitoring (runtime environment). They are also involved
in the product development to join their expertise with the ex-
pertise from the others at the product level, instead of thinking
in silos inside the company.

Both Agile and DevOps paradigms intrinsically rely on an im-
plicit feedback loop, as depicted in FIG. 1. On the one hand, the
PO receives feedback from customers and end-users, translating
it into stories related to newly required features that increment
the backlog or deprecating stories as the customer’s interest
in these features are fading. This operation, called grooming,
ensures to maintain a good backlog quality. On the other hand,
developers receive technical (non-functional) feedback from
IT operations related to the performance of their products, or
its need for scalability, for example. These feedback loops are
essential to support the continuous improvement approach that
both Agile and DevOps are advocating (Bordeleau et al. 2020).

The central issue here is the uncomfortable role of the prod-

An AITO publication

http://dx.doi.org/10.5381/jot.2022.21.3.a3

Dev. Team

Ops Team

Product Owner

End-users

Product
Backlog

User 
Story

Iteration
Backlog

Product
(e.g., mobile app)

Lorem ipsum dolor sit amet, consectetur adipiscing
elit. Sed pellentesque ac arcu eget pretium. Donec
porttitor justo ac efficitur efficitur. Integer imperdiet
nunc egestas augue pharetra, id malesuada arcu
dapibus. Donec sit amet nisl gravida, scelerisque
odio quis, sodales dui. Sed ac mauris mauris. In
faucibus placerat nisi. Vivamus blandit ligula a
tortor elementum, id porta sem aliquet. In interdum,
sapien gravida iaculis imperdiet, sem odio
sollicitudin odio, ac egestas felis eros quis diam.
Etiam imperdiet, diam maximus feugiat accumsan,
mauris dui malesuada quam, non rhoncus dui felis
sit amet ex. Vestibulum vel tortor nec tortor
ullamcorper sodales. Aliquam nisi leo, porta eget
odio in, elementum fermentum risus

Planning Code 
& Artefacts

deploys

monitors

develops

grooms

functional feedback

non-functional

feedback

contributes to

Figure 1 Product and iteration backlogs in the context of a DevOps feedback loop

uct backlog inside this feedback loop. As advocated by the agile
approach, it is an essential element. However, according to this
paradigm, the product backlog is a collector of feedback from
end-users, but it has not been used (yet) to provide immediate
feedback to the developers. Thus, the feedback loop used to
support its improvement is slowed down, even if the agile and
DevOps paradigms aim to reduce it as much as possible. Going
back to fundamental DevOps principles, we can link this prob-
lem to the “Three Ways of DevOps” (Kim et al. 2016): (i) flow
thinking, (ii) amplifying feedback loop and (iii) continual learn-
ing. If flow thinking is essential in agile development, the two
other ways are not well equipped in terms of automation to work
at the backlog level and often focus on more concrete artifacts
(e.g., code analysis), slowing down the feedback and continuous
amelioration processes.

Taking a step back, it questions the role of modelling in the
context of DevOps. The agile community is openly reluctant to
models (e.g., the Agile Manifesto1). This paper contributes
to the model-driven engineering field by showing how the
incremental and iterative nature of backlogs can be taken
into account thanks to a lightweight modelling approach
that is compatible with agile development. This modelling
approach allows agile teams2 to automatically extract valuable
feedback from backlogs to support their needs. In a nutshell,
we propose a model engineering method (and the associated
tooling) to exploit a graph-based meta-modelling and composi-
tional approach. The objective is to shorten the feedback loop
between developers and POs while supporting agile develop-
ment’s iterative and incremental nature.

After a brief overview of the state-of-the-art concerning back-
log modelling (SEC. 2), we define in SEC. 3 a graph-based ap-
proach to model product and iteration backlogs in the context
of a DevOps team. Our proposition is formalized as a commuta-
tive monoid that supports backlogs’ incremental and iterative
grooming. Then, we explore in SEC. 4 three feedback dimen-

1 https://agilemanifesto.org/
2 The SAFe framework defines an agile team as “a cross-functional group of

5-11 individuals who can define, build, test, and deploy an increment of value
in a brief timebox” https://scaledagile.com/.

sions that take advantage of this formal model to support teams,
applied to 22 backlogs and 1, 671 stories (Dalpiaz 2018). As
discussed in SEC. 5, the point here is not to identify the best
method to provide feedback to teams but instead to describe a
unifying modelling approach for backlogs that supports several
alternative definitions of feedback-providing analysis. Finally,
SEC. 6 concludes this paper by identifying perspectives to be
followed on top of this model.

2. Related Work & State of Practice

2.1. Role of User Stories & Backlogs
From a practical point of view, Sedano et al. posited that
a “product backlog is an informal model of the work to be
done” (Sedano et al. 2019), following an empirical study involv-
ing 83 practitioners over two years. A backlog implements a
shared mental model over practitioners working on a given prod-
uct, acting as a boundary artifact between stakeholders. This
model is voluntarily kept informal to support rapid prototyping
and brainstorming sessions. Classically, backlogs are stored in
project management systems, such as Jira3. These tools stores
user stories as tickets, where stakeholders write text as natural
language. Meta-data (e.g., architecture components, severity,
quality attribute) can also be attached to the stories. However,
there is no formal language to express stories or model backlogs
from a state of practice point of view.

To date, the only reference dataset that is publicly reusable
is the one released by Dalpiaz (Dalpiaz 2018). It consists of 22
text files containing stories defined using the Conextra template:
“As a <Persona>, I want to <perform an action on entities>
so that <perceived benefit>”. Unfortunately, this dataset is not
qualified or annotated, and no description of the personas or
developed products is provided.

2.2. Natural Language Processing (NLP)
Numerous approaches focused on extracting “models” out of
product backlogs. These approaches classically rely on NLP

3 https://www.atlassian.com/en/software/jira

2 Mosser et al.

https://agilemanifesto.org/
https://scaledagile.com/
https://www.atlassian.com/en/software/jira

to extract information out of stories automatically. In a re-
cent systematic literature review released in 2021, Raharjana
et al have identified 38 NLP primary studies (Raharjana et al.
2021). These studies process user stories to support four main
goals: (i) detecting defects (6 studies), (ii) generating mod-
els (14 studies), (iii) identifying abstractions (15 studies), and
(iv) traceability between artifacts (3 studies). Concerning our
topic, modelling is covered by the second and third goals. It
means that 76% of state of the art focused on using NLP tech-
niques to extract models from stories. This emphasizes the need
to provide formal support to the informal nature of backlogs.

Among the NLP approaches available to extract models, 11
approaches (28%) are defined with tool support robust enough
to support a quantitative evaluation. Moreover, the kind of
considered models is extensive, from tests cases to Business
Process Modelling Notation (BPMN) ones, including use cases,
sequence diagrams and class diagrams. However, only a few
of these approaches came with tool support or a quantitative
evaluation.

2.3. Role of Modelling
Among the approaches identified by (Raharjana et al. 2021),
eight focus on modelling. Three rely on the Visual Narrator
tool developed by the Requirements Engineering Lab at Utrecht
University (Lucassen, Dalpiaz, van der Werf, & Brinkkemper
2016; Lucassen et al. 2017; Dalpiaz et al. 2019). The tool can
extract what is called a conceptual model of a backlog in an
ontology-like way. The conceptual models are then used to mea-
sure user stories quality by detecting ambiguities or defects in a
given story. Three other approaches focused on the generation
of UML artifacts: class diagrams (Nasiri et al. 2020), sequence
diagrams (Elallaoui et al. 2015) and use cases diagrams (Elal-
laoui et al. 2018). It is interesting to note that, contrarily to the
previous ones, these approaches consider a backlog as a means
to an end, the end being the availability of UML models to
support the development team. However, they do not value the
backlog as a first-class citizen in their methodology, breaking its
role concerning the Agile/DevOps paradigms. Two approaches
proposed to follow an ontology-based approach (Landhäußer
& Genaid 2012; Athiththan et al. 2018). The first one creates
an ontology from the source code and uses NLP to bind user
stories to code locations, ensuring traceability automatically.
The second one models the backlog as an ontology and uses it
to generate boilerplate code to speed up the development time.
None of these approaches leverage the graph structure of the
ontologies, and, again, they consider the backlog model as a
means to an end.

In addition to the studies based on Visual Narrator that ana-
lyze the backlog conceptual model (e.g., ambiguity detection),
other approaches focus on stories management. For example,
Galster et al. uses NLP to extract architectural properties from
the stories (Galster et al. 2019). The backlog model is also used
to identify duplicated stories (Barbosa et al. 2016), stressing
the difficulty for a team to groom a large and complex backlog
properly. Finally, stories can be used to generate executive sum-
maries for customers and high-level executives (Rodeghero et
al. 2017).

Backlog EntityPersona

NamedElement

name: String

Product

Story

identifier: int

Action

text: String

Benefit

text: String

QualityProperty

Compatibility
Maintainability
Performance
Portability
Reliability
Security

Status

Draft
Ready
In_progress
Done

**

*

0..1

*

Figure 2 Backlog conceptual metamodel

Interestingly, none of these approaches considered the back-
log as a first-class citizen in their tooling support. Excepting
Visual Narrator-based approaches, backlogs are transformed
into other models (e.g., UML) and never used again. Visual Nar-
rator keeps its conceptual model internal and exposes black-box
analysis to users, dedicated to stories’ quality in terms of re-
quirements engineering, for example. Thus, it does not support
the DevOps team in the development, as the provided feedback
focuses on the requirements’ expression instead of their role in
the software development.

3. Modelling Backlogs as Composable Graphs
This section describes our approach used to create backlog mod-
els automatically. To guarantee the soundness of the constructed
backlogs, we start by defining the different elements involved in
backlog modelling and operators manipulating such elements.
Thus, such soundness is ensured by design, thanks to the proper-
ties identified over the formal definition of each operator. As the
approach aims to be used as a toolchain to support developers
and POs, we expose it as an internal DSL.

From a modelling point of view, we can represent the con-
cepts involved in the definition of a backlog in a metamodel,
as depicted in FIG. 2. Without surprise, the key concept is the
notion of Story, which brings a Benefit to a Persona thanks
to an Action performed on an Entity. A Story is associated
to a readiness Status, and might optionally contribute to one
or more QualityProperty (e.g., security, performance).

Consider, for example, the following story, extracted from
the reference dataset (Dalpiaz 2018):

“As a user , I want to click on the address so that
it takes me to a new tab with Google Maps .”

This story brings to the user (Persona) the benefit of reaching
a new Google Maps tab (Benefit) by clicking (Action) on
the displayed address (Entity).

Modelling Agile Backlogs as Composable Artifacts 3

Dev. Team

Product Owner
User 
Story

Natural

Language

Processing

Backlog  
Model

Product
Backlog

Iteration
Backlog

Planning

Planning

Impact
analysis

Figure 3 Providing early feedback at the backlog level

As Entities and Personas implement the jargon to be
used while specifying features in the backlog, they are defined
at the Backlog level. On the contrary, Actions belong to the
associated stories and are not shared with other stories. Finally, a
Product is defined as the Backlog used to specify its features.

The definition of this metamodel supports the characteriza-
tion of the domain we are working on. It is then possible to
address the initial challenge, i.e., leveraging this characteriza-
tion to provide early feedback to POs and developers while
planning a development iteration.

Thanks to a collaboration with architects (IBM France Labs)
and DevOps Lead engineers (Instant System), confronted to
state-of-the-art and state-of-practice in this context, we identi-
fied the following properties a system designed to provide such
feedback must hold:

– P1: rely on existing artifacts (i.e., existing stories);
– P2: integrate with existing tooling;
– P3: be as automated as possible;
– P4: be customizable by the team (no silver-bullet);
– P5: support an incremental and iterative approach.

To implement such a vision in an actionable way, we propose
the system depicted in FIG. 3. As discussed in SEC. 2, NLP
approaches are efficient in the context of backlog. Consequently,
we propose using an NLP-based extractor to instantiate a back-
log model. Then, this model will be used during the planning
phase to support teams while selecting the stories to be imple-
mented during the next iteration. Finally, we provide in SEC. 4
five examples of impact analysis that can be performed on top
of such a model.

3.1. Composable Backlogs (P4, P5)
In order to support team customization (e.g., a given team might
want to enrich the backlog metamodel with additional informa-

tion existing in their product management system), a metamod-
elling approach based on a closed-world (e.g., EMF, UML) is
not appropriate. It also triggers issues concerning the incremen-
tal and iterative approach of building backlog, as composing
such models together in an incremental way is still an intense
research domain (Kienzle et al. 2019). Consequently, we chose
an open-world (ontological) representation by modelling back-
logs as graphs. The graphs are equipped with constraints (e.g., a
story always refers to a persona and an entity) to ensure that the
minimal structure captured in the previously defined metamodel
is guaranteed.

In this section, we describe how backlogs are modelled in
our approach. The approach is supported by a reference imple-
mentation, using PYTHON 3.9 and NETWORKX, a reference
library for graph modelling in this ecosystem (Hagberg et al.
2008). We provide formal definitions allowing us to construct
backlog out of independent stories in a way that is sound, sup-
porting the definition of the analysis described in SEC. 4. As
the formal model is provided as an internal DSL, we illustrate
how the elements are mapped to language constructions at the
implementation level (when relevant).

The choice of relying on PYTHON instead of more classi-
cal EMF-based approach4 is motivated by the integration with
the state-of-practice regarding NLP tools and graph algorithms.
Therefore, there is no strong dependency for the PYTHON lan-
guage, and other implementation platforms can be considered
(e.g., JAVA for the API and NEO4J for the graph representation).

Definition 1 Story. A story s ∈ S is defined as a tuple
(P, A, E, K), where P = {p1, . . . , pi} is the set of involved
personas, A = {a1, . . . , aj} the set of performed actions, and
E = {e1, . . . , ek} the set of targeted entities. Additional knowl-
edge (e.g., benefit, architectural properties, status) can be de-
clared as key-value pairs in K = {(k1, v1), . . . , (kl , vl)}. The
associated semantics is that the declared actions bind personas
to entities. Considering that story independence is a pillar
of agile methods (as, by definition, stories are independent
inside a backlog), there is no equivalence class defined over
S: ∀(s, s′) ∈ S2, s ̸= s′ ⇒ s ̸≡ s′.

We represent in FIG. 4 an example of three independent
stories {s1, s2, s3} modelled using this definition, as well as the
associated code.

Definition 2 Backlog. A backlog b ∈ B is represented as an
attributed typed graph b = (V, E, A), with V a set of typed
vertices, E a set of undirected edges linking existing vertices,
and A a set of key-value attributes. Vertices are typed accord-
ing to the model element they represent (v ∈ V, type(v) ∈
{Persona, Entity, Story}). Edges are typed according to the
kind of model elements they are binding. Like backlogs, vertices
and edges can contain attributes, represented as (key, value)
pairs. The empty backlog is denoted as ∅ = (∅, ∅, ∅).

4 An ECORE binding for PYTHON exists (PYECORE), but would have made the
implementation of the formal model less straightforward without adding any
value to the contribution of the article, which is based on graphs.

4 Mosser et al.

– Backlog excerpt: Content Management System for Cornell University — CulRepo (Dalpiaz 2018).

- s1: As a faculty member, I want to access a collection within the repository.
- s2: As a library staff member, I want to upload material to the repository.
- s3: As a library staff member, I want to create metadata for items.

– Associated model:

- s1 = ({faculty member}, {access}, {repository, collection}, ∅) ∈ S
- s2 = ({library staff}, {upload}, {repository, material}, ∅) ∈ S
- s3 = ({library staff}, {create}, {metadata}, ∅) ∈ S

– Python implementation:

1 from backlog.model import Story
2 s1 = Story("s1", {"Faculty Member"}, {"Repository", "Collection"}, {"access"},
3 "As a faculty member, I want to access a collection within the repository")
4 s2 = Story("s2", {"Library staff"}, {"Repository", "Material"}, {"upload"},
5 "As a library staff member, I want to upload material to the repository")
6 s3 = Story("s3", {"Library staff"}, {"Metadata"}, {"create"},
7 "As a library staff member, I want to create metadata for items")

Figure 4 A set of three independent stories {s1, s2, s3}

1 from backlog.model import Backlog
2 b = Backlog.empty().named_as("b")

Listing 1 Empty backlog: b = (∅, ∅, {(name, b)}) ∈ B

Here is an example of a backlog containing a single story
s1(“As a faculty member, I want to access a collection within
the repository”).

b1 = (V1, E1, ∅) ∈ B
V1 = {Persona(faculty member, ∅),

Story(s1, {(action, access)})
Entity(repository, ∅),
Entity(collection, ∅)}

E1 = {has_for_persona(s1, faculty member),
has_for_entity(s1, repository)

has_for_entity(s1, collection)}

At the implementation level, we expose a factory method
named empty() to build the empty backlog that is used as the
entry point for backlog grooming. We represent in LST. 1 the
code used to create an empty backlog named b.

Definition 3 Story Promotion (∼). For type-compliance, we
define an operator ∼: S → B used to promote an indepen-
dent story into a backlog that only contains this same story.
Considering a story s ∈ S , we denote as s̃ ∈ B the promoted
story.

Calling this operator on a story transforms each element
into nodes and links all the nodes together. At the implementa-
tion level, we override the ∼ operator to allow a developer to
promote a story s1 into a backlog b1 = s̃1.

With an automated way to project a story in the backlog
space, we can now define an incremental and iterative way of
creating backlogs (P5). The objective here is to support the
very nature of Agile/DevOps software development, relying

1 from networkx.algorithms.operators.binary \
2 import compose
3

4 class Backlog:
5 # ...
6 def __add__(self, other): # self + other
7 result = Backlog.empty()
8 result.__graph = compose(self.__graph,
9 other.__graph)

10 return result

Listing 2 Implementing backlog merge as graph union

on backlogs built incrementally. Considering that backlogs are
built in arbitrary ways by teams, it is essential that a team can
work in any order during the backlog construction phase.

Definition 4 Backlog merge (⊕). We define the merge of two
backlogs b1, b2 ∈ B2 as the operator ⊕ : B × B → B. Let
P1 the vertices typed as personas in b1 (resp. P2 in b2), E1
the vertices typed as entities in b1 (resp. E2 in b2), and A1
b1’s attributes (resp. A2 for b2). Considering b = b1 ⊕ b2 the
merged backlog, b contains as personas’ vertices P1 ∪ P2, as
entities’ vertices E1 ∪ E2 (equivalence classes among personas
and entities are based on names), and as attributes A1 ∪ A2.

As the previous definition relies on graph unions based on
equivalence classes, ⊕ is by design idempotent, commutative
and associative. It means that backlogs B equipped with ⊕ and
∅ form a commutative monoid (B,⊕, ∅). Consequently, by
reducing the backlog construction problem to a graph union one,
the associativity and commutativity properties of this monoid
support the development team by design. Equivalent elements
(i.e., entities, personas) are automatically unified in the com-
posed backlog. At the implementation level, we override the
+ operator (method __add__) to support the following syntax:
b2 = b0 + b1 (LST. 2).

Definition 5 Backlog increment (←). To increment a backlog
b with a story s, we define an asymmetric operator to support

Modelling Agile Backlogs as Composable Artifacts 5

1 class Backlog:
2 # ...
3 def __iadd__(self, story): # self += story
4 return self + ~story

Listing 3 Implementing backlog incrementation

Persona

Library staff
Story

s2

action upload

Story

s3

action create

Persona

Faculty Member

Story

s1

action access

Entity

Metadata

Entity

Material

Entity

Repository

Entity

Collection

Figure 5 Building b = ∅← s1 ← s2 ← s3 ∈ B

the addition of a story into a given backlog (←: B × S → B)
as syntactic sugar over story promotion and backlog merge.
Incrementing b with s (i.e., b ← s) is equivalent to merging b
and s̃ (i.e., b⊕ s̃). The operator is left-associative by design.

We depict in FIG. 5 how a backlog can be constructed by
incrementing the empty backlog with the three stories defined
in FIG. 4. The constructed backlog (named b) contains three
entities, two personas (merged), and three independent stories.
Each story defines its own action, but shares the merged ele-
ments with others (e.g., the entity named repository is shared
by s1 and s2). At the implementation level, we override the +=

operator (LST. 3, method __iadd__) to reflect the asymetric and
incremental dimensions of this operator.

Definition 6 Backlog Enrichment. According to the open-
world philosophy, backlog elements can be enriched with key-
value properties. The enrichment is defined as an operation
enrich : B ×Kn → B, where (id, {(k1, v1), . . .}) ∈ K repre-
sent the set of key-value pairs to be added to the node identified
as id.

Relying on a graph as the underlying modelling founda-
tion allows teams to customize their models by enriching their
proposition with knowledge from their own practice (P4). For
example, one can easily integrate the status of each story in the
backlog if needed by enriching it:

K = {(s1, {(status, done)}), (s2, {(status, ongoing)}),
(s3, {(status, ongoing)})}

b = enrich(∅← s1 ← s2 ← s3, K)

At the implementation level, this operation is supported by
the injection of a data dictionary into the graph (LST. 4)

1 class Backlog:
2 # ...
3 def enrich(self, extra):
4 result = Backlog.empty()
5 g = self.__graph.copy()
6 networkx.set_node_attributes(g, extra)
7 result.__graph = g
8 return result

Listing 4 Enriching backlog with unforeseen knowledge

Summary. In this section, we presented a formalization of
backlogs as graphs. The objective of this formal model is to
demonstrate how our proposition ensures properties P4 and P5.
Furthermore, we propose an elegant way of modelling such
artifacts by reducing backlog construction to graph composition
while ensuring their extensibility. Consequently, this formal
model is essential to ensure that the constructed graphs are
sound and support the development team adequately. Finally,
as the model is intended to be used programmatically to define
impact analysis tools to shorten the feedback loop between POs
and developers, we also illustrated how the model is imple-
mented as an internal DSL using the PYTHON language.

3.2. Automated Instantiation (P1, P2, P3)
To respect P1 and P2, the system assumes access to the project
management system (e.g., Jira ticketing). This access can be
obtained thanks to an API (e.g., Jira exposes a REST API to
interact with tickets) or through static exportation (e.g., as XML,
CSV, TXT, or JSON files). As a result, we assume that it is
possible to have automated access to the content of each story
defined in the backlog and their associated metadata (e.g., labels
added to the tickets in Jira).

In order to support P2 and P3, an automated NLP step is
required to automatically extract information from the textual
backlog. Considering that many approaches are available in this
context, our system is not tied to particular ones. Instead, it only
assumes that the NLP-based extraction produces a conceptual
model identifying at least personas, actions and entities involved
in each story. To demonstrate the versatility of the approach at
the implementation level, we have experimented with several
tools. First, we considered two NLP tools for story extraction:
Visual Narrator (Robeer et al. 2016) and the approach of Gilson
et al (Gilson et al. 2020). They both produced comparable
results in terms of performance and accuracy. Both approaches
compute conceptual models (i.e., ontologies, and robustness
models as UML artifacts) of the system modelled by the backlog,
stored into files that can be automatically processed to produce a
backlog compatible with our proposition. The only assumption
made by the approaches is that the stories are expressed using
the classical “As a . . . , I want to . . . ” template (Lucassen,
Dalpiaz, Werf, & Brinkkemper 2016).

We consider here Visual Narrator, applied to the Content
Management System for Cornell University (CulRepo) used in
the previous section. Taking as input the backlog as a text file
(e.g., dataset/raw/g27-culrepo.txt), it produces an analy-
sis of each story in various formats (e.g., HTML, JSON, Prolog,
Ontology). We represent in FIG. 6 the human-readable result

6 Mosser et al.

Part-of-speech tags

As a faculty member I want to access a collection within the repository so that I can obtain research materials

Universal ADP DET NOUN NOUN PRON VERB PART VERB DET NOUN ADP DET NOUN ADP ADP PRON VERB VERB NOUN NOUN

Penn Treebank IN DT NN NN PRP VBP TO VB DT NN IN DT NN IN IN PRP MD VB NN NNS

Format
Role indicator
As a

Means indicator
I want to

Ends indicator
So that

Simplified
Role
faculty member

Means
I can access a collection within the repository

Ends
I can obtain research materials

Role
Functional role
faculty member (compound)

Means
Main verb
access

Main object
collection with phrase a collection

Free form
can within the repository

with nouns repository
of which compounds

Ends
Free form
I can obtain research materials

Subject
Found I , so it was replaced with the functional role
Verb
obtain

Object
research materials (compound) with phrase research materials

Nouns
research materials

of which compounds research materials

Figure 6 Output of VisualNarrator for s1

obtained when processing s1. The NLP extraction identifies the
persona (faculty member), the action (access), and two entities
(collection and repository). Based on this extraction process, it
is possible to automatically instantiate stories according to the
approach described in the previous section.

Each NLP extraction tool will rely on its data format, as there
are no standards whatsoever in this field. Therefore, integrat-
ing a new extraction tool requires writing glue code that will
transform the tool’s output into stories that are modelled accord-
ing to our proposition. Nevertheless, from an abstract point of
view, we assume this technical challenge is being tackled by a
function named nlp-extract, taking as input a textual backlog
(e.g., a file) and providing as output stories (as instances of the
Story class). Then, building the product backlog means using
the increment operator on the empty backlog.

nlp-extract(file) = {s1, . . . , sn} ∈ Sn

b = ∅ n←
i=1

si ∈ B

Summary. In this section, we demonstrated how the previ-
ously defined formal elements and operators could be combined
into a toolchain that interacts with a classical DevOps environ-
ment to create backlog models automatically.

4. Validation: Models as Feedback Providers
Researching user stories and backlogs becomes complicated
when reaching the validation stage. As stories capture the busi-
ness values, they are considered trade secrets by companies,
making the definition of case-study (qualitative) experiments
very difficult. Furthermore, as an immediate consequence, the
lack of available data prevents performing large-scale quantita-
tive analysis.

Instead, we consider here five validation scenarios identi-
fied while working closely with industrial partners during the
past five years. We denote scenarios as Σi to avoid confu-
sion with stories (identified as si). We classified the feedback
one can compute over the graph according to three categories:
(i) Product analysis (Σ1, Σ2), (ii) Iteration planning (Σ3, Σ4),
and (iii) Portfolio management (Σ5). Our industrial partners
(IBM, Instant Systems) coined these scenarios as essential to
support their software development feedback loop in a DevOps

Obstacle (Sedano et al. 2019) Validation Scenario
O1: Preconceiving Problems Σ4, Σ5
O2: Preconceiving Solutions Σ3
O3: Pressure to Converge Σ1
O4: Ambiguity Σ4, Σ5
O5: Time Pressure Σ2, Σ3
O6: Blocking Access to Users N/A

Table 1 Linking Obstacles (Oi) and Scenarios (Σi)

context. These scenarios cover five out of the six obstacles
(Oi) to product backlog management identified by Sedano et al.
in their reference study investigating product backlog manage-
ment (Sedano et al. 2019). We describe in TAB. 1 how the five
validation scenarios cover the obstacles. As our contribution
does not consider end-users as part of its scope, it is not possible
by design to cover the last obstacle identified.

Our objective in this section is to validate that the backlog
models defined in SEC. 3 can be used to answer value-added
questions from POs and developers. The point is not to pro-
pose a silver bullet solution, but instead to provide a tooled
model that can be customized to fit various scenarios. We ap-
plied these scenarios to the only publicly available dataset of
backlogs (Dalpiaz 2018). It is necessary to note that this refer-
ence dataset does not qualify the stories and only present them
grouped by product in a flat representation. Typically, there is
no information about the different iterations used to develop the
product, and there is no additional description of the artifacts
involved. In the remainder of this paper, we denote as gi a back-
log identified under this name in the reference dataset. After
being processed by the approach from Gilson et al (Gilson et al.
2020; Galster et al. 2019), it results in a set of 1, 671 stories.

Software Artifact. To support this validation section, we pro-
vide a companion software artifact, available as open-source
software on GitHub at the following address: https://github.com/
ace-design/backlog-modelling. The artifact is implemented in
PYTHON 3.9 and contains the metamodel implementation, the
initial validation dataset (Dalpiaz 2018), and the code of each
scenario described in this paper.

4.1. Σ1: Structural analysis (Product)
Context & Pain point. We consider here an agile team work-
ing on a specific product. The team is pressured to converge
(O3) and needs to prepare arguments to defend how its backlog
compares to the global portfolio in the company.

Scenario implementation. Leveraging the underlying graph
structure, it is possible to compute structural metrics (e.g., num-
ber of vertices, number of edges, average connectivity) on a
backlog to characterize it. Computing a footprint of a backlog
at a given point in time is implemented as the construction of
a vector containing structural dimensions of the graph (e.g.,
number of personas, number of actions)

Validation experiment. To validate this scenario, we designed
an experiment that analyses the 22 available backlogs accord-
ing to standard graph metrics. The point is to investigate the

Modelling Agile Backlogs as Composable Artifacts 7

https://github.com/ace-design/backlog-modelling
https://github.com/ace-design/backlog-modelling

Nb personas Nb user stories Nb entities Nb actions Nb edges
parameter

0

100

200

300

400

500

co
un

t

Figure 7 Structural metrics distribution for the 22 considered
backlogs

versatility of backlog structure, emphasizing the need for such
analysis. We represent in FIG. 7 the distribution of these metrics
for the 22 backlogs.

Conclusions. Without surprises, the experiment exhibits the
intrinsical versatility of backlogs. It emphasizes the need for
customization support by the team for any automated approach
that works on backlogs (P4).

4.2. Σ2: Elements’ Weights (Product)
Context & Pain point. In this scenario, we still consider a team
working on a given product. The team is feeling time pressure
(O5) and needs to take a step back on the state of the backlog
to properly identify how each element compares to each other
in terms of design, facilitating the planning of the upcoming
iterations. Selecting a story that involves an entity heavily
involved in the backlog might substantially impact the product
development. When the team is pressured, it can also face
selection bias. For example, the PO might focus involuntarily
on a given persona while organizing focus groups with end-
users, leading to an imbalanced specification.

Scenario implementation. Such a measurement provides im-
mediate feedback to the team at two different levels: (i) by
explaining how central an element is in the specification, and
(ii) by allowing the team to track the evolution of the backlog
during grooming and planning phases. To investigate this kind
of analysis, we propose to leverage the graph by weighting per-
sonas and entities based on their involvement in the graph. For
example, considering a given persona p, its weight wp ∈ R

can be defined as the ratio of stories involving p over the total
number of stories defined in the backlog (a similar ratio is used
for entities). Implementing such computation is straightforward
when leveraging the underlying typed graph model.

Validation experiment. To emphasize the domain versatility,
we computed for each backlog in the dataset the statistical
distribution of its (normalized) persona’s weights. We depict in

g2
2

g1
6

g1
1

g2
7

g0
3

g1
0

g0
2

g0
8

g2
3

g0
4

g1
8

g2
4

g1
4

g1
7

g2
1

g0
5

g1
3

g1
9

g2
6

g1
2

g2
5

g2
8

Case

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pe
rs

on
as

 w
ei

gh
ts

Figure 8 Distribution of normalized weights inside the 22
backlogs (personas)

FIG. 8 the results.

Conclusions. This experiment leads to two conclusions. First,
in addition to the properties associated with the formal model,
direct access to the graph structure makes it easy to build such
knowledge. Secondly, the centrality of personas inside each
backlog does not follow any clear pattern, emphasizing the
P4 property again. It is mandatory for the (meta-)modelling
approach chosen in an agile context to adapt to team usage and
practices.

4.3. Σ3: Coverage metrics (Iteration)
Context & Pain points. Planning an iteration is a critical phase
in agile development: the team commits to deliver a given
amount of value to end-users. Teams rely on informal measure-
ments such as story points or business value and use yesterday’s
weather techniques to prepare their next iteration. If the team
has delivered x story points on average during the last iterations,
they will commit several stories where story points sum to a
value close to x. This approach suffers from issues, such as the
no-estimate movement recently identified (Sandeep RC 2020;
Duarte 2016). In this context, teams has a tendency to face pre-
conceived solutions issues (O2), especially when feeling time
pressured (O5). There is a lack of quality-driven appreciation
of such estimations. There is no way for the team to know how
this value is spread over the different elements constituting the
backlog.

Scenario implementation. The team needs guidance in terms
of story selection, as the choices made at this stage are techni-
cal and political. For example, should the team focus on one
given persona (e.g., because of a focus group involving subjects
impersonating this persona scheduled for the end of the next
iteration), focus on a given entity (e.g., for technical operations
reasons), or increment the product in a more balanced way?
We leverage here the incremental construction of our backlog
model to load the stories into the backlog and call the enrich

operator to load stories’ status into the backlog. Based on this

8 Mosser et al.

0 20 40 60 80 100
-pr

on
-Dev

elo
pe

r
Data

 Ana
lys

t
Adm

in
Visit

orPu
blis

he
rCon

sum
er

Owne
r

Web
 Dev

elo
pe

r
todo doing done

Figure 9 Evaluating personas’ coverage for the next iteration

enriched backlog, it is possible to compute a snapshot of the
coverage associated with each persona.

Validation experiment. We considered the product g14 spec-
ified by 67 stories and involving 9 actors. According to our
previous definition, g14 = ∅← s1 ← . . .← s67. We consider
a situation where close to 30% of the existing specification has
already been implemented in the previous iteration. The status
of each story is stored in a CSV file that is used to enrich the
previously built backlog. For the sake of this experiment (as the
reference dataset is not qualified), we asked one of our industrial
partners to create this CSV file based on his experience in agile
development. Then, we asked a product owner to look at the
backlog and computed coverage. Finally, we collected the PO’s
feedback on the computed pieces of information.

Conclusions. The PO emphasized that, according to the agile
teams he would work with, different kinds of coverage would be
necessary. It, again, emphasizes P4 and reinforces the need for a
lightweight modelling approach that one can tailor to its needs.
The PO also says that coverage could be helpful in terms of per-
sonas or entities, but also in terms of non-functional dimensions,
e.g., architectural properties (Galster et al. 2019). It emphasizes
the need for a model that relies on an open-world assumption
to allow teams to feed the model with unforeseen information.
Finally, the PO made it clear that some coverage maps such as
the one depicted in FIG. 9 representing the coverage of personas
at a given moment would be helpful for any team, as the key
point of agile development is to deliver value to personas. It
comforts the fact that a lightweight modelling approach is the
right approach to support the team. First, the scriptable dimen-
sion can be leveraged to allow customization. Furthermore, it
is still possible to release off-the-shelf model analysis based on
commonalities identified during domain analysis.

4.4. Σ4: Story Recommandation (Iteration)
Context & Pain points. Another difficulty encountered by
teams is related to stories selection when working on a large
product backlog. It is easy for a team to wear blinders after

some time working on a given product, leading to preconceiving
problems situations (O4). Another issue is related to identifying
ambiguities (O5), at the backlog level, or more globally at the
portfolio one. It is challenging to know which stories are similar
to a given story s and which ones are outsiders.

Scenario implementation. In a nutshell, the key idea here is
to automatically build clusters of stories that the algorithm finds
“similar”. Then when the team selects a story from a cluster, it
is possible to show the ones remaining in the cluster, to guide
the selection and provide simultaneous feedback. Modelling
the stories’ backlog as a graph allows us to deploy similarity
algorithms that can work at different levels, from purely struc-
tural to more semantic-driven approaches. However, it is worth
noting that, in terms of graphs, “similarity” cannot be defined
in the general case and has to be tailored to a specific prob-
lem (Zager & Verghese 2008). This is compatible with our
customization property, allowing a team to try several recom-
mendation algorithms and/or configurations to find the one that
suits its development.

Validation experiment. To validate this idea, we have arbitrar-
ily selected two backlogs in the dataset: g13 and g24 (represent-
ing 104 stories, 52 each). For these two backlogs, we created
a Ground Truth (GT) by manually clustering the backlog into
partitions of similar stories. To create such a GT, one author
worked in isolation to produce the clustering, and another one
reviewed the provided clustering. In case of disagreements, the
two authors discussed together to find a way to solve the conflict.
If the conflict was unsolvable, the third author was supposed to
act as a referee (but this situation had never happened during
the experiment). We have then used four different algorithms
to create clusters automatically and demonstrate the versatility
supported by the formal model:

1. Fluid: an off-the-shelf stochastic algorithm for commu-
nity detection in graphs, which relies on the metaphor of
fluid propagation inside the graph to automatically identify
neighbourhoods as clusters (Parés et al. 2017).

2. K-means 3D: associate to each story a vector of three
dimensions: the number of personas (usually one), the
number of actions, and the number of entities. Then use a
k-means approach to create clusters.

3. K-means (P + E)D: considering s = (P, A, E, K) a story,
we associate to s a vector of size |P|+ |E|+ 1, binding
each story to a vectorial representation of the actors and
entities it contains. The first dimensions represent the
involvement of a given persona in the story, followed by
the involvement of a given entity. Finally, the number of
actions involved in the story is stored in the last dimension.
For example, considering a backlog contains two actors
and three entities, a story defining four actions involving
the first actor and the two last entities is bound to a vector
of six dimensions: [1, 0, 0, 1, 1, 4]. It results in a vectorial
space of 78 dimensions for g13, and a vectorial space of
83 dimensions for g24. Then k-mean is used to identify
clusters among the vectors.

Modelling Agile Backlogs as Composable Artifacts 9

4. Dendrograms: a tailored implementation of business rules
that implements the rationale of our manual similarity se-
lection. A rooted tree is built, clustering step by step stories
together based on a dissimilarity metric. A bonus of −1
is given for matching nodes of the same type (persona, ac-
tion, entity) and the same name. Then maluses are in three
categories. +1 if nodes of different types are matched,
or a node or edge must be created. +0.5 if a persona or
entity match but with a different name. Finally, most user
stories contained a list of actions let say a1 and a2, and we
penalized their differences by 0.25× |a1∆a2|

|a1
⋃

a2|
. The tree is

then built using the unweighted pair group method with
arithmetic mean (UPGMA) method (Sokal 1958). A core
assumption is that the distance from the root to each leaf
is the same, applicable here because there is no notion of
temporality in the backlogs.

We depict in FIG. 10 the results obtained with these four meth-
ods. The x-axis represents the granularity of the clustering, i.e.,
the number of clusters to be computed or the threshold to be
applied for grouping the sub-trees in the dendrogram approach.
The y-axis represents the “success” of the automated clustering
compared to our manual clustering, the higher, the better. We
consider an automated cluster to be successful if stories that
have been manually grouped are found together in the auto-
mated one (we will discuss the limitations of this definition in
SEC. 5).

Conclusions. It is interesting to notice that off-the-shelf ap-
proaches that only rely on the graph structure (fluid and k-means
3D) do not perform well in terms of clustering to identify similar
stories. This can be explained by the constrained nature of the
graph, which implies a pre-defined structure for backlogs, jeop-
ardizing the outcome of such approaches. However, algorithms
that leverage such a structure while using semantic informa-
tion (elements involved in the story with k-means (P+E)D, and
business rules with dendrograms) seem to provide a better rec-
ommendation to the team. Here, the idea is not to defend one
algorithm but to emphasize the versatility supported by the
graph structure used to model the backlogs. It is then possible
for a team to experiment and use the most suitable recommen-
dation that supports their work. For example, the team working
on g24 might decide to go for the k-mean 83D approach, as it
produces correct results concerning the team practices without
having to implement specialized business rules like for g13.

4.5. Σ5: Inter-Product recommandations (Portfolio)
Context & Pain Points. The previous section explored how
to support a team to work on their exact product by automat-
ing stories recommendation while preparing the next iteration.
Here, still related to ambiguities (O4) and preconceived prob-
lems (O1), we are interested in the human factor of DevOps to
facilitate communication inside a given value stream (delivering
a product) and between value streams (delivering a portfolio of
products). The idea of transferring knowledge from one prod-
uct to another one thanks to an analysis of the domain models
can also be found in approaches using artificial intelligence for
assisting software designers (Combemale et al. 2021)

Threshold (dendrogram) | number of target communities (others)0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 c

ur
at

ed
 st

or
y

clu
st

er
s i

n
th

e
sa

m
e

au
to

m
at

ic
clu

st
er

Scenario g13
dendro
k-means 3D
K-means 78D
fluid

Threshold (dendrogram) | number of target communities (others)0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 c

ur
at

ed
 st

or
y

clu
st

er
s i

n
th

e
sa

m
e

au
to

m
at

ic
clu

st
er

Scenario g24
dendro
k-means 3D
K-means 83D
fluid

Figure 10 Comparing different recommandation clustering
algorithms

Scenario implementation. In this context, the idea is to take
advantage of the graph structure to extract relevant information
for the teams at the portfolio level, e.g., the team interacting
with backlog b is working on specifications similar to the team
working on backlog b′. The objective is to exhibit a similarity
matrix, which, considering two stories, provides a similarity
score between them. A challenge here is to take into account
vocabulary gaps and jargon among teams. By design, persons
and entities can be considered fixed points in backlogs, i.e.,
they model a specific vocabulary used inside the team, with its
specificities. For example, what is called a Repository by a team
might be similar to what is called a Data Archive by another
one. The idea is to use NLP techniques to identify similarities
between concepts across backlogs. As for the previous section,
it is worth noting that there are numerous alternatives to com-
pute such similarities. Therefore, this section demonstrates that
the model supports such an approach, allowing a company to
choose the best fit for its global practices. To exemplify this
point, we defined a simple way of computing similarity be-
tween stories: we rely on the text-similarity implementation of
spaCy (Honnibal et al. 2020), a reference NLP library in Python.

10 Mosser et al.

Considering two strings a and b, calling a.similarity(b) re-
turns a real value (∈ [0, 1]) to measure the semantic similarity
between the two strings, the higher the better. For each back-
log, we apply a graph transformation that flatten the graph into
triples (p, A, e) ∈ T , where p is a persona, e an entity, and A
the set of actions that p perform on e, whatever the story. Then,
we define a similarity operator σ : T × T → R as the sum of
spaCy’s similarities for each string involved in the two triples.
Personas and entities are scalar values, so their similarity is
immediate using spaCy. As each triple contains a set of actions,
we have to normalize the similarities between the elements in
each set of actions to produce this value. As a consequence the
value returned by σ is a real number in [0, 3].

Validation experiment. Using our reference dataset the graph
transformation produced 2, 973 triples out of the 1, 671 stories.
There are O(n2) pairs of triples, leaving us with an exploration
space of more than eight million comparisons. We applied three
heuristics for the execution of the similarity computation: (i) we
did not compute intra-backlog comparisons, (ii) we relied on
the commutativity of the σ operator to only compute half of the
measurements, and (iii) we parallelized the computation over
40 processors. In the end, it left us with 4, 114, 765 measure-
ments, taking close to 122 CPU hours of computation using
the Compute Canada cluster (9.3 measurements/second/proc
on average). This approach supports the incremental definition
of backlogs: adding new stories means only computing the
similarity for the impacted subset of triples without changing
anything for the already computed ones, and in the worst case,
analyzing the complete models for 22 product took three hours
in a parallel environment, making it possible to run such an
analysis as a weekly task, for example.

Conclusions. We depict in FIG. 11 the distribution of similar-
ities for each pair of backlogs present in the dataset (231 pairs).
Using a Kolmogorov-Smirnov test to measure the differences
between these distributions, we identified that 97% of the triples
are statistically different according to our implementation of the
σ measure (p-value < 0.05). This is frustrating but also rea-
sonable considering that the backlogs collected in the reference
dataset come from different origins and specify projects that are
coming from very different business domains.

However, two pairs of backlogs exhibit a significant similar-
ity. In FIG. 11, they are visible in the rug bar, where all the
distributions’ averages forms a continuum in the [0.75, 1.5] in-
terval, except these two backlogs that exhibit an average higher
than 1.5.

– (g17, g5): The two systems are related to scientific data
publication. Scientists can publish the dataset used to
support their experiments in an automated or manual way.

– (g23, g26): The two systems are related to archive man-
agement. Archivists can moderate digital collections of
artifacts to organize their archive and publish it digitally.

Interestingly, these two pairs are close to each other in terms
of rationale, i.e., publish a digital collection of “things”. It
is also interesting to notice that even if the four systems are
related to content management, the one involved in the first pair

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Similarity

0.000

0.005

0.010

0.015

0.020

0.025

0.030

De
ns

ity

Figure 11 Distribution of similarities for each pair of backlog
(231), the rug bars represent the average of each distribution

follows an approach where end-users publish data on their own,
manually or through an automated API, where the one involved
in the second pair relies on moderation processes. It means that
even if simple, the σ function defined over the graph model is
precise enough to provide this kind of distinction.

To win some intuition about what is considered a good match,
here is the highest-scoring matching stories between (g17, g5):

– “As an API User, I want to have a flexible API using
HASC codes for countries, regions and cities, so that I can
visualize budget data on maps”

– “As an app developer, I want to share a dataset type across
multiple applications that include the dataset type’s code
in their artifacts”

Both stories have as entity Code. The persona in the first one
is API User and App Developer in the second. This high-
lights the NLP similarity metrics’ interest that matched similar
personas described with different vocabulary.

5. Threats To Validity

5.1. Threats to Validity
Our objective here is not to demonstrate that a given feedback
provider is better than another one or perform an empirical eval-
uation of the quality of the backlogs available in the reference
dataset. To perform such a task, access to the engineers who
worked on the different products would have been necessary
and access to a qualified version of the dataset (e.g., similarity
between stories, iterations planning). Considering that such ac-
cess does not exist, it is impossible to support such experiments.
Moreover, as the products in the dataset are anonymized, it is
impossible to reach the companies or open-source projects that
worked on them to perform such a qualification.

This is why the ground truths (e.g., the reference equivalence
clusters used to measure the story recommendation) were de-
fined by the authors. Unfortunately, this triggers an external

Modelling Agile Backlogs as Composable Artifacts 11

threat to validity, jeopardizing the result generalization. How-
ever, the point here is not to measure a given approach but to
show that modelling backlogs can support alternative analysis
and let the team choose the one that fits its practices.

Considering this objective of versatility, an internal threat
is related to the implementation of our proposition, as we re-
lied on tools (e.g., NetworkX, spaCy) that were familiar to the
authors. This is mitigated by the fact that the algorithms used
would be provided as off-the-shelf components interfaced with
the backlog model thanks to a public interface in a production
setup. Also, the way we clustered the two backlogs used to
demonstrate story recommendation heavily relies on our agile
and DevOps development expertise. This is mitigated by the
fact that we were not evaluating one approach against the other.
Moreover, considering that a backlog reflects the team’s prac-
tices, designing a customizable solution at this level is essential.

Finally, the approach described in the paper relies on NLP
tools to extract the backlog models automatically. As any tool
relying on natural language analysis, these tools are not com-
pletely accurate and can make mistakes. However, the precision
and recall of the tools used to support the experimental part of
this paper are among the best of the state of practice. Visual-
Narrator exhibits in its reference benchmark precision in the
[92%, 98%] range, and recall in the [88%, 97%] one.

5.2. Discussions & Relations to MDE foundations
This paper describes a modelling approach for backlogs and five
applications scenarios built on top of this approach. The appli-
cation scenarios aim to validate the expressiveness and potential
of the formal model. Unfortunately, the agile community is his-
torically hostile to modelling, considering that MDE tools are
heavy and unsuitable in an agile context. With this contribution,
we aim to demonstrate that models can be integrated inside an
Agile/DevOps development cycle by precisely modelling the
core of this development paradigm: the backlog.

Taking a step back, it questions our value as model-driven
software engineers, more precisely what we take for granted.
To integrate modelling inside such a loop and scale top real-life
backlogs, we had to give up our classical tooling (e.g., UML
models, EMF-based code) and redesign a software stack and
approach that was entirely driven by the application domain
technological environment. The approach described in the paper
goes back to the root of modelling, i.e., identifying the right
abstractions. In our case, these abstractions were constrained by
the five properties identified in SEC. 3. If P1−3 are related to a
technical level, the last two properties P4 and P5 have a strong
impact on the modelling choices:

– P4 advocate for versatility in the processing that will be ap-
plied to the models. This open-world modelling approach,
where models are created with no idea whatsoever of how
they will be used for is a new dimension of design uncer-
tainty (Famelis & Chechik 2019). It also triggers the need
to create model-driven systems that are open to extensions
in an easy way, which can be an engineering challenge
(e.g., in our case, we had to push all the implementation to
a PYTHON environment).

– P5 insists on a fundamental principle of agility, i.e., being
iterative and incremental. This is reflected in the careful
formalization of the backlog and the different operators
used to manipulate them. However, the link between high-
level requirements and technical properties of operators
is not always immediate (Benni et al. 2020), and requires
tremendous design efforts to ensure that the requirements
are fulfilled.

Finally, the “elegance” of the described approach is to solve
the particular problem of backlog modelling by going back to
modelling fundamentals and considering a model as a graph.
This abstract representation provided two immediate benefits:
(i) being able to switch from one technological ecosystem to
another one quickly and (ii) being able to rely on a reference
graph library to support the low-level implementation of the
operators. However, this idea could be reused in other domains.
By relying on pure graph structure as modelling backends, it
becomes possible to reuse graph-based algorithms, e.g., for rec-
ommendation purposes. Relying on standard representation for
graphs, e.g., using reference libraries, also foster collaborations
and ease the integration of new tools. It is, of course, possible
to transform a model (e.g., an EMF model) into a graph and
perform computation on top of this graph before coming back
to the origin space.

Nevertheless, transforming models back and forth can intro-
duce instability in a toolchain, in addition to the performance
costs. We believe that bridging the gap between modelling
and computation is essential, as assumed by communities such
as the models@run.time or the multi-paradigm modelling one.
Considering the rise of the “artificial intelligence for modelling”
topic in the community, pushing our tools and framework to
AI-environment instead of relying on transformations might be
the next necessary step towards a global acceptance of models
recommender for example.

6. Conclusions & Perspectives

This paper showed that reinstating backlogs as first-class cit-
izens allows us to propose early and informative feedback to
developers and product owners. Furthermore, we proposed a
way to model those product backlogs as constrained graphs
formally. Where state-of-the-art approaches considered the
backlog a means to an end, we focused on modelling it and
considering it as an actionable artifact for analysis purposes.
Thanks to this representation, we have shown how to exploit the
graph structure to provide immediate feedback to the product
team, according to three analysis dimensions: product analysis,
iteration planning and portfolio management. To summarize,
the contributions of this paper are the following:

1. A modelling approach for product backlogs, validated on
top of a reference dataset in terms of expressiveness;

2. A set of scenarios leveraging the model, demonstrating
how versatile it is and making it customizable to a given
team’s practices;

12 Mosser et al.

3. The scenarios are based on industrial collaborations, and
covers five out of six obstacles in product backlog manage-
ment identified by an external study;

4. A discussion of the relation of these two contributions and
the model-driven engineering field.

This work opens numerous perspectives, according to dif-
ferent research themes. From a domain point of view, the first
theme is related to the empirical evaluation of approaches work-
ing on backlogs. By having a close relationship with the teams
developing the products, it would become possible to deliver
to the community a reference standard with automated tooling
to evaluate approaches working on the models. The second
theme is related to NLP. We showed that good results could be
obtained using an out-of-the-box implementation of text simi-
larity. A more targeted approach could use constrained syntax
trees and natural language modelling techniques (Maupomé &
Meurs 2020) to provide more precise model importers. Another
interesting research theme is related to the definition of graph
similarity algorithms on top of the models. To date, we relied on
algorithms implemented in PYTHON libraries, but a sustainable
approach should rely on something less adherent to code. The
research challenges here are identifying the different dimensions
of similarity, implementing them efficiently, and exposing such
dimensions so that a development team can customize them to
fit its practices.

Finally, all the previous themes trigger a variability manage-
ment challenge. The DevOps team is now confronted with many
decisions to find the right way to use the model in its feedback
loop. Thus, software product lines techniques will have to be
explored to guide the team during the configuration process.

Acknowledgments
The work described in this paper is supported by a Discovery
grant from the Natural Sciences and Engineering Research
Council of Canada (NSERC, RGPIN-2020-05791). The authors
want to thanks Fabian Gilson (University of Canterbury, NZ)
for his initial inputs and dataset availability, as well as Benjamin
Benni (Instant Systems), Guilhem Molines (IBM), Enzo Dalla-
Nora, Florian Bourniquel, and David Sene, who participated in
the implementation of the first proof of concept. This research
was enabled in part by support provided by Calcul Québec,
Compute Canada and DELL.

References
Athiththan, K., Rovinsan, S., Sathveegan, S., Gunasekaran, N.,

Gunawardena, K. S. A. W., & Kasthurirathna, D. (2018).
An ontology-based approach to automate the software devel-
opment process. In 2018 ieee international conference on
information and automation for sustainability (iciafs) (p. 1-6).
doi: 10.1109/ICIAFS.2018.8913339

Barbosa, R., Silva, A. E. A., & Moraes, R. (2016). Use of
similarity measure to suggest the existence of duplicate user
stories in the srum process. In 2016 46th annual ieee/ifip in-
ternational conference on dependable systems and networks
workshop (dsn-w) (p. 2-5). doi: 10.1109/DSN-W.2016.27

Benni, B., Mosser, S., Acher, M., & Paillart, M. (2020). Char-
acterizing black-box composition operators via generated
tailored benchmarks. J. Object Technol., 19(2), 7:1–20. Re-
trieved from https://doi.org/10.5381/jot.2020.19.2.a7 doi:
10.5381/jot.2020.19.2.a7

Bordeleau, F., Cabot, J., Dingel, J., Rabil, B. S., & Renaud, P.
(2020). Towards modeling framework for devops: Require-
ments derived from industry use case. In J.-M. Bruel, M. Maz-
zara, & B. Meyer (Eds.), Software engineering aspects of
continuous development and new paradigms of software pro-
duction and deployment (pp. 139–151). Cham: Springer
International Publishing.

Combemale, B., Kienzle, J., Mussbacher, G., Ali, H., Amyot,
D., Bagherzadeh, M., . . . Wimmer, M. (2021). A hitchhiker’s
guide to model-driven engineering for data-centric systems.
IEEE Softw., 38(4), 71–84. Retrieved from https://doi.org/10
.1109/MS.2020.2995125 doi: 10.1109/MS.2020.2995125

Dalpiaz, F. (2018). Requirements Data Sets (User Stories). Re-
trieved from https://data.mendeley.com/datasets/7zbk8zsd8y/
1 (Mendeley Data (v1)) doi: 10.17632/7zbk8zsd8y.1

Dalpiaz, F., Schalk, I. V. D., Brinkkemper, S., Aydemir, F. B., &
Lucassen, G. (2019). Detecting terminological ambiguity in
user stories: Tool and experimentation. Inf. Softw. Technol.,
110, 3–16. Retrieved from https://doi.org/10.1016/j.infsof
.2018.12.007 doi: 10.1016/j.infsof.2018.12.007

Duarte, V. (2016). NoEstimates: How To Measure Project
Progress Without Estimating (1st edition). OikosofySeries.

Elallaoui, M., Nafil, K., & Touahni, R. (2015). Automatic
generation of uml sequence diagrams from user stories in
scrum process. In 2015 10th international conference on
intelligent systems: Theories and applications (sita) (p. 1-6).
doi: 10.1109/SITA.2015.7358415

Elallaoui, M., Nafil, K., & Touahni, R. (2018). Automatic trans-
formation of user stories into uml use case diagrams using
nlp techniques. Procedia Computer Science, 130, 42-49. Re-
trieved from https://www.sciencedirect.com/science/article/
pii/S1877050918303600 (The 9th International Conference
on Ambient Systems, Networks and Technologies (ANT
2018) / The 8th International Conference on Sustainable En-
ergy Information Technology (SEIT-2018) / Affiliated Work-
shops) doi: https://doi.org/10.1016/j.procs.2018.04.010

Famelis, M., & Chechik, M. (2019). Managing design-time
uncertainty. Softw. Syst. Model., 18(2), 1249–1284. Retrieved
from https://doi.org/10.1007/s10270-017-0594-9 doi: 10
.1007/s10270-017-0594-9

Galster, M., Gilson, F., & Georis, F. (2019). What quality
attributes can we find in product backlogs? A machine
learning perspective. In T. Bures, L. Duchien, & P. In-
verardi (Eds.), Software architecture - 13th european con-
ference, ECSA 2019, paris, france, september 9-13, 2019,
proceedings (Vol. 11681, pp. 88–96). Springer. Retrieved
from https://doi.org/10.1007/978-3-030-29983-5_6 doi:
10.1007/978-3-030-29983-5_6

Gilson, F., Galster, M., & Georis, F. (2020). Generating use
case scenarios from user stories. In Proceedings of the in-
ternational conference on software and system processes
(p. 31–40). New York, NY, USA: Association for Com-

Modelling Agile Backlogs as Composable Artifacts 13

https://doi.org/10.5381/jot.2020.19.2.a7
https://doi.org/10.1109/MS.2020.2995125
https://doi.org/10.1109/MS.2020.2995125
https://data.mendeley.com/datasets/7zbk8zsd8y/1
https://data.mendeley.com/datasets/7zbk8zsd8y/1
https://doi.org/10.1016/j.infsof.2018.12.007
https://doi.org/10.1016/j.infsof.2018.12.007
https://www.sciencedirect.com/science/article/pii/S1877050918303600
https://www.sciencedirect.com/science/article/pii/S1877050918303600
https://doi.org/10.1007/s10270-017-0594-9
https://doi.org/10.1007/978-3-030-29983-5_6

puting Machinery. Retrieved from https://doi.org/10.1145/
3379177.3388895 doi: 10.1145/3379177.3388895

Hagberg, A. A., Schult, D. A., & Swart, P. J. (2008). Exploring
network structure, dynamics, and function using networkx. In
G. Varoquaux, T. Vaught, & J. Millman (Eds.), Proceedings
of the 7th python in science conference (p. 11 - 15). Pasadena,
CA USA.

Honnibal, M., Montani, I., Van Landeghem, S., & Boyd, A.
(2020). spaCy: Industrial-strength Natural Language Pro-
cessing in Python. Zenodo. Retrieved from https://doi.org/
10.5281/zenodo.1212303 doi: 10.5281/zenodo.1212303

Kienzle, J., Mussbacher, G., Combemale, B., & DeAntoni, J.
(2019). A unifying framework for homogeneous model com-
position. Softw. Syst. Model., 18(5), 3005–3023. Retrieved
from https://doi.org/10.1007/s10270-018-00707-8 doi: 10
.1007/s10270-018-00707-8

Kim, G., Humble, J., Debois, P., & Willis, J. (2016). The
DevOps Handbook: How to Create World-Class Agility, Reli-
ability, and Security in Technology Organizations (1st Edition
ed.). Portland, OR, USA: IT Revolution Press.

Landhäußer, M., & Genaid, A. (2012). Connecting user stories
and code for test development. In 2012 third international
workshop on recommendation systems for software engineer-
ing (rsse) (p. 33-37). doi: 10.1109/RSSE.2012.6233406

Lucassen, G., Dalpiaz, F., van der Werf, J. M. E. M., &
Brinkkemper, S. (2016). Improving agile requirements:
the quality user story framework and tool. Requir. Eng.,
21(3), 383–403. Retrieved from https://doi.org/10.1007/
s00766-016-0250-x doi: 10.1007/s00766-016-0250-x

Lucassen, G., Dalpiaz, F., Werf, J. M. E. M. v. d., & Brinkkem-
per, S. (2016). The use and effectiveness of user stories in
practice. In M. Daneva & O. Pastor (Eds.), Requirements
engineering: Foundation for software quality (pp. 205–222).
Cham: Springer International Publishing.

Lucassen, G., Robeer, M., Dalpiaz, F., van der Werf, J. M. E. M.,
& Brinkkemper, S. (2017). Extracting conceptual models
from user stories with visual narrator. Requir. Eng., 22(3),
339–358. Retrieved from https://doi.org/10.1007/s00766-017
-0270-1 doi: 10.1007/s00766-017-0270-1

Maupomé, D., & Meurs, M. (2020). Language modeling
with a general second-order RNN. In Proceedings of the
12th language resources and evaluation conference, LREC
2020, marseille, france, may 11-16, 2020 (pp. 4749–4753).
European Language Resources Association. Retrieved from
https://www.aclweb.org/anthology/2020.lrec-1.584/

Nasiri, S., Rhazali, Y., Lahmer, M., & Chenfour, N. (2020).
Towards a generation of class diagram from user stories
in agile methods. Procedia Computer Science, 170, 831-
837. Retrieved from https://www.sciencedirect.com/science/
article/pii/S1877050920306049 (The 11th International
Conference on Ambient Systems, Networks and Technolo-
gies (ANT) / The 3rd International Conference on Emerging
Data and Industry 4.0 (EDI40) / Affiliated Workshops) doi:
https://doi.org/10.1016/j.procs.2020.03.148

Parés, F., Gasulla, D. G., Vilalta, A., Moreno, J., Ayguadé, E.,
Labarta, J., . . . Suzumura, T. (2017). Fluid communities:
A competitive, scalable and diverse community detection

algorithm. In International conference on complex networks
and their applications (pp. 229–240).

Raharjana, I. K., Siahaan, D., & Fatichah, C. (2021). User
stories and natural language processing: A systematic lit-
erature review. IEEE Access, 9, 53811–53826. Retrieved
from https://doi.org/10.1109/ACCESS.2021.3070606 doi:
10.1109/ACCESS.2021.3070606

Robeer, M., Lucassen, G., van der Werf, J. M. E. M., Dalpiaz,
F., & Brinkkemper, S. (2016). Automated extraction of
conceptual models from user stories via NLP. In 24th IEEE
international requirements engineering conference, RE 2016,
beijing, china, september 12-16, 2016 (pp. 196–205). IEEE
Computer Society. Retrieved from https://doi.org/10.1109/
RE.2016.40 doi: 10.1109/RE.2016.40

Rodeghero, P., Jiang, S., Armaly, A., & McMillan, C. (2017).
Detecting user story information in developer-client conver-
sations to generate extractive summaries. In 2017 ieee/acm
39th international conference on software engineering (icse)
(p. 49-59). doi: 10.1109/ICSE.2017.13

Sandeep RC. (2020). Estimation Techniques in Agile Software
Development (Unpublished master’s thesis). Høgskolen i
Østfold, Norway.

Sedano, T., Ralph, P., & Péraire, C. (2019). The product backlog.
In J. M. Atlee, T. Bultan, & J. Whittle (Eds.), Proceedings
of the 41st international conference on software engineering,
ICSE 2019, montreal, qc, canada, may 25-31, 2019 (pp. 200–
211). IEEE / ACM. Retrieved from https://doi.org/10.1109/
ICSE.2019.00036 doi: 10.1109/ICSE.2019.00036

Sokal, R. R. (1958). A statistical method for evaluating system-
atic relationships. Univ. Kansas, Sci. Bull., 38, 1409–1438.

Zager, L. A., & Verghese, G. C. (2008). Graph similarity
scoring and matching. Appl. Math. Lett., 21(1), 86–94. Re-
trieved from https://doi.org/10.1016/j.aml.2007.01.006 doi:
10.1016/j.aml.2007.01.006

About the authors
Sébastien Mosser is Associate Professor at McMaster Univer-
sity (Canada), and a member of the McMaster Centre for Soft-
ware Certification (McSCert). His research focus on domain-
specific languages and distributed systems (e.g., microservices),
using software composition as a mean to achieve scalabil-
ity. You can contact him at You can contact the author at
mossers@mcmaster.ca..

Corinne Pulgar is an M.A.Sc. student at École de Technolo-
gie Supérieure (ETS) in Montréal, Canada, and a member of
the COOL lab. Her research interest covers DevOps pipelines
and argumentation models. She is a member of the DevOps
Industrial Research Chair hosted by ETS, in collaboration with
TELUS and Kaloom. You can contact her at You can contact
the author at corinne.pulgar.1@ens.etsmtl.ca..

Vladimir Reinharz is professor of Bioinformatics at Université
du Québec à Montréal (UQAM, Canada), and a founding mem-
ber of the COOL lab. His research focuses on Computational

14 Mosser et al.

https://doi.org/10.1145/3379177.3388895
https://doi.org/10.1145/3379177.3388895
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.1007/s10270-018-00707-8
https://doi.org/10.1007/s00766-016-0250-x
https://doi.org/10.1007/s00766-016-0250-x
https://doi.org/10.1007/s00766-017-0270-1
https://doi.org/10.1007/s00766-017-0270-1
https://www.aclweb.org/anthology/2020.lrec-1.584/
https://www.sciencedirect.com/science/article/pii/S1877050920306049
https://www.sciencedirect.com/science/article/pii/S1877050920306049
https://doi.org/10.1109/ACCESS.2021.3070606
https://doi.org/10.1109/RE.2016.40
https://doi.org/10.1109/RE.2016.40
https://doi.org/10.1109/ICSE.2019.00036
https://doi.org/10.1109/ICSE.2019.00036
https://doi.org/10.1016/j.aml.2007.01.006
mailto:mossers@mcmaster.ca?subject=Your paper "Modelling Agile Backlogs as Composable Artifacts\to support Developers and Product Owners"
mailto:corinne.pulgar.1@ens.etsmtl.ca?subject=Your paper "Modelling Agile Backlogs as Composable Artifacts\to support Developers and Product Owners"

Biology and Evolution, particularly the design of new graph-
based algorithms to study RNA molecules and viral infections.
You can contact the author at reinharz.vladimir@uqam.ca.

Modelling Agile Backlogs as Composable Artifacts 15

mailto:reinharz.vladimir@uqam.ca?subject=Your paper "Modelling Agile Backlogs as Composable Artifacts\to support Developers and Product Owners"

