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Abstract Domain modeling is a core activity in Model-Driven Engineering,
and these models must be correct. A large number of artifacts may
be constructed on top of these domain models, such as instance models,
transformations, and editors. Similar to any other software artifact, domain
models are subject to the introduction of errors during the modeling process.
There are a number of existing tools that reduce the burden of manually
dealing with correctness issues in models. Although various approaches
have been proposed to support the quality assessment of modeling artifacts
in the past decade, the quality of the automatically repaired models has
not been the focus of repairing processes. In this paper, we propose the
integration of an automatic evaluation of domain models based on a quality
model with a framework for personalized and automatic model repair. The
framework uses reinforcement learning to find the best sequence of actions
for repairing a broken model.
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1 Introduction

Models are becoming core artifacts of modern software engineering processes [WHR14].
When performing modeling activities, the chances of breaking a model increase together
with the size of development teams and the number of changes in software specifications,
due to lack of communication, misunderstanding, mishandled collaborative projects, etc
[TOLR17]. The correctness and accuracy of these models are of the utmost importance
to correctly produce the systems they represent. However, it can be a time-consuming
task to make sure that models are correct and have the required quality. Therefore,
several approaches to automatic model repair have been proposed in the past decades
[OPKK18, NRA17, MGC13]. However, the quality of the automatically repaired
models has not been the main focus of the repairing algorithms even though quality
characteristics have been extensively studied in the literature [BBL76, Dro95, OPR03].
Usually, a common approach to define quality models is to first identify a small set of
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high-level quality characteristics and then decompose them into sets of subordinate
characteristics. We consider customization important due to the flexibility of the
concept of quality; quality characteristics may be given different meanings depending
on the considered application scenarios, context, and intended purpose [BDRDR+16].
Hence in this paper, we propose the integration of an automatic model repair method
with a customizable quality definition method.

In previous work, we introduced PARMOREL (Personalized and Automatic
Repair of MOdels using REinforcement Learning) [BRH18, BRH19], an approach
that provides personalized and automatic repair of software models using reinforcement
learning (RL) [TL00]. PARMOREL finds a sequence of repairing actions according
to preferences introduced by the user without considering objective measures such
as quality characteristics. In this paper, we extend our approach to also consider
well-known metrics to improve the overall quality of the repaired models. To achieve
this, we integrate PARMOREL with a tool for quality evaluation of modelling arti-
facts [BDRDR+19]. This tool facilitates the evaluation of the modeling artifacts in
terms of a personalized view of the quality concepts. This integration leads to the
production of models that are improved based on both user preferences and quality
characteristics—such as maintainability and understandability. Our approach takes
automatic model repair one step further in supporting users to improve the quality of
models.

Structure of the paper. This paper is organised as follows: section 2 presents
a running example where we demonstrate how a domain model with errors can be
repaired in different ways. In section 3, we propose some quality characteristics to be
evaluated on the running example in order to demonstrate how different actions impact
the repaired domain model differently. We show the proposed extended architecture
of PARMOREL in section 4, evaluate the approach in section 5, and discuss factors
which might affect the validity of the evaluation in section 6. In section 7, we present
some relevant related works and we conclude the paper in section 8.

2 Running example

In this section, we demonstrate how a broken domain model can be repaired. We will
show how different actions can lead to different resulting repaired models with different
quality characteristics. As an example, we will use the model in Figure 1 that shows a
domain model specified using the Eclipse Modeling Framework (EMF) [SBMP08a].
This model represents an excerpt of the “company” application domain. The root of
the model is a CompanyModel containing a set of companies. A Company is defined
with a name, and it can hire a set of Employees. Every employee has a name and
specializes the class Person. Client is another specialization of Person. Moreover, the
model can define Projects.

The chances of breaking a model increase with collaborative modeling activities,
depending on the number of changes in software requirements [BRH18], and the size
of the conceptual domain to be engineered. This domain model might have become
invalid at any stage of the modeling activity 1. The model in Fig. 1 presents a number
of problems as seen from the highlighted parts (in red). The invalid model is unsuitable

1This domain model has been taken from a dataset of academic examples used during the MDE
Course at the GSSI, Italy. This model has been created by junior MDE experts, during the lab-sessions
of the course.
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Figure 1 – A snapshot of an invalid domain model

for modeling activities that require model validation [MLLD10]. We summarize these
problems as follows:

E1 Person cannot inherit from itself

E2 Reference employees of the class Company has lowerbound greater than upper-
bound

E3 Reference works of the class Employee is untyped (see treeview based representa-
tion)

E4 There cannot be two features name in the same class (also including inherited
attributes).

These errors can be repaired in multiple ways [DREI+16] leading to different
results but with the same intent—restore the validity. For each error, a possible set
of resolution actions can be undertaken. To avoid increasing the search space and
the complexity of the example, we consider only two possible actions per error (these
actions were chosen manually with an illustrative purpose). We group these actions
into two sets: A1 and A2. Furthermore, the domain models in Fig. 2 and Fig. 3,
respectively, show the effects of repairing the errors applying A1 and A2.

Starting from error E1 where a class cannot have itself as a supertype, the resolution
actions we propose are:
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A1 Removal of the supertype relationship

A2 Adding a new class to satisfy the supertyping

In this specific case the Person class having a supertype relationship to itself can be
resolved with A1 where we remove the relationship or with A2 where we introduce a
new class where its name is super{class− name}, i.e. SuperPerson.

Error E2, where the lower bound of the employees reference is greater than the upper
bound can be solved with one of the following actions. Concretely, the two actions
can result in modifying employees cardinality [5..2] to [2..5] or [1..2] (by decreasing
lowerBound until it is smaller than the upperBound value: 2).

A1 Invert lowerBound with upperBound of the reference

A2 Decrease lowerBound or increase upperBound of the reference until the model
results valid

For E3 where the works reference is untyped, the possible resolution actions are
numerous if we decide to pick any class in the model to type the reference. To
reduce the search space, we apply a heuristic that only allows to type references by
classes having less than 2 ongoing references. In our example, only classes Project,
ProductionLine and Client comply to this heuristic. To maintain the uniformity of
presenting 2 actions per error, we concentrate on the first two classes; typing works
with Client do not produce any significative changes w.r.t. the actions proposed below:

A1 Type it with Project (merging works with the existing reference assigned into a
bi-directional reference)

A2 Type it with ProductionLine

The last error to be fixed is E4 where the name attribute cannot be repeated since
the superclass of Employee and Client already has declared it.

In this case the resolution can be listed as follows:

A1 Remove the attribute from the supertype

A2 Remove the attribute from the subtypes

These two actions applied to the domain model resulted in having the attribute name
in the Person class or in both of its subclasses Client and Employee. Also, in this case,
we could propose other alternative actions, but what is important is the concept that
we will detail in the next section.

3 Quality evaluation

In [BDRDR+19, BDRDR+16, LFGDL14] different works propose quality models specif-
ically conceived to measure the quality of models and other modeling artifacts. In these
works, characteristics like maintainability, portability, and usability are introduced
together with sub-characteristics like analyzability, adaptability, and understandability
for each main characteristics. Multiple quality characteristics may be considered in
order to evaluate qualitative aspects of the domain engineering phase, formalized as
a domain model. This aspect is particularly relevant in the activity of model repair
since the actions undertaken to repair the errors could produce valid models, but with
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low-quality characteristics. The alternative is to manually repair models with the
disadvantage of being very time consuming. For this reason, we dedicate this section
to demonstrate how the two actions selected for each error (exposed in section 2) may
produce valid domain models but with different quality characteristics.

CompanyModelCompany

name	:	EString

Person

Employee

name	:	EString

ProductionLine

Client

name	:	EString

Project

title	:	EString

[0..*]	companies

[0..100]	persons

[0..*]	projects

[0..*]	lines

[1..1]	model

[2..5]	employees

[0..*]	assigned

[2..2]	works

Figure 2 – Repaired model with actions A1

CompanyModelCompany

name	:	EString

Person

name	:	EString

Employee

ProductionLine

Client Project

title	:	EString

SuperPerson

[0..*]	companies

[0..100]	persons

[0..*]	projects

[0..*]	lines

[1..1]	model

[1..2]	employees

[2..2]	works

[0..*]	assigned

Figure 3 – Repaired model with actions A2
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3.1 Quality characteristics

In this section, we consider the following quality characteristics [GP01]: maintain-
ability, understandability, complexity, and reusability. For measuring the quality
characteristics of the two produced domain models in Fig. 2 and Fig. 3, we have
implemented a quality assessment tool inspired by [BDRDR+16]. This tool will be
presented in section 4 in the overall integrated approach.

The maintainability quality characteristic considered in this paper has been defined
according to the definition given in [GP01] and that is based on some of the metrics
shown in Table 1 as follows:

Maintainability =

(
NC +NA+NR +DITMax + FanoutMax

5

)
(1)

According to the considered definition of maintainability the lower values the better.
The definitions of the Understandability and Complexity quality characteristics are

adopted from [SC06]. In particular, understandability can be defined as follows:

Understandability =

(∑NC
k=1 PRED + 1

NC

)
(2)

where PRED regards the predecessors of each class, since, in order to understand a
class, we have to understand all of the ancestor classes that affect the class as well as the
class itself. According to such a definition, the lower values for the understandability
quality characteristic the better.
Complexity can be defined in terms of the number of static relationships between the
classes (i.e., number of references). The complexity of the association and aggregation
relationships is counted as the number of direct connections, whereas the generalization
relationship is counted as the number of all the ancestor and descendant classes. Thus,
the complexity quality characteristic can be defined as follows:

Complexity =(NR −NUR +NOPR + UND + (NR−NCR)) (3)

Metric Acronym
Number of Class NC
Number of TotalReference NR
Number of Opposite Reference NOPR
Number of TotalReference containment NCR
Number of TotalAttribute NA
Number of Unidirectional reference NUR
Max generalization hierarchical level DITmax
Max Reference Sibling (max fan Out) FANOUTmax
Number of TotalFeatures NTF
Sum of inherited structural features INHF
Attribute inheritance factor AIF
Number of predecessor in hierarchy PRED
Within an relation chain is the longest path from the class to others HAGG
Difference between the upper bound and lower bound in a reference REFint
Max or min upper bound of a set of references UPBmax|UPBmin

Table 1 – Excerpt of the metrics considered in the evaluation

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a17


Model Repair with Quality-Based Reinforcement Learning · 7

Quality characteristics A1 A2
Maintainability 4.20 4.60
Understandability 1.28 1.62
Complexity 12.28 8.6
Reusability 0.00 0.15
Relaxation Index 4.57 4.56

Table 2 – Quality characteristics after evaluation of the running example (table)

where NUR is the number of unidirectional references calculated as the difference
between bidirectional and total reference number, and UND is the understandability
value calculated as defined in Def. 2. According to the given definition, the lower
values for the complexity characteristic the better.

The reusability of a given model can be calculated in different ways. One of these
is to use the attribute inheritance factor AIF as proposed in [Are14] where it is stated
that a higher value indicates a higher level of reuse. As presented in [AJS07], AIF can
be defined as follows:

Reusability = AIF =

(
INHF

NTF

)
(4)

where INHF is the sum of the inherited features in all classes, and NTF is the total
number of available features.

Moreover, we decided to define a new quality characteristic inspired by the concept
of metamodel relaxation [AA17], called relaxation index.

RelaxationIndex =

(∑NR
k=1 REFint− UPBmin

UPBmax− UPBmin

)
(5)

Based on the concept of relaxation we can define how much a relation is strict with
respect to its cardinality constraints. For instance, [0..*] on a reference is more relaxed
compared to [i..i] (for i ∈ INT ). This is because in the first case the modeler has
more freedom to define the number of instances, that can be optional or even infinite;
in the second case he / she needs to define exactly i instances to fulfill the constraints.
For this reason, if we want to give more elasticity to the modeler, we can use this
index to understand which model is less restrictive.

3.2 Evaluating the running example

When we calculate these quality characteristics on the running example, the result
can be summarized as follows (see Table 2).

The application of the two actions can have different impact on the quality character-
istics of the domain models. In fact, it seems that A1 resulted better in maintainability,
understandability and relaxation index, while A2 resulted better in the rest. Maintain-
ability is calculated over the number of model elements, the hierarchical definitions
and the siblings of every element and the balance of these elements has made the
result similar for the two actions, even if A1 resulted better.

In the same way, understandability resulted better for A1, since also this quality
characteristic is based on the predecessors of the classes. Complexity resulted better in
A2, being partially linked to the understandability, but also to the unidirectional and
bidirectional references. In fact A1 introduces a reference with type Project (works),
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this class already has a unidirectional reference to Employee (assigned), matching then
a new eOpposite constraint, i.e. bidirectional, making the model more complex.

Reusability indicates that A2 produces a model with a better level of reuse. This
is due to the fact that A2 concerning the name attributes decides to move it up to
the hierarchy, instead of maintaining the ones in the subtypes. This increases the
number of inherited features and hence the level of reuse. Finally, considering the
relaxation index the A1 set of actions results in generating a domain model slightly
more relaxed with respect to the A2 set. In fact, the references are all the same, except
the employees relation where in case of A1 is set to [2..5], and in A2 to [1..2], affecting
the relaxation index.

4 Customizing quality characteristics with RL

Up to now, the results of our quality evaluation are based on definitions taken from
existing literature (see Section 3.1). In this section, we demonstrate how the quality
definition may be specified and customized by the modeler based on her own point of
view on model quality. Our approach takes the quality preferences from the modeler
as input and uses Reinforcement Learning (RL) to find customized repairing sequences
of actions that improve the selected characteristics.

PARMOREL uses RL algorithms (currently, Q-learning [TL00]) to find which
is the best possible repairing action for each error in the model. RL consists of
algorithms able to learn by themselves how to interact in an environment without
existing pre-labelled data, only needing a set of available actions and rewards for each
of these actions. We rely on an external modeling framework (i.e. the Eclipse Modeling
Framework (EMF) [SBMP08b]) to retrieve issues in the models (e.g. attribute without
a type, duplicated class). The modeling framework is also responsible for applying
the actions selected by PARMOREL and creating the repaired models. The learning
algorithm in PARMOREL allows to provide repairing from zero, without knowing
any details of the model to be repaired. By using and tuning RL rewards, these
algorithms can learn which are the best actions to repair a given error. We can adapt
these rewards to align with any preference introduced by the user, including quality
characteristics; i.e., if a user prefers to improve maintainability in the model, we assign
positive rewards to actions that satisfy this quality metric (note that it is mandatory
for users to introduce, at least, one metric preference).

Figure 4 shows the extended workflow of PARMOREL. Before finding a repairing
sequence for a given model, PARMOREL is executed for a number of episodes. Each
episode equals one iteration attempting to repair the model, as reported with dotted
lines in Figure 4. For each of these episodes, a possible repairing sequence is found,
and applying it, a provisional repaired model is created.

By introducing quality evaluation to PARMOREL, we can measure the quality
for each of the provisional repaired models. PARMOREL translates these results
into rewards, so that it can identify how good each repairing action is improving or
preserving the considered quality of the model. Likewise, after each episode, only
actions providing higher quality would be selected. This is done by extending the
architecture to include the Quality Evaluation Module, that we will detail in the
remaining of this section. After performing enough repairing iterations, PARMOREL
will select the repair sequence with higher rewards and saves the final repaired model.
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Figure 4 – PARMOREL’s workflow for assuring quality in repaired models

4.1 Specification of quality aspects

The Quality model plays a key role in the proposed approach since it enables the
specification of quality measures according to the domain’s or the modeler’s require-
ments. Inspired by the quality model proposed in [BDRDR+16], we have designed a
model for the specification of the quality of multiple artifacts (see Fig. 5). Each of
these artifacts will be assigned a set of QualityCharacteristicss in which the modeler can
specify, among others, the calculation function (functionaName) and the priority with
respect to other quality characteristics. Moreover, whether a quality characteristic
should be maximized or minimized, is specified in the attribute solution.

Figure 5 – Quality characteristics model

Furthermore, the attribute value—which is empty at the beginning—will be actual-
ized with the resulting value of the evaluation by the engine which executes the quality
calculation function; this function is presented as a workflow diagram in Fig. 6. Indeed,
the modeler specifies the initial setting of the quality characteristics according to her
preferences while the engine applies the calculation function on the given artifacts to
determine their quality.

Figure 6 reports a simplified representation of the quality evaluation process.
For each provisionally repaired model—i.e., after applying the repairing algorithm
once—, the evaluation engine will be invoked on two inputs: the quality preferences
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which is an instance of the model in Fig. 5 and the provisional model which is
subject for the evaluation. The evaluation engine will actualize the QualityCharac-
teristics’s attribute value in the quality model. Then the results become available
for inspecting the values of the calculated quality characteristics. These results will
be used by PARMOREL to optimize the required qualities in subsequent episodes.

Legend

Quality Evaluation ModulePARMOREL

Quality Evaluation Engine

Quality 
Calculator

Provisional Model

Repair Optimizer 
(according to quality 

preferences)

Quality characteristics 
model 

Value for each quality characteristics

FunctionModule Flow Model

Input

Figure 6 – Excerpt workflow of quality characteristic evaluation

The evaluation engine has been implemented with EOL [KPP06], an imperative
programming language for creating, querying and modifying EMF models. EOL offers
model management operations with a dedicated language built on top of EMF. This
makes easier the definition of evaluation operations with respect to Java implementa-
tions using EMF API directly [BDRDR+16]. A declared library is used to evaluate
the domain models given as input. An excerpt of this specification is reported in
Algorithm 1, which is an abstraction of the EOL library.

Algorithm 1 Quality evaluation, EOL main file excerpt
1: IMPORT: qualityModel as QM
2: INPUT: provisionalModel as MM
3: QM.evaluatedArtifact← MM
4: maintainability← (n_classes(MM) + n_attrs(MM) +

n_refs(MM) + dit_max(MM) + hagg_max(MM))/5
5: . . .
6: //if maintainability is declared in the quality model
7: if QM.maintainability != ∅ then
8: QM.maintainability← maintainability
9: QM.evaluatedArtifact.addCharacteristics(maintainability)

First, the evaluation begins by setting the evaluated artifact (line 3) with the domain
model passed as provisional model in Fig. 6. Further, all the quality characteristics
declared in the quality model will be evaluated. For instance, line 7 evaluates if
maintainability is declared in the quality model given as input to the evaluation
(line 1). A representative quality model is depicted in Fig. 7, where the modeler has
declared the five quality characteristics to be evaluated (anticipated in section 2), and
set the functionName to the name of the function used in the EOL script to invoke the
calculator. Algorithm 1 reports only one of the quality characteristics available in that
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evaluation

Figure 7 – Quality model initial setting and result

library (maintainability), but the modeler can evaluate others by simply declaring
them as model elements, as in Fig. 7 (left).

The evaluation of the given artifact will refine the artefact’s existing quality model.
In the initial setting, the modeler selects the quality characteristics to be evaluated
with a specific user-defined priority. As seen in Fig 7 (right), a new evaluation will be
available for each domain model under evaluation, and every quality characteristic
has its related value actualized. Here, we highlight the evaluated domain model given
as input to the process, identifiable with the unique URI http://cs.gssi.it/company/1
of the domain model. In the property view the reusability evaluation of the domain
model obtained with the application of A1 shows the reuse value 0.153.

4.2 Using quality evaluation in preference specification

Using the initial setting of the quality model, as for instance the one depicted in Fig. 7,
the modeler can instruct the reward algorithm. To achieve this, the modeler can select
which quality characteristics he wants to measure in the model and in which priority.

First, PARMOREL calculates a reward for each of the quality characteristics
selected (see lines 3 - 6 in Alg. 2). This is done by subtracting the value of the quality
characteristic of the original model from the provisional repaired version. The order
of the subtraction is altered depending on whether the quality characteristic should
be maximized or minimized. Then, the algorithm multiplies each reward value by
the corresponding quality characteristic priority value. As a consequence, we obtain
stronger rewards for the characteristics which the modeler considers of higher relevance.
The rewards values are normalized in order to avoid big numerical differences when
one of the quality characteristics varies more than the others.

Finally, PARMOREL adds all the rewards and stores the obtained value for each
action in the selected sequence in the Experience module. Following this procedure,
after each episode PARMOREL will be able to produce repaired models of higher
quality since the algorithm will progressively apply actions with higher rewards.
Thanks to the random component of PARMOREL’s Q-learning, the algorithm will
also be able to apply new actions that otherwise would not be selected due to the
other actions having already higher rewards. This random component assures the
discovery of different repairing sequences that might lead to higher quality models.
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Algorithm 2 Rewards calculation in PARMOREL
1: INPUT: from Modeler (qualitycharacteristics, originalModel)
2: INPUT: from PARMOREL (repairedModel, sequenceActions)
3: for each qa in qualitycharacteristics do
4: reward← getQuality(qa, originalModel) - getQuality(qa, repairedModel)
5: reward← reward * qa.priority
6: rewardsList← reward
7: normalize(rewardsList)
8: experienceModule(repairedModel, rewardsList, sequenceActions)

Figure 8 displays the results of repairing the model from Fig. 1 by using three
of the quality characteristics introduced in Section 3: complexity, reusability and
understandability. Working with these quality characteristics is especially interesting,
since improving complexity and reusability involves reducing the number of elements,
which might lead into getting a worse value for understandability. Here we show how
RL can make a compromise in order to satisfy all characteristics as much as possible.

The four initial syntactical errors (E1-E4) are repaired with the available actions
presented in Section 2, where we showed an example of how would the repair be when
applying all A1 actions (see Fig. 2) or A2 actions (see Fig. 3). In this new example,
PARMOREL picks the actions that achieve better results for all characteristics: E1
is repaired with its correspondent A1 and E2-E4 are repaired with their A2s. The
reasoning behind choosing these actions rely on minimizing the number of elements in
the model with a special focus on hierarchies, which boosts the understandability.

PARMOREL finds different solutions depending on the considered quality. For
example, Fig. 9 displays the results of repairing the model from Fig. 1 when prioritizing
another three quality characteristics from Section 3: maintainability, reusability and
relaxation index. This time, PARMOREL picks the following actions: E1-E3 are
repaired using their A1s and E4 is repaired with A2. With these actions the produced
model has less elements, which improves the maintainability and reusability and the
employees reference has more relaxed bounds.

In this section, we introduced a scenario which highlights how PARMOREL can
be instructed to consider the user preferences, specified by a quality model.

5 Evaluation of PARMOREL

To evaluate and test the scalability of our approach, we use PARMOREL to repair
107 domain models2 and consider two research questions:

RQ1 How the size of the model affects the execution-time of the repair?

RQ2 How the number of errors in the model affects the execution-time of the repair?

To answer these questions, we conducted an experiment using syntactically cor-
rupted models and two metrics: number of errors and number of elements (size). We
split the dataset of models with an 80-20% distribution, repairing 20% of the models
twice, with and without having first repaired the 80%. With this experiment, we
analyze the impact of number of errors and size on the repairing time of the 80% and
the influence these metrics have when reusing learning and streamlining the repair on
the 20%.

2This dataset is available on this Git repository: https://github.com/MagMar94/ParmorelRunnable
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Figure 8 – Model from Fig. 1 prioritizing complexity, reusability and understandability
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Figure 9 – Model from Fig. 1 prioritizing maintainability, reusability and relaxation index
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Figure 10 – Relation between repair time in ms per model size and number of errors

To retrieve these models we rely on the dataset used in [NDRDR+19] and filtered
in order to get only corrupted Ecore models. All errors present in these models
are syntactic errors that violate certain constraints of the Ecore metamodeling lan-
guage [SBMP08b] (e.g., the opposite of the opposite of a reference must be the reference
itself, classifiers must have different names, etc). Each subject model contains between
1 and 118 errors, counting a total of 12 different types of errors throughout the models.
Regarding the number of elements, each model has between 12 and 4227, counting the
number of classes, attributes, references, and operations.

In the following, we present the results of the experiment. First, we configure
PARMOREL to run 25 episodes to repair each model in 80% of the dataset. There is
no established policy of how many episodes are best for a given problem [TL00], so
according to our experimentation, 25 are enough to find at least one repairing sequence
of actions for every model. The execution of all the episodes takes between 2.1s (for a
model M1 with 70 elements and 1 error) and 14.38 mins (for a model M2 with 4141
elements and 49 errors—the second biggest model in the dataset); this is shown in
Fig. 10. We include a zoomed area in Fig. 10 to display the details of models with
less than 550 elements and 20 errors since these constitute the majority of the 80%
dataset. The number of errors influences the repair time slightly more than the size of
the models since PARMOREL needs to go throughout each model structure to find
and repair each error, so the more errors are in the model the more calculations are
required. The total execution time for the 80% dataset is 51.35m.

We can conclude that both the size of the models and the number of errors affect
the repairing time logarithmically (see Fig. 10), although the influence of the latter
is stronger. The influence of these factors is confirmed by calculating the correlation
coefficient [ASG06] for each pair of values: we get a coefficient of 0.68 for size/time
and 0.80 for number of errors/time.

Next, we focus on testing the impact of the number of errors and model size when
PARMOREL reuses learning from previous repairs. Additionally, we measure how
much the repair is streamlined. This process can be conceived as the usual training
phase in other ML algorithms. When reusing learning, the process needs fewer episodes
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to converge since the tool has acquired knowledge from previous repairs. Hence, we
configure PARMOREL to reduce the number of episodes by 50%, making a total of
12 episodes. First, we proceed to repair the remaining 20% of the dataset directly
after repairing the previous 80%. Then, we repair again the 20% after resetting the
Qtable, this is, deleting the learning obtained from the 80% repair. By comparing
the results from these two rounds, we can conclude that PARMOREL streamlines
the repairing time of the new models between 3% and 84% when it has learned from
repairing other models. Faster repairing happens in models with bigger size, since the
bigger the models, the more learning can be reused from previous repairs. On average,
there is an improvement of 66.65% on the repairing time of the 20% set (without
previous learning: 18.17m, reusing learning: 6.06m). With this experiment, we can
conclude that repairing time depends more on the number of errors but performance
improvement on the size of the models.

We could see from our testing that different quality characteristics do not alter
the timing results; the algorithm gets different rewards and therefore the produced
repaired models will be different, however, the time required to repair them will remain
the same. For this reason, in this section, we only presented the repair which aims to
boost the maintainability quality characteristic.

The results of this evaluation indicate that PARMOREL is scalable and that it can
handle real-world corrupted models. Furthermore, the approach works with models
with different amounts and types of errors, finding a repairing solution for all of them.

6 Threats to Validity

In this section, we comment the threats to validity of our research, following the
guidelines from [WRH+12].

Internal threats. Quality evaluation may be considered as an internal threat to
validity since the quality model is user-defined. The definition of quality aspects tends
to be based on the user’s experience. Moreover, mistakes in these definitions could
lead to faulty results. This can be partially mitigated by including quality experts in
the definition process, or, as in our experiments, by relying on definitions based on
formulae in the literature. Also, the result of combining different quality characteristics
could lead to results not aligned with the goals of a user. Again, this can be avoided
by including experts who can guide which characteristics should (or not) be combined.

External threats. A potential external threat to the validity of our evaluation is
the dataset used for the experiments. We have selected corrupted models resulting in
a dataset of 107 models, which may be considered small, however, this threat may
be mitigated with the heterogeneity of the sources; these models have been retrieved
from different Github repositories and hence from different modelers.

Also, throughout the paper we have picked five characteristics (maintainability,
understandability, reusability, complexity, and relaxation index) as a proof of concept
to show the potentials of PARMOREL and used one of them, maintainability, for the
evaluation. We consider this sample set representative enough for our experiments
but the approach is not limited to this set since it supports any characteristics defined
using the Epsilon Language. Although the implementation displayed in Section 5
is tied to EMF and Ecore models, PARMOREL is built as an Eclipse plugin, so
it is possible to use other modelling frameworks—through implementing a series of
interfaces—and users can define both the issues they want to repair and their own
catalogue of actions and types of models.
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7 Related work

Over the years, various approaches have been proposed to support the quality mea-
surement of modeling artifacts using quality models. The authors in [BDRDR+16,
BDRDR+19], propose quality models [Are14] to measure the quality of modeling
artifacts. A number of tools have been developed to support quality evaluation in
UML [AT16] or EMF [AST10]. Others focus on quality evaluation of valid models, with
the intent of applying refactorings in order to improve the quality [BDRDR+19, AT13].
Although our quality evaluation builds on top of the works mentioned here, our work is
different since we focus on the combination of automatic model repair and improvement
of model quality.

The main feature that distinguish our approach from other model repair approaches
is the capability to learn from each repaired model in order to streamline the perfor-
mance. We could not find in the literature any research applying RL to model repair.
The most similar work to ours we could find is [PVDSM15], where Puissant et al.
present Badger, a tool based on an artificial intelligence technique called automated
planning. Badger generates plans that lead from an initial state to a defined goal,
each plan being a possible way to repair one error. We prefer to generate sequences to
repair the whole model, since some repair actions can modify the model drastically,
and we consider it counter-intuitive to decide which action to apply without knowing
its overall consequences, additionally, RL performs better after each execution.

Nassar et al. [NRA17] propose a rule-based prototype where EMF models are
automatically completed, with user intervention in the process. Our approach allows
for more autonomy since quality preferences are only introduced at the beginning of
the repair process—not during the process.

Taentzer et al. [TOLR17] present a prototype based on graph transformation
theory for change-preserving model repair. The authors check operations performed
on a model to identify which ones caused inconsistencies and apply the correspondent
consistency-preserving operations, maintaining already performed changes on the
model. Their preservation approach is interesting, however it only works assuming
that the latest change of the model is the most significant.

It is worth mentioning search-based and genetic algorithm-based approaches since,
although they have not been applied yet to model repair, they are possible competitors
to RL. These techniques have showed promising results dealing with model transforma-
tions and evolution scenarios, for example in [KMW+17] authors use a search-based
algorithm for model change detection. These algorithms deal efficiently with large state
spaces, however they cannot learn from previous tasks nor improve their performance.
While RL is, at the beginning, less efficient in large state spaces, it can compensate
with its learning capability. At the beginning performance might be poor, but with
time repairing becomes straightforward. Also, search and genetic algorithms require
a fitness function to converge. This function is more rigid to personalize than RL
rewards. While in RL it is easy to adapt different rewards to quality criteria, is not so
intuitive how to provide personalization with a fitness function.

Lastly, another search-based approach is presented by Moghadam et al. in [MÓC11].
In this work, authors present Code-Imp, a tool for refactoring Java programs based
on quality metrics that achieves promising results at code-level by using hill-climbing
algorithms [SG06]. These algorithms are interesting to find a local optimum solution
but they do not assure to find the best possible solution in the search space (the
global optimum). By using RL we assure to find the global optimum: the sequence of
repairing actions that maximize the selected quality characteristics the most.
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8 Conclusions and future work

Analogous to any other software artifact, domain models are living entities and are
exposed to errors. It is crucial to keep these models free of errors and assure their
quality. To deal with these issues, we have developed PARMOREL, a framework for
personalized and automatic model repair, which uses reinforcement learning to find the
best sequence of actions for repairing a broken model according to preferences chosen by
the user. In this paper, we extended PARMOREL with a quality assurance mechanism
based on a quality model. We presented a motivating example demonstrating the
usefulness of the approach in modeling and how this can lead to better repaired
solutions. Furthermore, we evaluated the approach on a set of real-world models,
achieving promising results.

In the near future, we plan to test the framework with a more extended dataset of
domain models and errors, with the help of modelers that may attest if the repaired
sequence really offers better quality of the repaired domain model. In particular
we plan to test the presented approach with a bigger dataset of domain models
coming from GitHub repositories, in order to validate the approach with real examples.
Additionally, we plan to create a benchmark with the mentioned dataset, with which
we will compare PARMOREL to other existent model repair approaches.

So far, we have not conducted a comparative study changing the ML algorithm
of PARMOREL. This is due to the difficulty of applying ML to the model repair
problem. Most well-known ML algorithms depend on large amounts of labelled data
to learn how to repair a problem [MRT18]. This is a challenge in the modeling domain
since available model repositories (like [KC13, BDRDR+14]) only offer unlabelled data
limited in terms of size and diversity. This situation reduces the options to those
algorithms within the RL domain. Alternatives to Q-learning are either too simple in
terms of structure for our problem (e.g., armed bandits, Monte Carlo) or would add
extra complexity that is not necessary (e.g., off-policy approaches, Deep RL methods).
For further details on these examples we refer the reader to [TL00]. What we plan to
do in the future is a comparative study with the automatic repairing tools presented
in Section 7, paying especial attention to search-based, rule-based and automated
planning approaches. Lastly, in this direction, we will work on optimizing the repair
with a focus on achieving state-of-the-art time.
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