
Journal of Object Technology | RESEARCH ARTICLE

Modeling Objects with Uncertain Behaviors
Paula Muñoz∗, Priyanka Karkhanis†, Mark van den Brand†, and Antonio Vallecillo∗

∗ITIS Software. Universidad de Málaga, Spain
†Technical University of Eindhoven, The Netherlands

ABSTRACT Modeling the behavior of complex systems that operate in real environments, deal with physical elements, or
interact with humans is a challenging task. It involves the explicit representation of aspects of behavioral uncertainty that are
inherent in the system, but generally neglected in software models. In this paper, we focus on the explicit representation of
the behavior of objects of complex systems, considering their motivations, randomness, and the different types of underlying
uncertainty that affect their actions. We show how such uncertain behaviors can be effectively modeled in UML and OCL, and
how the specifications produced can be used to simulate and analyze these systems.

KEYWORDS Software models, UML, uncertain behavior, uncertainty, randomness, simulation.

1. Introduction
One of the current challenges of software models is related to
their ability to accurately represent systems that exhibit com-
plex and uncertain behavior, such as those that operate in real
environments, deal with physical elements, or interact with hu-
mans (Bucchiarone et al. 2020). We are particularly interested
in systems where humans play a role, either because the system
needs to interact with them, or emulate their behavior (Pedersen
et al. 2018). Examples of such systems include those that model
the behavior of cars and pedestrians at intersections (Ridel et
al. 2018), those of autonomous vehicles (Liu et al. 2018), or
those of cyberphysical systems (Kirchhof et al. 2020). They are
common in different domains such as intelligent transportation
systems (ITS) (Dajsuren & van den Brand 2019; Karkhanis
et al. 2018) or in the Industry 4.0 applications (Mosterman &
Zander 2016; Wortmann et al. 2020). In these domains, system
properties such as correctness or safety are critical.

Modeling the behavior of agents in these systems is non-
trivial due to their complex behavior. This may depend on their
profile and abilities, current state and personal motivation, or
on random events (Jay et al. 2020; Nassal & Tichy 2016). Fur-
thermore, the environment of such systems normally involves

JOT reference format:
Paula Muñoz, Priyanka Karkhanis, Mark van den Brand, and Antonio
Vallecillo. Modeling Objects with Uncertain Behaviors. Journal of Object
Technology. Vol. 20, No. 3, 2021. Licensed under Attribution 4.0
International (CC BY 4.0) http://dx.doi.org/10.5381/jot.2021.20.3.a8

unknown factors and circumstances (Shi et al. 2005; Geller &
Bradley 2012).

Starting from a traditional behavioral specification based
on state machines, our proposal for modeling these types of
behaviors uses a combination of:

– probabilistic state machines (Novák 2009) and influence
diagrams (Howard & Matheson 2005) for representing the
causalities and effects of the agents’ actions (Pearl 1994;
Darwiche 2009; Pearl 2000);

– the motivational forces that influence the agents’ decisions
towards achieving their goals (Nassal & Tichy 2016);

– the explicit representation and propagation of the aleatory
uncertainty due to the imprecision in the measuring tools
or unreliable sources (JCGM 100:2008 2008);

– the subjective interpretation of the environment by each
individual agent and the confidence assigned to its data
sources (Jøsang 2016; Burgueño, Clarisó, et al. 2019;
Muñoz et al. 2020); and

– the representation of the randomness inherent to any real
environment (Oberkampf et al. 2002; Garlan 2010).

Although there are proposals to model these aspects using vari-
ous approaches, typically using agent systems, they usually do
not cover all these factors. In addition, they tend to use lower
level languages and platforms, which makes the simulation of
these types of systems rather complex and cumbersome.

Our goal is to show how these behaviors and associated un-
certainties can be effectively modeled in high-level languages
such as UML (Object Management Group 2015) and OCL (Ob-

An AITO publication

http://dx.doi.org/10.5381/jot.2021.20.3.a8

ject Management Group 2014), and how these speci�cations can
be used to simulate and analyze systems. We demonstrate our
approach with two exemplar applications, one from the traf�c
domain and another from the games simulation �eld.

After this introduction, Sect. 2 brie�y presents the back-
ground of our work and provides an overview of related works
that model agent and human behavior. Then, Sect. 3 presents
our proposal, describing how to represent the behavior of agents
under the presence of uncertainty. It includes two applications
that we have developed to demonstrate and evaluate the pro-
posal. Sect. 4 discusses the types of analyses that can be carried
out with our speci�cations. Finally, Sect. 5 concludes with an
outlook on future work.

2. Related Work and Background

2.1. Uncertainty

Uncertainty is an inherent property of any system that operates
in a real environment or that interacts with physical elements.
Uncertainty can be due to imprecision in the measuring tools;
lack of knowledge about the system or its environment; imper-
fect, incorrect, or missing information; unreliable data sources
and communication networks; numerical approximations; differ-
ent interpretations of the same evidences by different parties, or
the inability to determine whether a particular event has actually
occurred or not (JCGM 100:2008 2008).

There are several uncertainty classi�cations. The primary
one divides it into aleatory and epistemic (Kiureghian &
Ditlevsen 2009).Aleatory uncertaintyrefers to the inherent
probabilistic variability or randomness of a phenomenon. For
example, measuring the distance between two objects, or the
duration of a software development process. This type of uncer-
tainty is irreducible, in that there will always be variability in the
underlying variables (JCGM 100:2008 2008).Epistemic uncer-
tainty refers to the lack of knowledge we have about the system
(modeled or real) or its elements. For example, the con�dence
we have on the actual occurrence of a modeled event. This type
of uncertainty is reducible, in that additional information or
knowledge may reduce it.

The increasing need to model physical systems has led to
several modeling proposals that explicitly represent different
types of uncertainty in software models (Troya et al. 2021). The
OMG is also working on a metamodel for the precise speci�ca-
tion of uncertainty (PSUM) (Object Management Group 2017),
based on the U-Model (Zhang et al. 2016) and theUncertum
conceptual model (Zhang et al. 2019). Some works address par-
ticular types of uncertainties using different notations and logics,
namely, Measurement uncertainty (Burgueño, Mayerhofer, et
al. 2019; Bertoa et al. 2020); Design uncertainty (Zhang et al.
2018; Famelis et al. 2012; Salay et al. 2013); Occurrence un-
certainty (Burgueño et al. 2018); Belief uncertainty (Burgueño,
Clarisó, et al. 2019; Martín-Rodilla & Gonzalez-Perez 2019),
or Data uncertainty (Jing et al. 2008; Zhou et al. 2009; Wang
& Bai 2019). However, the speci�cation of the behavior of
agents subject to uncertainty, which combines several of these
types of uncertainty, has received less attention by the modeling
community (Giese et al. 2014).

2.2. Modeling the behavior of agents

In UML, a Behavior is a speci�cation of events that may occur
dynamically over time (Object Management Group 2015). Be-
havior can be speci�ed in terms of operations, state machines,
sequence diagrams and activities. Typically, reactive and real
time systems are speci�ed using state machines, with many
tools available for the speci�cation, simulation and analysis of
such systems. These are normally deterministic speci�cations.

Several approaches have been proposed for the speci�ca-
tion of models of agent behavior. First,rule-based systems
de�ne actions that are triggered based on the rules speci�ed by
the system modeler. The set of rules can even be dynamically
changed during the system simulation. They are common in sim-
ulation games such as SimSE (Navarro & van der Hoek 2004),
SESAM (Ludewig et al. 1992), SimVBSE (Jain & Boehm 2006),
or SimjavaSP (Shaw & Dermoudy 2005). They simulate hu-
mans following precisely the instructions given by the rules,
which make their behavior very predictable and therefore differ-
ent from human behavior.

Another approach to model the behaviour of agents emulat-
ing humans is by using parameterized feedback loops repre-
sented by multiple equations that describe their actions or trajec-
tories (Ridel et al. 2018; Albrecht & Stone 2018). Although the
models are very accurate, the behaviour of the agents is again
predictable. Besides, they normally neglect the inherent random-
ness and uncertainties existing in real environments (Thompson
& Smith 2019).

There is a vast literature on the speci�cation of probabilistic
or stochastic behavior, which allows the description of different
alternative actions and their probability of occurrence. They
allow simulations of systems that calculate alternative outcomes
and their probabilities. For example, some works provide ex-
tensions to UML for modeling stochastic statecharts (Novák
2009) or sequence diagrams (Refsdal 2008; Refsdal & Stølen
2008). Fuzzy-DEVS (Kwon et al. 1996) extends the DEVS
formalism for simulating uncertain behavior. Models@runtime
are also successfully used for self-adaptive robots under un-
certainty (Giese et al. 2014). The main drawback of these
approaches is that they are not able to describe the causes that
motivate the resulting behavior (motivational forces), and how
these causes in�uence the behavior.

To address these limitations, different approaches,
e.g., (Sharma et al. 2018), make use of Bayesian net-
works (Pearl 1994; Darwiche 2009), or Causal networks (Pearl
2000; Pearl & Mackenzie 2018) to model the behaviour of
agents. These networks can implement the decision-making
process conducted by the agents to decide the next action
to perform. One of the main bene�ts of these proposals is
that they enable the speci�cation of different features of the
agents (character, skills or current state). These approaches
provide more realistic simulations of human behavior and
how they in�uence their decisions, normally to maximize
utility (Pedersen et al. 2018; Neumann & Morgenstern 1953).

TheSocial Force Modelis used by other authors to explicitly
represent and reason about the motivations of agents to decide
the action to perform next (Helbing & Molnár 1995; Huang et
al. 2017). Similar approaches use the concept ofMotivational

2 Muñoz et al.

Force(Nassal & Tichy 2016) for every possible action, in order
to perform the one with the highest motivation. In particular,
the motivational force of a given action is computed as the
maximum bene�t (calledvalence) of all possible results of that
action. Typically, the action with the highest valence will be per-
formed by the agent. However, incorporating uncertainty into
these behavioral speci�cations is still an open issue (Albrecht &
Stone 2018), and one of the goals of this paper.

3. Modeling the behavior of agents

This section describes our approach to modeling uncertainty
in the behavior of agents in complex systems, such as those
involving humans with unpredictable behavior, environmental
conditions and imperfect physical elements.

3.1. Methodology

Our proposal consists of a set of steps that incorporates the dif-
ferent uncertainty factors to the behavior of the system objects.

– First, we specify the possible actions that each agent can
perform, and the agent's state machines that describe its
basic behavior using a traditional (deterministic) approach.

– Second, we specify the possible situations in which the
agents can be depending on their environmental conditions
and the subjective interpretation of the environment by
each individual agent, and the con�dence assigned to its
data sources (situational context). These situations will be
used to further re�ne the state machines of the agents.

– Third, we should identify the motivational forces that
in�uence the agents' decisions towards achieving their
goals (Nassal & Tichy 2016).

– Fourth, specify the corresponding weights of the situational
context and the motivational forces when combining them
to decide the action to perform (Fig. 4). This results in a set
of decision tables with their associated weights that de�ne
probabilistic state machines (Novák 2009) and in�uence
diagrams (Howard & Matheson 2005) for representing the
causalities and effects of the agents' actions (Pearl 1994;
Darwiche 2009; Pearl 2000)

– In the �fth step, we determine the attributes of the agents
that need to consider measurement or belief uncertainty
due to the imprecision in the measuring tools or unreliable
sources, and how they get propagated.

– Finally, we specify the degree of randomness of the be-
haviour of the agents and of their environments, capturing
those unpredictable decisions or unforeseen events.

We have evaluated this approach with different applications.
In this paper we will illustrate the proposal with two case stud-
ies. The �rst corresponds to a pedestrian crossing system in
which cars and pedestrians cross the street in diverse situations,
trying to minimize hard brakes, near-collisions and accidents.
The second emulates a war of tanks chasing and shooting at
each other (or trying to escape in case of low ammunition or
numerical inferiority). These examples are described below, as
well as how the uncertainty in the behavior of its agents can be
modeled and simulated with UML and OCL tools.

Figure 1 Graphical representation of the Crosswalk system.

Figure 2 The Crosswalk system metamodel.

3.2. Motivating Example: A crosswalk system

Suppose that we want to model a crosswalk system that emulates
the behavior of two types of agents: car drivers and pedestrians.
The structure of the crosswalk system is depicted in Fig. 1.

Each agent has a position, given by its planar coordinates,
its dimension (length and width) and its current speed, which
can be either zero (when stopped), slow or normal. Their age,
experience in manoeuvring, vision range, or mental stress in-
�uence the decision to take an action. Moreover, there are
environmental conditions (classEnvironmentCond) such as
road visibility and road grip which are in�uenced by weather
conditions classWeatherCond, which represents, e.g., fog, rain,
ice or darkness (Czarnecki & Salay 2018; Leibowitz et al. 1998).
These factors impact the crosswalk system and could cause colli-
sion or near-collision events (Sanders 2015). Being common to
all agents at the same crosswalk, the environmental conditions
are associated toCrossWalk objects, and then used by each
individual agent to compute its own speed or visibility.

The crosswalk system is not guided by any traf�c lights, and
hence the agents have to decide intuitively to take an action. As
shown in Fig. 2, ClassCrosswalk de�nes several attributes in-
dicating the agents starting point, stopping point, and end point.
The stopping point de�nes where the agent should stop before
entering the crosswalk. The stopping point of a car coincides

Modeling Objects with Uncertain Behaviors 3

Figure 3 Excerpt of the state machine forCar objects in the Crosswalk system.

with the crosswalk's stop line. The stopping point of a pedes-
trian is at the end of the sidewalk, before starting to cross it (see
Fig. 1). Agents implement a query operation (beforeSP()) that
decides if the agent has not yet passed its stopping point. An-
other operation (aboutToCollide()) determines if the agent is
about to collide with another one. Whenever a collision occurs,
an instance of classIncident is created.

Time is modeled by aClock object. On everytick (whose
resolution can be de�ned by the user, in our simulations we
have used 0.1 seconds), it invokes operationaction() on all
active objects associated to the clock. When an agent receives
anaction() operation, it decides what to do next. Possible
options are:move() at the current speed until it receives a
newaction() operation;accelerate() , which increases the
speed and then moves at the new speed;decelerate() , which
decreases the speed and then moves; orstop() , which suddenly
brakes and changes the speed to 0. In theSlow state, it is the
same for the pedestrian to decelerate as to stop; in the case of a
car, whenstop() is invoked, it �rst moves with half speed and
then stops. Accelerating when moving at normal speed does not
have any effect. Likewise, decelerating, moving or stopping in
theStopped state do nothing. For simplicity, the intersection is
located at point (0,0), cars move along the X-axis from right to
left, and pedestrians move top-down along the Y-axis. Methods
currentSpeed() andcurrentVisionRadius() are affected
by the environmental conditions. They recalculate the current
speed and vision radius of the agent according to the current
road visibility and grip.

A common way to specify the behavior of these types of
real-time systems is by means of state machines (Harel 1987;
Object Management Group 2015). Operations de�ne the signa-
ture of the events accepted by the objects, and state machines
de�ne how the state of each object changes upon receipt of
an operation. For example, Fig. 3 shows an excerpt of the
state machine forCar objects. In addition to showing the ef-
fects of operationsmove(), accelerate() , decelerate()
and stop() , it speci�es how the object decides what to do
when anaction() operation is received (only shown for the
Moving state). Roughly, if the car is moving and there is no
pedestrian in sight, or both the pedestrian and the car are before
the crosswalk stopping points, the car keeps moving; if the car is
before its stopping point and the pedestrian has already passed
it, the car slows down; and if both the car and the pedestrian
have passed their stopping points, or they are about to collide,

Table 1 Car decision table.
Car state

Situation of car Moving Slow Stopped
C1. No pedestrian in vision radius move accel. accel.
C2. Car before SP, ped. before SP decel. move accel.
C3. Car after SP, ped. before SP move accel. accel.
C4. Car before SP, ped. after SP decel. move accel.
C5. Car after SP, ped. after SP stop stop stop
C6. Car in near collision with ped. stop stop stop

Table 2 Pedestrian decision table.
Pedrestian state

Situation of pedestrian Moving Slow Stopped
P1. No car in vision radius move accel. accel.
P2. Ped. before SP, car before SP move accel. accel.
P3. Ped. after SP, car before SP move accel. accel.
P4. Ped. before SP, car after SP decel. decel. stop
P5. Ped. after SP, car after SP move accel. accel.
P6. Ped. in near collision with car stop stop stop

the car stops. Similar rules can be de�ned for statesSlow and
Stopped. They are not displayed in Fig. 3 but summarized in
the state-transition tables 1 and 2. The left columns show the
situationof the agent when theaction() operation is received,
requesting it to decide what to do next. Depending on the situa-
tion and on the current agent state (Moving, Slow or Stopped),
its reaction can be different.

We have modeled the Crosswalk system in UML and OCL,
employing the tool USE (Gogolla et al. 2007) that provides an
action language called SOIL (Büttner & Gogolla 2014) that
allows modelers to create instances and links, perform assign-
ments of values to attributes, and invoke operations on objects.
This way, the system can be simulated. Further validation and
veri�cation tests are also available with USE, as described
in (Gogolla et al. 2018). However, one of the limitations of
these speci�cations is that they are deterministic, failing to ac-
count for both the stochastic nature of the agents' behavior and
the uncertainty aspects of these kinds of systems.

The following subsections describe how we propose to model
such a behavior, illustrating it using the Crosswalk system.

4 Muñoz et al.

move() accelerate() decelerate() stop()

Situational Context Motivational Force

Figure 4 Basic actions and their causes.

Road Grip Visibility

Ice Rain Fog Darkness

Speed Vision Con�d. Vision Range

Figure 5 Environment in�uence on agent parameters.

3.3. Modeling the basic behavior: actions and forces

First, we need to identify theactionsthat each agent can per-
form during the system execution. In the Crosswalk system, the
actions that both car drivers and pedestrians can perform are:
move(), accelerate() , decelerate() andstop() .

Second, we need to specifyhoweach agent decides to per-
form an action, as well the factors that motivate such a decision,
i.e., theforcesthat in�uence the agents' decision process. To
specify these in�uences we will use both theSituational context
and theMotivational Forceof each action. The �rst one de�nes
the situation in which an agent is, something that complements
the agent's state machine to decide the action to perform (cf.
tables 1 and 2). For example, one possible situation of the car is
before the stopping point and with other agent inside the cross-
walk (situation C4). In contrast, the Motivational Force de�nes
the motivations of an agent to decide the action to perform next,
ranking them according to their utility (Neumann & Morgen-
stern 1953) and how they satisfy the agent's needs (Nassal &
Tichy 2016). For example, when a pedestrian is in a real rush, it
will prioritize acceleration over all other actions.

Figure 4 shows an In�uence Diagram (Howard & Matheson
2005) with these relations. This diagram is a generalization of
Bayesian and Causal Networks to achieve not only probabilistic
inference but also decision making, following themaximum
expected utilitycriterion (Neumann & Morgenstern 1953).

Finally, we also need to specify how theenvironment and
personal conditionsin�uence theparameters of the actions.
For example, dif�cult weather conditions like heavy fog or rain
can affect the visibility of the agent, and also the road grip,
which in turn in�uence the speed of the agent and its visibility.
This is shown in the in�uence diagram depicted in Fig. 5.

These elements are discussed in detail in next subsections.

3.4. Situational context

In our proposal, theSituational Contextde�nes the possible
situations in which an agent can be, when having to decide the
action to perform next, as well as their associated probabilities.

In the Crosswalk system, the Situational Context of the car is
de�ned by situations {C1...C6} described in Table 1.

As previously mentioned in Sect. 3.2, these tables de�ne the
state machines that speci�ed the agents' behavior. Based on
the situation the object is in, and the current state of the object
(Moving, Slow, Stopped), the tables determine the next action
to perform.

In order to de�ne the in�uence of the Situational Context
on each action (the arrows that connect theSituational Context
node with eachactionnode in the in�uence diagram shown in
Fig. 4), our proposal extends these traditional state machines
in two ways. First, we replace them with probabilistic decision
tables that determine, for each situation in the agent's Situational
Context, the probability of each possible transition. In other
words, they become probabilistic state machines (Novák 2009).
And second, probabilities are also assigned to situations, to
represent the fact that sometimes it is dif�cult to decide precisely
in which situation the agent is (see below).

For example, Table 3 shows the probabilities associated with
each possible action of aCar agent, when it is in theSlow state.
Basically, it extends column 3 of Table 1, which determined for
each situation the (only) action to take by the Car, with the set
of possible actions that can be performed by the Car, and their
associated probabilities.

Second, we assign probabilities to the situations, which rep-
resent the likelihood of the agent to be in each one. These
probabilities are normally due to the incorporation of measure-
ment uncertainty (Bertoa et al. 2020) into the models, because
comparing two distances with imprecision no longer returns a
Boolean value, but a probability (Burgueño et al. 2018), which
gets propagated when operating with imprecise attributes. In
this way, instead of being able to crisply decide whether we
are close or not to a given point, or to another object, we can
only estimatehow close we are to it. This naturally re�ects the
human incertitude in evaluating distances or times, and allows
us to model the imprecise behavior, orhesitation(Jay et al.
2020), that occurs when a pedestrian or car evaluates whether it
is `close enough' to the intersection to stop or cross.

Therefore, in our proposal a Situational Context will be de-
�ned by a tuple of Real numbers, one for each possible situation,
which represent their associated probabilities. The sum of the
elements of the tuple must be 1. For example, at one moment
in time, the Situational Context of the car agent can be de�ned
by the tuple{c1=0,c2=0.95,c3=0.05,c4=0,c5=0,c6=0} ,
meaning that the evaluation of the car situation has dictated that
the car is before the stopping point with a likelihood of 95%,
and after the stopping point with a likelihood of 5%.

The probabilities of each situation are considered together
with the probabilities in the probabilistic transition tables. This
computes the degree of in�uence for the next action to be per-
formed by the agent.

3.5. Motivational Force

As shown in the in�uence diagram in Fig. 4, agents also take
into account theMotivational Forceof each action (Nassal &
Tichy 2016), which computes the maximum bene�t (valence)
of all possible results of the action, according to the agent's

Modeling Objects with Uncertain Behaviors 5

Table 3 ProbabilisticCar decision table, in theSlow state.
Car state: Slow

Situational context of car move accel decel stop
C1. No pedestrian in vision radius 0.1 0.9
C2. Car before SP, ped. before SP 0.8 0.1 0.1
C3. Car after SP, ped. before SP 0.2 0.7 0.1
C4. Car before SP, ped. after SP 0.9 0.1
C5. Car after SP, ped. after SP 0.1 0.9
C6. Car in near collision with ped. 1

personal preferences and system goals. The bene�t of each
result depends on(1) theinstrumentalityof the result, i.e., the
chances it has to lead to a valid outcome (normally determined
by the goals of the system, or the objectives de�ned by the
agent's owner), and(2) the personal priorities andneedsof
the agent (which depend on the own agent's goals, skills and
personal preferences).

With this, weights (i.e., probabilities) can be assigned to the
actions that the agent can perform, according to their Motiva-
tional Force. Such weights will be combined with the Situa-
tional Context, using the corresponding in�uence diagram, to
de�ne the �nal probability of each action.

In general, computing the Motivational Force of the actions
of an agent is not easy because it depends on social, psycho-
logical and personal factors, and it may also imply non-trivial
resolution of con�icting interests and forces. In this paper we
propose the use of a high-level speci�cation of such forces,
based on goals and responsibilities (Marron et al. 2020). Thus,
each agent will have a set of high-level goals to achieve, and a
set of responsibilities to comply with. In this case, the goal of all
agents of the Crosswalk system is the same: “to cross the street
as soon as possible and in a safe way, in order to reach their �nal
destinations.” The responsibilities are to avoid collisions with
other agents, and to obey the traf�c laws — e.g., the maximum
speed when approaching the crosswalk. Each action of an agent
will contribute to the agent's goals and responsibilities in differ-
ent ways, and therefore each agent will assign different weights
to each action, depending on its contributions to the agent's
current motivational forces. For example, arecklesspedestrian
will give the maximum priority to the goal of crossing the street,
ignoring the rest of the forces, even the possibility of collisions.
A distracteddriver may sometimes ignore that he has passed
the stopping point,e.g., when texting while driving, but will
always comply with the responsibility of avoiding collisions.
An attentiveagent will always follow the rules, even when it
implies waiting for a long time until the crosswalk is free. As
with humans, pro�les are never absolute; it can happen that an
agent is 20% reckless, 30% distracted and 50% attentive. These
weights contribute to the �nal decision.

This means, e.g., that an attentive agent will assign the same
weight to each action for each force, without imposing any
personal choice, while a reckless driver will always try to accel-
erate, assigning a weight of 0 to the rest of the possible actions,
in all agent states. Table 4 shows examples of weights assigned
to the possible actions of a car, in theSlow state, with different
motivational forces.

Table 4 Car Motivational Forces, in theSlow state.
Car state: Slow

Type of agent depending on
its motivational force move accel decel stop
Reckless agent 1.0
Distracted agent 0.2 0.6 0.1 0.1
Attentive agent 0.25 0.25 0.25 0.25

In general, obtaining these weights can be a dif�cult task,
but it is something that falls outside the scope of our work as it
depends largely on the type of application. Here we will focus
on how to this information can be used to enrich the software
models and their simulations.

3.6. Combining Situational Context and Motivational
Force

Figure 6 shows the UML class diagram of the Crosswalk sys-
tem, extended with behavioral uncertainty. It is modeled with
USE (Gogolla et al. 2007) because this tool already provides
an extension of the UML and OCL type system to deal with
uncertain datatypes (Bertoa et al. 2020).

The new attributessituationalContext anddecision
of classAgent store, respectively, the values for its current situ-
ational context, and the probabilities associated with each action.
With this, the combined probabilities of each possible action will
be computed using the in�uence diagram shown in Fig. 4, based
on the weights given to the situational context and motivational
force, stored in the attributessituationalContextWeight
andmotivationalForceWeight of classBehavior . These
weights (whose sum is 1) represent the relative importance the
agent assigns to the corresponding factors, i.e., the con�dence
assigned to each one. The values of these tables can evolve, as
discussed later in Sect. 4.4.

Some additional inputs are needed for the computation of
the �nal probabilities associated with each action:

– The probabilistic decision tables de�ned for the states
of each agent (e.g., Table 3). These are stored in class
SituationalContextTables .

– The probabilities that the agent has to be in each of the
situations de�ned in its Situational Context, also stored in
classSituationalContextTables .

– The type of agent depending on its motivation, e.g., 20%
reckless, 20% distracted and 60% attentive. (Attributes
recklessMood , distractedMood andattentiveMood
of classMotivationalForce).

– The weights assigned to the possible actions of the agent,
depending on the type of agent and on its current state (e.g.,
Table 4), also stored in classMotivationalForce (not
shown in Fig. 6).

According to the maximum expected utility criterion (Neumann
& Morgenstern 1953), the action with the highest probability
(i.e., the one with the highest value in thedecision tuple
attribute of classAgent) will be typically performed by the
agent. In addition, agents record their decisions using traces,
which provide logs that can be used after the simulation to
visualize and/or analyze the system execution.

6 Muñoz et al.

Figure 6 The Crosswalk system metamodel, extended with behavioral uncertainty.

3.7. Object attributes and simulation parameters

Once the agent has decided the action to perform during the
next time interval, we need to set the parameters of such actions,
e.g., the speed at which the agent will move. For the estimation
of these parameters we need to consider both the uncertainty
factors that affect their values, and the degree of in�uence of the
environment conditions on the corresponding attributes (Fig. 5).

3.7.1. Uncertainty in parameter calculation Object at-
tributes are used in models to capture their properties, such
as physical dimensions (length, width, collision radius), ca-
pabilities (maximum speed, reaction time), and current state
(position, speed, vision radius). These variables are normally
typed using the UML and OCL primitive datatypes, which as-
sume precise values. However, models of physical systems need
to account for the inherent uncertainty of their elements and
environment, and therefore the need for notations that consider
such uncertainty. Here we will focus on the following types of
uncertainty (Czarnecki & Salay 2018; Troya et al. 2021):

– Measurement uncertainty, due to, e.g., unreliable or impre-
cise measuring instruments, mechanical tolerance, or lack
of visibility conditions. This leads to imprecise calcula-
tion of distances or speeds, and of the comparison of their
values (Salay et al. 2020).

– Occurrence uncertainty, about the presence (or not) of
objects in the system. It can be due to, e.g., lack of visibility
or adverse weather conditions, which make the agent be
unsure about the presence of a pedestrian or any other
object in the road (Phan et al. 2019).

To handle these uncertainties we make use of an extension of
UML and OCL datatypes to represent and propagate measure-
ment uncertainty according to the international metrology stan-
dards (JCGM 100:2008 2008), and of its realization in the mod-
eling tool USE (Bertoa et al. 2020). TypeURealextends type
Real with measurement uncertainty (e.g.,UReal(3.5,0.01)
represents the uncertainReal 3.5� 0.01), while typeUBoolean
provides the Probabilistic extension of Boolean logic, where
probabilities represent the likelihood (con�dence) of a predi-
cate to be true; e.g.,UBoolean(true,0.99) represents a con�-
dence of 99%. The extended type system provides the automatic
propagation of uncertainty through the numerical, comparison
and logic operators.

3.7.2. In�uence from external factors To de�ne the rela-
tionships between the different object attributes, and the effects
that external factors have on them, we use in�uence diagrams
such as the one shown in Fig. 5.

The concrete in�uence of some attributes on others can be
expressed by OCL expressions and operations that implement
the relations de�ned in the in�uence diagram. For example, the
relationship between the weather conditions and the visibility
in the crosswalk and the road grip can be speci�ed as follows:

currentVisibility () : Real = visibility *
s e l f .weatherCond � >iterate (wc : WeatherCond ;
r : Real = 1 .0 | r * wc . visibilityFactor))

currentRoadGrip () : Real = roadGrip *
s e l f .weatherCond � >iterate (wc : WeatherCond ;
r : Real = 1 .0 | r * wc . roadGripFactor))

Modeling Objects with Uncertain Behaviors 7

These variables are real numbers in the range [0..1] where
0 means no visibility/grip and 1 means perfect visibility/grip.
The expression used to derive their values simply modi�es the
initial road value by a factor that is obtained by multiplying the
factors of all the weather condition that currently apply to the
road (e.g, ice, fog, rain or darkness).

Calculating the variations of other attributes depending on
the environmental conditions is a bit more complex, since they
use simulation parameters. For example, the way in which the
speed of the agent is modi�ed by the visibility and road grip
can be speci�ed as follows:

currentSpeed () : UReal =
l e t visibility : Real =

s e l f .int . env . currentVisibility () in
l e t roadGrip : Real =

s e l f .int . env . currentRoadGrip () in
l e t fv : Real= s e l f .int . param . speedVisibFactor in
l e t fg : Real= s e l f .int . param . speedGripFactor in
s e l f .speed * (fv * visibility + fg * roadGrip +

(1 � fv � fg))

Next, operationcurrentVisionRadius() adjusts the vi-
sion radius depending on the current visibility:

currentVisionRadius () : UReal =
s e l f .visionRadius * s e l f .int . param . vRadVisibFactor

Finally, operationvisionConfidence() returns the con�-
dence, expressed as aReal number in the range [0..1], that we
assign to an object that an agent sees at a certaindistance .
It will be 0 is the object is outside the vision range of the
agent. Inside its vision range, the con�dence will be 1 if it
is close, and starts diminishing as the object reaches the vi-
sion range limit. This is determined by the value of parameter
vRadVisibFactor .

visionConfidence (distance : UReal) : Real =
l e t VR : UReal = s e l f .currentVisionRadius () in
l e t th : Real = s e l f .int . param . truthThreshold in
l e t vf : Real = s e l f .int . param . vRadVisibFactor in

i f (distance >VR) . confidence () >=th then 0 .0
e l s e i f (distance <VR* vf) . confidence () >=th then 1

e l s e 1 .0 � (distance / R) . value ()
end i f

end i f

In this expression, note the use oftruthThreshold to de-
cide if a condition expression is true or false. Given that our
measurement and logical expressions incorporate uncertainty,
thresholds are needed to make decisions.

3.8. Representing Random Behavior

Finally, another aspect that cannot be neglected is related to the
unpredictable or even random behavior of agents. For example,
a pedestrian who suddenly stops, or a car that accelerates with no
apparent reason (Kraaier & Killat 2008; Oberkampf et al. 2002).
This is modeled by a �nal (and optional) phase that randomly
modi�es the decision of the agent about its next action.

Attribute randomBehavior of class Behavior deter-
mines the likelihood of the agent to behave randomly,
while the randomFactor attribute determines the degree of
change allowed for the �nal decision. For example, if
randomBehavior=0.2 andrandomFactor=1, the agent will

exhibit a completely random behavior on 20% of its decisions.
Likewise, if randomBehavior=0.1 andrandomFactor=0.3 ,
one of the possible actions of the agent (arbitrarily chosen) will
be added a 30% chance of being selected, in 10% of the agent's
decisions. Of course, other alternative algorithms to implement
random behavior could be applied instead.

Note that this last step attempts to capture unpredictable
behaviors or unplanned circumstances such as the agent sud-
denly changing its mind or simply malfunctioning, which are
generalized here as random actions. More careful reasoning or
more detailed analysis of unexpected behaviors could be used
to eliminate the randomness of the unknown, unplanned, or
apparently surprising behavior of the agents when they are of
an epistemic nature. Other aleatory uncertain behaviors, such as
a car engine suddenly breaking or a pedestrian having a stroke
while crossing, still need to be treated randomly.

3.9. Second motivating example: A Tank Warfare

The second application we developed to demonstrate and evalu-
ate our proposal is a survival game, aTank Warfare, in which
two teams of tanks �ght each other. The last team standing is
the winner. Different types of uncertainty are involved in this
application, which must be taken into account to simulate the
system more realistically and faithfully.

First of all, the tank occupants' uncertain behaviour needs to
be considered, as well as their pro�les and motivations, which
may be more or less bold or cautious. Measurement uncertainty
also plays an important role, since this type of vehicle's navi-
gation and �ring systems usually have limited precision. The
visibility conditions of each tank and its environment should
also be taken into account. Finally, there is always a degree of
randomness in the �nal decisions of each tank crew.

3.9.1. Game speci�cation At any given time, tanks can do
any of the following: they canshootat another tank,movein
any direction or do nothing. As in the crosswalk simulation,
time is modeled by aClock object whosetick() operation
invoke theaction() method of all tanks.

To determine if the tank can execute an action, there are three
main parameters in the game. The �rst ishealth ; every time a
tank is shot, this value is decreased. When the value reaches 0,
the tank is destroyed. The second parameter ispower, which
is consumed each time a tank executes an action. Tanks can
not perform actions if this value reaches 0. The third parameter
is ammo, which indicates the number of cannonballs available.
Reloading is not possible in our simulation, so once the tank
�res all of its bullets, it cannot shoot any more.

3.9.2. Method application The �rst step is to specify the
possible actions that the tanks can perform, together with the
state machines that specify their (deterministic) behavior. Given
the two main actions mentioned in the previous section (move
and shoot), we de�ned �ve compound actions:escape() ,
which moves in the opposite direction to the nearest enemy tank;
shoot() at the closest enemy tank;chaseEnemy(), which
moves towards the nearest enemy tank;joinAlly() , which
moves towards the nearest ally tank; andstop() to save power.

8 Muñoz et al.

Figure 7 Examples of simulations showing different scenarios. Square dots represent the times when the agents cross the mid-
point of the crosswalk. Collisions only occur if they cross at the same time.

In the second step, we de�ne thesituational contextby speci-
fying the possible situations in which the agents can be, depend-
ing on their subjective interpretation of the environment. In this
case, we have de�ned 6 situations and 2 states in which a tank
can be, given the number ofalliesandenemiessurrounding it,
and its vulnerability level.

A tank can be in any of these two states:Low Vulnerabil-
ity or High Vulnerability. The current state depends on the
value of attributevulnerability , which is calculated by ag-
gregating the values ofpower, health , andammo. Attribute
vulnerabilityBound de�nes the threshold that determines
the current state. In theHigh Vulnerabilitystate, the tank deci-
sions will be more reckless, while in theLow Vulnerability state
its decisions will be more conservative. For example, in the sec-
ondsituational context, a vulnerable tank will escape because
there are no allies nearby to help, while a non-vulnerable agent
will chase the enemy to engage in a �ght.

The third step identi�es themotivational forcesthat in�uence
the agent's decisions. In our case, we consider two types of
behaviour depending on the strategy chosen to play the game.
The �rst one is thebold strategy, in which the tanks will priori-
tize the most aggressive decisions over all others. For example,
they will be willing to shoot at enemy tanks even in a minority
situation. In the second strategy, calledcautious, the tanks will
prioritize conservative choices to try to survive at all costs. If
tanks feel that they can lose because they are in a minority, they
will choose to escape.

The fourth step assigns weights to thesituational contextand
motivational forcemodels. In our examples, these weights were
assigned by estimating the possibilities of the logical actions
that a player would take, but they can come from any source
such as real sampled data or machine learning simulations.

The �fth step incorporates the possiblemeasurementandbe-

lief uncertainty to the model. In this example, we have de�ned
some uncertain attributes regarding the mobility of the tank, the
power consumption process or its vulnerability because they are
all related to physical parameters. We also considered occur-
rence uncertainty about the presence of objects in the system
when some tank is unsure of the existence of another one.

Finally, some randomness in the tanks' behaviour can also
be added to emulate the unpredictability of human behaviour.

The UML and SOIL speci�cations of this and the previous
system, as well as the results of several simulations with various
con�gurations can be found in the paper's companion website.1

4. Analysis

Once we have described our proposal for modeling the behavior
of agents, in this section we discuss the types of analyses that
can be performed with it.

4.1. Simulation

Although in theory upfront design-time veri�cation techniques
could be used to analyze their properties, research has shown
that the complexity of these systems makes static analysis prac-
tically unfeasible (Helle et al. 2016; Koopman & Wagner 2016).
In contrast, run-time techniques, such as simulation or moni-
toring, can still provide very relevant information at a lower
cost (Babikian 2020).

One of our reasons for specifying our models with the tool
USE is that it provides a high-level textual action language,
called SOIL (Büttner & Gogolla 2014) that enables the behav-
ioral speci�cation of UML models, as well as its execution.
In particular, SOIL extends the OCL notation with traditional
imperative constructs, including the creation of instances and

1 http://atenea.lcc.uma.es/projects/ModelingUncertainBehaviours

Modeling Objects with Uncertain Behaviors 9

