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Abstract The Graph Query Language (GraphQL) is a framework for de-
veloping Web Services, which works on the domain model level rather than
the functions. While the declarative nature of this framework has already
attracted the interest of practitioners in both academia and industry, it still
lacks integration capabilities. This shortcoming has been recognized in the
industry; there exists a first tool creating a federation—a virtual integrated
system—on top of instrumented systems. Being relatively new, it suffers
from a few practical and conceptual shortcomings, such as consolidation of
(conflicting) schemas and identification of multiple types. In this paper,
we will analyze the federation challenge and propose a solution utilizing
multi-view modeling and domain specific modeling. Our approach is accom-
panied by a proof-of-concept implementation and provides a model-based
presentation of the GraphQL framework.
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1 Introduction

Microservices are a current industry trend, which encourages the design of software
systems as a composition of small connected components [FML17, AAE16, FL14]. The
main advantage of this approach is scalability, both in terms of personnel organization
and resource distribution, which is fueled by other trends such as build automa-
tion, application containers and Continuous Integration (CI)/Continuous Deployment
(CD) [AL19, Ric15]. However, all of this comes at the cost of higher complexity : The
necessity of relying on network communication, possibly being unreliable, slow and
insecure [TS07], forces developers to implement counter-measures against message
loss, timeouts and intrusion.

Consequently, there is a rise of tools and frameworks to leverage the development
of distributed software systems. A notable representative is GraphQL, an open-source
framework for developing Web Services (WS). It receives increasing interests by both
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industry and academia, see e.g. [HP18, UKT+19, MRKIP+19]. The idea behind
GraphQL is that the server should not provide its interface as a collection of functions,
as it is practice in the well-known WS-protocols SOAP and REST, but instead provide
its domain model as a graph. The benefit is that a client can flexibly specify what
part of the domain model graph it is interested in rather than relying on the existence
of a function which provides access to this information. This enables server-side and
client-side teams to work mostly independently, after having agreed on the common
domain model. GraphQL can be considered as an instance of the Model Based Software
Engineering (MBSE) paradigm [BCW17]. The domain model graph is described by a
so-called Schema Description Language (SDL) which is the foundation for the query
language available to the clients. The queries are formulated declaratively and the
technical details of communication and encoding are handled by the framework.

While GraphQL facilitates the development of a WS-interface for a single applica-
tion, it lacks means for integrating multiple interfaces, an important requirement for
distributed systems. One example use case is the retrieval of information, which is
scattered over multiple local services [DHI12]. Without a proper integration function-
ality, the client itself has the obligation to send requests to all relevant services and
consolidate the responses correctly.

As a solution to this issue, we develop a framework for creating a federation
(common interface) on top of existing GraphQL WS-interfaces. Our solution utilizes
a Domain Specific Language (DSL) for describing schema correspondences—also
called traceability links—which are a common means for relating multiple modeling
artifacts [SKLR18, FKWVH19, ARNRSG06]. The framework is non-intrusive and
technology independent, and it facilitates the consolidation of multiple (conflicting)
schemas where multiple type definitions are flexibly be related or identified. In
addition, we compare our solution and present its advantages over an existing tool
called Apollo Federation [Met]. Furthermore, our investigations are accompanied by
an MBSE-oriented presentation of the GraphQL framework and a proof-of-concept
implementation of our solution.

Outline. In following section, we will both present GraphQL (2.1) as an example
of MBSE and state the integration problem (2.2) we are aiming to solve. Section 3
provides a short overview on MBSE literature dealing with similar problems. Section 4
presents concrete solutions to the problem. First, the tool Apollo Federation is analyzed
in section 4.1 and afterwards we present our solution in Sect. 4.2. Both approaches are
finally evaluated in section 5 before we finally wrap up our investigations and provide
an outlook on future work in section 6.

2 Background

There is no fixed definition of the term Microservice, however, there is a commonly
used definition attempt as an “approach of developing a single application as a suite
of small services” [FL14]. It is closely related to Service-Oriented Architecture (SOA)
[Jos07] since it shares the same underlying idea. The major difference is that SOA
focuses on integration and service orchestration (usually requiring a sophisticated
middleware), whereas Microservices focus on separating the business logic into small
independent components [CDT18, FML17, Ric15]. SOA and Microservices imply a dis-
tributed system architecture, which adds further complexity in terms of communication,
synchronization, safety and security [TS07].
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type Query {
customer(customer: ID!): Customer
allCustomers: [Customer]
store(store: ID!): Store
allStores: [Store]

}
type Mutation {
createCustomer(name: String!, email: String): Customer!
updateCustomer(customer: ID!, name: String, email: String): Customer
deleteCustomer(customer: ID!): Customer
setAddress(customer: ID!, street: String, city: String, postalCode: String, state: String,

country: String): Customer
createPurchase(customer: ID!, date: String!, store: ID!): Purchase
addItemToPurchase(purchase: ID!, product: ID!, quantity: Int): PurchaseItem

}

(a) Facade Part

type Customer {
id: ID!
name: String!
email: String
address: Address
purchases: [Purchase]

}

type Purchase {
id: ID!
date: String!
customer: Customer!
store: Store!
items: [PurchaseItem]

}

(b) Types Part 1

type PurchaseItem {
productID: ID!
quantity: Int

}
type Store {
id: ID!
manager: ID!
purchases: [Purchase]
location: Address!

}
type Address {
street: String
city: String
postalCode: String
state: String
country: String

}

(c) Types Part 2

Figure 1 – Sales System GraphQL Schema

2.1 GraphQL

Traditionally there are two WS-protocols: SOAP [Wor07] and REST [FT00]. The
SOAP protocol requires to explicitly specify all accessible methods including input and
output data structures in a schema, whereas REST uses the information encoded in the
URL and HTTP-method to describe the service interface. The main disadvantage of
SOAP is seen in its complexity and the overhead imposed through the explicit schema.
REST on the other hand is more lightweight but relies on developer discipline, i.e.
that interfaces are designed and used in accordance to the REST guidelines and that
input and output data structures are well documented. GraphQL [Fac18] steps in as
yet another alternative for developing WS, which seeks to combine advantages of both
approaches. It was originally developed by Facebook and eventually open sourced in
2015. Since then, it is been adopted by other companies such as Twitter, Airbnb, and
Github, also there are first use cases in academia, see e.g. [UKT+19, MRKIP+19].
The name GraphQL arises from the fact that every server interface has to define its
underlying domain model in a schema representing a graph. This definition is given in
a textual Schema Definition Language (SDL). Figure 1 exemplifies a GraphQL Schema
for a simplified sales application of a hypothetical retail company.

The keyword type initiates the declaration of a so-called Object Type (think class
in UML, and see Figure 3). An Object Type has a name and comprises multiple Fields,
which again have a name and a return-Type. The return-Type can either be a Scalar
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Query Schema Graph

Resolver FunctionResponse

type Query {
purchases: [Purchase]!

}
type Customer {

id: ID!
name: String

}
type Purchase {

id: ID!
customer: Customer!

}

query {
purchases {

customer {
name

}
id

}
}

@Component
public class Query implements
GraphQLQueryResolver {
public List<Purchase> getPurchases() {

return this.findAllPurchases();
}

{
"data": {

"purchases": [
{

"customer": {
"name": "Ole von Bargen"

},
"id": "1"

} 
]

}
}

Figure 2 – GraphQL Query Mechanism explained

Type (think data type in UML) such as String, Int or another Object Type. Fields can
be marked as mandatory (denoted by an exclamation mark !) or list-valued (denoted
by brackets [ ]), i.e. per default a Field is optional and is thus allowed to return a
null-value. Furthermore a Field may have a list of Arguments. An Argument has a
name and a type, which has to be a Scalar Type. The purpose of an argument is to be
passed to the underlying Resolver-mechanism to perform filtering.

Every Schema may contain the special entities Query and/or Mutation; see Fig-
ure 1a. These types are intended to serve as an entry point or facade [GHJV95]. They
are singleton Object Types [GHJV95], whose Fields represent methods for retrieval and
modification of data. Fields of a Query are intended to be side-effect-free read-only
functions, whereas Fields of a Mutation are methods changing the underlying data set.
Every Schema has to be accompanied by a set of Resolver-functions, one for each Field.
Provided with the parent object and values for all Field Arguments, a Resolver returns
instances of the Return-Type, i.e. objects or scalar values. This allows developers to
perform intermediate business-specific operations and to use any data store of their
choice. A Schema together with a set of Resolvers constitutes a GraphQL Endpoint.

A client interacts with an Endpoint by sending a Query to it. The Query is formulated
in the eponymous GraphQL. A graph Query is basically a tree of Field names from
the respective Schema. The root of the tree has to either be a reference to the Query
type or the Mutation type. A Query is evaluated by the GraphQL framework, which
is illustrated in Figure 2. Hierarchically, the Resolvers are called, providing (lists of)
objects or values, which are assembled into a single Response JSON Document.

GraphQL can be seen as an example of MBSE since it encourages a declarative
approach focusing on domain models rather than technical details. The SDL is a
Domain Specific Language [DK04], whose metamodel is depicted in the highlighted
fragment in Figure 3, and a schema is a model conforming to this metamodel. Semantics
for a schema is given by the collection of all data sets conforming to the schema, and
one particular data set is provided by a concrete resolver implementation. Putting
this into the metamodeling hierarchy [Kü06], the GraphQL metamodel in Figure 3 is
an M2-model, every GraphQL schema is an M1-model, and data sets behind these
schemas are M0-models.
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Figure 4 – Domain Models of the Systems
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Returning to our retail company example, for the remainder of this paper let us
assume that the company has adopted the current Microservice trend and organizes
its system infrastructure into cross-functional teams maintaining small autonomous
components. Hence, in addition to the sales system endpoint EP1, shown in Figure 1,
there is another system EP2 for writing invoices, and finally the company bought in
a HR system EP3. Using the metamodel hierachy described above, we can denote
the schemas of these three endpoints in a compact and familiar UML/MOF-oriented
notation in figure 4. Ovals and different shading indicate the systems’ boundaries
(ignore the red color for the time being). Every class becomes an Object Type, every
attribute becomes a Field returning a Scalar Type, and every directed reference becomes
a Field returning an Object Type. The multiplicity 1..1 indicates the respective field
being mandatory (!), and 0..* indicates the field being list-valued ([ ]). Finally,
let us assume there are Query and Mutation types (not shown) providing the regular
Create, Read, Update, and Delete (CRUD) methods.

2.2 Problem Statement: Federation

In SOAs, systems are integrated on the service level via sophisticated orchestration
mechanisms. This generally requires a canonical data model [CDT18]. In a Microservice
architecture, which heavily encourages decoupling, such canonical data models are
uncommon and unfeasible, see e.g. figure 4, where the three domain models have been
developed independently. This leads to data integration issues.

In the running example, our Retail company now faces several challenges: First,
there is a growing problem of redundant data and thus possibly inconsistent data, e.g.
in the past there had been issues where customers relocated to a new address but the
records had not been updated consistently such that invoices were not delivered to
the right customers. Secondly, there is a difficulty in implementing new use cases,
e.g. the company wants to implement a policy, which gives their employees discounts
on purchases in the company’s stores. To implement this use case it is necessary
to align the data set of the HR system with the two other systems. Thirdly, the
company’s CEO is interested in the reporting and analysis of the data contained in
the information systems. These three issues are examples of the most common reasons
for data integration, for a detailed treatment we refer to [DHI12].

Integration can be defined as a process that turns separate systems into a single
(possibly distributed) system. The systems we are considering in the example are
GraphQL endpoints where an endpoint is given by a schema and a set of resolvers.
Thus, endpoint integration means to consolidate the schemas of EP1, EP2 and EP3 and
to merge their data sets. In the database and information systems domain, integration
often appears under the term federation. A federated system is a lightweight or even
virtual abstraction over the integrated local system, which remain autonomous. A
federated endpoint addresses the practical issues mentioned above: A unified data set
allows a detection of address duplicates, to identity persons who are both customers
and employees, and to have a global reporting. The goal is illustrated in Figure 5.
There are the three information systems Sales, Invoice, HR, connected by a network,
and accessible via the GraphQL endpoints EP1, EP2 and EP3. The federated endpoint
is visualized by the dotted components and referred to as Backoffice. It is visible to
internal and external clients through the endpoint EP+, and behaves as a regular
GraphQL endpoint.
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Figure 5 – GraphQL Federation: an overview

3 State of the Art

Federation can be considered as an instance of multi-view(-point) modeling : The
development of a complex system usually requires to work with multiple (potentially
overlapping) views of the system. It is a long standing and active research domain—
see [FKN+92] for one of the first mentions and [CCP19, BBCW19] for very recent
surveys on the topic—and it is further related to important research domains such
as megamodeling [Ste20], inter-model consistency [KM18], model synchronization
[AC08], and bidirectional transformations (bx) [CFH+09]. In [ATM15], the authors
distinguish between projective and synthetic multi-view modeling. The projective
approach assumes a pre-existing all-encompassing system model. Views are derived by
a projection on certain parts of the system model. Two views share elements when
they refer to the same elements in the system model. In the synthetic approach, there
is no pre-existing system model and thus the system must be synthesized by view
integration. Federation is evidently an instance of synthetic multi-view modeling and
the literature reports on different view integration approaches presented in Fig. 6, see
[KM18, CCP19, dLGKH18] for further references.

One of the most widespread approaches is model merging [BCE+06], i.e. to create
our own system model as new artifact, which encompasses all views and for every view
there exists an embedding into it. A different approach is cross-referencing where
external links are added on top of the views establishing cross-references between
elements from different views, see e.g. [KG19, FKWVH19]. The model extension
approach [KM18] does not rely on global notions such as a merging or cross-references
but instead augments the views locally with elements from other views. Heterogeneous
transformations are very common in model synchronization scenarios and bx [CFH+09].
which considers model transformations for every pair of views to allow translations
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between them. Another recent and promising approach relies on concepts from multi-
level modeling [AK01, Kü06, MGdL17, MWR+19] by considering the typing relation
between models and their metamodels as dynamic and non-binary : Elements in a
view model may on the one hand change their type over time, and on the other hand
may be typed over elements from multiple metamodels at the same time. Typical
examples are roles [KBGA15] and facets [dLGKH18]. This removes the necessity to
perform further integration on the metamodel level, however, there is commonly a
need for typing rules to control correct typing. Such typing rules share similarities
with the cross-references mentioned above.

4 Solutions

In this sections, we investigate how endpoint federation may be realized. First, we
analyze an existing approach called Apollo Federation before we propose our solution,
which aims to leverage some shortcomings of the former.

4.1 Existing Solution: Apollo Federation

The most popular JavaScript implementation of GraphQL is Apollo GraphQL1, which
is developed by the Meteor Development Group. They realized that it gets increasingly
inefficient and difficult to force a whole organization to expose all its services behind a
single GraphQL Endpoint. Thus, they developed the tool Apollo Federation [Met] on
top of GraphQL, which enables organizations to split the definition of a single endpoint
(Schema and Resolvers) into smaller definitions and develop them independently of
each other, which enables Separation of Concerns (SoC).

First and foremost, Apollo Federation provides a language extension of the GraphQL
SDL. The new language features are a new keyword (extend) and the directives @key
and @external. Directives are the GraphQL equivalent of annotations; i.e., they have
no predefined meaning but can be used by a concrete GraphQL implementation to
introduce proprietary features. The most fundamental feature is the keyword extend,

1https://www.apollographql.com/
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extend type Query {
clients: [Client]
...

}
type Partner
@key(fields: "id")
@key(fields: "name") {

id: ID!
name: String
address: Address
invoices: [Invoice]

}
...

(a) Schema Extension Invoices

extend type Query {
customers: [Partner]!
...

}
extend type Partner @key(fields:"id") {

id: ID!
name: String @external()
address: Address @externa()
email: String
purchases: [Purchase]

}
...

(b) Schema Extension for Sales

Figure 7 – Appollo Federation Syntax Extension Examples

which can be put in front of a type definition, meaning that this type now represents an
extension of an existing type in another schema. To see how this concept can be used
to identify the two Customer types in Sales and Client in Invoices (compare Figure 4)
have a look at Figure 7: Invoices provides the initial definition and Sales extends it
and because type extensions are identified by name we have to give a common name
to Customer and Client, Partner in this case. In the Apollo Federation parlance,
Partner is a called an entity. Instances of entities can be globally identified such that
the federated endpoint can consolidate data from multiple endpoints via identifying
elements with the same key. Keys are defined using the @key directive on the initial
type definition. A @key refers to at least one of the entity’s fields meaning that
two entity instances are identified if the values to all these field are identical (AND-
semantics). There can be multiple @key directives, which means that they serve as
alternative (OR-semantics) keys. A type extension has to pick one of the declared keys
from the original definition, see Figure 7b. Finally, an extended type can introduce new
fields, e.g. email and purchases for which regular resolvers have to be implemented.

This extended SDL has ramifications on the implementation of the respective
resolvers. First, for every entity type definition there has to be a special resolver
retrieving an entity instance for a given key. Resolvers for a type extension must only
provide resolvers for every key attribute and the non-external fields. Upon querying
an endpoint with a type extension, values for the @external fields are retrieved by
asking the endpoint containing the original definition, which is possible due to the
global identification mechanism. After, having augmented the endpoints with the
Apollo Federation features, the endpoints can automatically be integrated into a
federated endpoint, which aggregates the type definitions from all local endpoints. For
our example, this federated endpoint comprising Sales and Invoices will contain a
single Address type, a single Partner comprising the fields id, name, email, address,
invoices, and purchases, and there will be a single Query type aggregating the query
methods from all endpoints.

Thus, Apollo Federation facilitates the Federation problem described in Sect. 2.2.
However, it is important to note that Apollo Federations architecture is actually based
on projective multi-view model management. It assumes an unambiguous underlying
system model that is separated into multiple schemas connected by type extensions
(established via equality of type names). The Apollo Federation tool works well for
scenarios where the programmer has access to every endpoint implementation. But
this is not always the case especially when there is bought-in software, such as e.g.
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the HR system in our example. Thus, Apollo Federation has no way of reconciling
conflicting views.. This and other limitations of Apollo Federation are discussed in
the list below:

Lim#1 The requirement for an Underlying System Model requirement may pose
problems in certain system integration scenarios where one cannot modify the
existing endpoints: There is no way to reconcile “conflicting” views, e.g. not
having declared name and address in Figure 7 as @external would have resulted
in an error.

Lim#2 Type Extension is a binary relation. This has implications on the amount
of data that can be aggregated within a single query. A query against a field,
which returns a type extension will aggregate data from at most two endpoints.
Considering the running example, when we include the HR system into the
federation and treat Employee as a type extension of Customer as well, we
can retrieve all Partners, which are Customers and Clients or Customers and
Employees but not altogether.

Lim#3 Identification Capabilities are limited; Apollo Federation allows to identify
elements by alternative and composite keys but it is limited to field-references
only. There are no possibilities to perform intermediate computations. For
example, if we want to integrate the data set of the HR system, it is not
possible to state that the value of name for a Client/Customer is equal to the
concatenation of firstname and lastname of an Employee.

Lim#4 Apollo Federation is intrusive. By using the model extension approach for view
integration, compare Sect. 3, each endpoint is augmented with global information
(additional schema language features and special resolver functions). Thus, the
local endpoints are not unaware that they are participating in a federated system.

Lim#5 Apollo Federation is technology dependent by requiring every endpoint, which
participates in a federation, to follow and implement a specific protocol. Thus,
it currently only works with a chosen selection of GraphQL implementations,
see [Met]

4.2 Our Solution: Schema Correspondences

Our goal in this paper is to provide a solution for endpoint federation, which addresses
the limitations mentioned above. Thus, we want to develop a non-intrusive and
technology independent framework, which allows to consolidate multiple possibly
conflicting schemas where more than two type definitions can be related and elements
can flexibly be identified.

To fulfill non-intrusiveness (see Lim#4) we decide to use a cross-referencing
approach, see Sect. 3, i.e. we add structural cross-reference links on top of the existing
endpoint schemas without changing them. These links will be called correspondences
[SKLR18] and establishes a relation between types or attributes from different schemas
that refer to the same real-world concept.

In Figure 4 we highlighted the correspondences in our example in red. The figure
illustrates how correspondences accommodate for different types of cross-references,
e.g. the same type Address appears in Sales and Invoices, the type PaymentDetails
in Invoices extends the type BankDetails in HR, and there is the structural corre-
spondence between Customer, Client and Employee, discussed above. Note, that we
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1 endpoints {
2 "http://localhost:4011/" as sales
3 "http://localhost:4012/" as invoices
4 "http://localhost:4013/" as hr
5 }
6 correspondences {
7 relate {sales.Query, invoices.Query, hr.Query} as Query with {
8 relate { sales.Query.customers, invoices.Query.clients, hr.Quey.employees} as partners
9 }

10 relate { sales.Customer, invoices.Client, hr.Employee }
11 as Partner
12 with {
13 relate { sales.Customer.id, invoices.Client.id, hr.Employee.id } as id
14 relate { sales.Customer.name, invoices.Client.name } as fullName
15 relate { sales.Customer.address, invoices.Client.address } as address
16 relate { invoices.Client.paymentDetails, hr.Employee.bankAccount } as financialDetails
17 identify where {
18 or {
19 equals { sales.Customer.id, invoices.Client.id }
20 equals {
21 invoices.client.Name,
22 concat {hr.Employee.firstname," ",hr.Employee.lastname}
23 }
24 }
25 }
26 }
27 relate { invoices.PaymentDetails, hr.BankDetails } as FinancialDetails
28 with {
29 relate { invoices.PaymentDetails.iban, hr.BankDetails.iban } as iban
30 relate { invoices.PaymentDetails.bic, hr.BankDetails.bic } as bic
31 identify where {
32 and {
33 equals { invoices.PaymentDetails.iban, hr.BankDetails.iban }
34 equals { invoices.PaymentDetails.bic, hr.BankDetails.bic }
35 }
36 }
37 }
38 relate { sales.Address, invoices.Address } as Address
39 with {
40 relate all
41 identify where all equals
42 }
43 }

Figure 8 – Correspondence DSL example

do not require the existence of systems model (Lim#1) and are able to deal with
conflicting views. Every type and field is considered separate if not otherwise related
by a correspondence.

Hence, we have to develop a DSL to allow for correspondence definition. To fulfill
the requirements of the federation problem, this DSL must offer two features: On
the one hand it must allow the definition of multi-ary (see Lim#2) type and field
correspondences. On the other hand it must allow the definitions of data identification
mechanisms. Apollo Federation uses keys for this and we also adopt this idea but
allow flexible expressions that can be used for keys (see Lim#3)

Figure 8 presents a first proposal of what such a language might look like. It
encodes the correspondences of our example from Figure 4. First, the local endpoints
participating in the federation have to be specified. They are identified via their URL
and for the remainder identified by a symbolic name (lines 2-4). Afterwards, type
correspondences (initiated by the keyword relate) are given. We establish correspon-
dences among the three Query root types (lines 7-9), among Client, Customer and
Employee, (lines 10-26), among PaymentDetails and BankDetails (lines 27-37), and
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Store

id : ID

manager : ID

Address

street : String

city : String

postalCode : String

state : String

country : String

Purchase

id : ID

date : String

PurchaseItem

productID : ID

quantity : Int[0..1]

address

location

at

purchases
customer

items

1..1

0..*

1..1

1..1

0..*
0..*

Invoice

id : ID

createdAt : String

dueAt : String

payedAt : String

total : Integer

FinancialDetails

iban : String

bic : String

cardNumber : String[0..1]

validUntil : String[0..1]

Partner

id : ID

name : String

email : String

firstname : String

lastname : String

hiredAt : String

email : String

phone : String

Department

id : ID

name : String

client
invoices

financialDetails

worksAt

workingAt
manager

0..*

0..1
0..*

1..1

1..1

0..*

purchases 0..*

[1..*]

[0..*]

[0..*]

[0..*]

[0..*]

[0..*]

[0..*]

[0..*]

[0..1]

[0..1]

[0..1]

[0..1]

[0..1]

[0..*]

[0..*]

Figure 9 – Merged Domain Models for the Federation

for the shared Address type (lines 38-42). A type correspondence further contains field
correspondences, which are initiated by the keyword with and follow a similar structure
as type correspondences. Also, a type correspondence may introduce an identification
mechanism (lines 17-25, 31-36, and 41). An identification is a boolean expression
in disjunctive normal form, with literals being equalities between field references or
scalar expressions built over field references. The idea is that a disjunction translates
to alternative keys and a conjunction translates to a composite key. The ability to
use arbitrary expression addresses Lim#3. E.g. we assume that Clients (Invoices)
can be identified with Customers (Sales) via their id and Clients can be matched
with Employees (HR) by comparing their name with concatenation of first- and
lastname. Finally we introduce some syntactic sugar (line 40-41) to identify types,
which are structurally identical.

Eventually, our tool has to produce a running endpoint, i.e. a global schema and
resolvers for every field in that schema. The correspondence definition in Figure 8 is
structurally different from a GraphQL schema, however, luckily there are extensive
results on automatic model merging using global correspondences, see e.g. [SE05,
BCE+06, RC13]. We adopt the algorithm that is formally described in [SKLR18]. The
respective theoretical construction is called a pushout, which is intuitively described
as taking the union of all schemas wherein corresponding elements are identified. The
resulting merge of the domain models (schemas) for our running example is shown in
figure 9. Note that the merge construction changes multiplicities for fields that are
identified (highlighted in red) because a merged type may contain more or less data
than its local equivalent.

Next, we have to implement resolvers s for our new endpoint. Since the federated
endpoint must not suddenly “invent” new information, these resolvers are implemented
via delegation to existing resolvers in other endpoints. To discuss this idea consider
Figure 10, which shows a metamodel of our framework.

Every definition like the one in Figure 8, we call it CorrSpec, refers to at least to ex-
isting endpoints and contains correspondences. An endpoint URL extends to a Schema
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Type

name : String

LocalType MergedType

Field

name : String

isListValued : Boolean

isMandatory : Boolean

LocalField MergedField

TypeCorrendonce

alias : String

FieldCorrespondence

alias : String

Schema

name : String

CorrSpec correspondences

types

relates
relates

fieldCorrespondences

contains
contains

owner fields
result

originalOwner2..*
2..*

2..*

0..* 0..*

0..*
2..*

2..*

0..*

1..1
1..1

Identification

produceKey(t: LocalType, o: Object): Scalar[0..*]

Disjunction Conjunction Equality

ScalarExpression

Argument

FieldReference

0..1
identification

1..1

ref

1..* 1..* 2..*

ands literals arguments

contains
0..*

endpoints

1..1

Endpoint

url : URL

Resolver

DirectResolver ResolverDelegator

delegatees

1..*

/toAsk
1..*

0..*
0..*

0..* 0..*

0..*

0..*

0..*0..*

0..*
resolvers

1..1

1..1

1..1

1..1

implimpl

Figure 10 – Metamodel of GraphQL multimodels

containing its respective LocalTypes, which in turn contain LocalFields. A relate-
statement over types translates to a TypeCorrespondence, which again contains
FieldCorrespondences and Identifications. The model merging procedure can be
described by an endogenous model transformation over this metamodel: For every
TypeCorrespondence a MergedType is created and for every FieldCorrespondence a
MergedField is created. The merge produces a new Schema containing all MergedTypes
plus copies of those LocalTypes, which have not been merged. Finally, every
MergedField is implemented by a ResolverDelegator. A ResolverDelegator pro-
duces its result by querying DirectResolvers. However, there is a technical intricacy
here: due to non-intrusiveness, we cannot directly call a resolver of another endpoint,
like Apollo Federation does, but instead have to contact them the regular way by send-
ing a query. Thus, a ResolverDelegator has to pre-calculate the tree of LocalFields
he has to retrieve in a query, see the derived toAsk association. A benefit of this
approach is that it reduces to number of requests send in between the endpoints.
Furthermore, a delegating resolver has to perform consolidation. If there exists an
Identification on the return type, the collection of objects provided by the local
resolvers has to be scanned for duplicates. This is done by creating the key for every
object according to the expression defined in the CorrSpec, see operation produceKey
in Identification. When two objects have the same key, they are merged recursively.

The solution described above has been implemented in a proof-of-concept imple-
mentation2. This implementation has been conducted as part of the Master thesis of
the second author. All technical details can be found in his thesis [vB20]. To address

2The tool is available at https://gitlab.com/olevonbargen/graphqlintegrator/-/tree/master.
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CorrSpec Generator Federated Endpoint

Local Endpoints

<<reads>> <<generates>>

<<refersTo>>
<<readsSchema>> <<queryForwarding>>

Figure 11 – Workflow of the Prototype

the technology dependency limitation (Lim#5), the tool is based on code generation.
Figure 11 shows a conceptual picture of the implementation. First, we developed a
Grammar for CorrSpecs (compare Figure 8) and used ANTLR [Par07] to generate the
respective parser infrastructure. A CorrSpec file is fed to a Java application, which
generates a Java Web application. The latter uses Spring Boot and graphql-java to
leverage the technical WS-implementation details and could be easily exchanged by
another technology stack. Furthermore, there are no restrictions on what GraphQL
implementation has to be used in the local endpoints.

To simplify the first development iteration of the prototype, we chose to ignore
correspondences on FieldArguments, which may be useful for consolidating mutations
as they heavily rely on Arguments. Furthermore, GraphQL comprises a set of advanced
type level features, which, for the sake of simplicity, were excluded from the discussion
in section 2.1. For matters of complete presentation, we mention them briefly here:
Besides Query and Mutation, there is actually a third facade type called Subscription.
Fields of this type are intended to open a long-running channel through which the
server keeps the client updated over changes. The GraphQL schema languages allows
to define custom Enum Types, Union Types, or Interfaces with the typical semantics
known from other programming languages. In our current prototype, Subscriptions
are explicitly not supported. The support for Enum Types, Union Types, and Interfaces
is limited in a sense that it is not possible to use them in a type correspondence but
one may still use them locally. Concretely, it is not possible to create correspondences
for Arguments, Enum Types, Union Types, nor Interfaces.

Figure 12 shows a screenshot showing a GraphQL client querying the integrated
endpoint. On the right, a small portion of the merged schema is visible, which shows
the Partner type with all its fields. On the left, an example query involving fields from
all local endpoints is formulated: It retrieves purchases (Sales), invoices (Invoices),
and worksAt (HR). The response part in the middle shows two (remaining answers are
collapsed) objects representing Partners. The first partner ("Tabbi") is an employee
working in the sales department, who has some purchases and invoices. The other
partner ("Beverlie") works in IT but has apparently never purchased anything from
her employer.
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Figure 12 – Screenshot of the integrated endpoint

5 Evaluation

Table 1 provides a qualitative comparison between Apollo Federation and our frame-
work: A checkmark (X) denotes a fully supported feature, a checkmark in brackets
indicates limited support, and a minus (-) indicates missing support. The first two
rows summarize the architectural difference between Apollo Federation and our tool.
Apollo Federation is based on projective multi-view modeling, assumes a unambiguous
underlying system model and allows to split this definition into multiple endpoints
via type extensions and keys. Our approach follows a synthetic approach, allowing
to reconcile possibly conflicting views by identifying type and field definitions from
existing schemas retroactively via correspondences. Furthermore, this correspondences
are multi-ary compared to binary type extensions. Rows 3 and 4 show the concrete
ramifications of the Apollo Federation architecture: It is intrusive and depends on
a certain technology. Rows 5-7 resemble the possibilities for element identification:
Both tools support alternative and composite keys but our approach additionally
allows arbitrary computations on keys (e.g. concatenations). The bottommost rows
(8-13) refer to technical details of the supported GraphQL functionality: Both tools
support queries and mutations but neither of them supports subscriptions. Further,
both tools faithfully support the multiplicities list-valued, mandatory and optional.
Our solution currently lacks full support for field arguments in a sense that we cannot
define correspondences upon them and we cannot define correspondences between
Enums, Interfaces or Union Types yet.

Since both tools show rather big differences in terms of conception and feature
support, we consider a performance comparison in the current stage less meaningful.
For example, in Apollo Federation it is technically not possible to define a query
methods that provides all clients, customers and employees in a single query. Thus,
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Feature Apollo Federation Our Tool
1. Multi-View Architecture projective synthetic
2. Cross-Reference Arity binary multi-ary
3. Non-intrusive - X
4. Technology agnostic - X

5. Identification: Composite Keys X X
6. Identification: Alternative Keys X X
7. Identification: Key Transformations - X

8. Support for Queries X X
9. Support for Mutations X X
10. Support for Subscriptions - -
11. Support for Multiplicities X X
12. Support for Field Arguments X (X)
13. Support for Enums, Interfaces, Unions X (X)

Table 1 – Qualitative Comparison

it is only possible to merge clients with customers or clients with employees one at
a time. Still, we ran a small exploratory comparison between both tools on a 2017
MacBook Pro, running macOS High Sierra version 10.13.6, on an 2,3 GHz Intel Core
i5 with 8GB of DDR3 RAM (2133 MHz)3. In an example dataset containing 1k
partner records (distributed over all three endpoints) and 4k invoices and purchases,
we ran queries asking for the invoices, purchases and the department of every partner.
For 1k request Apollo Federation took 808.57ms on average to answer (min: 651ms,
max: 3473ms, median: 775ms) while our prototype took 962.89ms on average (min:
708ms, max: 2427ms, median: 907ms). Given that the prototype was not specifically
optimized for performance, the results show that our tool has no major disadvantage
in this regard. Furthermore, it must be noted that Apollo Federation only retrieves
and merge data from two endpoints for field at a time and thus returns less data. Still
and in-depth performance analysis should be undertaken in the future.

6 Conclusion and Future Work

In this paper we investigated the problem of schema federation in GraphQL, a recent
industrial Microservice-oriented framework, as an instance of of multi-view modeling.
We proposed a solution to this problem motivated by prior theoretical work in the area
[BCE+06, SKLR18] based on a DSL for correspondences definitions (cross-references),
similar to the one proposed in [KG19]. Our solution is compared to an existing
industrial tool called Apollo Federation, which shows that our solution is feasible,
circumvents some of Apollos limitations, and appears not to be aggrieved performance-
wise. Finally, our presentation of GraphQL as MBSE is something novel.

For the future, there are multiple directions: The missing features such as corre-
spondences on field arguments, support for advanced GraphQL type system features
and subscriptions have to be implemented. Furthermore, one may think of more
convenience features in our DSL, e.g. for introducing new (derived) fields. When
these features are implemented, we plan to perform a more meaningful quantitative
comparison (than the exploratory tests we performed so far, see Sect. 5) between our
tool and Apollo Federation, also comparing other aspects such as number of requests

3The code is available at https://gitlab.com/olevonbargen/graphqlintegrator/-/tree/
master/examples/scenario2
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and request sizes. Further, exploring how different distributed data set constellations
affects the performance. This will hopefully allow another direction of our work: An
outreach to the GraphQL community and Apollo developers to see how the accep-
tance of our work in practice will be. Concerning theoretical research there are more
unresolved issues: This paper provides a conceptualization of the GraphQL framework
in terms of MBSE-concepts but a full formalization is still missing. The graph-based
nature promises to be well aligned with the formal framework of attributed typed graphs
(ATG) [EEPT06], which is based on universal algebra and category theory. Thus, an
alternate approach to [HP18] on formalizing the semantics of the GraphQL framework
based on ATGs could be worthwhile. Another intriguing idea is to investigate how the
developed framework can be exploited further in terms of system interoperability and
verifying the global consistency of multiple information systems.
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