
Journal of Object Technology | RESEARCH ARTICLE

Mobile Modeling with Real-Time Collaboration Support
Max Härtwig∗ and Sebastian Götz‡

∗Technische Universität Dresden, Germany; Now at Google, Switzerland
‡Faculty of Computer Sciences, Technische Universität Dresden, Germany

ABSTRACT
Modeling is an essential discipline, especially in software engineering. Students and developers alike employ models to
describe systems, capture requirements, and communicate with other teams. For that purpose, UML diagrams are often
employed. Meanwhile, mobile devices increased in prevalence and popularity and flexible work arrangements were introduced
in a larger number of workplaces. Effective collaboration is more important than ever. However, tools have not kept up with
these developments. To the best of our knowledge, there is no semantics-aware mobile modeling approach that supports
collaboration in real time: a gap we aim to close in this paper.
For this, we investigate existing approaches for mobile modeling and their shortcomings with a particular focus on conflict-free,
real-time collaboration. Based on our findings, we conceptualize and implement CoMod, a proof of concept allowing users
to collaboratively edit UML class diagrams in real time. The system consists of a Flutter-based client application for Android
and iOS and a Node.js-based server executable. These components utilize conflict-free replicated data types (CRDT) to
merge participants’ changes. Moreover, CoMod ’s feasibility is evaluated using two case studies (classroom and brainstorming)
investigating the system’s scalability and performance characteristics.

KEYWORDS Android, collaboration, CRDT, Flutter, mobile, modeling, iOS, real-time, UML, Yjs

1. Introduction
Modeling is an essential discipline in many fields, such as engi-
neering, natural sciences, and psychology (Rothenberg 1990).
Models describe or represent systems on an abstract level and
can be used for discussions, analyses, and other purposes. They
are particularly useful in software engineering and are employed
throughout the industry. Models capture requirements and aid
in the communication between teams, thus increasing quality
and productivity by reducing ambiguity and misunderstandings.
With sufficient semantic information, some kinds of models can
even be used to generate and verify code.

Traditionally, the process of modeling has taken place in an
office setting on whiteboards, or digitally on laptops and desk-
top computers. However, mobile devices such as smartphones

JOT reference format:
Max Härtwig and Sebastian Götz. Mobile Modeling with Real-Time
Collaboration Support. Journal of Object Technology. Vol. 21, No. 3, 2022.
Licensed under Attribution - NonCommercial - No Derivatives 4.0
International (CC BY-NC-ND 4.0) http://dx.doi.org/10.5381/jot.2022.21.3.a2

and tablet computers can also be used for modeling purposes,
making it accessible to a larger group of users as more people
have access to smartphones than laptops and desktop computers.
Further, they are usually cheaper to buy and replace. Smart-
phones and tablets also benefit from the fact that they can be
taken anywhere and used near the described problem domain
or right where the model is needed. Mobility and context can
be especially beneficial for modeling in certain problem do-
mains (Vaquero-Melchor et al. 2017). Furthermore, mobile
devices commonly have access to a wide range of sensors, such
as camera and GPS, and may feature specialized input meth-
ods like styluses and multi-touch gestures than can result in an
improved usability.

The aspect of collaboration has usually involved multiple
people discussing changes while one person was carrying them
out on a whiteboard or a shared screen. While being effective,
this approach exhibits a couple of shortcomings. Collaborators
have to be present in the same room or online meeting and
cannot all edit the model at the same time. A better solution
would be the adoption of tools that allow modeling to take

An AITO publication

http://dx.doi.org/10.5381/jot.2022.21.3.a2

place in an asynchronous and collaborative manner as discussed
in (Franzago et al. 2018; Masson et al. 2017). This is especially
important for organizations with a rising number of distributed
teams and colleagues working from home. This process is
further accelerated by the COVID-19 pandemic.

With the increasing prevalence of mobile devices and flexi-
ble work arrangements, mobile modeling applications could be
valuable instruments for teams to collaborate and might even be-
come essential tools in a world where remote work is the norm
rather than the exception. Several mobile modeling applications
are available today, but they usually lack vital features that a vi-
able collaborative mobile modeling solution should have. Some
general-purpose applications support real-time collaboration,
but do not provide the means needed for modeling software
systems as we will show in this paper.

To close this gap, we introduce a novel concept and proto-
typical implementation for semantics-aware mobile modeling
applications with real-time collaboration support called CoMod.
We evaluate the approach using a case study, which represents
two typical usage scenarios: a classroom and a brainstorm-
ing setting. Our prototype and evaluation setup is available as
open-source and can be found on GitHub1.

The remainder of this paper is structured as follows. First,
section 2 outlines requirements that serve as a reference for the
examination of existing mobile modeling applications in sec-
tion 3. Section 4 describes the concept of a new application sat-
isfying these criteria without depending on specific platforms or
frameworks. Subsequently, section 5 portrays the implementa-
tion of CoMod, a proof of concept based on the aforementioned
concept. This is followed by section 6, an evaluation of the
solution, its viability and scalability by means of a case study.
Finally, section 7 summarizes the main findings and concludes
this paper.

2. Requirements for Real-time Collaborative
Mobile Modeling

This section enumerates a set of requirements that viable mobile
modeling applications should satisfy and explains why each
one is essential. The preceding literature analysis – in particu-
lar (Brunschwig et al. 2022; Franzago et al. 2018) – revealed
different criteria that were used by different authors.

Availability: Mobile modeling apps are mainly used on
mobile devices which usually run either Android or iOS. A
good app should be available on both platforms to enable all
members of a project to use it.

Semantics: A model should not just be a drawing or a dia-
gram. A good modeling app understands the model’s contents
and can discern its individual components. Operations per-
formed on the model should always yield a valid result, e.g. a
deleted class in a UML class diagram should not leave relation-
ships without a target.

Performance: Modeling apps should be fast and responsive
despite being limited by a mobile CPU. Users should not have to
wait for basic actions and expensive work needs to be performed
in the background to ensure that the UI never feels sluggish.

1 https://github.com/MaxHaertwig/CoMod

Usability: Mobile devices often have relatively small screens
and require apps to adapt their UI accordingly. Basic interac-
tions should be discoverable, easy to perform, and require as
few steps as possible. The aspect of accessibility also belongs
to this category.

Collaboration: Modeling is usually performed by multi-
ple members of a team collaborating with each other. Mobile
modeling apps should enable them to do so by either allowing
documents to be shared or, even better, worked on in real time.

Offline support: Enabling real-time collaboration is not a
trivial task and usually requires an active internet connection.
However, mobile devices often have to deal with unreliable
cellular connections or no connection at all when wifi is not
available (e.g. in the case of most tablets). Modeling apps
should account for that and allow models to be edited offline.

3. Related Work
Based on the extensive survey on mobile modeling applications
in (Brunschwig et al. 2022), this section examines three repre-
sentative mobile modeling applications. The selection includes
solutions allowing the design of models that can be represented
as UML class diagrams.

3.1. Astah UML

Astah UML2 (formerly JUDE) is a UML modeling software
for iOS and PC. Its iPad version supports the creation of UML
class diagrams by allowing text, notes, classes, and interfaces
to be placed on a canvas. These objects can be color-coded and
connected using lines and arrows. Details such as the type’s
name, attributes, and operations can be edited via an overlay that
appears when needed. The desktop versions offer more features
and also allow other types of UML diagrams to be created.

Availability: The mobile version of Astah is only available
on iPad (named Astah UML pad). The desktop version comes
in two variants, Astah UML and Astah professional, and runs
on Windows, macOS, and Linux.

Semantics: Astah recognizes the individual parts of class
diagrams. Documents can be exported as XMI files to be pro-
cessed by other applications. Code can be imported from and
exported to many languages.

Performance: Both the mobile and desktop versions are fast
and responsive.

Usability: The limited feature set of the mobile version
makes using the app rather simple. Most actions are performed
using menus that appear when needed. A bar above the keyboard
offers quick access to special characters and the names of data
types. The desktop version goes a step further and provides
affordances to quickly add a property or operation and even
suggests targets when beginning to draw a connection.

Collaboration: Astah lacks support for collaboration. Files
can be sent to team members, but they cannot be edited collabo-
ratively.

Offline support: Projects are created locally by default and
do not require an active internet connection.

2 https://astah.net/products/

2 Härtwig and Götz

https://github.com/MaxHaertwig/CoMod
https://astah.net/products/

3.2. Lucidchart

Lucidchart3 is a proprietary diagramming application that fo-
cuses on sharing and collaboration. At its core is a canvas upon
which different shapes can be placed. Basic shapes include
boxes, arrows, and text. An extensive library offers access to
more shapes, such as AWS icons, flowcharts, tables, and UML
diagrams. All of them can be mixed and matched and placed on
the same canvas. Shapes can be formatted and connected with
each other using lines or arrows. Many shapes have dedicated
areas for text, e.g. the class shape accepts text entries for the
class’s name, its attributes, and its operations.

Availability: Lucidchart offers native apps for Android and
iOS and is accessible via a web browser on desktop computers.

Semantics: A major drawback is the absence of semantics.
Documents are treated as collections of shapes and are unaware
of the semantics of their contents.

Performance: The experience is quite snappy on iOS and
does not require the user to wait for any action to complete.
However, the version running in the browser might feel some-
what slower than comparable native applications.

Usability: The app is fairly usable and it is easy to get up
to speed. The number of presented options is daunting, but not
overwhelming.

Collaboration: Other users can be invited to collaborate on
documents and any edits appear on others’ devices in real time.
Contributors can leave comments and associate them with a
certain shape to start a discussion.

Offline support: Both mobile apps allow documents to be
created and edited while being disconnected from the internet.
However, this feature is still in beta for the web version.

3.3. System Designer

System Designer4 is a free mobile IDE for designing JavaScript
systems developed by Erwan Carriou. It allows the design
of entire systems, including models, behaviors, instances, and
logging. This is done via the Metamodel JavaScript Object
Notation (MSON)5 which can be edited directly. During the
process, the individual components of the system are visualized
within the app. After a system has been designed, it can be run
directly in System Designer and even shows logging output.

Availability: Native apps for Android and iOS are available
for download. A progressive web app for desktop computers
can be used as well.

Semantics: The specification via MSON enables the appli-
cation to be aware of every system component on a structural
and semantic level.

Performance: Both the native and web versions of the app
are performant and immediately respond to user interaction.

Usability: The user interface has a clear structure. Editing
system components using the built-in text editor might feel
tedious sometimes, but it is fast and features autocompletion.

3 https://www.lucidchart.com/pages/
4 https://designfirst.io/systemdesigner
5 https://designfirst.io/systemruntime/documentation/

docs/en/design-your-model.html

Collaboration: System Designer does not offer dedicated
collaboration features. However, a project can be synchronized
via a GitHub repository.

Offline support: None of the application variants requires
an active internet connection.

3.4. Summary
The solutions presented above are a small subset of mobile
modeling applications available today (Brunschwig et al. 2022).
However, each solution represents a certain class w.r.t. our
requirements. Applications like Lucidchart or diagrams.net6

allow the collaborative creation of nice-looking UML diagrams,
but do not understand the models’ semantics. Other applications
such as Astah UML pad can be used to design proper UML mod-
els, but they are only available on a small number of platforms
or lack certain features developers rely on. Specialized solutions
such as System Designer are very capable but focus on a specific
area, e.g. designing JavaScript systems, and are unsuitable for
general-purpose modeling.

In summary, none of the solutions presented in this section
nor other available applications at the time satisfy all of our
requirements. A gap we aim to close with our approach.

4. Concept
This section describes a concept for an application that satisfies
all of the requirements outlined in section 2.

The field of mobile modeling is extensive and impossible to
exhaustively cover with a single application. Hence, as a proof
of concept, we focus on the domain of UML class diagrams.

4.1. Objectives
Our concept is designed to fulfill the following list of objectives.

UML class diagrams: The app should allow the creation
and manipulation of UML class diagrams, including types (i.e.
classes, abstract classes, interfaces) and relationships (i.e. asso-
ciations, aggregations, compositions, associations with associ-
ated classes, qualified associations).

Semantics: The app should retain the model’s semantics, i.e.
it needs to be able to discern the model’s individual components
and check their validity. Another responsibility is ensuring the
consistency of the model while it is being modified, e.g. deleting
a type should also delete its relationships and not leave them
one-sided.

Availability: The app should run on multiple platforms. As
this is mainly targeted at mobile platforms, Android and iOS
are the prime candidates. Targeting the web is desirable, but
remains optional for this proof of concept.

Collaboration: The app should allow multiple users to col-
laboratively work on the same model. Modifications need to be
non-locking and able to be merged without conflicts that require
manual resolution. Users need to be able to edit the model
concurrently without having to wait for others. This may cause
their local replica to diverge temporarily. To cope with this fact,
the app has to implement eventual consistency, i.e. all replicas

6 https://www.diagrams.net

Mobile Modeling with Real-Time Collaboration Support 3

https://www.lucidchart.com/pages/
https://designfirst.io/systemdesigner
https://designfirst.io/systemruntime/documentation/docs/en/design-your-model.html
https://designfirst.io/systemruntime/documentation/docs/en/design-your-model.html
https://www.diagrams.net

need to be in the same state once all pending modi�cations have
been transmitted and processed.

Performance: The app needs to be fast and responsive. Mo-
bile devices often lack the most powerful processors due to their
small size and thermal constraints. This needs to be accounted
for. Expensive computations need to be performed in the back-
ground to ensure that the user interface remains responsive at
all times. When collaborating, a low latency is desirable. Mod-
i�cations from other connected participants should appear in
real time.

Usability: The app needs to be usable on smartphones. Text
should be readable and UI elements have to be large enough
to be touched without accidentally triggering an adjacent one.
All features have to be accessible via touch without requiring a
mouse or a keyboard to be connected.

Of�ine support : The app has to be usable without an active
internet connection. This includes the modi�cation of shared
models. Of�ine changes need to be cached and transmitted
once an internet connection is established again. Unreliable
connections have to be tolerated without changes being dropped.

4.2. User Interface

In order to supply the features outlined in the �rst objective of
the previous section, the app needs at least four different views:

Models: An editable list of the different models the app has
stored. Selecting a model leads to the Model Details view.

Model Details: Shows the selected model's contents, i.e. its
types and their relationships. This could be a list or a visual
representation. From this view, users should have the option to
add, select, or delete types. Selecting a type leads to the Type
Details view; a back button leads back to the Models view.

Type Details: Shows the details of a type, including its name,
type (class, interface, etc.), supertypes, attributes, operations,
and relationships. All these properties need to be editable from
this view. A back button leads back to the Model Details view.

Collaboration: Allows users to start or join collaboration
sessions. Starting a collaboration session should be possible
after having selected a model to edit while joining a remote
session should be possible from the Models view.

Fig. 1 depicts what above views might look like when im-
plemented as dedicated screens and how a user might navigate
between them. However, these views do not necessarily have to
be presented on their own screens. It might also be possible to
combine multiple views on a single screen, especially on larger
devices such as tablets.

4.3. Data Model

An internal data model is required for the app to keep track of
the model's contents at runtime. A UML class diagram can
be interpreted as a hierarchy, thus a tree-like structure would
be suitable. The tree's root is the UML model itself which
in turn contains UML types and relationships. Types contain
attributes and operations. Operations contain parameters. As a
consequence, the model consists of heterogeneous nodes that,
depending on their own type, can only contain certain types of
child nodes (cf. �g. 2). Moreover, each type of node may only
contain a certain set of properties, e.g. an operation has a name,

Figure 1 Concept of the user interface.

Figure 2 The tree-like structure of the app's data model. The
dotted lines indicate the overlay graph.

a visibility annotation, and a return type. Table 1 lists all entities
along with their properties and possible children types.

Some relations between different nodes, i.e. attributes based
on types in the model and the types involved in a relationship,
cannot be represented by a strictly tree-based structure. Both
attributes and relationships reference types based on their unique
IDs. This approach can be interpreted as an overlay graph
(cf. dotted lines in �g. 2). This is important for the model's
consistency, which must be maintained at all times. When a type
is deleted, all referencing attributes' data types are changed to
string(as the type they used to reference does not exist anymore)
and referencing relationships are deleted.

The data model has to be persisted regularly to preserve
its contents across launches of the app. One option is saving
all entities as rows in a database with parent-child relations
modeled using foreign keys. Another option is to serialize the
data model to a binary or text-based format and write it to a �le.

4.4. Collaboration

Collaboration is based on the concept of sessions. Each session
is tied to a model (identi�ed by its ID). When a model is being

4 Härtwig and Götz

Component Properties
Possible
children types

UML Model ID
UML Type,
UML Relation-
ship

UML Type
ID, Name*, Type (class,
abstract class, interface),
Supertypes

UML Attribute,
UML Opera-
tion

UML
Attribute

Name*, Visibility, Data Type

UML
Operation

Name*, Visibility, Return
Type

UML Opera-
tion Parameter

UML
Operation
Parameter

Name*, Data Type

UML
Relationship

Label*, From Type ID, To
Type ID, Multiplicity

Table 1 A list of the data model's components and their prop-
erties and possible children types. Mergeable properties are
marked with a star (*).

edited, a collaboration session may be started. This generates
a link that others can use to join the session. Starting a session
should automatically join an existing session of the same model
if one is already in progress. A collaboration session may be
left by any user at any point in time.

When joining a session, the session's model has to be sent
to the joining device. If a version of the model is saved locally,
it needs to besynchronized; if no local copy exists, the entire
model has to be downloaded. The process of synchronization
(sync) includes receiving new modi�cations from other clients
as well as sending local changes that occurred after the session
was last left to other clients. Thus, the data structure also needs
to support computing a difference between two versions. Being
able to identify the difference also enables only sending speci�c
pieces of data over the network and saving bandwidth as a result.
This mechanism is also used when clients reconnect to a session.

When modifying a model, each edit has to be transmitted
to the other clients of the session where they are incorporated
into their respective data models. Thus, the data model needs to
be able to emit and incorporate incremental changes. Process-
ing remote changes also has to beidempotent, i.e. it must be
possible to apply a change multiple times without changing the
result beyond the �rst application. This is important, because
the same modi�cations might originate from several devices.

4.4.1. Con�ict handling If multiple clients concurrently
modify the same model, con�icts will inevitably arise, e.g. one
participant extends a type's name while another adds a pre�x
to it. Possible solutions include locking entities while they are
being edited or letting participants manually resolve con�icts,
but it would stand in con�ict with the objective of real-time
collaboration. Instead, con�icts need to be automatically and
deterministically resolved by the data model.

One data structure that is able to automatically resolve con-
�icts are Con�ict-Free Replicated Data Types (Shapiro et al.
2011). In theory, CRDTs also ful�ll the requirements mentioned

earlier in this section: they can be combined to form complex
structures (such as trees), are able to compute differences, and
can incorporate changes without producing con�icts that need
to be resolved manually. A number of CRDTs with different
implementations exist, but most of them have some properties
in common. Individual elements of the CRDT have unique iden-
ti�ers. This allows them to be tracked across different replicas,
even if their other characteristics have been changed. Deletions
are usually modeled as tombstones that continue to be part of
the data structure. This allows clients to refer to deleted ele-
ments after their deletion (e.g. when they receive modi�cations
from a client that did not yet know of the deletion). Versions
and differences are determined usingversion vectors7.

Some of the model's details should not merge their values.
They always have to be equal to a value of a set of allowed
values, e.g. an operation's visibility needs to equalpublic ,
packagePrivate , protected , or private , but not a mix of
them. This is also true when they are modeled as integers instead
of strings. Instead, these properties should be merged using the
last writer winsprinciple (LWW), i.e. only the last modi�cation
is kept. When using this method of con�ict resolution, the last
modi�cation is not determined by temporal timestamps, but by
comparing the CRDTs'Lamport timestamps8. If, according to
these timestamps, two modi�cations occurred simultaneously,
one of them is chosen deterministically. However, all other com-
ponents should merge their values. The entire hierarchy can be
safely merged; new or deleted types, attributes, operations, pa-
rameters, and relationships need to be inserted into or removed
from other models. Text directly editable by users such as type
names or relationship labels can be merged on the per-character
level. This allows multiple users to simultaneously edit the same
text without any changes being dropped.

An alternative to CRDTs is the Operational Transformation
approach (Ellis & Gibbs 1989). CRDTs have been chosen for
this project because, in contrast to operational transformations,
high-quality frameworks reducing the development and mainte-
nance effort are available.

4.4.2. System architecture A client-server model is the
most suitable architecture for this project. The server keeps
track of each session's current model state. This allows it to
directly send complete or partial models to connecting clients
without having to request that information from an already con-
nected client. This way, new clients can even receive updates
when no other clients are connected at that particular point in
time. In order to support real-time collaboration, clients need
to be able to send and receive edits with as little latency as
possible. Therefore, they should open a bidirectional communi-
cation channel to the server enabling them to send and receive
messages without resorting to long polling.

This model is not limited to a single server. If the need arises,
multiple servers may be employed to handle clients' requests.
Each server should handle a distinct set of sessions (identi�ed
by their respective models' IDs).

7 https://en.wikipedia.org/wiki/Version_vector
8 https://en.wikipedia.org/wiki/Lamport_timestamp

Mobile Modeling with Real-Time Collaboration Support 5

Message
Type

Properties Notes

Connect
Request

Model ID,
[state vector]

Sent when connecting to a
session. Server responds with a
Connect Response.

Connect
Response

[State vector,
update]

Sent in response to a Connect
Request.

Sync
Request

Update
Optional; sent when the client
has information the server does
not yet have.

Sync
Response

Sent in response to a Sync
Request.

Update Data Sent by either client or server.

Table 2 A list of the message types used during the client-
server communication. Optional properties in [brackets].

4.4.3. Client-server communication A client's connection
to the server can be in one of four states:connecting, syncing,
connected, disconnected. Initially it is connectingand a bidirec-
tional communication channel is opened. The channel transmits
messages of different types, each one with its own semantics
and properties (cf. tab. 2). Requests are always sent from clients
to the server, responses are always sent from the server to clients.
Updateis the only message type that can be sent by either the
server or clients.

Fig. 3 shows the state diagram of this process. The �rst
step is connecting to a session. For that purpose, aConnect
Requestthat contains the model's ID is sent. If the client joins
without a local version of the model (e.g. via a link), the state
vector property remains empty. The server looks up the session
using the provided ID and sends back the session model's data.
If the server cannot �nd the session, the connection becomes
disconnected. If the client has a local model version, the state
vector property is populated to enable the server to compute
their difference. If the server has no model, an emptyConnect
Responseis sent back. Otherwise, the provided version vector
is compared to the version vector of the server's model. If the
server's model contains changes the client has not seen yet, they
are sent as an update in aConnect Response. In any case, the
server model's state vector is also sent as part of the response.
The connection transitions tosyncing.

The client incorporates the server's update (if any) into its
own data model. If the server also provided a version vector, the
connection becomessyncing, otherwise it becomesconnected.
A syncingclient is responsible for providing the server with
an update. The update is generated by comparing the server's
state vector to one of the local model and sent to the server as a
Sync Request. The server incorporates the update into its own
data model, broadcasts the update to other connected clients,
and con�rms the request by responding with an (empty)Sync
Responseand the connection transitions to theconnectedstate.

Whenever aconnectedclient has modi�cations to report,
anUpdatemessage is sent to the server which is immediately
broadcast to all other connected clients. Likewise, the client may
at any point in time receiveUpdate messages that originated
from other clients. Their contained data needs to be incorporated

Figure 3 Client-server communication state diagram.

into the local data model; a response is not intended.
A connection may becomedisconnectedif an invalid mes-

sage is sent, the server is instructed to join an unknown session,
or the network conditions interrupt the communication channel.
When that happens, no more messages are exchanged. The
client may try to reestablish the connection by opening a new
communication channel and transitioning through theconnect-
ing andsyncingstates again. This ensures that any edits that
occurred while the connection was interrupted are not lost.

5. Solution

This section takes a detailed look onCoMod, the solution that
was implemented based on the concept described in the previous
section. It serves as a proof of concept demonstrating that it is
indeed possible to build a mobile modeling application with real-
time collaboration support.CoModconsists of a cross-platform
application running on Android and iOS as well as a server
executable facilitating the real-time collaboration features. Both
components are examined separately, followed by a description
of how they communicate with each other.

5.1. Client

The mobile app was implemented usingFlutter9, a UI toolkit
made by Google to build fast and responsive cross-platform
applications. It is written inDart10 and uses a custom rendering
engine calledSkiato draw its user interface. The UI of a Flutter
application is structured as a tree of widgets. Widgets may
be stateful (i.e. they have to be redrawn whenever their state
changes) or stateless (they remain constant during their lifetime).
In addition to the business logic implemented in Dart, the app
also relies on a JavaScript subsystem running all the logic related
to the CRDT-based data model, which is explained later on.

5.1.1. Walkthrough This section is structured as a guided
tour through all ofCoMod's screens and features.

9 https://flutter.dev
10 https://dart.dev

6 Härtwig and Götz

Figure 4 Models screen
(empty).

Figure 5 Models screen
(non-empty).

The application has been designed to accommodate users
who are familiar with UML class diagrams. The UI has been
kept suf�ciently minimal and intuitive to be used without requir-
ing prior training. It uses a stack-based navigation approach,
i.e. screens are pushed onto and popped off the stack when
navigating forwards or backwards, respectively.

Models screen WhenCoModis launched for the �rst time,
an emptyModels screen(cf. �g. 4) is shown. It allows the
user to create a model from scratch or load an example to help
them explore the application. After at least one model has been
created (either manually or by loading the example), the screen
shows the list of models (cf. �g. 5). Each model has a name
(entered by the user) and a randomly assigned universally unique
identi�er (UUID). The latter is shown to help users determine
which models share a collaboration session, but may be hidden
in the release version. Existing models may be renamed or
deleted using the ellipsis button (...) on the right-hand side of
the screen. Tapping on a model navigates to theModel details
screen. New models may be created using the plus button (+) at
the bottom-right. A button in the navigation bar opens a dialog
that allows users to join a collaboration session by entering its
ID or pasting the link to the session.

Model details screen TheModel details screen(cf. �g. 6)
shows an overview of the model's contents as a vertically scrol-
lable list. Each type's UML class diagram card is shown, con-
taining its attributes and operations. Tapping on a card performs
a navigation to the respective type'sType details screen. Re-
lationships to other types are shown as horizontally scrollable
views. New types may be created using the plus button in the
bottom-right corner. The chevron button (<) on the left-hand
side of the navigation bar navigates back to theModels screen.

A noteworthy detail is that relationships are only shown as in-
dicators, i.e. the line or arrow does not lead to the relationship's

Figure 6 Model details
screen.

Figure 7 Type details
screen.

target in the list, but to a smaller placeholder only showing
its name. Generalizations and realizations are shown above,
associations, aggregations, and compositions below the type's
card. The latter kind may also display a label and/or multiplicity
annotations. This approach allows types to be viewed in their
respective contexts while keeping the screen clear and concise,
even if the model contains dozens of different types.

The navigation bar's right-hand button can be used to access
the app's collaborative features. A collaboration session may
be started from there. During this process, a message will show
with an option to copy a link to the session or an error message,
should the connection fail. The link is meant to be shared with
other participants. They may either open it on their mobile
devices, paste it in the appropriate dialog on theModels screen,
or join via the collaboration button if they have a local version
of the model. If a session is in progress, the button offers the
options of copying a link to the session or leaving it altogether.

Type details screen TheType details screen(cf. �g. 7) shows
a type's name, type, supertypes, attributes, operations, and re-
lationships. All of these properties may be edited and the type
may be deleted from this screen as well.

The type's name is entered via a text �eld that only allows
characters valid for an identi�er in most programming lan-
guages. The button for the type's type (class, abstract class,
interface) opens a drop-down menu which allows exactly one
option to be chosen (like a radio button). The supertypes button
also presents a drop-down menu, but allows multiple options to
be selected (like checkboxes).

The type's attributes are displayed as a list with a button to
add a new one on the bottom. Each row in this list represents
a single attribute with controls to modify its visibility, name,
and data type. In order to conserve space, only the visibility's
corresponding symbol is displayed on the button (e.g.+ for

Mobile Modeling with Real-Time Collaboration Support 7

public). However, when it is used to show a drop-down menu,
the symbol along with its corresponding label is shown. This
allows the row to look just like an entry in a UML class diagram
while still giving users suf�cient information during the editing
process. The data type button allows choosing from a list of
primitive data types, such as boolean or string, and other types
(classes and interfaces) part of the model. The ellipsis button
on the right-hand side can be used to move the attribute to a
different position within the list or to delete it altogether.

The type's operations are displayed in a similar fashion. The
main difference is that operations may have a variable number
of parameters. These are displayed below the main row while
still visually belonging to their operation's row. The ellipsis
button has the additional option of adding a new parameter.
When an operation is deleted, all its parameters are deleted, too.

The type's relationships are displayed similarly as well. Their
rows' centerpiece is a drop-down menu that allows the selection
of the relationship type (association, aggregation, composition,
association with class, quali�ed association). A matching icon
is displayed next to the options and after a selection has been
made. A text �eld above may be used to assign a label to the
relationship. If the relationship is an association with a class,
the label is replaced by a button allowing the selection of the
association class. The relationship's multiplicity annotation may
be edited using the text �elds to the sides. The button to the
right can be used to select the relationship's target. The ellipsis
button offers the same options as for attributes and operations.

5.1.2. Data model CoMod's data model is based on a num-
ber of classes that form an in-memory object graph. Fig. 8
shows a simpli�ed class diagram of the classes involved. The
model is kept separate from the user interface and has no depen-
dencies on the visual layer. This allows it to be tested separately
and reused should the UI be rewritten in the future. It could even
be put into a dedicated package. In fact, the user interface is a
function of the model. Whenever part of the model changes, the
associated parts of the UI are redrawn. This functional approach
reduces the amount of mutable state the visual layer needs to
hold and thus, the potential for discrepancies.

As elaborated in the corresponding concept section, the
model contains types and relationships, types contain attributes
and operations, and operations contain parameters. All classes
implement theUMLElementinterface, i.e. they can be identi-
�ed by a unique identi�er. All model components, except the
model itself, also implement theNamedUMLElementinterface
which requires them to have anameproperty. All parent types
(containing other types) have methods for adding or remov-
ing contained types. The reason is that the contained types are
stored in hash maps as opposed to simple lists. This allows them
to be ef�ciently accessed using their ID. Removing a contained
type often requires additional logic to ensure the model remains
consistent.

Model consistency The model is kept consistent at all times.
Whenever a relationship is added, it points to a speci�c type
instead of having no target. Whenever a type is deleted, it is
removed as a supertype from all other types and all relationships
it is part of are removed as well. Moreover, all attributes, opera-

Figure 8 Simpli�ed UML class diagram ofCoMod's data
model.

tions, and parameters that use it as their data type are converted
to string. If, for some reason, a referenced type cannot be found,
it is hidden from the UI, as if it did not exist. This behavior
is consistent with the approach of removing relationships in-
volving deleted types. Furthermore, all changes related to the
deletion of a type are performed as part of a single transaction,
i.e. the changes are being applied to the data model atomically
to ensure that they cannot be applied partially on other clients.

Nevertheless, it is still possible for users to enter inconsistent
information such as inheritance cycles or invalid multiplicities
(e.g.3..1). In such cases, the data model accepts the changes
and shows them in the UI, but marks them as inconsistent,
usually with a bright red font. This ensures that all user mod-
i�cations are being saved while warning users that they have
entered inconsistent data.

5.1.3. JavaScript subsystem CoModmakes use of theYjs
framework11 (Nicolaescu et al. 2015, 2016) providing CRDTs
to facilitate its real-time collaboration features. It is a JavaScript-
based CRDT implementation, thus, it needs a JavaScript envi-
ronment to run. Despite this limitation, the framework has been
chosen because of its extensive feature set (supporting nested
XML structures), solid performance12, and quality of documen-
tation. It ful�lls the requirements for the data model laid out in
section 4.4: it can compute the difference between two model
versions (using their respective version vectors) and is able to

11 https://github.com/yjs/yjs
12 https://github.com/dmonad/crdt-benchmarks

8 Härtwig and Götz

generate and incorporate incremental updates.

Data model The JS environment holds a separate instance of
the data model in memory. It is a tree-based model resembling
an XML structure. For that purpose, Yjs offers two dedicated
node types:YXMLElementandYXMLText. The former is a
generic node in the XML tree that may contain attributes and
child nodes while the latter is a type of mergeable string that
may be put as a leaf node in XML trees. This structure was
chosen because the app's data structure is expressible as an
XML document and a purely list-based structure would have
been much harder to work with. The native code's data model is
essentially mirrored within the JS environment. Each instance
of a data model class (cf. section 5.1.2) is represented as a
YXMLElementwith its properties being modeled as XML at-
tributes. Furthermore, each element has an ID attribute that is
the same as the corresponding ID property in the native data
model. This approach allows changes in either model to be
communicated and replicated on the other side. All attributes
are string-based, but they are not mergeable (cf. section 4.4.1).
Yjs treats them as LWW registers. Concurrent modi�cations are
being resolved deterministically, but unpredictably. Mergeable
strings such as type names or relationship labels are modeled
as instances ofYXMLTextpositioned at index 0 within their
parent's children.

Persistence The JS subsystem also has to be involved in per-
sisting the data model to disk. CRDTs assign identi�ers and
timestamps to their internal components (e.g. each character
in a string). Thus, merely saving the data model as an XML
�le would not work as this information would be missing. In-
stead, the entire model can be serialized to a binary format and
ef�ciently persisted as a binary blob. The JS environment is
sandboxed and does not have access to the �le system, so it
needs to send the blob to the native code. Likewise, whenever
the model is to be loaded from disk, the binary blob has to be
sent to the JS subsystem for Yjs to deserialize the data. After-
wards, the loaded model is converted to its XML representation
and sent back to the native code to be replicated and displayed
in the UI.

Bridge The native code and the JS subsystem cannot access
each other's memory directly. JavaScript statements may be ex-
ecuted as strings and results can be received using channels
that convey strings. Due to the lack of type checking and
proper error handling at that boundary, hereinafter referred to
asbridge, the communication between the two environments
is kept as lightweight as possible. For that reason, a slim
API has been de�ned for the native code to give instructions
to the subsystem. The API includes functions for creating a
model, loading a model, requesting a state vector, syncing server
changes, processing updates, and handling transactions. The
methodsinsertElement , moveElement, deleteElements ,
updateAttribute , andupdateText can be used to manip-
ulate the model. Each of the API's methods has a speci�c
signature that determines the arguments and data types to be
used. Binary data is �rst converted to its Base64 representation
before being sent over the bridge. Whenever the model has an

update to emit or it was serialized after processing local or re-
mote changes, a corresponding message is sent over the bridge
to be handled by the native code.

Build process The client's JS code is a package that is com-
piled and tested separately from the native code. The native code
calls it whenever necessary. During the compilation process,
the TypeScript compiler produces JS �les that are subsequently
bundled with their dependencies and mini�ed usingWebpack13.
The result is a single JS �le (~120 KB) that is included as an
asset in the Flutter application. This text �le's contents are
loaded and evaluated when the app is launched.

5.2. Server

CoMod's server facilitates real-time collaboration between
clients. It is written in TypeScript and based on theNode.js14

runtime environment. It can be installed and run directly or as a
Docker15 container that already includes the runtime environ-
ment and dependencies.

When the server is running, it holds a hash map of sessions
in memory. Each session is identi�ed by its session/model ID
and contains the last known version of its associated data model.
The server also makes use of the Yjs framework; thus, it can
compare a session's data model version to that of a client and
compute the difference and generate an update if necessary.
Whenever a client connects, a bidirectional WebSocket connec-
tion is established and used for the subsequent communication.
An instance of theClient class is created keeping track of the
client's state and holding a reference to the connection. The �rst
request sent contains the session ID which allows the server to
add the client to the corresponding session. Whenever an update
is sent by any client, the server incorporates it into the session's
data model and broadcasts it to all other clients that are part of
the session. Fig. 9 depicts the server's components as a UML
class diagram.

Sessions and their associated data models are kept in memory,
even if all participants have left the session. This avoids the
need of transmitting the entire data model the next time a client
connects to that session. In case the server runs low on memory,
any data model without any clients connected to its session may
be purged. The next time a client connects with its ID, the server
will request the data model as part of the syncing step.

5.3. Collaboration

This section elaborates on the technical details of the applica-
tion's collaboration features. A collaboration session may be
started by tapping on the collaboration button in the top right
corner of theModel details screen(cf. �g. 6). This generates
a link containing the session ID that is intended to be sent to
other users to allow them to join the session. They can do so by
either tapping the link, pasting it into the collaboration dialog
on theModels screen, or via the collaboration button if they
already have a version of the model on their device. Clients that
are part of the same session transmit and receive edits in real

13 https://webpack.js.org
14 https://nodejs.dev
15 https://www.docker.com

Mobile Modeling with Real-Time Collaboration Support 9

Figure 9 Server UML class diagram.

time. Whenever a client leaves the session, either voluntary or
involuntary, it no longer sends or receives any updates. Any
changes are recorded locally and transmitted to the server and
other clients as soon as this client rejoins the session at a later
point in time.

5.3.1. Client-server communication When the collabora-
tion feature is activated, the app opens aWebSocketconnection
(Fette & Melnikov 2011) to the server. This allows the exchange
of binary messages over a single full-duplex channel without
the need for either party to resort to polling. The connection
remains open until it is interrupted or closed from either side. If
a client or the server receives invalid data, the channel is closed
prematurely.

The messages to be sent are serialized usingProtocol
Buffers16, a language-neutral mechanism for serializing struc-
tured data. A.proto �le contains the de�nitions of the mes-
sage types along with their �elds (properties). Implementations
for different programming languages (in this case Dart and
TypeScript) allow messages to be constructed in code. Each
message may be serialized to binary data that can be sent over
the wire and deserialized on the other end, regardless of the
target system's programming language. The message types and
the communication protocol implement the concept described
in section 4.4.3.

5.3.2. Client data �ow The existence of the JavaScript sub-
system that handles the CRDT-related logic leads to a fairly
complex data �ow within the client application (cf. �g. 10).
The native code acts as an intermediary between its JavaScript
subsystem and the server. Only the subsystem can provide a
state vector, process server responses, and serialize the model.
However, it cannot directly communicate with the server. There-
fore, any data that needs to be �rst sent to the server has to be
sent over the bridge to the native code.

5.4. Testing

This proof of concept relies on a combination of unit, integration,
and end-to-end tests. The share of test-related code is about
14% for the native Dart code, 50% for the JS subsystem code,
and 55% for the server code.

16 https://developers.google.com/protocol-buffers

Figure 10 Data �ow when starting a collaboration session
and receiving an update.

5.4.1. Unit tests The Flutter application's data model is
tested using unit tests. Examples include ensuring that the
model and its individual components can be loaded from an
XML-formatted input string and that attributes and operations
are properly converted to strings to be displayed in the UI. All
the Dart extensions (code added to standard library types) are
covered by unit tests as well. The unit tests for the code running
in the JS subsystem make sure that each of the API's methods
(e.g. loadModel() , insertElement() , etc.) behaves as in-
tended. This includes not only checking if the intended changes
are re�ected in the JS data model, but also ensuring that the
appropriate messages are sent back to the native code. The
server only contains a limited amount of unit tests as it mainly
bene�ts from integration tests.

5.4.2. Integration tests All Flutter tests involving the user
interface belong to this category. They ensure that the app
can be launched and its main tasks such as creating models,
performing modi�cations, and collaborating can be performed.
However, the application does not communicate with the actual
server binary, it instead uses afake that mocks the server's
behavior. This allows both components to be tested separately.
Meanwhile, the actual server's integration tests check whether
it correctly implements the communication protocol and rejects
connections with invalid or incomplete data.

10 Härtwig and Götz

5.4.3. End-to-end tests CoMod's system consists of the
Flutter application, its JS subsystem, and the server executable.
In contrast to the other test categories, the client application
communicates with the actual server instead of a fake. The main
challenge of this project's E2E tests is emulating mobile devices
to run the application. Unfortunately, the current state of Flutter
tooling does not allow the coordination of multiple emulated
devices running integration tests. Due to that limitation, the
E2E tests start the server, launch a client app, let it create a new
model, start a collaboration session, and quit. Afterwards, a
second client app is launched on a different device and instructed
to join the session. The test succeeds if the second device
receives and displays the model created on the �rst device.

5.5. Extensibility

CoModimplements the concept described in section 4. Nev-
ertheless, it can be extended on multiple levels. Additional
platforms (Linux, Windows, Web) may be supported by adding
the appropriate targets in Flutter. The support for additional
model types is particularly interesting as it would allow the so-
lution's foundation to be (re-)used for editing other model types
(e.g. ER (Chen 1976), CROM (Kühn et al. 2014), or custom
domain-speci�c modeling languages (Kelly & Tolvanen 2008)),
perhaps even in entirely different modeling domains. The server
is able to handle any models that can be represented using the
Yjs framework. Because of Yjs's support for XML-based data
structures, this includes all models that can be represented using
XML documents. Thus, the server's executable can be used
as is. Furthermore, the communication protocol is indepen-
dent from the model's contents as well. So, the server can
even handle sessions with different kinds of models at the same
time. Code-level changes are only required on the client side.
That includes (potentially signi�cant) changes to the UI and the
code supporting the data model. However, the JS subsystem
does not need to be changed as it exposes an API that allows
the manipulation of any XML-like structure using the generic
methodsinsertElement , deleteElements , moveElement,
updateAttribute , andupdateText .

6. Evaluation

This section evaluates the solution presented as part of the pre-
vious section by means of a case study. Two distinct common
cases are presented, followed by a technical analysis ofCoMod's
scalability. Subsequently, limitations and threats to validity are
pointed out and the section is summarized in the end.

6.1. Case Study

The following case study focuses on the collaborative aspects
of CoModas this is the main contribution of this paper. The
characteristics of the application being used without the collab-
oration features have been covered by the unit and integration
tests described in section 5.4. The correctness of merges and
merge con�ict resolutions is covered by the unit tests of yjs17.

This application can be employed in a multitude of different
situations. One such case is one person exclusively editing a

17 https://github.com/yjs/yjs/tree/main/tests

model while many people receive updates on their devices. This
scenario is subsequently referred to as1WnR(1 writer, many
readers). Examples include an exercise in the context of a class
lead by a tutor or a software architect sharing their work with a
number of developers in real time.

The other case examined as part of this study is a group with
every member contributing to the model, subsequently referred
to asnWnR(many writers, as many readers). This is a common
scenario within group projects in an academic setting or project
groups at software companies.

6.2. Technical Analysis

This analysis evaluates the feasibility of the cases described
above by examining how well the system scales to accommodate
these cases. Client and server are analyzed separately. Both
analyses make use of clock time (as opposed to other metrics
such as CPU time) as it better relates to the latency users might
perceive. A test data generator has been implemented to provide
pseudorandom input data for the experiments.

6.2.1. Test data generator Both of the following analyses
include the transmission of pseudorandom input to the subjects
under test. This represents the stream of model updates that is
received from other clients. The input is pseudorandom, because
it should resemble a series of model changes applied by a user.
An entirely random series of changes would less accurately
represent howCoModwould be used in practice.

Each run of the test data generator (TDG) generates data
for a single session based on two parameters: the number of
iterationsi and the number concurrently editing clientsc. At
the start, the model consists of a single type. This model serves
as the baseline for the �rst iteration. During each iteration,
c concurrent updates are generated. After each iteration, all
generated updates are merged with the previous baseline to form
a new baseline for subsequent iterations. After all iterations
have been processed, the output ofi � c updates is written to
a text �le. Each update is represented as a Base64 string on its
own line and represents a change to the model.

To produce an update, a random number is generated deter-
mining the kind of change to apply. There is a 6% chance for a
component (type, attribute, operation, parameter, relationship)
to be added, a 2% chance for a component to be deleted, a 12%
chance for a component's property (e.g. visibility, data type)
to be changed, and an 80% chance for a component's name
(or label in the case of relationships) to be modi�ed. These
percentages have been chosen to let a model grow as more
changes are being applied to it (it is likelier for a component to
be added to the model than it is for a component to be deleted).
The relatively large percentage for textual changes has been
chosen, because each keystroke (character addition/deletion) is
represented by a separate update.

For each kind of change (insertion, deletion, property, tex-
tual), a random component is chosen. In the case of an insertion,
it serves as the parent for the new component to be created. If
it is the model itself, a type or relationship will be inserted; if
it is a type, an attribute or operation will be inserted; and if it
is an operation, a parameter will be inserted. The inserted com-

Mobile Modeling with Real-Time Collaboration Support 11

