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ABSTRACT With the emergence of Cyber-Physical Systems (CPS), several sophisticated runtime monitoring solutions have
been proposed in order to deal with extensive execution logs. One promising development in this respect is the integration of
time series databases that support the storage of massive amounts of historical data as well as to provide fast query capabilities
to reason about runtime properties of such CPS.
In this paper, we discuss how conceptual modeling can benefit from time series databases, and vice versa. In particular,
we present how metamodels and their instances, i.e., models, can be partially mapped to time series databases. Thus, the
traceability between design and simulation/runtime activities can be ensured by retrieving and accessing runtime information,
i.e., time series data, in design models. On this basis, the contribution of this paper is four-fold. First, a dedicated profile
for annotating design models for time series databases is presented. Second, a mapping for integrating the metamodeling
framework EMF with InfluxDB is introduced as a technology backbone enabling two distinct mapping strategies for model
information. Third, we demonstrate how continuous time series queries can be combined with the Object Constraint Language
(OCL) for navigation through models, now enriched with derived runtime properties. Finally, we also present an initial evaluation
of the different mapping strategies with respect to data storage and query performance. Our initial results show the efficiency of
applying derived runtime properties as time series queries also for large model histories.

KEYWORDS Runtime Models, Query Languages, Model-Based Analysis, Temporal Modeling, Time Series Databases.

1. Introduction

With the emergence of Cyber-Physical Systems (CPS) and
sophisticated runtime monitoring infrastructures, time series
databases (Bader et al. 2017) are nowadays frequently applied
to store historical data of systems as well as to provide powerful
analysis by dedicated query languages.

At the same time, Model-Driven Engineering (MDE) (Bram-
billa et al. 2017) approaches are a promising line for dealing
with the complexity of designing CPS. However, in recent years
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the scope of MDE has been also extended to runtime aspects of
CPS (Mazak & Wimmer 2016; Benelallam et al. 2017; Cruz,
Sadovykh, Truscan, Brunelière, et al. 2020; Bencomo et al.
2019; Gogolla et al. 2019; Kästner et al. 2018).

Several approaches for dealing with runtime data in mod-
els have been proposed which are often referred to temporal
models in analogy to temporal databases (Gómez et al. 2018;
Wolny et al. 2018; Bill et al. 2017). Temporal models go be-
yond representing and processing the current state of systems.
By this, they extend research done in the last decades where
several dedicated mappings from design models to different
database technologies following different data paradigms have
been proposed, e.g., see (Gogolla 2005). However, currently
there is a lack of approaches which deal with the explicit map-
ping of design models to time series databases which can be
considered as a special type of temporal databases (Schmidt et
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Figure 1 Excerpt of Ecore: (a) concepts for defining metamodels and (b) concepts for defining models.

al. 1995; Böhlen et al. 2018). Such mappings are required to fur-
ther close the gap between design time modeling activities and
simulation/runtime monitoring activities (Gogolla et al. 2019),
which employ time series analytics. For instance, time series
representations and analytics are foreseen in the development of
SysML v2 (Wolny et al. 2020) in order to deal with additional
activities in engineering technical systems such as computing
different key performance indicators for running systems by
applying aggregation functions such as mean, max, mode, etc.

To tackle this limitation, we propose in this paper a novel
partial mapping from metamodels and their instances, i.e., the
models, to time series databases. The partial mapping deals
with the fact that most often not all model elements contribute
to a time series, and thus, only those elements which have a
runtime history are explicitly mapped to time series structures.
Therefore, we propose a dedicated profile for extending the
metamodels with appropriate annotations to drive and optimize
the generation of model-based time series database connectors.
In addition, we propose a Model-to-Time Series (M2TS) mapper
that allows to inject data to time series databases from model
changes as well as to extract data from the time series databases
by model-based queries in OCL (Cabot & Gogolla 2012). By
providing these features, we allow for model simulation runs
which may be analysed by time series analytics as well as allow
for model-based runtime monitoring of systems reporting their
changes and states to time series databases. We demonstrate
both scenarios by a production system case study and evaluate
in particular two mapping strategies with respect to the required
data storage as well as query answering performance.

The reminder of this paper is structured as follows. The
foundations of this work are introduced in Section 2, namely
MDE, in particular, metamodeling, and time series databases. A
model to time series mapping approach is proposed in Section 3
incorporating two mapping strategies, which are subsequently
evaluated in Section 4 by a case study based on a productions
system demonstrator project. Section 5 presents research work
marrying MDE-based approaches with temporal aspects con-
cerning linking, versioning, languages, analytics, etc., before
we conclude the paper in Section 6 with some directions for

future research.

2. Background
In this section, we describe the background of this work, i.e.,
(meta)modeling and time series databases.

2.1. Metamodeling
Model-driven Engineering (MDE) considers models as first
class citizens (Bézivin et al. 2014). A model is used to describe
an abstraction of reality for a specific purpose. The basis of
such models are modeling languages which are defined by their
metamodels. Metamodels are used to describe the abstract syn-
tax of modeling languages. Models created by using a modeling
language are instances of the metamodel, and thus, conform
to it (Bézivin et al. 2014). One of the best known modeling
languages (amongst others) is the Unified Modeling Language1

(UML) which bases on the Meta Object Facility2 (MOF) stan-
dard. The advantages of UML are platform independence as
well as adaption and extension capabilities for users to meet
their own requirements for a specific purpose. UML offers a
wide range of views and different types of diagrams to represent
the structure and behavior of a system to be modeled. One
example of a metamodeling language which is based on a core
subset of UML and MOF is Ecore from the Eclipse Modeling
Framework3 (EMF). Since Ecore supports the key concepts of
using models as input to development and integration tools, it is
one of the most widely used languages for code generation and
model serialization for data interchange.

In our approach, we focus on Ecore. For illustrating meta-
models and models we employ as concrete syntax UML class
diagrams and UML object diagrams, respectively. Figure 1
shows excerpts of (a) Ecore’s concepts for defining metamod-
els and (b) Ecore’s concepts for representing instances of the
metamodels, i.e., models. Models are represented by object
graphs and consist of objects (instances of classes), slots

1 https://www.uml.org
2 https://www.omg.org/mof
3 https://www.eclipse.org/modeling/emf
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Figure 2 Example: (a) PS-DSL metamodel and (b) model
instance evolution.

for storing values (instances of attributes), calls for exe-
cuting operations (instances of operations) with particular
values (instances of parameters), and links between objects
(instances of references).

UML object graphs have to conform to the given UML class
diagrams. For instance, this means that if an object is existing
in the object graph, a corresponding concrete class must exist in
the metamodel which act as type for the object.

Additionally, with Ecore, metamodel elements might be an-
notated with further information (so-called annotations), e.g.,
for tagging elements for particular platforms or purposes as we
will see also later in the context of this work.

On the basis of these two metamodels, Figure 2 shows an
example of an excerpt of a Production System Domain Specific
Language (PS DSL) and an example instantiation of it. The
DSL in Figure 2(a) shows that a system consists of various
components. Each component has an unique id, a temperature
value (temp), a property for showing if the component is active
or not (isActive) and a method run() which is active when
the component is busy processing an order.

Based on this discussed metamodel, Figure 2(b) shows an
instance of a particular system. This system s1 consists of three
different components (c1-c3) with different property values. If
c3 is starting to work (c3.run()), the property values of c3,
more specific the temperature value (temp) and the isActive
value, are changing. Thus, the system state is changing over
time and in the shown example only snapshots of the system at
a specific point in time are represented (Gogolla et al. 2014).

2.2. Time Series Database

A time series (TS) is a sequence of data points acquired by re-
peatedly measuring certain parameters (e.g., temperature) over
time. The measured values are stored together with the times-
tamps at which the measurements are taken (Jensen et al. 2017).
Although the measurements are usually performed at regular
intervals (default in milliseconds), regularity is not a mandatory
requirement. The increased interest on this data is in particu-
lar the result of the ongoing development in the CPS domain
with its IoT technologies as described in the introduction, in
which the number of sensors that regularly measure defined
conditions is constantly increasing, e.g., for an efficient runtime
monitoring.

Time series databases are used for storing, processing, query-
ing as well as analyzing this data generated over time (Bader
et al. 2017). Such data consists of timestamps, correspond-
ing values, and optional tags which can consist of names and
values (both mostly alphanumeric). Queries can be executed
for timestamps or intervals without having to model the data
into another structure (Bader et al. 2017). Since the TSDB
is not only used for simply collecting data, the term “Time
Series Database” (TSDB) is synonymous to the term “Time
Series Database Management System” as a kind of software
with specialized functions such as compressing or aggregating
time series data (Kholod et al. 2017). As mentioned above such
time series data is metering from a lot of different sensors. For
storing these large amount of data with sufficiently high per-
formance, TSDBs provide the relevant scalability (Jensen et al.
2019).

The level of granularity depends on the type of time series
data and the requirements for data analysis, especially since not
every time series has to be measured at the same level of detail in
order to gain valuable insights of the monitored system (Bader
et al. 2017). As an example, the half-hourly measurement
of temperature in several rooms of an office building can be
mentioned. In this example the granularity is 30 minutes. The
values of a tag called “room” can then further specify to which
room of the house the measured temperature (value of the time
series) belongs.

Time series data differs from other data sets in that it is usu-
ally added as a new entry in a TSDB, and therefore, already
stored entries are not overwritten (Kholod et al. 2017). Excep-
tions may only caused by the correction of faulty data, e.g.,
due to delayed measurements or a failure of sensors. Therefore
TSDBs allow the recording and analysis of massive historical
data, e.g., for anomaly detection or predictive analytics (Mazak
et al. 2018). Thus, any changes over time can be traced nearly in
a seamless manner. The storage of time series data, the analysis,
and the monitoring of any changes over time provide a great
deal of informative added value compared to other types of data,
which can only represent a current status (Kholod et al. 2017).
In our approach, we use InfluxDB4 an open source TSDB by
which we can continuously store and query data independently
of another DBMS (Bader et al. 2017). For querying, it provides
a SQL-like language, and for storing it provides rules for (long-

4 https://www.influxdata.com/products
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Figure 3 TSDB metamodel.

term) data storage. For instance, InfluxDB enables flexible data
aggregations based on the timing factor and running calculations
of functions (e.g., average temperature per hour).

Figure 3 shows a metamodel of the TSDB. The TSDatabase
has a specific name and consists of various Measurements.
Each measurement must consist of a Timestamp and a
FieldSet where the different time series values are stored.
Optionally, the measurement can have some additional meta-
information stored in a TagSet. For instance, InfluxDB imple-
ments this metamodel and its line protocol informs the database
of the measurement, tag set, field set, and timestamp. List-
ing 1 shows the structure of the line protocol, with first its
measurement, followed by a optional TagSet, followed by a
FieldSet with at least one field and optionally a timestamp.
If no timestamp is specified, the current system time is taken by
default.

1 <measurement >{,<tag_key >=<tag_value >}␣<field_key >
2 =<field_value >{,<field_key >=<field_value >}␣[
3 <timestamp >]

Listing 1 Example of the line protocol of InfluxDB.

3. Mapping Models to Time Series Representa-
tions

In order to allow an integration of time series storage and anal-
ysis in a model-based manner, in this section we present the
design rationale for our approach before we outline two map-
ping strategies from object-oriented models (as described in
Section 2) to TSDB.

3.1. A Polyglot for Combining Models with Time Series
Databases

For combining models, especially EMF-based models, with
TSDB, we aim for a polyglot solution where the static infor-
mation resides in the model as it is already available, e.g., by

Static
Metadata

Time Series

ModelAPI

Model   TSDB

Figure 4 Polyglot solution for models on TSDB.
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Figure 5 Time Series Profile based on Tempo-
ralEMF (Gómez et al. 2018)

XMI or other model persistence mechanisms, and only the time-
sensitive information is stored in the TSDB (see Fig. 4).

These two storage parts are combined by a common
ModelAPI, which then can be accessed and used by various
applications. This unifying API abstracts implementation de-
tails and allow for a similar way of working with models as it
is provided by EMF out-of-the-box. In particular, we reuse as
much as possible and only extend those parts which are really
required. As a result, the model is applied as close as possi-
ble to the EMF standard and the required information for the
TSDB can be attached in a light-weight manner. In order to
achieve such unifying API with a polyglot there are various
requirements that must be fulfilled. First of all, there has to be
a built-in mechanism that determines which information from
the model should be transferred to the TSDB and stored there.
Second, there should be as well a procedure that extracts data
from the TSDB by querying and displaying it back in the model.
Third, our temporal extensions should not hinder or pollute
the use of models and they should be still manipulated as be-
fore. The main goal is to embed this process into a conceptual
schema to avoid hard coding the functionalities again and again
for different cases. In the following subsections, we describe
the design choices of the polyglot.

4 Mazak et al.
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Figure 6 Annotated example metamodel: (a) single property
mappings vs. (b) complete object mapping.

3.2. Time Series Profile

In a first step, we propose a profile (realized with EMF Annota-
tions) for extending existing metamodels by time series aspects
(cf. Figure 5). The profile defines different kinds of stereotypes
for Classes, StructuralFeatures as well as Operations.
The stereotype Temporal indicates that these elements (classes
or structural features such as attributes and references) are tem-
poral features that should be recorded as time series in a TSDB.
With the use of precision, the accuracy of the recordings
can be defined from nanoseconds (ns) to seconds (s). The
stereotype Tag should be used for features that represent impor-
tant metadata of time series features. For instance, the id of
the room where the temperature is measured. The stereotype
DerivedRTProperty marks features as derived runtime prop-
erties. Derived properties are features where the feature value is
computed based on other feature values. Our stereotype is used
for defining properties that get their values during runtime based
on runtime data stored in the TSDB. For instance, the average
temperature of a specific room over a whole day. We introduce
this custom stereotype for our derived runtime properties since
we use an OCL dialect that need further processing before exe-
cution (cf. Section 3.4). Additionally, there are two stereotypes
for operations: stereotype Log is for logging the start and the
end of an operation and stereotype Reset is used to refresh the
system state, e.g., for a new simulation run.

In Figure 6, we show an example application for the pre-
viously presented metamodel in Section 2. In particular, we
show on the left hand side the usage of the profile to map on
a fine grained level two properties as temporal while on the
right hand side we configure the whole class as temporal. These
two usages are reflecting the two mapping strategies which are
explained next.

3.3. Mapping Strategies

Based on the afore presented profile, we now establish the
mapping between models and the TSDB. By this mapping, (i)
the traceability between design and runtime activities should
be enabled, (ii) and runtime information (i.e., time series data)
should be retrieved and should be accessible through models.
For this purpose, it must be decided how objects, slots, operation

calls, and links from the models, i.e., object graphs (conform to
classes, attributes, operations and references, respectively) are
mapped to the TSDB elements such as measurements, tags, and
fields.

In this paper, we consider two conceptual strategies for the
M2TS mapper: (i) a strategy where it is possible to store each
temporal property individually (cf. Section 3.3.1), and (ii),
a strategy by which the whole object with all its associated
information is stored (cf. Section 3.3.2). Of course, there exist
various other combinations of strategies additionally to these
two discussed ones. However, selecting a suitable strategy
depends on performance, memory size, and general feasibility.
In this paper, we focus on the presented ones, since they give
already several configuration opportunities for modelers and
consider the capabilities of the deployed TSDB functions. The
developed TS profile is designed to cover both strategies, but is
not limited to them. It can be extended as well as the mappings
may be adapted to specific strategy changes.

3.3.1. Single Property Mappings The first strategy is to
map single properties, e.g., the temperature of a room. The goal
is to continuously log the progression of such property values
in a TSDB and to query these values in terms of the models if
necessary. This means that the property becomes a “temporal
feature” with its own measurement. Only such time relevant
data is stored in the TSDB. The remaining information, such as
static metadata, is stored in the model, since such information is
constant and does never change over time. However, to ensure
that properties of different objects can be distinguished and that
the relationship between them is not lost, the information to
which object the temporal feature belongs must also be stored
in the measurement. For example, if the average temperature of
a specific room is required, it should be avoided that the average
temperature of all rooms is analyzed. Therefore, the room id is
important to be related to the measurement.

The table in Appendix A shows the mapping of the object
diagram elements to the specific elements of the TSDB based on
the TS profile. It has to be mentioned that tags are optional addi-
tional information and fields are mandatory for value recording.
Similarly, each measurement in the TSDB contains a manda-
tory timestamp, where precision can be used to determine the
accuracy. For DerivedRTProperties a query is executed on
the TSDB which returns a series as a result (cf. Section 3.4).

1 ON
2 o b j e c t . s e t ( f e a t u r e , v a l u e )
3 IF
4 f e a t u r e . i s T e m p o r a l
5 THEN
6 t ime = UnixTimestamp ( p r e c i s i o n = << f e a t u r e . t e m p o r a l .

p r e c i s i o n >> ) / / d e f a u l t : ns
7 db . i n s e r t ( measure =<< f e a t u r e . name>> , t a g 1 =[ ’ o b j e c t ’ ,

<< o b j e c t . id >> ] f i e l d 1 =[ ’ v a l u e ’ , << va lue >> ] t ime )

Listing 2 Template for single property mapping.

A simple pseudo code line protocol template for the mapping
of a temporal feature embedded in an ECA rule is shown in
Listing 2. If a temporal property is set, then the new value
is stored as a field in the TSDB, the object ID as tag, and
the timestamp as Unix timestamp with the defined precision.

Temporal Models on TSDBs 5



Additional to this example, annotated tags will be added to
temporal features of the same object.

Based on the example of Figure 2(b), the following listings
show the entries of the different measurements in the database.
Listing 3 shows the stored values of the three different compo-
nents c1-c3, before executing c3.run(). For the two temporal
properties isActive and temp the initial values are stored with
their timestamp.

Listing 4 shows the values of the different measurements
after starting c3.run(). There is a new measurement for method
run. Additionally, isActive is changed to true for component
c3 and also the temp value changes, and therefore, in both
measurements a new entry for c3 is added.

1 database: s1
2 measurements: isActive , temp
3

4 measurement isActive:
5 time object value
6 −−−− −−−−−− −−−−−
7 1589406897116594100 40170008 false
8 1589406897196737400 1443055846 false
9 1589406897207745200 502838712 false

10

11 measurement temp:
12 time object value
13 −−−− −−−−−− −−−−−
14 1589406897184730200 40170008 20
15 1589406897201751200 1443055846 30
16 1589406897213821300 502838712 10

Listing 3 TSDB entries for the single property strategy before
c3.run() is executed.

1 c3.run()
2 measurements: isActive , temp , run
3

4 measurement isActive:
5 time object value
6 −−−− −−−−−− −−−−−
7 1589407171078884600 40170008 false
8 1589407171166080300 1443055846 false
9 1589407171178340200 502838712 false

10 1589407171200396800 502838712 true
11

12 measurement temp:
13 time object value
14 −−−− −−−−−− −−−−−
15 1589407171155071700 40170008 20
16 1589407171172226700 1443055846 30
17 1589407171184344500 502838712 10
18 1589407171206409400 502838712 50
19

20 measurement run:
21 time object value
22 −−−− −−−−−− −−−−−
23 1589407171190348700 502838712 start

Listing 4 TSDB entries for the single property strategy after
c3.run() is executed.

3.3.2. Complete Object Mappings The second strategy
does not map single properties of objects in isolation but rather
the entire object at once. This means that individual proper-
ties do not have to be annotated as temporal features, but the
containing classes, and thus, the associated objects with their
properties are stored in the database as measurements.

The table in Appendix B gives an overview of the complete
object mapping strategy, how the individual annotated elements
from the model are stored in the TSDB. Based on this, Listing 5
shows a pseudo code line protocol template, again embedded
in an ECA rule, for storing complete objects as measurements
and their features as fields. In addition, if structural features are
annotated as tags, then they would be saved as tags in the object
measurement.

1 ON
2 o b j e c t . s e t ( f e a t u r e , v a l u e )
3 IF
4 o b j e c t . c l a s s . i s T e m p o r a l
5 THEN
6 t ime = UnixTimestamp ( p r e c i s i o n = << o b j e c t . c l a s s .

t e m p o r a l . p r e c i s i o n >> ) / / d e f a u l t : ns
7 db . i n s e r t ( measure =<< o b j e c t . id >> FOREACH( f i n

<< o b j e c t . f e a t u r e s >> ) { f i e l d N =[ << f . name>> ,
<< f . va lue >> ] } t ime )

Listing 5 Template of complete object mapping.

In comparison to the presented single property mapping (cf.
Section 3.3.1), Listing 6 and Listing 7 show the set-up of the
database and its entries for the complete object mapping. The
structure of the information has changed and therefore also the
structure of the TSDB queries (cf. Section 3.4) depends on the
corresponding mapping.

1 database: s1
2 measurements: obi40170008 , obj1443055846 ,

obj502838712
3

4 measurement obj40170008:
5 time isActive temp
6 −−−− −−−−−− −−−−−
7 1589406897116594100 false 20
8

9 measurement obj1443055846:
10 time isActive temp
11 −−−− −−−−−− −−−−−
12 1589406897196737400 false 30
13

14 measurement obj502838712:
15 time isActive temp
16 −−−− −−−−−− −−−−−
17 1589406897207745200 false 10

Listing 6 TSDB entries for the complete object strategy
before c3.run() is executed.

1 c3.run()
2 measurements: obj40170008 , obj1443055846 ,

obj502838712 , run
3 measurement obj40170008:
4 time isActive temp
5 −−−− −−−−−− −−−−−
6 1589406897116594100 false 20
7

8 measurement obj1443055846:
9 time isActive temp

10 −−−− −−−−−− −−−−−
11 1589406897196737400 false 30
12

13 measurement obj502838712:
14 time isActive temp
15 −−−− −−−−−− −−−−−
16 1589406897207745200 false 10
17 1589407171200396800 true 10

6 Mazak et al.



18 1589407171206409400 true 50
19

20 measurement run:
21 time object value
22 −−−− −−−−−− −−−−−
23 1589407171190348700 obj502838712 start

Listing 7 TSDB entries for the complete object strategy after
c3.run() is executed.

3.4. Query Capabilities
On the basis of the TS profile and the applied mapping strategies,
we now present the query capabilities of our approach. In a first
step, we offer four basic operations for temporal properties, the
first two are adapted from previous work (Gómez et al. 2018),
and the last two are extensions:

(1) getValueAt(Instant t)
Result: DataType value

(2) getValueBetween(Instant t1, Instant t2)
Result: Map(Instant time, DataType value)

(3) getTimePointsforValue(DataType value)
Result: List(Instant time)

(4) getTimePointsforValueBetween(DataType value1,
DataType value2)
Result: Map(Instant time, DataType value)

Based on the used mapping strategy, the query implementation
in the background, i.e., in the TSDB, differs, since there is a
different data structure used in the TSDB. For instance, the
following Listing 8 shows the difference for the basic operation
(1).

1 S i n g l e p r o p e r t y mapping :
2 g e t V a l u e A t ( I n s t a n t t ) {
3 db . exeQuery (SELECT v a l u e FROM << f e a t u r e . name>>

WHERE o b j e c t = << o b j e c t . i d >> and t ime = t )
4 }
5

6 Complete o b j e c t mapping :
7 g e t V a l u e A t ( I n s t a n t t ) {
8 db . exeQuery (SELECT << f e a t u r e . name>> FROM

<< o b j e c t . i d >> WHERE t ime = t )
9 }

Listing 8 TSDB query for getValueAt(Instant t) based on
single property mapping and complete object mapping.

On the basis of the four defined operations, it is now possible,
e.g., to calculate the utilization of a component within a defined
period of time directly using Java. Listing 9 shows a pseudo
code snippet for such a metric calculation.

1 Map< I n s t a n t , Boolean > map = c1 . i s A c t i v e T .
ge tVa lueBe tween ( t1 , t 2 ) ;

2 D u r a t i o n t o t a l = D u r a t i o n . be tween ( t1 , t 2 ) ;
3 D u r a t i o n a c t i v e = 0 ;
4 I n s t a n t [ ] keys = map . ke yS e t ( ) . t o A r r a y ( ) ;
5 f o r ( i n t i =0 ; i < keys . l e n g t h −1; i ++) {
6 i f ( map . g e t ( keys [ i ] ) )
7 a c t i v e += D u r a t i o n . be tween ( keys [ i ] , keys [ i + 1 ] ) ;
8 }
9 f l o a t u t i l i z a t i o n = a c t i v e / t o t a l ;

Listing 9 Pseudo code for the calculation of the utilization
time of a component.

Additionally to these four basic opera-
tions, derived properties can be annotated with
DerivedRTProperty(query:TS-OCL). As a first real-
ization, the TS-OCL query must be expressed in the syntax
of the query language of the TSDB (in the InfluxDB case
it is Influx QL), or in combination with standard OCL5 for
navigation through the model (i.e., using self, naviation
operatores, etc.) The combination of OCL with Influx QL is
preformed as a pre-processor approach. OCL is used to query
the model elements which are injected into the InfluxQL query.
The M2TS mapper is resolving the model elements to database
entries and thus completes the InfluxQL query.

As an example, we consider as a derived property the max-
imum temperature of a component. Listing 10 shows the
TS-OCL query for this example and the respective conversion to
a TSQuery based on the two different mapping strategies.

1 De r i ved RT Pro pe r ty : MaxTemperature
2 TS−OCL=SELECT max ( << s e l f . temp>> ) FROM << s e l f .

temp>>
3

4 S i n g l e p r o p e r t y mapping :
5 TSQuery=SELECT max ( v a l u e ) FROM temp WHERE o b j e c t

=<< o b j e c t . i d >>
6

7 Complete o b j e c t mapping :
8 TSQuery=SELECT max ( temp ) FROM << o b j e c t . i d >>

Listing 10 Example query code of a derived runtime
property.

These query capabilities enable the M2TS mapper not only to
inject data to the TSDB from model changes, but also to extract
data from the TSDB by model-based queries. As the derived
runtime properties are in essence standard derived properties,
they can be simply reused in standard OCL queries. Finally,
the combination of OCL with Influx QL allows to write model-
based queries without having to deal with the concrete mapping
approach in use.

4. Evaluation
In this section, we present and discuss the performance and
scalability of our approach using a case study based on the
PS-DSL metamodel (cf. Section 2, Figure 2 (a)). From a
methodological view, we follow the guidelines for conducting
case studies by Runeson and Höst (Runeson & Höst 2009) for
performing the evaluation. The implementation of our approach
and evaluation results can be found at our project website6.

4.1. Research Questions
Our general evaluation interest is the comparison of the two
presented mapping strategies for our M2TS mapper on basis of
performance and scalability. Therefore, we aim to answer the
following research questions (RQs):

RQ1—Scalability of the database size with single property
mapping vs. complete object mapping: How does the database
size develop regarding different number of model changes and
number of entries? Does the database size grow linear to model
5 https://www.omg.org/spec/OCL
6 https://cdl-mint.se.jku.at/case-study-artefacts-jot-2020/
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changes? Is there a significant difference between the two
mapping strategies?

RQ2—Performance of the runtime queries for single property
mapping vs. complete object mapping: How long do the queries
take for (i) values at a given timestamp, (ii) timestamps for
specific values, and (iii) aggregate calculations such as average,
maximum, and modal values? Is there a significant difference
observable for the two mapping strategies?

4.2. Case Study Design
Requirements: As an appropriate input for our case study,
we first require a system based on an Ecore model, which is
annotated by our TS profile. The corresponding models must
be executable and contribute to time series when executed. In
addition, we require InfluxDB as running TSDB to store value
records.

Setup: For our evaluation, as already mentioned, we use in-
stances based on the PS-DSL metamodel. Our execution system
consists of different numbers of components and the run method
of each component is executed for various numbers of time.
Table 1 gives an overview of the different evaluation settings
regarding number of components, number of runs, and number
of entries in the TSDB. For instance, one setting consists of 100
components, 100 runs are executed for each component, and
finally 80000 entries are stored in the TSDB. During simulation,
the values of the properties isActive and temp are changing
over time and logged in the TSDB based on the respective
mapping strategy.

No. Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

Comp. 100 1 000 2 000 3 000 4 000 5 000

Run() 100 1 000 2 000 3 000 4 000 5 000

Entries 80 K 8 M 32 M 72 M 128 M 200 M

Table 1 Number of (i) components in the model, (ii) run()
executions for different settings, and (iii) entries in the TSDB.

For these settings, the query performance is evaluated as follows.
On the one hand, for the different derived runtime properties,
i.e., the maximum, mean, and mode values of the temp attribute
for a selected component is calculated, and on the other hand,
the general methods provided by our approach getTimePoints-
ForValue and getValueAt are executed for particular values and
time points.

For answering our RQs, we calculate the different durations
for storing data, and for each query by System.getNanoTime() in
Java based on nanoseconds (ns). The performance is measured
on an Acer Aspire VN7-791 with an Intel(R) Core(TM) i7-
4720 HQ CPU@2.60 GHz 2.60 GHz, with 16 GB of physical
memory, and running Windows 8.1. 64 bits operating system.
Please note that we measured the CPU time by executing each
mapping five times for all different settings and calculated the
arithmetic mean of these runs. We use EMF, JDK 13 (important
for precision accuracy of nanoseconds), and InfluxDB 1.8.0 to
execute our approach.

Prototype: In a first prototypical implementation, we realized
our M2TS mapper for EMF. In particular, we provide anno-
tations for the metamodeling language Ecore with respect to
utilizing the TSDB InfluxDB. The different stereotypes of our
TS profile are implemented as EAnnotations on the Ecore model.
For connecting the database, we make use of the open source
Java client for InfluxDB7 and provide our own InfluxDBConnec-
tor which provides the glue between EMF models and InfluxDB.
For automation purposes, we adapt the existing Java Emitter
Templates (JET) for the EMF code generation. Thus, by the
extended code generator we are able to provide an enriched API
for EMF models to deal with temporal information, i.e., storage
and query capabilities.

4.3. Results
In this subsection, we present the measurements for answering
our research questions.
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Figure 7 Database size in relation to number of entries for
both mapping strategies (in MB).

Answering RQ1 - Scalability of database sizes: Our inves-
tigations regarding the TSDB size on the basis of the model
changes show that both strategies show a linear increase (cf.
Figure 7). It can be recognized that the size of the database
for complete object mapping strategy increases slightly faster
than for single property mapping strategy. However, this can
be explained by the fact that whenever a value of a property is
changed, the entire object is stored with a new timestamp.

Answering RQ2 - Performance of runtime queries: Figure 8
shows the measurements of the query duration for both map-
ping strategies. In general, the queries are fast, as they take only
from 1ms to about 7ms, depending on the entries in the TSDB.
However, as the size of the database increases, the queries for
MeanMaxMode and GetValueAt for the single property map-
ping become slightly slower than in the case of the complete
object mapping. This can be explained by the fact that starting
from a certain number of entries, it plays a role whether the
possible results have to be selected first (for single mapping
using object.id), or are already selected and only need to be
screened (for the complete mapping strategy, the object has its
own measurement). However, based on a hypothesis testing
(i.e., Wilcoxon rank-sum testing (Venables & Ripley 2002)),
there is no significance regarding the difference between the

7 https://github.com/influxdata/influxdb-java

8 Mazak et al.

https://github.com/influxdata/influxdb-java


0

1

2

3

4

5

6

7

0 50 000 000 100 000 000 150 000 000 200 000 000

Q
u

er
y 

Ex
ec

u
ti

o
n

 (
m

s)

Number of entries  TSDB

MeanMaxMode (single) TimePointsForValue (single) GetValueAt (single)

MeanMaxMode (complete) TimePointsForValue (complete) GetValueAt (complete)

Figure 8 Query execution time in relation to number of entries for both mapping strategies (in ms).

two mapping strategies: p-value =0.4848, H0: single property =
complete object; p-value>0.05. Therefore, H0 is not rejected.

4.4. Critical Discussion

In summary, the introduced mapping strategies both have advan-
tages as well as limitations. The right choice of strategy mainly
depends on the task to be accomplished, i.e., which queries are
subsequently evaluated. Imagine you aim to query all instances
for a given type. This would be straightforward for the complete
object mapping strategy. Imagine you would like to query the
max temperature for all components. This would be faster for
the single property mapping.

Overall, the evaluation demonstrated the feasibility of both
strategies concerning the data storage and query performance.
However, we cannot generalize our results beyond our initial
case study. First, we have to mention that there may be other
cases where larger objects, i.e., objects having many slot values
and links, have to be stored. Consequently, a higher size of the
databases may be expected, and this may call for new strategies
of mapping objects with only a partial subset of their slots
and links. In future studies, we plan to evaluate settings in a
larger context such as building a monitoring systems for an IoT
network or building a runtime-based verification tool as well.
Such studies will allow a more practice-oriented evaluation
of the different strategies which may be further collected in a
particular benchmark for temporal models.

Another feature to exploit from the TSDB may be the down
sampling capability for data for given time frames, i.e., aggre-
gating data from millisec to sec to minute ranges and so on.
Again, this feature has to be evaluated in future work. Moreover,
the explicit usage of tags instead of fields has to be evaluated
in future work as it may have impacts on both: the data storage
size and the query performance.

Finally, we would like to mention that our presented case
study with all the corresponding artefacts is provided online and

may be used by the research community as experimental test
bed for future studies concerning finding appropriate mappings
from models to time series databases.

5. Related Work
With respect to the contribution of this paper, namely, the map-
ping and connection of conceptual models to TSDBs, we dis-
cuss various threads of related work. First, we discuss temporal
modeling approaches for validation and verification of models.
Second, we present approaches for linking design and runtime
models. Third, we explore approaches for versioning of models
in temporal repositories. Finally, we discuss approaches that
combine modeling languages with time series analytics.

5.1. Temporal Modeling Languages
There is abundant research on temporal extensions for modeling
languages to specify the temporal characteristics of the system
data (e.g., consider (Gregersen & Jensen 1999) for a survey), but
not regarding the temporal dimensions of models themselves.

Further works advance these first attempts by extending also
the query languages with temporal properties, mainly to enable
the validation and verification of temporal properties on the
data. Temporal OCL (TOCL) (Ziemann & Gogolla 2003) and
Temporal UML (Cabot et al. 2003) are two examples of OCL
extensions for the evaluation of temporal constraints.

Temporal extensions have also been applied to specific types
of systems (e.g., adaptive systems (Mouline et al. 2018)) and
DSLs (e.g. timed Petri nets (Bender et al. 2008)). Even TOCL,
which can be seen as a generic language, can also be used as an
component in other DSLs as described in (Meyers et al. 2014).
In this line, (Bousse et al. 2019) discuss and apply a pattern
to extend modeling languages with events, traces, and further
runtime concepts to represent the state of a model’s execution
and to use TOCL for defining properties that are verified by
mapping the models as well as the properties expressed in TOCL
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to formal domains that provide verification support. Efficiency
of these types of temporal inspection queries is also the focus
of (García-Domínguez et al. 2018) and (García-Domínguez et
al. 2019).

Nevertheless, all these approaches (including our own pre-
vious TemporalEMF proposal (Gómez et al. 2018)) are mostly
oriented towards the retrieval of specific past states of the mod-
el/data, elaborating on the concepts of valid time and transaction
time of (bi)temporal models. Instead, in this work we explic-
itly focus on the support for complete time series storage and
analysis, which opens the door to more powerful and rich pos-
sibilities, like the computation of different KPIs for models as
part of design exploration and simulation scenarios.

5.2. Linking Design-time and Runtime Models
In this subsection, we discuss approaches using traceability
between design and runtime models. The evolutionary aspect of
engineering artifacts refers to the fact that they change over time.
Models in engineering processes, e.g., usually develop from
initial ideas to first drafts. They are then continuously revised,
often by taking into account feedback from other resources, until
they are finally released. However, also the feedback after the
release from the operation should be reflected in those models to
make traceability between design and operation feasible (Mazak
& Wimmer 2016).

For this purpose, the authors of (Wolny et al. 2018) present
an architecture to map runtime data back to the model level by
using standard metamodeling techniques. Thereby, they do not
only develop a unifying architecture for creating model snap-
shots on-the-fly, but to map the history of operation concerning
certain properties. This allows to specify and compute runtime
properties based on time series data through design models.
This means, design-oriented languages are equipped with exten-
sions for representing runtime states as well as runtime histories,
which in turn allow the formulation and computation of runtime
properties with OCL. This makes it feasibly to directly inter-
pret measurements within design models without introducing
an impedance mismatch. The challenge with using OCL for
this purpose is that even simple mathematical calculations (e.g.,
computing upper bounds or averages) may quickly become com-
plex with respect to their definition and evaluation. For better
scalability such calculations should be directly performed in the
TSDB as we allow by the presented work of this paper.

If the design model is not yet coupled with its runtime coun-
terpart, i.e., no annotations are made at model level, the authors
of (Wolny et al. 2019) present an approach to transform raw
sensor log data to UML sequence diagrams for graphical repre-
sentation. Therefore, they provide a text-to-model transforma-
tion to transform text-based traces of a running system to UML
sequence diagrams. As a basis for reconstructing such UML
sequence diagrams, they develop a metamodel for representing
system logs in an object-oriented manner. This makes it feasible
to express system logs explicitly as models. However, they only
use the time aspect to trace the correct order of the performed
operations, but not to store the execution time, e.g., to be able
to annotate information about average duration. This could be
complemented by the approach presented in this paper.

Another project that also deals with the connection of de-
sign and runtime is the project MegaM@Rt28. In this scalable
model-based framework for continuous development and run-
time validation of complex systems trace links between design
models and runtime are established based on bidirectional trans-
formations (Cruz, Sadovykh, Truscan, Bruneliere, et al. 2020).
Temporal aspects as we discuss in the context of this paper are
not explicitly considered. However, the MegaM@Rt2 approach
is applicable for already existing systems which may be com-
bined with our approach to enrich existing systems with TS
collection and analysis.

5.3. Temporal Model Repositories
In (Bill et al. 2017), the authors discuss the need for temporal
model repositories and the explicit representation of time in
models. They discuss the gap of traditional Version Control
Systems (VCS) such as SVN and Git, where each version of
an evolving model is stored with a timestamp for the whole
model (Altmanninger et al. 2009). While versioning the whole
model is suitable for many development tasks, it makes it chal-
lenging to trace the evolution of specific model elements over
time. Furthermore, the authors discuss several challenges when
moving towards temporal model repositories such as (i) model
storage, (ii) model access, (iii) model consistency, (iv) model
manipulation, and (v) model visualization. In this paper, we
have mostly focused on the first two points.

In the work presented in (Hartmann et al. 2014), the authors
present an approach for versioning on the model element level.
They discuss the lack of native mechanisms in MDE as well as
Models@run.time to handle the history of data. They state that
especially for the Models@run.time paradigm (Blair et al. 2009),
which propagates the use of models to support runtime reason-
ing, an efficient mechanism is needed to store and navigate the
history of model element values. Therefore, model elements
have to be versioned independently from each other. Further-
more, they simplify and improve the performance of navigating
between model elements coming from different versions by
defining a navigation context for navigating in two dimensions
(space and version). However, the versions have to be explicitly
introduced and managed as in the aforementioned versioning
systems. In our approach, we store individual model element or
even individual properties with their associated timing aspects.

To tackle the discussed challenges in (Bill et al. 2017),
in (Gómez et al. 2018) we present a temporal model infras-
tructure built on top of EMF—TemporalEMF. In summary, we
showed how TemporalEMF enables to treat conceptual schemas
as temporal models. On these models, temporal queries can be
performed to retrieve model contents at different time points,
e.g., to compare model content and to trace model states in the
past. The TemporalEMF approach bases on concepts from tem-
poral languages. The history of a model is transparently stored
in a NoSQL database (i.e., HBase9). In our newly presented
approach no dependence to other DBMS, such as NoSQL ones,
is needed, since we use a TSDB to reason about the history of
property values accessible in the model.

8 https://megamart2-ecsel.eu/
9 http://hbase.apache.org/
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In (Haeusler et al. 2019), the authors discuss the need for tool
support in the area of IT Landscape documentation. Therefore,
they present a solution for storing, versioning, and querying
of such IT Landscape models by means of an open source
graph-based EMF model repository. In addition, the modular
architecture allows to consider those models still as standalone
components outside the repository context. A limitation is that
ChronoSphere operates in local deployments, and therefore, is
currently not distributed across several machines for greater
scalability. In our approach, models and the TSDB can run
separately on different machines. Since, our polyglot approach
provides a ModelAPI, it could be considered in the Chrono-
Sphere repository as well, which is generic, and therefore, not
limited to the domain of IT Landscape documentation. This
allows other applications to use the provided functionalities of
our API for various use cases.

5.4. Modeling Languages for Time Series Analytics

In (David et al. 2012), the authors present the OMS310 modeling
framework which provides an extensible and lightweight layer
for simulation description expressed as so-called “Simulation
DSL” based on Groovy11. The authors propagate DSLs for
completing General Purpose Languages (GPLs) for specific
simulation purposes. In their work, they present DSL variants
in OMS3 such as a DSL for Ensemble Streamflow Prediction
(ESP) based on meteorological time series data for predicting
future conditions. Instead of creating a DSL for a specific
purpose, in our approach, we propose a dedicated profile for
extending metamodels with appropriate annotations to extend
existing metamodels (e.g., of GPLs) by time series aspects.

Gekko12 is an open source modeling approach for time series
data management and for solving as well as analyzing large-
scale time series models. It could be considered as a kind
of DSL with a strong time series domain focus. It provides
interfaces to statistical computing and graphics packages such
as R13. In our approach, we use InfluxDB which offers besides
high-availability storage and monitoring of time series data,
application metrics as well as real-time analytics.

In this context, we also mention TimescaleDB14 which is
an extension of PostgreSQL15. TimescaleDB is specially opti-
mized for time series data in order to automatically partition
data by time. Like PostgreSQL, TimescaleDB stores the data in
a RDBMS and supports SQL as query language. Furthermore,
it provides additional features for analyzing and manipulating
time series data. Similar to the InfluxDB, TimescaleDB offers
the possibility of a continuous calculation of functions. In par-
ticular such functions are queries that are executed continuously
and in real time on the incoming data. The results of these
regular queries are also stored in the TSDB as specified met-
rics (e.g., average room temperature every half hour with the

10 https://alm.engr.colostate.edu/cb/wiki/16961
11 https://groovy-lang.org
12 http://t-t.dk/gekko
13 https://www.r-project.org
14 https://www.timescale.com
15 https://www.postgresql.org

applied metric). External tools such as Grafana16 or Tableau17

may also be used to visualize and analyze time series data. In
addition to Grafana, the open source statistics software R for
analyzing time series data should also be mentioned. However,
the probably most extensive functionalities for querying data,
setting warnings, and visualizing time series data is offered by
InfluxDB, respectively by the InfluxData platform. Moreover,
long-term storage of data is only provided by InfluxDB, and
only to a limited extent by TimescaleDB. Additionally, the data
scripting and query language Flux18 can be used in combina-
tion with InfluxDB. This standalone tool is optimized, e.g., for
monitoring and provides built-in functions as well as importable
packages to retrieve, transform, process, and output time series
data. In contrast, our approach looks at TSDBs from a model-
driven perspective and how conceptual modeling and TSDBs
can benefit from each other.

6. Conclusion and Future Work
In this paper, we have presented a novel set of partial mappings
from models to TSDB. In particular, we presented a profile to
annotate metamodels in order to automatically generate wrap-
pers to time series databases that enable storing model updates
as well as querying historical model information. Two differ-
ent mapping strategies are proposed and evaluated in terms of
their feasibility and scalability. While the current work presents
interesting insights how modeling technologies may be com-
bined with TSDB, we foresee several additional lines of research
worth to investigate in addition to the ones mentioned in the
evaluation section.

On the modeling side, we need to deal with co-evolution
issues given that the TSDB is schema-less. For usability rea-
sons, we would also like to be able to express complex time-
related queries in OCL (e.g., by pre-defining a set of time-series
operators, similar to what we did in (Cabot et al. 2010) for
multidimensional models).

On the mapping side, we will investigate how to run approxi-
mate queries to deal with a variety of uncertainty scenarios (Bur-
gueño et al. 2019) and study the potential of combining both
temporal and time-series information. This would enable even
more complex analysis where we could, for instance, evaluate
whether a new design model behaves better than one we used
in the past by comparing their respective associated time-series
data. It even allows to forecast the expected behavior of future
designs. Finally, we are interested in mapping and storing not
only the models themselves but also all modeling operations
on them (e.g., by storing the trace information automatically
created by some transformation engines such as ATL).
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A. Single Property to TSDB Mapping Table

Model TS Profile
TSDB

measurement tag key tag value field key field value precision series

Slot
Temporal

(precsion: TimeUnit)
attribute.name “object” object.id “value” slot.value TimeUnit -

Tag -
attribute.

name
slot.value - - - -

Derived Slot
DerivedRTProperty

(query: TS-OCL)
- - - - - -

resultOf

(TSQuery)

Link
Temporal

(precsion: TimeUnit)
reference.name “object” object.id

reference.

opposite.

name

target.id TimeUnit -

Tag -
reference.

name
target.id - - - -

Derived Link
DerivedRTProperty

(query: TS-OCL)
- - - - - -

resultOf

(TSQuery)

Method Log method.name “object” object.id “value”
“start” or

“finish”
TimeUnit -

B. Complete Object to TSDB Mapping Table

Model TS Profile
TSDB

measurement tag key tag value field key field value precision series

Object
Temporal

(precsion: TimeUnit)
object.id - -

for each Slot:

attribute.name

for each Link:
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for each Slot:

slot.value

for each Link:

target.id
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Slot Tag -
attribute.

name
slot.value - - - -

Derived Slot
DerivedRTProperty

(query: TS-OCL)
- - - - - -

resultOf

(TSQuery)

Link Tag -
reference.

name
target.id - - - -

Derived Link
DerivedRTProperty

(query: TS-OCL)
- - - - - -

resultOf

(TSQuery)

Method Log method.name “object” object.id “value”
“start” or

“finish”
TimeUnit -
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