I I JOURNAL OF
OBJECT TECHNOLOGY

Journal of Object Technology | RESEARCH ARTICLE

Modeling Objects with Uncertain Behaviors

Paula Muioz*, Priyanka Karkhanis?t, Mark van den Brand?, and Antonio Vallecillo*

*ITIS Software. Universidad de Méalaga, Spain
*Technical University of Eindhoven, The Netherlands

ABSTRACT Modeling the behavior of complex systems that operate in real environments, deal with physical elements, or
interact with humans is a challenging task. It involves the explicit representation of aspects of behavioral uncertainty that are
inherent in the system, but generally neglected in software models. In this paper, we focus on the explicit representation of
the behavior of objects of complex systems, considering their motivations, randomness, and the different types of underlying
uncertainty that affect their actions. We show how such uncertain behaviors can be effectively modeled in UML and OCL, and

how the specifications produced can be used to simulate and analyze these systems.

KEYWORDS Software models, UML, uncertain behavior, uncertainty, randomness, simulation.

1. Introduction

One of the current challenges of software models is related to
their ability to accurately represent systems that exhibit com-
plex and uncertain behavior, such as those that operate in real
environments, deal with physical elements, or interact with hu-
mans (Bucchiarone et al. 2020). We are particularly interested
in systems where humans play a role, either because the system
needs to interact with them, or emulate their behavior (Pedersen
et al. 2018). Examples of such systems include those that model
the behavior of cars and pedestrians at intersections (Ridel et
al. 2018), those of autonomous vehicles (Liu et al. 2018), or
those of cyberphysical systems (Kirchhof et al. 2020). They are
common in different domains such as intelligent transportation
systems (ITS) (Dajsuren & van den Brand 2019; Karkhanis
et al. 2018) or in the Industry 4.0 applications (Mosterman &
Zander 2016; Wortmann et al. 2020). In these domains, system
properties such as correctness or safety are critical.

Modeling the behavior of agents in these systems is non-
trivial due to their complex behavior. This may depend on their
profile and abilities, current state and personal motivation, or
on random events (Jay et al. 2020; Nassal & Tichy 2016). Fur-
thermore, the environment of such systems normally involves

JOT reference format:

Paula Mufioz, Priyanka Karkhanis, Mark van den Brand, and Antonio
Vallecillo. Modeling Objects with Uncertain Behaviors. Journal of Object
Technology. Vol. 20, No. 3, 2021. Licensed under Attribution 4.0
International (CC BY 4.0) http://dx.doi.org/10.5381/jot.2021.20.3.a8

unknown factors and circumstances (Shi et al. 2005; Geller &
Bradley 2012).

Starting from a traditional behavioral specification based
on state machines, our proposal for modeling these types of
behaviors uses a combination of:

— probabilistic state machines (Novdk 2009) and influence
diagrams (Howard & Matheson 2005) for representing the
causalities and effects of the agents’ actions (Pearl 1994;
Darwiche 2009; Pearl 2000);

— the motivational forces that influence the agents’ decisions
towards achieving their goals (Nassal & Tichy 2016);

— the explicit representation and propagation of the aleatory
uncertainty due to the imprecision in the measuring tools
or unreliable sources (JCGM 100:2008 2008);

— the subjective interpretation of the environment by each
individual agent and the confidence assigned to its data
sources (Jgsang 2016; Burguefio, Claris6, et al. 2019;
Munoz et al. 2020); and

— the representation of the randomness inherent to any real
environment (Oberkampf et al. 2002; Garlan 2010).

Although there are proposals to model these aspects using vari-
ous approaches, typically using agent systems, they usually do
not cover all these factors. In addition, they tend to use lower
level languages and platforms, which makes the simulation of
these types of systems rather complex and cumbersome.

Our goal is to show how these behaviors and associated un-
certainties can be effectively modeled in high-level languages
such as UML (Object Management Group 2015) and OCL (Ob-

An AITO publication

http://dx.doi.org/10.5381/jot.2021.20.3.a8

ject Management Group 2014), and how these speci cations can2.2. Modeling the behavior of agents

be used to simulate and analyze systems. We demonstrate oyp UML, a Behavior is a speci cation of events that may occur
approach with two exemplar applications, one from the traf ¢ gynamically over time (Object Management Group 2015). Be-
domain and another from the games simulation eld. havior can be speci ed in terms of operations, state machines,
After this introduction, Sect. 2 brie y presents the back- sequence diagrams and activities. Typically, reactive and real
ground of our work and provides an overview of related works time systems are speci ed using state machines, with many
that model agent and human behavior. Then, Sect. 3 presentgyols available for the speci cation, simulation and analysis of
our proposal, describing how to represent the behavior of agentssych systems. These are normally deterministic speci cations.
under the presence of uncertainty. It includes two applications geyeral approaches have been proposed for the speci ca-
that we have developed to demonstrate and evaluate the prgion of models of agent behavior. Firsyle-based systems
posal. Sect. 4 discusses the types of analyses that can be carriege ne actions that are triggered based on the rules speci ed by
out with our SpeCi cations. Fina”y, Sect. 5 concludes with an the System mode'er_ The set Of ru'es can even be dynamica”y

outlook on future work. changed during the system simulation. They are common in sim-
ulation games such as SImSE (Navarro & van der Hoek 2004),

2. Related Work and Background SESAM (Ludewig et al. 1992), SimVBSE (Jain & Boehm 2006),
or SimjavaSP (Shaw & Dermoudy 2005). They simulate hu-

2.1. Uncertainty mans following precisely the instructions given by the rules,

Uncertainty is an inherent property of any system that operateswhich make their behavior very predictable and therefore differ-
in a real environment or that interacts with physical elements.ent from human behavior.
Uncertainty can be due to imprecision in the measuring tools; Another approach to model the behaviour of agents emulat-
lack of knowledge about the system or its environment; imper-ing humans is by using parameterized feedback loops repre-
fect, incorrect, or missing information; unreliable data sources sented by multiple equations that describe their actions or trajec-
and communication networks; numerical approximations; differ- tories (Ridel et al. 2018; Albrecht & Stone 2018). Although the
ent interpretations of the same evidences by different parties, ormodels are very accurate, the behaviour of the agents is again
the inability to determine whether a particular event has actually predictable. Besides, they normally neglect the inherent random-
occurred or not (JCGM 100:2008 2008). ness and uncertainties existing in real environments (Thompson
There are several uncertainty classi cations. The primary & Smith 2019).
one divides it into aleatory and epistemic (Kiureghian & There is a vast literature on the speci cation of probabilistic
Ditlevsen 2009).Aleatory uncertaintyefers to the inherent or stochastic behavior, which allows the description of different
probabilistic variability or randomness of a phenomenon. For alternative actions and their probability of occurrence. They
example, measuring the distance between two objects, or theallow simulations of systems that calculate alternative outcomes
duration of a software development process. This type of uncer-and their probabilities. For example, some works provide ex-
tainty is irreducible, in that there will always be variability in the tensions to UML for modeling stochastic statecharts (Novak
underlying variables (JCGM 100:2008 200Bpistemic uncer- 2009) or sequence diagrams (Refsdal 2008; Refsdal & Stalen
tainty refers to the lack of knowledge we have about the system 2008). Fuzzy-DEVS (Kwon et al. 1996) extends the DEVS
(modeled or real) or its elements. For example, the con dence formalism for simulating uncertain behavior. Models@runtime
we have on the actual occurrence of a modeled event. This typeare also successfully used for self-adaptive robots under un-
of uncertainty is reducible, in that additional information or certainty (Giese et al. 2014). The main drawback of these
knowledge may reduce it. approaches is that they are not able to describe the causes that
The increasing need to model physical systems has led tomotivate the resulting behaviomptivational forcely and how
several modeling proposals that explicitly represent different these causes in uence the behavior.
types of uncertainty in software models (Troya et al. 2021). The To address these limitations, different approaches,
OMG is also working on a metamodel for the precise speci ca- e.g., (Sharma et al. 2018), make use of Bayesian net-
tion of uncertainty (PSUM) (Object Management Group 2017), works (Pearl 1994; Darwiche 2009), or Causal networks (Pearl
based on the U-Model (Zhang et al. 2016) andmeertum 2000; Pearl & Mackenzie 2018) to model the behaviour of
conceptual model (Zhang et al. 2019). Some works address paragents. These networks can implement the decision-making
ticular types of uncertainties using different notations and logics, process conducted by the agents to decide the next action
namely, Measurement uncertainty (Burguefio, Mayerhofer, etto perform. One of the main bene ts of these proposals is
al. 2019; Bertoa et al. 2020); Design uncertainty (Zhang et al.that they enable the speci cation of different features of the
2018; Famelis et al. 2012; Salay et al. 2013); Occurrence un-agents (character, skills or current state). These approaches
certainty (Burguefio et al. 2018); Belief uncertainty (Burguefio, provide more realistic simulations of human behavior and
Clariso, et al. 2019; Martin-Rodilla & Gonzalez-Perez 2019), how they in uence their decisions, normally to maximize
or Data uncertainty (Jing et al. 2008; Zhou et al. 2009; Wang utility (Pedersen et al. 2018; Neumann & Morgenstern 1953).
& Bai 2019). However, the speci cation of the behavior of The Social Force Modeis used by other authors to explicitly
agents subject to uncertainty, which combines several of thesaepresent and reason about the motivations of agents to decide
types of uncertainty, has received less attention by the modelingthe action to perform next (Helbing & Molnar 1995; Huang et
community (Giese et al. 2014). al. 2017). Similar approaches use the concepfofivational

2 Mufioz et al.

Force (Nassal & Tichy 2016) for every possible action, in order
to perform the one with the highest motivation. In particular,
the motivational force of a given action is computed as the
maximum bene t (calledralencé of all possible results of that
action. Typically, the action with the highest valence will be per-
formed by the agent. However, incorporating uncertainty into
these behavioral speci cations is still an open issue (Albrecht &
Stone 2018), and one of the goals of this paper.

3. Modeling the behavior of agents

This section describes our approach to modeling uncertainty
in the behavior of agents in complex systems, such as those
involving humans with unpredictable behavior, environmental
conditions and imperfect physical elements.

Figure 1 Graphical representation of the Crosswalk system.

3.1. Methodology

Our proposal consists of a set of steps that incorporates the dif-
ferent uncertainty factors to the behavior of the system objects.

— First, we specify the possible actions that each agent can
perform, and the agent's state machines that describe its
basic behavior using a traditional (deterministic) approach.

— Second, we specify the possible situations in which the
agents can be depending on their environmental conditions
and the subjective interpretation of the environment by
each individual agent, and the con dence assigned to its
data sourcess{tuational conteXt These situations will be
used to further re ne the state machines of the agents.

— Third, we should identify the motivational forces that
in uence the agents' decisions towards achieving their Figure 2 The Crosswalk system metamodel.
goals (Nassal & Tichy 2016).

— Fourth, specify the corresponding weights of the situational
context and the motivational forces when combining them 3 5 - \Motivating Example: A crosswalk system
to decide the action to perform (Fig. 4). This results in a set
of decision tables with their associated weights that de ne
probabilistic state machines (Novak 2009) and in uence
diagrams (Howard & Matheson 2005) for representing the
causalities and effects of the agents' actions (Pearl 1994,
Darwiche 2009; Pearl 2000)

— Inthe fth step, we determine the attributes of the agents
that need to consider measurement or belief uncertainty
due to the imprecision in the measuring tools or unreliable
sources, and how they get propagated.

— Finally, we specify the degree of randomness of the be-
haviour of the agents and of their environments, capturing
those unpredictable decisions or unforeseen events.

Suppose that we want to model a crosswalk system that emulates
the behavior of two types of agents: car drivers and pedestrians.
The structure of the crosswalk system is depicted in Fig. 1.
Each agent has a position, given by its planar coordinates,
its dimension (length and width) and its current speed, which
can be either zero (when stopped), slow or normal. Their age,
experience in manoeuvring, vision range, or mental stress in-
uence the decision to take an action. Moreover, there are
environmental conditions (clagnvironmentCond) such as
road visibility and road grip which are in uenced by weather
conditions clas¥VeatherCondwhich represents, e.g., fog, rain,
ice or darkness (Czarnecki & Salay 2018; Leibowitz et al. 1998).
These factors impact the crosswalk system and could cause colli-
We have evaluated this approach with different applications.sion or near-collision events (Sanders 2015). Being common to
In this paper we will illustrate the proposal with two case stud- all agents at the same crosswalk, the environmental conditions
ies. The rst corresponds to a pedestrian crossing system inare associated t6rossWalk objects, and then used by each
which cars and pedestrians cross the street in diverse situationgndividual agent to compute its own speed or visibility.
trying to minimize hard brakes, near-collisions and accidents. The crosswalk system is not guided by any traf c lights, and
The second emulates a war of tanks chasing and shooting ahence the agents have to decide intuitively to take an action. As
each other (or trying to escape in case of low ammunition or shown in Fig. 2, Clas€rosswalk de nes several attributes in-
numerical inferiority). These examples are described below, asdicating the agents starting point, stopping point, and end point.
well as how the uncertainty in the behavior of its agents can be The stopping point de nes where the agent should stop before
modeled and simulated with UML and OCL tools. entering the crosswalk. The stopping point of a car coincides

Modeling Objects with Uncertain Behaviors 3

Figure 3 Excerpt of the state machine f@ar objects in the Crosswalk system.

with the crosswalk's stop line. The stopping point of a pedes- .
trian is at the end of the sidewalk, before starting to cross it (see Table 1 Car decision table.
Fig. 1). Agents implement a query operatitieforeSP()) that Car state

decides if the agent has not yet passed its stopping point. An- | Stuationofcar _| Moving | Slow | Stopped
. C1. No pedestrian in vision radius move | accel. accel.
other operau_ona(bputToCoIIlde()) determines |fth.e_agent is C2. Car before SP, ped. before SP decel, move | accel.
about to collide with another one. Whenever a collision 0CCUrS, | ¢3. car after SP, ped. before SP| move | accel. | accel.
an instance of cladsicident is created. C4. Car before SP, ped. after SP| decel. move | accel.
Time is modeled by &lock object. On everyick (whose C5. Car after SP, ped. after SP stop stop stop
resolution can be de ned by the user, in our simulations we | C6. Carin near collision with ped} stop stop stop

have used 0.1 seconds), it invokes operasiction() on all

active objects associated to the clock. When an agent receives

anaction() operation, it decides what to do next. Possible

options are:move() at the current speed until it receives a Table 2 Pedestrian decision table.

newaction() operationaccelerate() , which increases the _ . _ Pedrestian state
speed and then moves at the new speledglerate() , which Situation of pedestrian _ Moving | Slow | Stopped
decreases the speed and then movestom() , which suddenly P1. No car in vision radius move | accel. | accel.
L P2. Ped. before SP, car before SP move | accel. accel.
brakes and changes_ the speed to 0. INStosy stat_e, it is the P3. Ped. after SP, car before SP| move | accel. | accel.
same for the pedestrian to decelerate as to stop; in the case of a| p4. ped. before SP, car after SP| decel. | decel. stop
car, wherstop() is invoked, it rst moves with half speed and P5. Ped. after SP, car after SP move | accel. | accel.
then stops. Accelerating when moving at normal speed does not | P6. Ped. in near collision with car ~ stop stop stop

have any effect. Likewise, decelerating, moving or stopping in
the Stopped state do nothing. For simplicity, the intersection is
located at point (0,0), cars move along the X-axis from right to
left, and pedestrians move top-down along the Y-axis. Methods the car stops. Similar rules can be de ned for st&ksv and
currentSpeed() andcurrentVisionRadius() ~ are affected ~ Stopped. They are not displayed in Fig. 3 but summarized in
by the environmental conditions. They recalculate the currentthe state-transition tables 1 and 2. The left columns show the
speed and vision radius of the agent according to the currentsituationof the agent when thaction() ~operation is received,
road visibility and grip. requesting it to decide what to do next. Depending on the situa-
A common way to specify the behavior of these types of tion and on the current agent stakéqving, Slow or Stopped),
real-time systems is by means of state machines (Harel 1987its reaction can be different.
Object Management Group 2015). Operations de ne the signa-
ture of the events accepted by the objects, and state machineg
de ne how the state of each object changes upon receipt of
an operation. For example, Fig. 3 shows an excerpt of the
state machine fo€ar objects. In addition to showing the ef-
fects of operationsnove(), accelerate() , decelerate()
andstop() , it speci es how the object decides what to do
when anaction() operation is received (only shown for the

We have modeled the Crosswalk system in UML and OCL,
mploying the tool USE (Gogolla et al. 2007) that provides an
action language called SOIL (Bittner & Gogolla 2014) that
allows modelers to create instances and links, perform assign-
ments of values to attributes, and invoke operations on objects.
This way, the system can be simulated. Further validation and
veri cation tests are also available with USE, as described
in (Gogolla et al. 2018). However, one of the limitations of
these speci cations is that they are deterministic, failing to ac-

th K Stoppi ints. th K ing- if th "%ount for both the stochastic nature of the agents' behavior and
€ crosswark stopping points, the car keeps moving, ITthe car 'SH1e uncertainty aspects of these kinds of systems.
before its stopping point and the pedestrian has already passe

it, the car slows down; and if both the car and the pedestrian The following subsections describe how we propose to model
have passed their stopping points, or they are about to collidesuch a behavior, illustrating it using the Crosswalk system.

4 Mufioz et al.

(Situational Context (Motivational Force) In the Crosswalk system, the Situational Context of the car is
de ned by situations €1..Cg described in Table 1.

As previously mentioned in Sect. 3.2, these tables de ne the
state machines that speci ed the agents' behavior. Based on

(move()) (accelerate()) (decelerate()) (stop()) the situation the object is in, and the current state of the object
(Moving, Slow, Stopped), the tables determine the next action
Figure 4 Basic actions and their causes. to perform.

In order to de ne the in uence of the Situational Context

Rain Fog Darknes on each action (the arrows that connect$itational Context
node with eaclactionnode in the in uence diagram shown in
Fig. 4), our proposal extends these traditional state machines

- -~ in two ways. First, we replace them with probabilistic decision
(Road Gr@ (\AS'b'“ty) tables that determine, for each situation in the agent's Situational

Context, the probability of each possible transition. In other
words, they become probabilistic state machines (Novéak 2009).
And second, probabilities are also assigned to situations, to
represent the fact that sometimes it is dif cult to decide precisely
Figure 5 Environment in uence on agent parameters. in which situation the agent is (see below).
For example, Table 3 shows the probabilities associated with
each possible action of@ar agent, when it is in th&low state.
3.3. Modeling the basic behavior: actions and forces Basically, it extends column 3 of Table 1, which determined for
First, we need to identify thactionsthat each agent can per- each situation the (only) action to take by the Car, with the set
form during the system execution. In the Crosswalk system, the of possible actions that can be performed by the Car, and their
actions that both car drivers and pedestrians can perform areassociated probabilities.
move(), accelerate() , decelerate() andstop() . Second, we assign probabilities to the situations, which rep-
Second, we need to spectfipweach agent decides to per- resent the likelihood of the agent to be in each one. These
form an action, as well the factors that motivate such a decision,probabilities are normally due to the incorporation of measure-
i.e., theforcesthat in uence the agents' decision process. To ment uncertainty (Bertoa et al. 2020) into the models, because
specify these in uences we will use both tB&uational context ~ comparing two distances with imprecision no longer returns a
and theMotivational Forceof each action. The rstone de nes Boolean value, but a probability (Burguefio et al. 2018), which
the situation in which an agent is, something that complementsgets propagated when operating with imprecise attributes. In
the agent's state machine to decide the action to perform (cfthis way, instead of being able to crisply decide whether we
tables 1 and 2). For example, one possible situation of the car isare close or not to a given point, or to another object, we can
before the stopping point and with other agent inside the cross-only estimatehow close we are to it. This naturally re ects the
walk (situation C4). In contrast, the Motivational Force de nes human incertitude in evaluating distances or times, and allows
the motivations of an agent to decide the action to perform next,us to model the imprecise behavior, leesitation(Jay et al.
ranking them according to their utility (Neumann & Morgen- 2020), that occurs when a pedestrian or car evaluates whether it
stern 1953) and how they satisfy the agent's needs (Nassal &is “close enough' to the intersection to stop or cross.
Tichy 2016). For example, when a pedestrian is in a real rush, it Therefore, in our proposal a Situational Context will be de-
will prioritize acceleration over all other actions. ned by a tuple of Real numbers, one for each possible situation,
Figure 4 shows an In uence Diagram (Howard & Matheson which represent their associated probabilities. The sum of the
2005) with these relations. This diagram is a generalization of elements of the tuple must be 1. For example, at one moment
Bayesian and Causal Networks to achieve not only probabilistic in time, the Situational Context of the car agent can be de ned
inference but also decision making, following theximum by the tuple{c1=0,c2=0.95,c¢3=0.05,c4=0,c5=0,c6=0}
expected utilitcriterion (Neumann & Morgenstern 1953). meaning that the evaluation of the car situation has dictated that
Finally, we also need to specify how tleavironment and the car is before the stopping point with a likelihood of 95%,
personal condition$n uence theparameters of the actions. and after the stopping point with a likelihood of 5%.
For example, dif cult weather conditions like heavy fog or rain The probabilities of each situation are considered together
can affect the visibility of the agent, and also the road grip, with the probabilities in the probabilistic transition tables. This
which in turn in uence the speed of the agent and its visibility. computes the degree of in uence for the next action to be per-
This is shown in the in uence diagram depicted in Fig. 5. formed by the agent.
These elements are discussed in detail in next subsections.
3.5. Motivational Force

3.4. Situational context As shown in the in uence diagram in Fig. 4, agents also take
In our proposal, th&ituational Contextle nes the possible into account theMotivational Forceof each action (Nassal &
situations in which an agent can be, when having to decide theTichy 2016), which computes the maximum benesalencé
action to perform next, as well as their associated probabilities.of all possible results of the action, according to the agent's

Modeling Objects with Uncertain Behaviors 5

Table 3 ProbabilisticCar decision table, in th&low state. Table 4 Car Motivational Forces, in th&low state.

Car state: Slow Car state: Slow
Situational context of car move | accel decel stop Type of agent depending on
C1. No pedestrian in vision radius 0.1 0.9 its motivational force move | accel decel | stop
C2. Car before SP, ped. before SP 0.8 0.1 0.1 Reckless agent 1.0
C3. Car after SP, ped. before SP| 0.2 0.7 0.1 Distracted agent 0.2 0.6 0.1 0.1
C4. Car before SP, ped. after SP 0.9 0.1 Attentive agent 0.25 0.25 0.25 0.25
C5. Car after SP, ped. after SP 0.1 0.9
C6. Car in near collision with ped 1

In general, obtaining these weights can be a dif cult task,
but it is something that falls outside the scope of our work as it
personal preferences and system goals. The bene t of eactdepends largely on the type of application. Here we will focus
result depends ofll) theinstrumentalityof the result, i.e., the on how to this information can be used to enrich the software
chances it has to lead to a valid outcome (normally determinedmodels and their simulations.
by the goals of the system, or the objectives de ned by the

agent's owner), and2) the personal priorities andeedsof 3.6. Combining Situational Context and Motivational
the agent (which depend on the own agent's goals, skills and Force
personal preferences). Figure 6 shows the UML class diagram of the Crosswalk sys-

With this, weights (i.e., probabilities) can be assigned to the tem, extended with behavioral uncertainty. It is modeled with
actions that the agent can perform, according to their Motiva-USE (Gogolla et al. 2007) because this tool already provides
tional Force. Such weights will be combined with the Situa- an extension of the UML and OCL type system to deal with
tional Context, using the corresponding in uence diagram, to uncertain datatypes (Bertoa et al. 2020).
de ne the nal probability of each action. The new attributesituationalContext ~ anddecision

In general, computing the Motivational Force of the actions of classAgent store, respectively, the values for its current situ-
of an agent is not easy because it depends on social, psych@tional context, and the probabilities associated with each action.
logical and personal factors, and it may also imply non-trivial With this, the combined probabilities of each possible action will
resolution of con icting interests and forces. In this paper we P& computed using the in uence diagram shown in Fig. 4, based
propose the use of a high-level speci cation of such forces, ON the weights given to the situational context and motivational
based on goals and responsibilities (Marron et al. 2020). Thusforce, stored in the attributesituationalContextWeight
each agent will have a set of high-level goals to achieve, and a@ndmotivationalForceWeight of classBehavior . These
set of responsibilities to comply with. In this case, the goal of all Weights (whose sum is 1) represent the relative importance the
agents of the Crosswalk system is the same: “to cross the stree@gent assigns to the corresponding factors, i.e., the con dence
as soon as possible and in a safe way, in order to reach their nal@ssigned to each one. The values of these tables can evolve, as
destinations.” The responsibilities are to avoid collisions with discussed later in Sect. 4.4.
other agents, and to obey the traf ¢ laws — e.g., the maximum Some additional inputs are needed for the computation of
speed when approaching the crosswalk. Each action of an agene nal probabilities associated with each action:
will contribute to the agent's goals and responsibilities in differ- — The probabilistic decision tables de ned for the states
ent ways, and therefore each agent will assign different weights of each agent (e.g., Table 3). These are stored in class
to each action, depending on its contributions to the agent's SituationalContextTables

current motivational forces. For exampleregklesgpedestrian — The probabilities that the agent has to be in each of the
will give the maximum priority to the goal of crossing the street, situations de ned in its Situational Context, also stored in
ignoring the rest of the forces, even the possibility of collisions. classSituationalContextTables

A distracteddriver may sometimes ignore that he has passed — The type of agent depending on its motivation, e.g., 20%
the stopping point,e.g., when texting while driving, but will reckless, 20% distracted and 60% attentive. (Attributes
always comply with the responsibility of avoiding collisions. recklessMood, distractedMood andattentiveMood

An attentiveagent will always follow the rules, even when it of classMotivationalForce).

implies waiting for a long time until the crosswalk is free. As — The weights assigned to the possible actions of the agent,

with humans, pro les are never absolute; it can happen that an depending on the type of agent and on its current state (e.g.,
agent is 20% reckless, 30% distracted and 50% attentive. These Table 4), also stored in claddotivationalForce (not
weights contribute to the nal decision. shown in Fig. 6).

This means, e.g., that an attentive agent will assign the sameAccording to the maximum expected utility criterion (Neumann
weight to each action for each force, without imposing any & Morgenstern 1953), the action with the highest probability
personal choice, while a reckless driver will always try to accel- (i.e., the one with the highest value in tdecision tuple
erate, assigning a weight of 0 to the rest of the possible actionsattribute of classAgent) will be typically performed by the
in all agent states. Table 4 shows examples of weights assigne@gent. In addition, agents record their decisions using traces,
to the possible actions of a car, in tBw state, with different which provide logs that can be used after the simulation to
motivational forces. visualize and/or analyze the system execution.

6 Mufioz et al.

Figure 6 The Crosswalk system metamodel, extended with behavioral uncertainty.

3.7. Object attributes and simulation parameters To handle these uncertainties we make use of an extension of

Once the agent has decided the action to perform during theUML and OCL datatypes to represent and propagate measure-
next time interval, we need to set the parameters of such actionsent uncertainty according to the international metrology stan-
e.g., the speed at which the agent will move. For the estimationdards (JCGM 100:2008 2008), and of its realization in the mod-
of these parameters we need to consider both the uncertaint!ing tool USE (Bertoa et al. 2020). TyjpRealextends type
factors that affect their values, and the degree of in uence of the Real with measurement uncertainty (e.gReal(3.5,0.01)

environment conditions on the corresponding attributes (Fig. 5).fepresents the uncertdfeal 3.5 0.01), while typeUBoolean
provides the Probabilistic extension of Boolean logic, where

3.7.1. Uncertainty in parameter calculation Object at- probabilities represent the likelihood (con dence) of a predi-

tributes are used in models to capture their properties, suchcate to be true; e.gJBoolean(true,0.99) represents a con -

as physical dimensions (length, width, collision radius), ca- dence of 99%. The extended type system provides the automatic

pabilities (maximum speed, reaction time), and current statepropagation of uncertainty through the numerical, comparison

(position, speed, vision radius). These variables are normallyand logic operators.

typed using the UML and OCL primitive datatypes, which as-

sume precise values. However, models of physical systems nee®.7.2. In uence from external factors To de ne the rela-

to account for the inherent uncertainty of their elements and tionships between the different object attributes, and the effects

environment, and therefore the need for notations that consideithat external factors have on them, we use in uence diagrams

such uncertainty. Here we will focus on the following types of such as the one shown in Fig. 5.

uncertainty (Czarnecki & Salay 2018; Troya et al. 2021): The concrete in uence of some attributes on others can be

_ Measurement uncertainty, due to, e.g., unreliable or impre-€XPressed by OCL expressions and operations that implement

cise measuring instruments, mechanical tolerance, or lackt€ refations de ned in the in uence diagram. For example, the
of visibility conditions. This leads to imprecise calcula- '€lationship between the weather conditions and the visibility

tion of distances or speeds, and of the comparison of theirin the crosswalk and the road grip can be speci ed as follows:

values (Salay et al. 2020). currentVisibility () :Real = visibility *
— Occurrence uncertainty, about the presence (or not) of self .weatherCond >iterate (wc : WeatherCond ;
objects in the system. It can be due to, e.g., lack of visibility ~ r: Real = 1.0 |r x wc.visibilityFactor))

L. . currentRoadGrip (): Real =roadGrip =*
or adverse weather conditions, which make the agent be” ¢ .|t eathercond siterate (we : WeatherCond :

unsure about the presence of a pedestrian or any othel r:RrReal = 1.0 |r * wc.roadGripFactor))
object in the road (Phan et al. 2019).

Modeling Objects with Uncertain Behaviors 7

These variables are real numbers in the range [0..1] whereexhibit a completely random behavior on 20% of its decisions.

0 means no visibility/grip and 1 means perfect visibility/grip.
The expression used to derive their values simply modi es the
initial road value by a factor that is obtained by multiplying the
factors of all the weather condition that currently apply to the
road (e.qg, ice, fog, rain or darkness).

Calculating the variations of other attributes depending on
the environmental conditions is a bit more complex, since they

Likewise, if randomBehavior=0.1 andrandomFactor=0.3,
one of the possible actions of the agent (arbitrarily chosen) will
be added a 30% chance of being selected, in 10% of the agent's
decisions. Of course, other alternative algorithms to implement
random behavior could be applied instead.

Note that this last step attempts to capture unpredictable
behaviors or unplanned circumstances such as the agent sud-

use simulation parameters. For example, the way in which thedenly changing its mind or simply malfunctioning, which are

speed of the agent is modi ed by the visibility and road grip
can be speci ed as follows:
currentSpeed

O
let visibility
self.int
let roadGrip Real
self.int .env .currentRoadGrip
let fv : Real=selfint .param .speedVisibFactor
let fg : Real=selfint .param .speedGripFactor
self .speed = (fv xvisibility + fg »roadGrip
r v fg))

Next, operatiorcurrentVisionRadius() adjusts the vi-
sion radius depending on the current visibility:

() : UReal
= self.int .param .vRadVisibFactor

: UReal
: Real

.env . currentVisibility

() in
() in

in
in
+

currentVisionRadius
self .visionRadius

Finally, operatiorvisionConfidence() returns the con -
dence, expressed afkaal number in the range [0..1], that we
assign to an object that an agent sees at a cedtsiance .

It will be O is the object is outside the vision range of the
agent. Inside its vision range, the con dence will be 1 if it
is close, and starts diminishing as the object reaches the vi
sion range limit. This is determined by the value of parameter
vRadVisibFactor .

visionConfidence
let VR :UReal
let th :Real self int
let vf :Real self int
if (distance >VR) .confidence
else

(distance :UReal): Real
self currentVisionRadius

() in
.param . truthThreshold
.param .vRadVisibFactor
()>=th then 0.0
if (distance <VRxvf) .confidence ()>=th
else 1.0 (distance /R) .value ()
endif
endif

in
in

then 1

In this expression, note the usetoithThreshold to de-
cide if a condition expression is true or false. Given that our

generalized here as random actions. More careful reasoning or
more detailed analysis of unexpected behaviors could be used
to eliminate the randomness of the unknown, unplanned, or

apparently surprising behavior of the agents when they are of

an epistemic nature. Other aleatory uncertain behaviors, such as
a car engine suddenly breaking or a pedestrian having a stroke
while crossing, still need to be treated randomly.

3.9. Second motivating example: A Tank Warfare

The second application we developed to demonstrate and evalu-
ate our proposal is a survival gameTank Warfarein which

two teams of tanks ght each other. The last team standing is
the winner. Different types of uncertainty are involved in this
application, which must be taken into account to simulate the
system more realistically and faithfully.

First of all, the tank occupants' uncertain behaviour needs to
be considered, as well as their pro les and motivations, which
may be more or less bold or cautious. Measurement uncertainty
also plays an important role, since this type of vehicle's navi-
gation and ring systems usually have limited precision. The

visibility conditions of each tank and its environment should
also be taken into account. Finally, there is always a degree of
randomness in the nal decisions of each tank crew.

3.9.1. Game speci cation At any given time, tanks can do
any of the following: they cashootat another tankjnovein
any direction or do nothing. As in the crosswalk simulation,
time is modeled by &lock object whosdick() operation
invoke theaction() method of all tanks.

To determine if the tank can execute an action, there are three
main parameters in the game. The rstisalth ; every time a
tank is shot, this value is decreased. When the value reaches 0,
the tank is destroyed. The second parametpovger, which

measurement and logical expressions incorporate uncertaintys -onsumed each time a tank executes an action. Tanks can

thresholds are needed to make decisions.

3.8. Representing Random Behavior

not perform actions if this value reaches 0. The third parameter
is ammowhich indicates the number of cannonballs available.
Reloading is not possible in our simulation, so once the tank

Finally, another aspect that cannot be neglected is related to theres all of its bullets, it cannot shoot any more.
unpredictable or even random behavior of agents. For example,

a pedestrian who suddenly stops, or a car that accelerates with n@.9.2. Method application

apparent reason (Kraaier & Killat 2008; Oberkampf et al. 2002).

This is modeled by a nal (and optional) phase that randomly

modi es the decision of the agent about its next action.
Attribute randomBehavior of class Behavior deter-

The rst step is to specify the
possible actions that the tanks can perform, together with the
state machines that specify their (deterministic) behavior. Given
the two main actions mentioned in the previous sectinae
andshoot), we de ned ve compound actionsescape() ,

mines the likelihood of the agent to behave randomly, which moves inthe opposite direction to the nearest enemy tank;

while therandomFactor attribute determines the degree of
change allowed for the nal decision. For example, if
randomBehavior=0.2 andrandomFactor=1, the agent will

8 Mufioz et al.

shoot() at the closest enemy tankhaseEnemy(), which
moves towards the nearest enemy tgnigAlly() , which
moves towards the nearest ally tank; atop() to save power.

Figure 7 Examples of simulations showing different scenarios. Square dots represent the times when the agents cross the mid-
point of the crosswalk. Collisions only occur if they cross at the same time.

In the second step, we de ne tsguational contexby speci- lief uncertainty to the model. In this example, we have de ned
fying the possible situations in which the agents can be, dependsome uncertain attributes regarding the mobility of the tank, the
ing on their subjective interpretation of the environment. In this power consumption process or its vulnerability because they are
case, we have de ned 6 situations and 2 states in which a tankall related to physical parameters. We also considered occur-
can be, given the number afliesandenemiesurrounding it, rence uncertainty about the presence of objects in the system

and its vulnerability level. when some tank is unsure of the existence of another one.

A tank can be in any of these two statésiw Vulnerabil- Finally, some randomness in the tanks' behaviour can also
ity or High Vulnerability The current state depends on the be added to emulate the unpredictability of human behaviour.
value of attributevulnerability ~ , which is calculated by ag- The UML and SOIL speci cations of this and the previous
gregating the values gfower, health , andammo Attribute system, as well as the results of several simulations with various

vulnerabilityBound de nes the threshold that determines con gurations can be found in the paper's companion website.
the current state. In thdigh Vulnerabilitystate, the tank deci-
sions will be more reckless, while in thew Vulnerability state 4. Analysis
its decisions will be more conservative. For example, in the sec-
ondsituational contexta vulnerable tank will escape because
there are no allies nearby to help, while a non-vulnerable agent
will chase the enemy to engage in a ght.

The third step identi es thenotivational forceshat in uence . .

, . . 4.1. Simulation

the agent's decisions. In our case, we consider two types of

behaviour depending on the strategy chosen to play the gaméA_Ithough in theory upfront des_ign-time yeri cation techniques
The rst one is thebold strategy, in which the tanks will priori- could be used to analyze their properties, research has shown

tize the most aggressive decisions over all others. For examplethat the complexity of these systems makes static analysis prac-

they will be willing to shoot at enemy tanks even in a minority tically unfeasible (Helle et al. 2016; Koopman & Wagner 2016).
situation. In the second strategy, callsitious the tanks will In pontrast, rqn—tlmg techniques, such as S|m_ulat|on or moni-
prioritize conservative choices to try to survive at all costs. If ©ring, can still provide very relevant information at a lower

tanks feel that they can lose because they are in a minority, theyC0St (Babikian 2020). - _
will choose to escape. One of our reasons for specifying our models with the tool

The fourth step assigns weights to Siiational contexand USE is that it provides a high-level textual action language,
motivational forcemodels. In our examples, these weights were called SOIL (Blttner & Gogolla 2014) that enables the behav-

assigned by estimating the possibilities of the logical actions |Ioral s:[pecl:l cag(o)rlll_of liJMb rr:r?d%séfls Vtvetl.l as |tts;1 ?xedqgtloni
that a player would take, but they can come from any source n particuar, extends the notation with fraditiona

such as real sampled data or machine learning simulations. imperative constructs, including the creation of instances and

The fth step incorporates the possibigeasuremerandbe- 1 http://atenea.lcc.uma.es/projects/ModelingUncertainBehaviours

Once we have described our proposal for modeling the behavior
of agents, in this section we discuss the types of analyses that
can be performed with it.

Modeling Objects with Uncertain Behaviors 9

