
Journal of Object Technology | RESEARCH ARTICLE

Uncertainty management with extra-functional
qualities in multi-artefact co-evolution

Francesco Basciani†, Davide Di Ruscio†, Ludovico Iovino∗, and Alfonso Pierantonio†

†Università degli Studi dell’Aquila, Italy
∗Gran Sasso Science Institute, Italy

ABSTRACT
Metamodels are at the core of any model-driven projects and give the experts a linguistic means to abstractly represent
the problem domain’s instances. Metamodels are prone to modifications due to new insights emerging from the domain,
improvements, and features being added to the modeling language over time. Metamodel evolution may induce severe
repercussions over the related artifacts, which might need to be consistently adapted. The co-evolution problem poses another
issue related to the epistemic uncertainty arising as a response to a metamodel change where many different consistency
restoration procedures are possible, e.g., restoring models and transformations. In this work we rely on the notion of information
loss (IL) to understand which migration combinations are preferable to others in coupled evolution, by offering a ranking of
the possible solutions. The IL denotes that part of the knowledge contained in the source models cannot be conveyed or
translated into the target models, using a selected transformation, resulting in a loss of information. Such aspect represents an
extra-functional quality that can be used for ranking the selection of certain transformation migrations in the context of multiple
available alternatives and in combination with model migrations. Information loss induced by a (migrated) transformation can
be defined as the amount of information lost executing the (migrated) transformation compared to the original output model
obtained by executing the original transformation. The proposed approach is supported by a prototype tool that we demonstrate
and validate.

KEYWORDS MDE , Parallel Coupled-evolution , Information loss

1. Introduction

Model-Driven Engineering (MDE) helps tame the sheer com-
plexity of modern software systems by leveraging abstraction
and automation (Schmidt 2006). MDE is becoming popu-
lar not only in academia but also in industry (Hutchinson et
al. 2014) as testified by a broad range of companies that em-
ployed MDE in different application domains including auto-
motive, telecommunications, defense, aerospace, Industry 4.0,
and healthcare (Vallecillo 2014). Regardless whether abstract

JOT reference format:
Francesco Basciani, Davide Di Ruscio, Ludovico Iovino, and Alfonso
Pierantonio. Uncertainty management with extra-functional qualities in
multi-artefact co-evolution. Journal of Object Technology. Vol. 20, No. 3,
2021. Licensed under Attribution 4.0 International (CC BY 4.0)
http://dx.doi.org/10.5381/jot.2021.20.3.a2

descriptions of complex functionality, complementary views
(e.g., behavioral versus structural), or vertical refinement of
high-level requirements models into design models and even-
tually down to executable code, model-driven techniques offer
sound and technically consistent solutions. Metamodels are at
the core of any model-driven projects and give the experts a
linguistic means to abstractly represent the problem domain’s
instances. The domain metamodels allow modelers to define
a complete modeling environment that comprehends not only
models, but also editors (and the related syntax), model-to-
model transformations, analyzers, code generators, and more
(Bézivin 2005). Like any long-living software artifact, meta-
models are prone to modifications due to new insights emerging
from the domain, improvements, bug-fixing, and features being
added to the modeling language over time. However, changing
a metamodel may induce severe repercussions over the related

An AITO publication

http://dx.doi.org/10.5381/jot.2021.20.3.a2

artifacts whose validity restoration requires specialized support.
As a consequence, a metamodel lock-in may quickly emerge
where modelers must face the inability to keep the overall envi-
ronment consistent (Iovino et al. 2012). The problems induced
by metamodel evolutions considerd in this paper have affected
also well-known languages including UML. Despite its status
as an industry standard, the UML metamodel has been sub-
ject of several evolutions to increase the expressiveness of the
language, and to accommodate unforeseen requirements com-
ing from different kinds of stakeholders including industrial
practitioners (Thompson & Platt 2015).

Over the last years, a corpus of literature studies has accrued
that addresses the problem of co-evolution. Most of these stud-
ies are devoted to the co-evolution of metamodels and models
(see (Hebig et al. 2016) for a survey). Other approaches are
dealing with the co-evolution of transformations (Garcés et al.
2013; Kessentini, Sahraoui, & Wimmer 2018), editors (Fal-
zone & Bernaschina 2018), and even syntaxes (Di Ruscio et
al. 2013). An interesting aspect that has been previously in-
vestigated in (Di Ruscio et al. 2016; Di Ruscio et al. 2017) is
related to the epistemic uncertainty arising as a response to a
metamodel change where many different consistency restoration
procedures are possible. A typical example is when the multi-
plicity of an association in a metamodel is restricted: it gives
place to multiple ways of selecting the exceeding associations to
be removed from the instance models (Kessentini, Wimmer, &
Sahraoui 2018). Analogously, the migration of transformations
can be conducive to bound uncertainty too. For instance, if we
merge two attributes of a metaclass, and we have two bindings
in transformation rules predicating over those attributes, which
one do we need to consider in the migration? Moreover, com-
bining all these alternatives of migrated artifacts can lead to
a matrix of possible combinations. The modeler then has to
carefully inspect and detect the best migration and artifacts with
respect to her final intent.

This paper proposes an approach to migrate both models and
model-to-model transformations in response to a metamodel
revision. Since each different artefact can give place to multiple
migration policies, the method introduces a ranking technique
to reduce the combinations to explore, as one of the possible
criteria in applying parallel-coupled evolution of models and
transformations. The migration ranking relies on a notion of
information loss (Basciani et al. 2018) (IL), a measure that
might suggest a criterion for selecting migration combinations
over others. The IL represents an extra-functional quality de-
noting the amount of knowledge in a source model that cannot
be conveyed to the corresponding target model resulting in a
loss of information. Therefore, it provides the modeler with
a ranking for selecting specific transformation migrations in
the context of multiple available alternatives and in combina-
tion with model migration alternatives. The information loss
induced by a (migrated) transformation can be defined as the
amount of information lost executing the (migrated) transfor-
mation compared to the output model obtained by executing
the original transformation. The approach permits combining,
visualizing, and representing the possible combination of migra-
tion alternatives for corrupted artifacts using weaving models.

Each migration is assigned the corresponding information loss
computed according to the technique in (Di Ruscio et al. 2016;
Di Ruscio et al. 2017). The approach is generic and can be ex-
tended to other extra-functional qualities and different kinds of
artefacts, including editors and code generators. It is important
to remark that the proposed approach can manage the evolution
of modeling artifacts, which do not include OCL constraints in
their definition. Considering them in the proposed method is
planned as future work.

Structure of the paper The paper is organised as follows:
Section 2 shows that the evolution of the metamodel might
affect both models and transformations. Section 3 shows how
multiple alternatives of migration are possible when considering
models and transformations in the co-evolution phase. Section 4
demonstrates that this parallel activity might induce information
loss if considered in combination of models and transformations;
Section 5 proposes an approach able to generate, visualize and
rank existing co-evolution alternatives based on information
loss, while in section 6 we describe the tool supporting the
presented approach. Section 7 presents the evaluation of the
proposed techniques. After a summarizing discussion given in
Section 8, related work is presented in Section 9. Section 10
draws the conclusions and future work.

2. Motivating scenario
As shown in Fig. 1, typical MDE settings consist of different
kinds of artifacts including models, metamodels, transforma-
tions, and code generators. All these constituting elements are
linked by specific relationships and all together give place to a
metamodeling ecosystem, i.e., “a metamodel-centered environ-
ment whose entities are traditionally subject to distinct evolu-
tionary pressures but cannot have independent life-cycles” (Di
Ruscio et al. 2012).

Similarly to any software artifacts, metamodels can evolve
over time to meet unforeseen requirements or to simply improve
related quality factors (Bettini et al. 2019). When metamod-
els are changed, ripple effects might occur on related artifacts
included in the ecosystem, which thus needs to be co-evolved
to recover the lost consistence. For instance, the explanatory
scenario shown in Fig. 1 contains the Company metamodel,
which is shown in Fig. 2. It underpins the definition of several

Company
Metamodel

CRM
Metamodel

CompanyModel.xmi crm.xmiCompany2CRM
IN OUT

Conformance Conformance

codegen

IN

OUTOther
Software
Artifacts

Figure 1 Explanatory metamodeling ecosystem

2 Basciani et al.

artifacts, including the model CompanyModel.xmi1 shown in
Fig. 4 and the transformation Company2CRM (reported in List-
ing 1) to generate models conforming to the CRM metamodel
from source company specifications.

According to the metamodel given in Fig. 2, a company is
made of Persons that can be distinguished as employees or
clients based on their position. Each person can have an as-
signed Project, which can be in turn European or National.
A project is classified with a Category, that can have mul-
tiple assigned Topics. A company is also characterized by
the Address of its headquarter and can have multiple working
Divisions, further classified in Units or ServiceLines.

Figure 3 shows the CRM metamodel, which permits to define
CRM (Customer Service Management) applications that consist
of Accounts of Clients or Workers, that can be Grouped. The
CRM also keeps track of the currently available Projects.

As previously mentioned, the Company2CRM transformation
is also part of the explanatory ecosystem and it consists of 7
transformation rules developed in ATL to generate CRM elements
from source Company specifications (see Listing 1).

Listing 1 The explanatory Company2CRM ATL Transformation
1 module Company2CRM;
2 create OUT : CRM from IN : Company;
3 rule Company2CRM{
4 from s: Company!Company
5 to t: CRM!CRM(
6 address <- ’www.’+s.name+’.com/’+s.address.city,
7 accounts <- s.persons,
8 projects<-s.projects,
9 groups<- s.lines

10)
11 }
12 rule Person2Worker{
13 from s: Company!Person(s.position=#employee)
14 to
15 t: CRM!Account(
16 username <- s.firstname+’.’+s.lastname ,
17 group<-s.employed
18),
19 t1: CRM!Worker(
20 account<-t,
21 name <- s.firstname+’ ’+s.lastname
22)
23 }
24 rule Person2Client{
25 from s: Company!Person(s.position=#client)
26 to
27 t: CRM!Account(
28 username <- s.firstname.toLower()+’.’+s.lastname.toLower(),
29 group<-s.employed
30),
31 t1: CRM!Client(
32 account<-t ,
33 name <- s.firstname+’ ’+s.lastname
34)
35 }
36 rule European2Project{
37 from s: Company!European
38 to t: CRM!Project(
39 name<-s.name,
40 area<- s.related.name,
41 budget<-s.budget
42)
43 }
44 rule National2Project{
45 from s: Company!National
46 to t: CRM!Project(
47 name<-s.name,
48 area<- s.related.name
49)

1 The .xmi extension of the model refers to the XML-based representation of
models conforming to metamodels defined in Ecore (EMF).

Figure 2 Company Metamodel

Figure 3 CRM metamodel

Figure 4 Company Model

Uncertainty management with extra-functional qualities in multi-artefact co-evolution 3

50 }
51 rule Unit2Group{
52 from s: Company!Unit
53 to t: CRM!Group(
54 name<-s.name
55)
56 }
57 rule ServiceLine2Group{
58 from s: Company!ServiceLine
59 to t: CRM!Group(
60 name<-s.name
61)
62 }

Figure 5 shows an evolved version of the Company meta-
model, which has been changed by applying a number of refac-
torings. The proposed refactorings have been applied for the
purpose of highlighting evolution aspects, which are relevant
for the sake of presentation of the proposed approach. Because
of the performed changes, all the artifacts that are defined in
terms of the metamodel Company might have been affected and
in this case it has to be migrated. In particular, the refactorings
that have been operated on the initial version of the metamodel
Company are explained below together with the effects on the
CompanyModel.xmi model (represented in Fig. 4) and on the
Company2CRM transformation (reported in Listing 1).

R1: Enumeration To Subclasses. This refactoring converts
an enumeration to new classes. In more details, by referring to
Fig. 2: i) the class Person becomes abstract, ii) the new meta-
classes Employee and Client are added, and iii) the attribute
position with its enumeration is deleted as effect of introduc-
ing the subclasses. Due to the application of such refactoring
the transformation Company2CRM gets corrupted. In particular,
the lines 13 and 25 are responsible of the error “Feature posi-
tion does not exist in Person” that is raised at run-time when
executing the transformation with the new version of the meta-
model. Also the CompanyModel needs to be migrated as the
three different instances of the metaclass Person can no longer
be instantiated, being the metaclass Person abstract in the new
version of the metamodel (see Fig. 5).

R2: Rename Class. This evolution renames the class
Company as Organisation. Due to this refactoring, another
run-time error is raised by the transformation due to line 4. It
refers to the metaclass Company, which is no longer existing.
Also the model is affected concerning the Company instance,
which should be retyped as Organisation.

R3: Collapse Hierarchy. Collapsing an existing hierarchy is a
model change occurring when the subclasses do not add specific
information with respect to the superclass. In the motivating
example, the subclasses of the metaclass Project share a com-
mon attribute budget. The refactoring collapses the hierarchy,
i.e., it makes the metaclass Project concrete and moves the
attribute budget into it. The transformation rules responsi-
ble for translating European and National projects to target
CRM Projects become invalid since the two classes used as
matching elements — European and National in lines 37 and
45 in Listing 5, respectively — are no longer available in the
Company model. Each instance in the model referring to the
European and National metaclasses as types have to be re-
typed. In the shown example, this is the case of the BIRDS and

AdvAq elements as shown in Fig. 4.

R4: Merge Attributes. Two or more attributes can be merged
into a single one. For instance, the attributes firstname
and lastname in the Person metaclass share the same type,
and in the evolved version of the metamodel a new attribute
fullname replaces them. Such refactoring has an impact on
the Person2Worker and Person2Client transformation rules,
where the attributes firstname and lastname are referred
(lines 16, 21, 28 and 33). Moreover, also the Person instances
are corrupted where the value for firstname and lastname
are set.

R5: Inline Class. Often this refactoring is needed after the
features of one metaclass are “transplanted” into other meta-
classes, leaving that original metaclass no longer needed. For
instance, by applying an inline class to the Company model
and specifically on the reference address of the Company
metaclass, the evolved version of the model should contain
the structural features city and completeAddress directly
in the Company metaclass, and the unused metaclass Address
should be removed. Due to such refactoring, the transformation
rule Company2CRM gets a corrupted binding in line 6 where the
navigation to s.address is inconsistent with the evolved ver-
sion of the Company metamodel. This is because the reference
address is no longer navigable. Also the model presents incon-
sistencies and in particular shows the IBM Company instance
having a reference to the metaclass Address that is no longer
existing in the new version of the corresponding metamodel.

R6: Change Reference Type (first application). This change
is applied when a specific reference is re-typed with another
class. This refactoring corresponds to the attribute type change,
e.g., String to Int, but at the reference level. For instance,
the reference related of the class Project typed with the
metaclass Category in the initial version of the metamodel,
is then re-typed to refer the metaclass Topic. The affected
transformation rule is listed in lines 40 and 48, where the OCL
expression s.related.name is inconsistent, since the new ref-
erenced class no longer contains the name attribute. Also two
references in the model referring the instance of the Category
metaclass (i.e., the Technology Transfer element) are no longer
valid.

R7: Change Reference Type (second application). In the run-
ning example, another application of change reference type
occurs (referenced in the following as R7). In particular, the
employed reference in the Person class of type ServiceLine
has been retyped as Unit. Such refactoring affects the trans-
formation rules Person2Worker and Person2Client, due to
the expression listed in lines 17 and 29, i.e. s.employed.
Moreover, the instances of the metaclass Person in the model
that have a reference to instances of ServiceLine have to be
adapted in order to re-establish the conformance.

3. A multitude of possible migrations
Due to the metamodel changes described in the previous section,
the whole ecosystem needs to be migrated. In particular, both

4 Basciani et al.

Figure 5 Evolved Company Metamodel

the model Company.xmi and the transformation Company2CRM
need to be adapted so to be conformant with the new version of
the Company metamodel. The adaptations of modeling artifacts
that have to co-evolve with respect to the changes operated on
the corresponding metamodels are not unique and more than one
migration strategy can be possible. In (Di Ruscio et al. 2016)
authors proposed an approach to identify and select migration
alternatives to be applied when models affected by metamodel
evolution have to be adapted. However, modeling artifacts do
not exist alone and a satisfactory solution should consider all
of them together in ecosystems. In our scenario, exemplified
in Fig. 6, different model and transformation adaptations can
be performed and depending on the selected migration strate-
gies, the content of the target model crm.xmi will be produced
accordingly.

Migration Combination

CompanyModel.xmi crm.xmi

Company
Metamodel CRM Metamodel

Company2CRM

C2 C2

IN OUT

...
Migration

Evolved Company
Metamodel

Evolution

C2

...

Migration

IN ...

...
...

Migrated
CompanyModel.xmi

...

Migrated
Company2CRM

...

...

......

crm.xmi
crm.xmi

OUT...

Source Metamodel Evolution

Figure 6 Explanatory scenario of different ecosystem adapta-
tions

In the following we describe the possible migrations that can
be operated on Company.xmi and Company2CRM in response to
the refactoring of the Company metamodel. For the sake of read-
ability, with Rimj we refer to the migration alternative j for the
model Company.xmi in response of the refactoring Ri operated
on the Company metamodel. Similarly, with Ritj we refer to the
migration alternative j of the original Company2CRM transforma-
tion in response of the operated metamodel refactoring Ri. In the
following, the alternative model and transformation migrations

are presented for each operated metamodel refactoring.

R1: Enumeration To Subclasses Due to such metamodel
refactoring, the Company.xmi model can be migrated in three
possible ways: i) we can decide to migrate the existing instances
of the Person metaclass to one of the introduced subclasses,
i.e., Employee (R1m1) or Client (R1m2), or depending on the
value of the attribute position, we can migrate the Person in-
stances with position = #employee as Employee elements,
and those with position = #client to Client instances
(R1m3).

Concerning the migrations of the Company2CRM transforma-
tion, it is possible to make it working with the new version
of the Company metamodel by operating at least one of the
following changes: (R1t1) we convert the matched rule having
as input pattern Company!Person(s.position=#employee)
and the one with Company!Person(s.position=#client)
to a rule having as input pattern s: Company!Employee;
(R1t2) we convert the matched rule having as input pat-
tern Company!Person(s.position=#employee) and
the one with Company!Person(s.position=#client)
to a rule having as input pattern s: Company!Client;
(R1t3) we convert the matched rule having as input
pattern Company!Person(s.position=#employee)
to s:Company!Employee and the one having
Company!Person(s.position=#client) to a rule hav-
ing s: Company!Client. The combination of these model
and transformation alternatives can give place to 9 different
crm.xmi models in output.

R2: Rename Class The co-evolution alternatives for this
refactoring offer less options than the previous one, being a
simple renaming. The possible co-evolutions for the model
can be as follows: retype all the instances of Company to
Organization (R2m1) or remove all of them from the model
(R2m2). Concerning the Company2CRM transformation it is pos-
sible to migrate it by changing the type of the input pattern of
the affected rule to Organisation (R2t1) or by dropping the
existing rule from the transformation (R2t2).

R3: Collapse Hierarchy In response of such metamodel refac-
toring, the Company.xmi model can be migrated by retyping
all the European and National project instances as Project
ones (R3m1). Another possible migration can be keeping only
the European instances and changing them as Project ones
(R3m2) or do the same for the National ones (R3m3).

The Company2CRM transformation contains two rules hav-
ing as input pattern the metaclasses National and European.
Such rules are identical except for the bindings related to the
budget of the project that in case of national ones is omitted.
By applying the refactoring R3 we have two possible migration
options: maintaining the European2Project rule and chang-
ing the input pattern type to Project (R3t1) or maintaining
the National2Project rule (R3t2). Another option can be
removing the affected rules (R3t3).

R4: Merge Attributes Due to the merging of the attributes
firstname and lastname in the Person metaclasses, possi-
ble migrations for the Company.xmi model can be as follows

Uncertainty management with extra-functional qualities in multi-artefact co-evolution 5

: (R4m1) merging the values of the attributes firstname and
lastname values to set the fullName attribute of all the ex-
isting Person instances; (R4m2) keeping only the value of the
firstname attribute to set fullName; (R4m3) keeping only the
value of the lastname attribute to set fullName;

Concerning the Company2CRM transformation, it can
be migrated in different manners. In particular, since the
merged attributes are part of the same expression in the
transformation binding, i.e. s.firstname+’.’+s.lastname
or s.firstname+’ ’+s.lastname, it is possible to perform
the following alternative migrations: (R4t1) replacing this
expression with the opposite one, e.g., s.fullName.split(’
’).get(0) +’.’+ s.fullName.split(’ ’).get(1);
(R4t2) replacing the occurrences of the couple firstname
and lastname with the first part of fullName (
s.fullName.split(’ ’).get(0)); (R4t3) keeping only the
expression related to lastname e.g., s.fullName.split(’
’).get(1).

R5: Inline Class In response to such metamodel refactoring,
the Company.xmi model can be migrated in different manners
including the following: (R5m1) the set of values in the in-
stances of the inlined class, i.e. Address, are transferred to the
values of the attributes moved to the source class, in this case
completeAddress and city; (R5m2) the moved attributes will
be empty in the new instances.

Concerning the Company2CRM transformation, (R5t1) the
binding ’www.’+s.name+’.com/’+s.address.city
can be migrated to the corresponding expression
’www.’+s.name+’.com/’+s.city, or (R5t2) the follow-
ing expression can be considered ’www.’+s.name+’.com/’
by truncating the affected portion of the initial expression.

R6: Change Reference Type in Project To fix the
Company.xmi model to make it conforming to the new ver-
sion of the metamodel, it is possible to perform at least the
following migrations: (R6m1) removing the corrupted refer-
ences to the Category instances; (R6m2) selecting by means of
some heuristic the topics assigned to Category instances that
need to be kept; or (R6m3) keep the last Category instance that
was created in the model.

The Company2CRM transformation can be migrated in differ-
ent manners including the following ones: (R6t1) the area ←
s.related.name binding relates to the name attribute, which
is not defined in the class Topic, so we can propose to replace
the expression with the first attribute of the same type, i.e., area
← s.related.id; (R6t2) another option is navigating with
the expression area ← s.related.category.name to ob-
tain the same semantic of the original transformation; (R6t3)
another possible adaptation consists of removing the binding
containing the related attribute.

R7: Change Reference Type in Person Such a meta-
model refactoring compromises only the conformance of the
Company.xmi model and does not have any ripple effects on
the Company2CRM transformation. The Company.xmi model
can by migrated as follows: existing instances of Person hav-
ing the reference employed set to an instance of ServiceLine

IBM-CRM

Francesco

Ludovico

Davide

Company

IBM

Company2CRM CRM

Person2Worker(position=#employee)

Person Company2CRM

R1t1: Person2Worker

Employee Client

R1

Person2Worker

Person2Client

Person2Worker
Francesco

Ludovico

Davide

Company2CRM

evo

IBM

Francesco

Ludovico

Davide

R1m1

IBM-CRMfrancesco.basciani

Ludovico.iovino

Davide.Diruscio

R1t1

R1t1

R1t1

R1m1
R1m1

R1m1

M
et

am
od

el
in

g
M

od
el

in
g

Conformance

Account

Person2Client(position=#client)

R1t1

Person

Company

co-evo

CRM

Account

Legend
Co-evolution link Transformation trace

Figure 7 (R1m1,R1t1) migration pair with no induced infor-
mation loss

are redirected to instances of Unit randomly (R7m1) or just
removed (R7m2).

Selecting the migrations to be operated on both models and
transformations in response to the refactorings performed on the
corresponding metamodels is not an easy task and as previously
described, the resulting ecosystems can be different depending
on the given choices. In the next section, we present a possible
criteria that can be considered for supporting such a daunting
task.

4. Use of information loss to characterize
ecosystem migrations

In this section we present information loss (IL) as a possible
criteria, which can be considered when selecting the model and
transformation co-evolutions that have to be operated to restore
the consistency of the corrupted ecosystem.

In (Basciani et al. 2018), information loss has been consid-
ered as a quality aspect used to characterize alternative model
transformation chains bridging the same source and target meta-
models. Intuitively, in that work, the information loss has been
defined as a value, which has “to increase (possibly linearly) as
the number of instances (along with the owned features) con-
forming to metaclasses of the source metamodel that are not
covered by the transformation chain increase”. Similarly, in
this paper we want to propose information loss as a measure
to characterize alternative ecosystem migrations, and it’s value
represents the (target) model instances, which are lost by the
selected pairs of (source) model and transformation migrations.

By referring to the motivating scenario and to the metamodel
refactoring R1 presented in Section 2, in the following we de-
scribe how it is possible to characterize pairs of correspond-
ing model and transformation migrations with respect to the
induced information loss. In particular, different explanatory
migrations are described with respect to the induced information
loss, which can be total, partial or it can be that no information
loss occurs.

Figure 7 graphically shows the application of the (R1m1,R1t1)
migration pair. Concerning the original transformation (see
Listing 1), the operated metamodel refactoring affects the
Company2CRM rule, which generates CRM elements out of input
Company instances. To this end, two additional rules are also

6 Basciani et al.

involved, i.e., Person2Worker (line 12) and Person2Client
(line 24). The former creates an Account element for each
input Person of the company having the attribute position
set to employee (similarly for clients), and this is shown by the
transformation trace links (also named mappings hereafter and
shown as dotted arrows in the Metamodeling layer of Fig. 7)
between the input and target metamodels.

The lower side of Fig. 7 shows some elements of the orig-
inal Company.xmi model, i.e., the Company named IBM, two
hired Persons (i.e., Ludovico and Francesco as Employee in-
stances) and the Client named Davide. By executing the origi-
nal transformation, on the initial version of the source model,
three Account elements are generated by enabling the access
to the CRM, one for each person registered in the company,
where they can put their own personal information. Due to the
metamodel refactoring R1, the model gets corrupted since the
instances of Person can no longer exist in the model (being de-
clared abstract in the evolved metamodel as shown in Fig. 4 and
the instances declared in Fig. 7 in the modeling layer). More-
over, the rule Person2Worker and Person2Client should be
adapted in order to remove the position used in the input
pattern condition that can no longer be navigated on Person
elements (see lines 12 and 24 of Listing 1). For this reason
we can propose some different migration alternatives for the
affected model and transformation. In particular, concerning the
original Person2Worker rule the first proposed alternative R1t1
is shown in Listing 2, where from two matched rules with cor-
rupted input patterns, we create a single rule with input pattern
matching Employee elements.

1rule Person2Worker{
2 from s: Company!Employee
3 to t: CRM!Account(
4 username <- s.firstname+’.’+s.lastname,
5 group<-s.employed
6),
7...
8}

Listing 2 Alternative R1t1

As can be noticed in Fig. 7, where the complete picture of
the transformation is shown, also the model can be migrated in
different ways, and in this case, all the Person instances have
been migrated to Employee ones. If we execute the migrated
transformation R1t1 with the chosen migrated model R1m1, we
obtain a target model with no information loss, in fact all the
original elements in the source model have been considered and
preserved in the target one (thus, no information loss occurs).

Figure 8 shows another migration pair consisting of the previ-
ously considered R1m1 model migration, together with R1t2. In
such transformation evolution, the original rules having Person
as input source pattern has been changed to match Client in-
stances, to make the transformation conforming again to the
Company metamodel, as shown in Listing 3. In this specific case
the combination of R1m1 and R1t2 induces a total information
loss, since the instances of Employee are not matched by the
evolved transformation rule, and consequently the produced
output model is empty (thus, a total information loss occurs).

1 rule Person2Worker{
2 from s: Company!Client
3 to t: CRM!Account(

IBM-CRM

Francesco

Ludovico

Davide

IBM-CRM

Company

IBM

Company

Person

Company2CRM CRM

Person2Worker(position=#employee)
Person

Company2CRM
CRM

R1t2: Person2Worker

Account

Employee Client

R1

Person2Worker

Person2Client

Person2Worker
Francesco

Ludovico

Davide

Company2CRM

evo

IBM

Francesco
Ludovico

Davide

R1m1

co-evo

R1m1
R1m1

R1m1

M
et

am
od

el
in

g
M

od
el

in
g

Conformance

Account

Person2Client(position=#client)

R1t2

Figure 8 (R1m1,R1t2) migration pair with induced total infor-
mation loss

4 username <- s.firstname+’.’+s.lastname ,
5 group<-s.employed
6),
7 ...
8 }

Listing 3 Alternative R1t2

Figure 9 shows another migration pair consisting of the
model adaptation R1m3 and of the transformation evolution
R1t1. Due to R1m3, some instances of the original model are
migrated to Employees and others to Clients, depending on
the value of the attribute position. By combining such model
evolution with the previously described R1t1 transformation, the
situation that can be obtained in the corresponding generated
model is shown in Fig. 9, which is characterized by a partial
information loss, meaning that we loose part of the informa-
tion originally contained in the input model. In particular, by
comparing the original model obtained by executing the trans-
formation with the one obtained here, we receive two instances
instead of three, namely ludovico.iovino and francesco.basciani,
loosing the instance translated from the client Davide.

Figure 9 (R1m3,R1t1) migration pair with induced partial
information loss

Figure 10 shows another migration case, which does not
induce any information loss. In particular, the migration pair
consisting of R1m3 and R1t3 shown in Listing 4 is applied. The
migrated source model consists of two employees and of one
client, which will be translated into accounts using the rules of
the transformation R1t3, with a corresponding no information
loss as result.

1rule Employee2Worker{
2 from s: Company!Employee
3 to t: CRM!Account(
4 username <- s.firstname+’.’+s.lastname ,

Uncertainty management with extra-functional qualities in multi-artefact co-evolution 7

IBM-CRMIBM-CRM

Francesco

Ludovico

Davide

Company

IBM

Company

Person

Company2CRM CRM

Person2Worker(position=#employee) Person

Company2CRM
CRM

R1t3: Person2Client
Account

Employee Client

R1

Person2Worker

Person2Client

Person2Worker
Francesco

Ludovico

Davide

Company2CRM

evo

IBM

Francesco
Ludovico

Davide

R1m1
co-evo

R1m3
R1m3

R1m3

M
et

am
od

el
in

g
M

od
el

in
g

Conformance

Account

Person2Client(position=#client)
R1t3

R1t3: Person2Worker

francesco.basciani

Ludovico.iovino

Davide.Diruscio

R1t3: Person2Client

R1t3: Person2Worker

R1t3: Person2Worker

Figure 10 (R1m3,R1t3) migration pair with no induced infor-
mation loss

5 group<-s.employed
6),
7...
8}
9rule Client2Worker{

10 from s: Company!Client
11 to t: CRM!Account(
12 username <- s.firstname+’.’+s.lastname ,
13 group<-s.employed
14),
15...
16}

Listing 4 Alternative R1t3

The cases previously discussed permit to grasp the message
that depending on the selection and combination of alternative
migrations, it is possible to obtain different results, which can
be characterized by an induced information loss. In the next
section we propose an approach, which permits to rank pairs of
model and transformation migrations according to the loss of
information that they induce.

5. Ranking co-evolution strategies
In this section we propose an approach to automatically analyze
pairs of model and transformation alternatives with the aim of
supporting modelers that have the responsibility of adapting
ecosystems, which have been affected by metamodel refactor-
ings. Modelers are thus provided with a tool supported method,
which can rank migration pairs with respect to the induced in-
formation loss. The proposed technique underpins and extends
the solutions presented in (Di Ruscio et al. 2016; Di Ruscio
et al. 2017). They are able to manage alternatives in model
and transformation migrations, by means of dedicated weaving
models (Bézivin et al. 2005). In more details, the approach pre-
sented in (Di Ruscio et al. 2016) allows the modeler to represent
all the available alternatives for model migrations in a single
compact model. Then the resulting solution is transformed
into a feature-based representation that offers graphical features
to select the best solution and generate the desired migration
strategy for models. The same can be done for model transfor-
mations by using a variability model presented in (Di Ruscio
et al. 2017). These two approaches deal with single-artifact
adaptation and does not consider the effect of applying pairs of
migration strategies.

Figure 11 depicts an overview of the proposed approach,
which consists of different steps that modelers are supposed
to perform as described in the following. In particular,
Specification of Variability Model is the first step of

the process and it is based on a similar activity described in (Di
Ruscio et al. 2017) for expressing the migration alternatives for
transformations, and in (Di Ruscio et al. 2016) for representing
alternatives of model migrations. Such variability models are
labeled with

�� ��VWM (for the input model m) and
�� ��TVWM (for

the input transformation T). These two variability models can
be combined to generate and specify a combined migration of
an input model

�� ��m and a transformation
�� ��T .

The generated weaving model
�� ��Comb VWM allows the

modeler to express all the possible combinations of migra-
tion alternatives together with the induced information ero-
sion as discussed in the previous section. In particular, the�� ��Comb VWM weaving model is used as input for ranking
all the possible combined migrations and in case filter out
those that are below a threshold given by the user (see the
Migration configuration phase). The output of such an
activity is the selected pair of model and transformation migra-
tions, which are used to generate the actual migration programs
(see the phase Generation of the migration program)
that get executed during the last step of the process referred as
Execution of the migration in Fig. 11.

Figure 12 represents an explanatory combination weaving
model linking the migration alternatives R1m2 and R1t1, which
in turn are represented on the left-hand side and on the right-
hand side of the same figure, respectively. In particular, on the
left-hand side of Fig. 12 the input model

�� ��m is linked by the
weaving model in the middle to specify that the three Person
instances will be migrated to instances of the metaclass Client
defined in the new version of the metamodel

�� ��MM’ . On the
right-hand side of Fig. 12 the element

�� ��T represents the trans-
formation Company2CRM, which is linked with the variability
model

�� ��TVWM to represent all the possible migration alterna-
tives. The selected alternative will migrate the input pattern of
the Person2Worker rule to use the Employee metaclass; the
Person2Client rule will be deleted. Considered in isolation
these are two possible migration alternatives leading to infor-
mation loss (as demonstrated in Fig. 8). The combination R1m2
and R1t1 defined with the

�� ��Comb VWM shown in Fig. 12 will
create for each Person instance a migrated Client element
with a total information loss, since the chosen migration for�� ��TVWM will match input Employee instances.

Figure 13 shows the specification of the (R1m3,R1t3) migra-
tion pair. According to the left-hand side of the shown combined
weaving model, Person instances are migrated to Employee
or Client ones, depending on the content of the position
attribute. The transformation migration creates two different
rules matching the two metaclasses (see the right-hand side
of the same figure). By applying the shown combined weav-
ing model, there will be no information loss for the Person
instances available in the source model. The specification of
combination weaving models like those shown in Fig. 12 and
Fig. 13 is enabled by the conceived metamodel given in Fig. 14.
In particular, a CombinationModel have references to the man-
aged metamodel refactorings, and for each refactoring multiple
pairs of migrations are possible. The number of alternatives in
a single combination are related to multiple possible involved

8 Basciani et al.

Legend

Proposed Extension

Specification of
Variability model

Migration
configuration

Generation of
the migration

program

Execution of
the migration

Variability
Co-Evolution

Weaving Model

Transformation
T

Model m

Variability
Co-Evolution

Weaving Model

Combination
Co-Evolution

Weaving Model

Ranked Combination
Co-Evolution Weaving

Model

Ranking based on
Minimal Information

Loss

IN

OUT

weaving
link

Not suggested
based on

information loss

IN

OUT

Evolved
Transformation T

Evolved Model
m OUT

migration

migration

mT

TVWM

Comb
VWM

VWM
IN IN

OUT

Combination
Generation

Modeling
Artifact

User
Activity

Generated
Modeling Artifact

generation

weaving link

process flow

IN / OUT

Figure 11 Proposed approach

R1m2-R1t1

m
Comb
VWM

VWM TVWM

TMM'

Figure 12 Specification of the (R1m2,R1t1) migration pair

R1m3-R1t3

Comb
VWM

VWM

m MM' T

TVWM

Figure 13 Specification of the (R1m3,R1t3) migration pair

artifacts, e.g., models and transformations.

Having two or more variability weaving models allows the
generation of all the possible combinations for each metamodel
refactoring. Such a generation is performed by a dedicated tool,
which takes as input

�� ��VWM and
�� ��TVWM models and pro-

duces a corresponding
�� ��Comb VWM model. Such a generated

model contains all the possible migration pairs. This model is
then processed by the Information Loss Ranker that will
rank all the combinations based on the information loss criteria.

The final result of the proposed process is shown to the user
as depicted in Fig. 15: on the left-hand side the unordered gen-
erated combination weaving model is reported, in the middle
the ranked combinations are shown as a model. A textual repre-

Uncertainty management with extra-functional qualities in multi-artefact co-evolution 9

Figure 14 Fragment of the Combination metamodel

sentation of them are also provided as shown on the right-hand
side of Fig. 15. Once the user selects the migration pair to be op-
erated, the corresponding adaptation programs can be generated
and applied by relying on the supporting infrastructure already
presented in (Di Ruscio et al. 2016; Di Ruscio et al. 2017).

6. Tool support
The approach presented in the previous section has been fully
implemented. In this section we make an overview of the devel-
oped tool by focusing on the Combination Generation and
Ranking based on Minimal Information Loss phases
shown in Fig. 11. The conceived supporting tool has been
developed in Java by exploiting EMF technologies. Listing 5
shows a fragment of the method generating the combination
model from input variability models related to the transforma-
tion (TVWM) and model (VWM) under analysis. The logic
behind this method is quite simple: given a single metamodel
refactoring and the two variability models, it creates a combina-
tion of them for each alternative pair (see line 19). Afterwards,
the created collection of alternatives is sorted by a customized
ordering method (see line 23) based on the information loss.

Listing 5 Fragment of the
createRankedCombinationModel source code

1...
2private static void createRankedCombinationModel(VariabilityModel VWM,

↪→ VariabilityModel TVWM) {
3 // Create Combination Model ROOT
4 CombinationModel combinationModel = COMBINATION_FACTORY.

↪→ createCombinationModel();
5 //Create a list of Refactorings
6 List<Refactoring> refactorings = new ArrayList<Refactoring>();
7
8 //Foreach refactoring in VWM
9 for (VariabilityWeavingMM.Refactoring modelRefactoring : VWM.

↪→ getRefactorings()) {
10 //create a Refactoring
11 Refactoring refactoring = COMBINATION_FACTORY.createRefactoring();
12 refactoring.setName(modelRefactoring.getName());
13
14 List<Combination> combinations = null;
15 //Foreach refactoring in TVWM
16 for (VariabilityWeavingMM.Refactoring

↪→ transformationRefactoring : TVWM.getRefactorings()){
17 if(modelRefactoring.getName().equalsIgnoreCase(

↪→ transformationRefactoring.getName())){
18 //create Combinations for Refactoring R1 in VWM and R1

↪→Rx in TVWM
19 combinations = createCombinations(modelRefactoring,

↪→ transformationRefactoring);

20 }
21 }
22 //Sort Combination in Refactoring by custom combination comparator
23 combinations.sort(new CombinationComparator());
24 refactoring.getCombinations().addAll(combinations);
25 //Add new (Sorted) Refactoring IN CombinationModel.ranked.xmi
26 refactorings.add(refactoring);
27 }
28 combinationModel.getRefactorings().addAll(refactorings);
29 saveModel(combinationModel);
30 }

The ranking method shown in Listing 6 analyzes all the alter-
natives in the combination model and assigns a corresponding
weight to each of them. For instance the alternative R1m1 con-
tains three ChangedInstance elements referring to the Per-
son instances that are assigned to the new type Employee.
For this reason the ranker assign a positive weight (see pro-
motion method at line 35 called at line 20) to the combina-
tion with R1t1 since this transformation alternative contains
a ChangedInPattern element matching Employee instances.
Indeed, this is considered to be a better solution than alterna-
tive ones e.g., R1m1 in combination with R1t2, which migrate
the original transformation to match Client elements. Thus,
the combination (R1m1,R1t2) is penalized since three migrated
instances will not be matched according to the penalization
method shown at line 39 and called in line 23. In other words,
the ranker goes through all the possible alternative by querying
the variability models looking for patterns to be penalized or
promoted. At the end of the process, every combination will
have a corresponding weight assigned by enabling their final
ordering.

Concerning the execution performance of the developed
tools, the proposed ranking algorithm takes ≈2 seconds to be
executed on models having sizes, which are similar to those of
the case study models. According to the performed experiments,
the execution time seems to increase linearly with the size of
the input models. However, we expect that including the man-
agement of constructs that are not covered at the moment, e.g.,
OCL expressions, can increase the overall execution times of
the approach.

Listing 6 Fragment of the evaluateAlternatives source
code

1public static int evaluateAlternatives(Alternative RxMy, Alternative RxTy)
↪→ {

2 int rank = 0;
3 TreeIterator<EObject> eAllContents = RxMy.eAllContents();
4 while (eAllContents.hasNext()) {
5 EObject next = eAllContents.next();
6
7 if(next instanceof ChangedInstance) {
8 ChangedInstance changeElement = (ChangedInstance) next;
9 EObject referencedObject = changeElement.getNewtype();

10
11 //Check types match with RxTy alternative
12 TreeIterator<EObject> RxTyeAllContents = RxTy.eAllContents();
13 while (RxTyeAllContents.hasNext()) {
14 EObject innerNext = RxTyeAllContents.next();
15
16 if(innerNext instanceof ChangedInputElement) {
17 ChangedInputElement innerChangeElement = (ChangedInputElement)

↪→ innerNext;
18 //If the class is the same then PROMOTE it
19 if(referencedObject.toString().contains(innerChangeElement.

↪→ getExpression())) {
20 rank = promote(rank);
21 }else {
22 //Otherwise PENALIZE it
23 rank = penalize(rank);

10 Basciani et al.

Figure 15 Simple generated combination model

24 }
25 }
26 ...
27 //Other checks here
28 ...
29 }
30 }
31 }
32 return rank;
33 }
34
35 private static int promote(int rank) {
36 return rank + 1;
37 }
38
39 private static int penalize(int rank) {
40 if(rank > 0) {
41 return rank - 1;
42 }else {
43 return 0;
44 }
45 }

7. Evaluation
In this section we present the experiments that we have per-
formed to assess the accuracy of the proposed approach with
the aim of answering the following research question:

RQ: Given a metamodeling ecosystem, does the pro-
posed approach correctly rank pairs of possible model
and transformation migrations with respect to the in-
duced information loss in the response of metamodel
refactorings?

To answer such research question a dedicated evaluation process
has been implemented as descried in Section 7.1. The analysis
of the obtained results are discussed in Section 7.2.

7.1. Evaluation process
The performed evaluation has been done by consider-
ing the model CompanyModel.xmi2 and the transformation
Company2CRM3 both introduced in Sec. 2. In particular, the
refactorings R1–R7 described in the previous section, have
been singularly applied on the Company metamodel4 and all
2 https://github.com/gssi/variabilityCo-evoIL/blob/main/m/

CompanyModel.xmi
3 https://github.com/gssi/variabilityCo-evoIL/tree/main/t
4 https://github.com/gssi/variabilityCo-evoIL/blob/main/mm/

Company.ecore

the possible migration alternatives of CompanyModel.xmi and
Company2CRM are automatically generated as described in Sec.
4. For the sake of presentation, Figure 16 shows one of the refac-
toring application and the process has been iterated for each
applied refactoring, and for each possible model and transforma-
tion migration pair. For instance, refactoring R1 gives place to
3 model and 3 transformation alternatives; each combination of
them has been given to the Information Loss Calculator
component, which is able to calculate the information loss that
might be induced by executing the migration pair under analysis
if executed on the real input models. The evaluation process has
been fully implemented and is publicly available.5

Source
Metamodel

Source model Target model

Transformation T

Target Metamodel

c2 c2

migr
ati

on

migration

Transformation T

Target model

Evolved Source
Metamodel

c2

ev
olu

tio
n

Information Loss
Calculator

For each refactoring

For each alternative

0.5
0.3
8.2
...

Information loss

Figure 16 Evaluation process
7.2. Analysis of the results
The output of the information loss calculator applied to all the
combinations of model and transformation migrations is shown
in Table 1. The cells in bold represent the combinations with
the lowest induced information loss (thus preferable). Among
them, it is possible to have combinations inducing the same
information loss value. For instance, in the case of refactoring
R1, different combinations induce the lowest information loss
value, i.e., 12.5. In the case of refactoring R2, only the migration
pair (R2m1,R2t1) induces the lowest information loss.
5 https://github.com/gssi/QualityEvaluationIL

Uncertainty management with extra-functional qualities in multi-artefact co-evolution 11

https://github.com/gssi/variabilityCo-evoIL/blob/main/m/CompanyModel.xmi
https://github.com/gssi/variabilityCo-evoIL/blob/main/m/CompanyModel.xmi
https://github.com/gssi/variabilityCo-evoIL/tree/main/t
https://github.com/gssi/variabilityCo-evoIL/blob/main/mm/Company.ecore
https://github.com/gssi/variabilityCo-evoIL/blob/main/mm/Company.ecore
https://github.com/gssi/QualityEvaluationIL

Concerning the refactoring R7, there is no need of migrating
the original transformation, which is not affected by the operated
metamodel refactoring, i.e. a non-breaking change w.r.t. the
transformation. Thus, only the input model has to be migrated
and it can be done in two different ways as shown in Table 1.
For both options, the induced information loss is the same.

Table 1 Calculated information loss values
Transformation migration

REFACTORING R1 R1t1 R1t2 R1t3

R1m1 12.5 14 12.5

R1m2 14 12.5 12.5Model migration

R1m3 13 13.5 12.5

REFACTORING R2 R2t1 R2t2

R2m1 14.5 18.5
Model migration

R2m2 11 11.5

REFACTORING R3 R3t1 R3t3 R3t3

R3m1 13.5 14.5 18

R3m2 13.5 14 16Model migration

R1m3 13.5 14 16

REFACTORING R4 R4t1 R4t2 R4t4

R4m1 14.5 15.25 15.25

R4m2 14.5 14.5 15.25Model migration

R4m3 14.5 15.25 14.5

REFACTORING R5 R5t1 R5t2

R5m1 13 13.5
Model migration

R5m2 12.5 12.5

REFACTORING R6 R6t1 R6t2 R6t3

R6m1 15.5 15.5 15.5

R6m2 15.5 15.5 16.5Model migration

R6m3 15.5 15.5 16.5

REFACTORING R7 t

R7m1 15.5
Model migration

R7m2 15.5

Table 2 shows a summary of the suggested migration pairs
for each operated metamodel refactoring. The table represents
only those pairs that induce the lowest information loss. Each
refactoring has been manually analyzed in order to check if the
suggested recommendations were correct with respect to the
induced information loss. Such a phase has been done by execut-
ing each transformation migration on each obtained migration
model. For each execution, the corresponding information loss
has been measured on the generated CRM model and at the end
the lowest values have been compared with those calculated by
the presented approach. For all the cases, the suggested migra-
tion pairs were confirmed, meaning that the proposed solution
was the right one. Concerning the last refactoring, it cannot be
considered as confirmed, as there were no combinations to be
evaluated as only model migrations were needed in response of
the R7 refactoring.

8. Discussion
The main strengths of the approach proposed in this paper are
related to the possibility of identifying combinations of model

Table 2 Summary of the suggested migration pairs
Refactoring Suggested migration pair Confirmed

R1

(R1m1, R1t1)

(R1m1, R1t3)

(R1m2, R1t2)

(R1m2, R1t3)

(R1m3, R1t3)

R2 (R2m1, R2t1)

R3
(R3m1, R3t1)

(R3m1, R3t2)

R4 (R4m1, R4t1)

R5
(R5m2, R5t1)

(R5m2, R5t2)

R6

(R6m1, R6t2)

(R6m2, R6t2)

(R6m3, R6t2)

R7 R7m1
R7m2

-

and transformation migrations that can induce a lowest value
of information loss. However, the approach as proposed in this
paper can be enhanced in different directions as discussed in the
following:
Additional criteria for selecting model and transformation mi-
gration pairs: Information loss is one of the possible criteria that
can be employed to support modelers when they have to select
the right combination of model and transformation migrations.
Further techniques might be explored including the adoption
of static analysis of model transformations. Specifically in
terms of information loss, even though removing affected model
instances or transformation rules can solve the inconsistency
problems caused by metamodel evolutions, by definition it gives
place to information loss. In fact also in our example a com-
bination, specifically in R2 induces that if the modeler picks
(R2m2, R2t1) or (R2m2, R2t2) combinations will result in no
information loss (with respect to that refactoring), because the
alternative m2 removes the affected instances to restore confor-
mance, so it would not be preferable to select the alternatives
using removal, because in combination will result in not loosing
information, but for definition it is removing something from
the models. This case is relevant when for some reason we have
multiple solution at the same rank position, but a solution re-
moves something from the model by definition. For this reason
we intend to further extend the approach to give a weight to the
internal instances of the model, i.e. semantic importance, or
give an internal rank to the alternatives of migration.
Management of parallel dependent metamodel evolutions: The
metamodel evolutions included in this paper are parallel inde-
pendent, meaning that they act on different elements, for this
reason it has been possible to apply the methodology for the
evaluation of the approach. Otherwise, the application of the
proposed technique would be dependant on the execution or-
der of the migrations. The management of parallel dependent
metamodel evolutions, and thus of the consequent issues re-
lated to the management of migration conflicts, deserves further
investigation.

12 Basciani et al.

Transformation complexity: The transformations that have been
considered in the approach are developed in the ATL language,
a complex rule-based transformation language offering also
imperative constructs and additional concepts that we do not
consider at the moment. This can further increase the complex-
ity in representing the transformations as migration alternatives.
Specifically, our approach does not consider OCL constraints
that can be applied as filter of the transformation rules. This
aspect is listed in this category since the transformation should
be dynamically analyzed in relation to the included OCL ex-
pressions before detecting the ranking of the proposed solutions.
For this reason, we list this aspect as a possible limitation, even
if the approach still applies if the injection of the transformation
into the weaving model can be improved to consider also these
possible cases.
Experimentation and evaluation: To evaluate the approach we
have considered the explanatory ecosystem, even though more
than 40 migration pairs have been analyzed to calculate the
induced information loss. To better assess the validity of the
proposed approach it is necessary to consider an extended data
set including more metamodels, refactorings, models and trans-
formations. We specify that the migration alternatives presented
in Section 3 have been chosen by inspecting the most applied
strategies in literature and in our experience, but the alternatives
could be more extended and this aspect should be investigated
in the future.
Technological Specificity: The proposed approach is generic
since it relies on a weaving-based representation of migration
variability (Di Ruscio et al. 2016; Di Ruscio et al. 2017). This
means that even if the approach has been developed and tested
in the EMF technological space, it is possible to apply it in other
technologies by implementing the management of the proposed
variability weaving models in the technology of interest.
Required Effort: The proposed approach is based on a set of
artifacts and semi-automatic activities that need to be completed
with human intervention. In order to enable the final ranking of
the found solutions, a set of artifacts need to be produced and
inspected, i.e., the variability model and the configuration for
the migration to be operated. To give some numbers, the case
study presented in Section 2 took ≈20 minutes for the configu-
ration. Part of the effort will be reduced when the user becomes
familiar with the tooling and with the provided representations,
but we are aware that if we consider the complete syntax of the
transformation language (even if the production of the weaving
is automated) it can be difficult to be represented in terms of
weaving models. We plan to investigate this aspect in future
work, with the intent of reducing the complexity of the entire
generation / ranking process, and improving the usability of the
provided tools to make easier the specification of the needed
input models.

9. Related Work

Coupled Evolution is an extensively investigated topic by the
model-driven engineering community. Our previous work
in (Di Ruscio et al. 2012) discusses the different relations oc-
curring in a typical metamodeling ecosystem among the meta-

model and the related artifacts, and identifies the commonalities
supporting the definition of a unifying and comprehensive adap-
tation process. Multiple approaches have been presented over
the years dealing with the evolution of metamodel and migra-
tion of models. COPE (Herrmannsdoerfer et al. 2009) is an
approach to specify the coupled evolution of metamodels and
models in which a language is evolved by incrementally compos-
ing modular coupled transformations that adapt the metamodel
and specify the corresponding model migrations. Flock (Rose
et al. 2010) is a coupled evolution approach built on top of
the Epsilon Framework, offering a model-to-model transfor-
mation language tailored for model migration. Wimmer et
al. (Wimmer et al. 2010) instead of describing the co-evolution
of models as a transformation between two metamodels, they
employ existing inplace transformation languages. Thus, the
prerequisite is to merge the initial and the revised metamodel
ensuring that the initial as well as the revised model conform
to the merged metamodel, enabling the employment of inplace
transformations for initializing new metamodel elements. At
the end, a check-out transformation eliminates model elements
which are no longer covered by the revised metamodel. Other
works present mechanisms to define and execute coupled evolu-
tions of metamodels and instance models (Krause et al. 2013)
or transformations (Rutle et al. 2018a, 2020) based on graph
transformations. These approaches treat coupled evolutions as
dynamically typed graph transformation rules.

In (Herrmannsdoerfer et al. 2010) authors present a cata-
logue of coupled operators for an operator-based approach that
is based on a literature survey. Also transformations (Mendez
et al. 2010; Wagelaar et al. 2012; García et al. 2012; Rutle et
al. 2018b) and editors (Di Ruscio et al. 2011; Di Rocco et al.
2014) migration in response to metamodel evolutions has been
a topic already investigated. One of the first and only attempts
considering multiple migration alternatives and ranking them is
proposed in (Schönböck et al. 2014). The authors employ logic
programming to generate a set of ranked solutions for model
migrations based on the formalization of the conformance rela-
tionship. Information loss is considered in ranking the solutions
but only at the model level, excluding transformations. All these
works concentrate the effort in creating tools or languages for
expressing co-evolution strategies in specific cases ignoring the
possible multiple resolutions or demanding it to the modeler.
To the best of our knowledge, the presented approach is the
first attempt in dealing with parallel couple evolution, where
artifacts are considered in combination, instead of treating the
corrupted artifact in a single batch of migration.

A different application field can be seen when traceabil-
ity links are used to establish correspondences among require-
ments and the different parts of a software system. The authors
in (Riebisch 2004) use feature models as an intermediate ele-
ment for linking requirements to design models. In this way
changes to the requirements can be reflected immediately to
feature model elements in order to activate the resolution of
possible inconsistencies. This approach works in requirement
engineering, whereas the presented approach in coupled evo-
lution. Another attempt in the same direction has been made
by (Gamez & Fuentes 2011). They propose a model-driven ap-

Uncertainty management with extra-functional qualities in multi-artefact co-evolution 13

proach to propagate changes made in an evolved feature model
into existing configurations. Also the authors in (Guo et al.
2012) present an approach to deal with inconsistencies in fea-
ture model evolutions. These papers present a different level of
application, with the same tool we use, i.e. feature models, in
order to propagate the applied changes to other artifacts.

The tool called MoDisco (Bruneliere et al. 2014), among its
features, presents how to avoid information loss of models but
in a different context w.r.t. our approach, i.e. Model Driven
Reverse Engineering. Unlike our system it focuses on retrieving
as much information as possible from a legacy system that needs
to be updated. In (Fritsche et al. 2020), in the area of model
synchronization, the authors focus on avoiding information loss
when, through Triple Graph Grammars (TGGs), new rules for
synchronizing models are automatically created. The purpose
of a TGG is to define a consistent relationship between pairs
of models in a rule-based manner by defining traces between
their elements. Given a TGG, its rules can be automatically
operationalized into the source and forward rules. Loss of in-
formation can occur when there are elimination rules that could
result in the loss of information when applied. Compared to
our contribution, this work focuses on finding solutions to these
rules’ definition to avoid such information loss but does not
rely on evaluating existing models and, consequently, assessing
how much information is lost when a transformation between
models is performed.

10. Conclusion and Future Work
This paper proposes an approach for visualizing and represent-
ing possible combinations of migration alternatives for cor-
rupted artifacts using weaving models in response to metamodel
evolutions. The presented approach is supported by a tool which
also refines the number of possible migration pairs by relying
on the notion of information loss. Thus, modelers are provided
with an ordered list of migration pairs with the aim of support-
ing them in the selection and generation of the corresponding
programs to be executed on the affected artefacts. In this work
we focused on models and model transformations even though
the approach can be extended to add other types of artifacts.
In this respect, as future work we plan to introduce the man-
agement of different input models and of additional kinds of
modeling artifacts including code generators and editors, and to
apply the approach with further metamodel refactorings. This
aspect requires additional effort first to translate the different
kinds of artifacts in terms of weaving models for traceability
purposes, and subsequently to enable the link with the infor-
mation loss w.r.t. the given input models. For instance, if we
consider a code generator we would need to investigate whether
the generator template under analysis uses modeling concepts
affected by the considered metamodel evolution, and then to
establish the possible relations with the input models.

Acknowledgments
The research described in this paper has been partially sup-
ported by the AIDOaRt Project, EU H2020-ECSEL European
Programme, https://www.aidoart.eu/

References

Basciani, F., D’Emidio, M., Di Ruscio, D., Frigioni, D., Iovino,
L., & Pierantonio, A. (2018). Automated selection of optimal
model transformation chains via shortest-path algorithms.
IEEE Transactions on Software Engineering.

Bettini, L., Di Ruscio, D., Iovino, L., & Pierantonio, A. (2019).
Quality-driven detection and resolution of metamodel smells.
IEEE Access, 7, 16364-16376. doi: 10.1109/ACCESS.2019
.2891357

Bézivin, J. (2005, May). On the unification power of models.
Software & Systems Modeling, 4(2), 171–188. doi: 10.1007/
s10270-005-0079-0

Bézivin, J., Jouault, F., Rosenthal, P., & Valduriez, P. (2005).
Modeling in the large and modeling in the small. In U. Aß-
mann, M. Aksit, & A. Rensink (Eds.), Model driven archi-
tecture (pp. 33–46). Berlin, Heidelberg: Springer Berlin
Heidelberg.

Bruneliere, H., Cabot, J., Dupé, G., & Madiot, F. (2014).
Modisco: A model driven reverse engineering framework.
Information and Software Technology, 56(8), 1012–1032.

Di Ruscio, D., Etzlstorfer, J., Iovino, L., Pierantonio, A., &
Schwinger, W. (2017). A feature-based approach for variabil-
ity exploration and resolution in model transformation migra-
tion. In A. Anjorin & H. Espinoza (Eds.), Ecmfa (Vol. 10376,
pp. 71–89). Springer. doi: 10.1007/978-3-319-61482-3_5

Di Ruscio, D., Iovino, L., & Pierantonio, A. (2012). Evolution-
ary togetherness: How to manage coupled evolution in meta-
modeling ecosystems. In H. Ehrig, G. Engels, H. Kreowski,
& G. Rozenberg (Eds.), Graph transformations - 6th interna-
tional conference, ICGT 2012, bremen, germany, september
24-29, 2012. proceedings (Vol. 7562, pp. 20–37). Springer.
doi: 10.1007/978-3-642-33654-6_2

Di Rocco, J., Di Ruscio, D., Iovino, L., & Pierantonio, A. (2014).
Dealing with the coupled evolution of metamodels and model-
to-text transformations. In Me workshop @models (pp. 22–
31).

Di Ruscio, D., Etzlstorfer, J., Iovino, L., Pierantonio, A., &
Schwinger, W. (2016). Supporting variability exploration
and resolution during model migration. In Ecmfa.

Di Ruscio, D., Iovino, L., & Pierantonio, A. (2012). Evolu-
tionary Togetherness: How to Manage Coupled Evolution in
Metamodeling Ecosystems. In Icgt (Vol. 7562).

Di Ruscio, D., Iovino, L., & Pierantonio, A. (2013). Managing
the coupled evolution of metamodels and textual concrete
syntax specifications. In 2013 39th euromicro conference on
software engineering and advanced applications (pp. 114–
121).

Di Ruscio, D., Lämmel, R., & Pierantonio, A. (2011). Au-
tomated co-evolution of gmf editor models. In B. Malloy,
S. Staab, & M. van den Brand (Eds.), Software language en-
gineering (pp. 143–162). Berlin, Heidelberg: Springer Berlin
Heidelberg.

Falzone, E., & Bernaschina, C. (2018). Model Based Rapid
Prototyping and Evolution of Web Application. In T. Mikko-
nen, R. Klamma, & J. Hernández (Eds.), Web Engineering
(Vol. 10845, pp. 496–500). Cham: Springer International

14 Basciani et al.

Publishing. doi: 10.1007/978-3-319-91662-0_43
Fritsche, L., Kosiol, J., Schürr, A., & Taentzer, G. (2020).

Avoiding unnecessary information loss: correct and efficient
model synchronization based on triple graph grammars. Inter-
national Journal on Software Tools for Technology Transfer,
1–34.

Gamez, N., & Fuentes, L. (2011). Software product line evo-
lution with cardinality-based feature models. In K. Schmid
(Ed.), Top productivity through software reuse (pp. 102–118).
Berlin, Heidelberg: Springer Berlin Heidelberg.

Garcés, K., Vara, J. M., Jouault, F., & Marcos, E. (2013).
Adapting transformations to metamodel changes via external
transformation composition. Software & Systems Modeling.

García, J., Diaz, O., & Azanza, M. (2012). Model transfor-
mation co-evolution: A semi-automatic approach. In Inter-
national conference on software language engineering (pp.
144–163).

Guo, J., Wang, Y., Trinidad, P., & Benavides, D. (2012).
Consistency maintenance for evolving feature models. Ex-
pert Systems with Applications, 39(5), 4987 - 4998. doi:
https://doi.org/10.1016/j.eswa.2011.10.014

Hebig, R., Khelladi, D. E., & Bendraou, R. (2016). Approaches
to co-evolution of metamodels and models: A survey. IEEE
Transactions on Software Engineering, 43(5), 396–414.

Herrmannsdoerfer, M., Benz, S., & Juergens, E. (2009). Cope -
automating coupled evolution of metamodels and models. In
Proc. of ecoop (pp. 52–76). Springer.

Herrmannsdoerfer, M., Vermolen, S. D., & Wachsmuth, G.
(2010). An extensive catalog of operators for the coupled
evolution of metamodels and models. In International con-
ference on software language engineering (pp. 163–182).

Hutchinson, J., Whittle, J., & Rouncefield, M. (2014). Model-
driven engineering practices in industry: Social, organiza-
tional and managerial factors that lead to success or failure.
Science of Computer Programming, 89, 144–161.

Iovino, L., Pierantonio, A., & Malavolta, I. (2012, October).
On the Impact Significance of Metamodel Evolution in MDE.
JoT , 11(3), 3:1-33.

Kessentini, W., Sahraoui, H., & Wimmer, M. (2018). Automated
Co-evolution of Metamodels and Transformation Rules: A
Search-Based Approach. In T. E. Colanzi & P. McMinn
(Eds.), Search-Based Software Engineering (Vol. 11036, pp.
229–245). Cham: Springer International Publishing. doi:
10.1007/978-3-319-99241-9_12

Kessentini, W., Wimmer, M., & Sahraoui, H. (2018, Octo-
ber). Integrating the Designer in-the-loop for Metamodel/-
Model Co-Evolution via Interactive Computational Search.
In Proceedings of the 21th ACM/IEEE International Con-
ference on Model Driven Engineering Languages and Sys-
tems (pp. 101–111). Copenhagen Denmark: ACM. doi:
10.1145/3239372.3239375

Krause, C., Dyck, J., & Giese, H. (2013). Metamodel-specific
coupled evolution based on dynamically typed graph trans-
formations. In K. Duddy & G. Kappel (Eds.), Theory and
practice of model transformations (pp. 76–91). Berlin, Hei-
delberg: Springer Berlin Heidelberg.

Mendez, D., Etien, A., Muller, A., & Casallas, R. (2010).

Towards transformation migration after metamodel evolution.
Model and Evolution Wokshop.

Riebisch, M. (2004). Supporting evolutionary development by
feature models and traceability links. In Proceedings. 11th
ieee international conference and workshop on the engineer-
ing of computer-based systems, 2004. (p. 370-377).

Rose, L. M., Kolovos, D. S., Paige, R. F., & Polack, F. A.
(2010). Model Migration with Epsilon Flock. In Theory
and practice of model transformations - 3rd international
conference, ICMT (Vol. 6142, pp. 184–198). Springer.

Rutle, A., Iovino, L., König, H., & Diskin, Z. (2018a). Auto-
matic transformation co-evolution using traceability models
and graph transformation. In European conference on mod-
elling foundations and applications (pp. 80–96).

Rutle, A., Iovino, L., König, H., & Diskin, Z. (2018b). Auto-
matic transformation co-evolution using traceability models
and graph transformation. In A. Pierantonio & S. Trujillo
(Eds.), Modelling foundations and applications (pp. 80–96).
Cham: Springer International Publishing.

Rutle, A., Iovino, L., König, H., & Diskin, Z. (2020). A query-
retyping approach to model transformation co-evolution.
Software and Systems Modeling, 19(5), 1107–1138. doi:
10.1007/s10270-020-00805-6

Schmidt, D. C. (2006, February). Guest Editor’s Introduction:
Model-Driven Engineering. Computer, 39(2), 25–31.

Schönböck, J., Kusel, A., Etzlstorfer, J., Kapsammer, E.,
Schwinger, W., Wimmer, M., & Wischenbart, M. (2014).
CARE – A Constraint-Based Approach for Re-Establishing
Conformance-Relationships. In Proc. of the apccm.

Thompson, N., & Platt, R. (2015, 01). The evolution of uml. In
(p. 348-353).

Vallecillo, A. (2014, 12). On the industrial adoption of model
driven engineering. is your company ready for mde? In-
ternational Journal of Information Systems and Software
Engineering for Big Companies (IJISEBC), 1, 52-68.

Wagelaar, D., Iovino, L., Di Ruscio, D., & Pierantonio, A.
(2012). Translational semantics of a co-evolution specific
language with the EMF transformation virtual machine. In
Theory and practice of model transformations - 5th interna-
tional conference, ICMT (Vol. 7303). Springer.

Wimmer, M., Kusel, A., Schönböck, J., Retschitzegger, W.,
Schwinger, W., & Kappel, G. (2010). On using inplace
transformations for model co-evolution. In Proc. 2nd int.
workshop model transformation with atl (Vol. 711, pp. 65–
78).

About the authors
Francesco Basciani is postdoc researcher at the Univer-
sità degli Studi dell’Aquila (Italy).You can contact him at
francesco.basciani@univaq.it.
Davide Di Ruscio is professor at the Università degli
Studi dell’Aquila (Italy). You can contact him at da-
vide.diruscio@univaq.it.
Ludovico Iovino is assistant professor at the Gran Sasso Science
Institute (Italy). You can contact him at ludovico.iovino@gssi.it.

Alfonso Pierantonio is full professor at the Università degli
Studi dell’Aquila (Italy). You can contact him at al-
fonso.pierantonio@univaq.it or visit http://pieranton.io.

Uncertainty management with extra-functional qualities in multi-artefact co-evolution 15

mailto:francesco.basciani@univaq.it?subject=Your paper "Uncertainty management with extra-functional qualities in multi-artefact co-evolution"
mailto:davide.diruscio@univaq.it?subject=Your paper "Uncertainty management with extra-functional qualities in multi-artefact co-evolution"
mailto:davide.diruscio@univaq.it?subject=Your paper "Uncertainty management with extra-functional qualities in multi-artefact co-evolution"
mailto:ludovico.iovino@gssi.it?subject=Your paper "Uncertainty management with extra-functional qualities in multi-artefact co-evolution"
mailto:alfonso.pierantonio@univaq.it?subject=Your paper "Uncertainty management with extra-functional qualities in multi-artefact co-evolution"
mailto:alfonso.pierantonio@univaq.it?subject=Your paper "Uncertainty management with extra-functional qualities in multi-artefact co-evolution"
http://pieranton.io

