
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

A Lightweight Modeling Approach
Based on Functional Decomposition

Pierre Kelsena Qin Maa Christian Glodta

a. Dept. of Computer Science, University of Luxembourg, Luxembourg

Abstract Creating models and transforming them using current MDE
techniques is not easy: it generally requires mastering several non-trivial
languages such as a metamodeling languages and a model transformation
language. We propose a two-pronged approach for tackling language
complexity for the case of model-to-text transformations. We first allow
the user to define the metamodel in an example-driven fashion in which
(s)he incrementally builds a set of examples and automatically infers
the metamodel from them. The example-driven approach is based on a
new object-modelling notation named OYAML that is both human- and
machine- readable. Second we break down the complexity of writing the
transformation itself by separately defining the functional decomposition
of the transformation function using a new modelling language named
FUDOMO. This will then allow the user to describe the precise behaviour
in a general purpose programming language that (s)he is familiar with.
Because they do not need to be very expressive, OYAML and FUDOMO
are small languages when compared to commonly used metamodeling and
model-to-text transformation languages. We provide a web-based tool, also
named FUDOMO, that assists the user in this example-driven approach to
model-to-text transformations and currently supports the use of Javascript
and Python for defining the precise behaviour of model transformations.

Keywords functional decomposition, example-driven modeling, object
models, model-to-text transformations, model transformation, code gener-
ation

1 Introduction

Model-driven engineering techniques can be challenging to use: they usually require the
mastery of several non-trivial languages, e.g., a metamodeling language and a model
transformation language. In the present paper we tackle this problem of language
complexities in the context of the definition of model-to-text transformations.

In current practice the following steps are required for defining a model-to-text
transformation: first a metamodel for the domain of interest has to be defined. Second

Pierre Kelsen, Qin Ma, Christian Glodt. A Lightweight Modeling Approach Based on Functional
Decomposition. Licensed under Attribution 4.0 International (CC BY 4.0). In Journal of Object
Technology, vol. 19, no. 2, 2020, pages 15:1–22. doi:10.5381/jot.2020.19.2.a15

http://www.jot.fm/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.5381/jot.2020.19.2.a15
http://dx.doi.org/10.5381/jot.2020.19.2.a15
http://dx.doi.org/10.5381/jot.2020.19.2.a15

2 · Pierre Kelsen, Qin Ma, Christian Glodt

the transformation itself has to be written. There are currently two main approaches
for the latter task:

1. Use a general purpose programming language like Java to query the model (using
a suitable API) and produce the required output directly, or

2. Use a template-based approach for defining the structure of the output, and
replace the dynamic parts (which are dependent on the model, as opposed to
static parts, which do not depend on the model) by code snippets that produce
the desired result

Approach 2 is generally preferred to approach 1 because it provides a cleaner
separation of the static parts and the dynamic parts, resulting in a more understandable
transformation definition. If we now want to apply a model-to-text transformation in
a particular domain we first need to become familiar with a metamodeling framework,
and secondly we need to learn a new transformation language (typically based on
templates). Because both the metamodeling language and transformation language
are quite expressive, they are generally not easy to master.

In this paper we strive to reduce the complexity of involved languages by combining
two approaches: firstly the user directly specifies the examples using a simple object-
modelling notation named OYAML that is based on the YAML language. From the set
of examples, the user can infer, in an incremental fashion, the underlying metamodel.
Secondly the definition of the transformation itself is broken down into two parts:

• we define the functional decomposition of the transformation function using a
new language called FUDOMO, which allows us to specify the decomposition of
the transformation function into progressively simpler functions until the point
where the resulting functions can be trivially computed from the example models.
This is done by formulating a set of decompositions, with each decomposition
having a function on the left side and the functions it is decomposed into on the
right side.

• Once these decompositions have been defined, the exact way in which a function
is computed from the functions that it has been decomposed into is defined using
a general purpose programming language that the user is familiar with.

We also provide a tool [10] that supports this example-driven approach to model-to-
text transformations. The tool currently supports both Javascript and Python, two
widely used programming languages, for specifying the computation of left-hand side
functions in terms of right-hand side functions.

Because both OYAML and FUDOMO are not very expressive, they are rather
small languages compared to their counterparts, the metamodeling language and the
transformation language, in the traditional approach. By reusing a programming
language that (s)he is already familiar with the total effort in learning new languages
is reduced and thus the overall modelling effort should be more manageable.

This paper is structured as follows: in the next section we provide a guided tour
of our approach with the help of a concrete example. In section 3 we present the
OYAML language for writing object models. Functional decomposition and associated
decomposition graphs are introduced in section 4. In section 5 we add polymorphism
to our functional decomposition framework. The FUDOMO language for describing
functional decomposition is given in section 6. We present a more complex example
as a case study in section 7. In section 8 we present the overall process for designing

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a15

Lightweight Modeling Approach · 3

model-to-text transformations using our example-driven method. Our contributions
are discussed and put into the context of related work in section 9. We offer concluding
remarks in the final section.

2 Guided Tour

In this section we illustrate the main features of our approach with the help of an
example. A more substantial example will be discussed in section 7. We shall use the
term object model when talking about a concrete example model. This term will be
more formally defined in section 4.

2.1 Writing Down the Object Model

To write down object models, we use a textual notation. We introduce a new modeling
notation, called OYAML, that is based on YAML [9].

We use finite-state machines for our first example. The machines we use here have
a finite set of states, as well as labeled transitions between states. Each finite-state
machine has an initial state and a final state. Here is a simple example of a finite
state machine written in OYAML:

- FSM:
- name: EvenZeros
- init >: s0
- end >: s0
- State s0:

- name: s0
- State s1:

- name: s1
- Transition:

- label: 0
- source >: s0
- target >: s1

- Transition:
- label: 0
- source >: s1
- target >: s0

- Transition:
- label: 1
- source >: s0
- target >: s0

- Transition:
- label: 1
- source >: s1
- target >: s1

In this example there is a single object of type FSM at the top level that has an
attribute name. This attribute is followed by two references (indicated by the symbol
“>:”): reference init refers to the initial state with id s0, and reference end refers to
the final state also with id s0. The FSM object contains two objects of type State, each
with an id (following the type name), and four objects of type Transition without
ids. Containment is indicated via indentation.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a15

4 · Pierre Kelsen, Qin Ma, Christian Glodt

Root:
cont:
- FSM

FSM:
name:
- String

cont:
- State
- Transition

end:
- State

init:
- State

Transition:
label:
- String

source:
- State

target:
- State

State:
name:
- String

cont

cont

source
target

initend

Figure 1 – Metamodel Inferred from the Example FSM

2.2 Inferring the Metamodel

The metamodel that can be inferred from the object model is presented in the Figure 1,
with the textual representation (inferred by the FUDOMO tool) given on the left
and the usual graphical representation in terms of a class diagram on the right. Two
remarks need to be made: (1) There is an implicit Root object containing all top-level
objects in each object model (i.e., those with lowest indentation level). (2) There is
an implicit containment reference cont: the Root object contains all top-level objects
(of type FSM) and an FSM object contains State and Transition objects.

2.3 Transforming the Example

From the above example we would like to generate a representation in the DOT
language [3] so it can be easily visualized. Figure 2 shows on the left-hand side the
textual output we want and on the right-hand side the visualization of it. We can
view the transformation as a function that takes an FSM object model as input and
returns its textual DOT-representation. We express this transformation function as a
typed function, that is, a function that is defined in the context of a type. In this case
the transformation will be defined in the context of the FSM type. Let us denote the
transformation function by FSM.fsm2dot.

At the heart of our transformation approach is the notion of functional decompo-
sition: we try to decompose typed functions into simpler constituent functions until
these constituent functions can be trivially computed from the object model.

We can logically divide the output into three sections: a header section, a content
section, and a footer section. For each section we define a related typed function. We

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a15

Lightweight Modeling Approach · 5

digraph {
sinit [shape=point]
s0 [peripheries = 2]
sinit -> s0
s1
s0 -> s1 [label="0"]
s1 -> s0 [label="0"]
s0 -> s0 [label="1"]
s1 -> s1 [label="1"]

}

Figure 2 – Visual Representation of the EvenZeros Finite State Machine in DOT

obtain the decomposition expressed in the FUDOMO language as follows:

FSM.fsm2dot: header, content, footer

The right-hand side consists of three functions defined for the FSM type; the FSM type
is omitted in the names of those functions since they share the same context type as the
left-hand side.

Both the header and footer functions are constant functions, i.e., their value does not
depend on the object model. For that reason they have an empty decomposition, represented
in FUDOMO as:

FSM.header:
FSM.footer:

Next we note that FSM.content depends on the State and Transition objects it contains.
We define functions State.rep and Transition.rep that produce the representation of the
State and Transition, respectively, in DOT syntax. Thus we get the next decomposition:

FSM.content: cont -> State.rep, cont -> Transition.rep

Note the use of forward arrows which express navigation via containment reference. The
value for State.rep depends on the name of the State, the init and final states of the containing
FSM, and the identity of the State object expressed by the center keyword.1 We express
this by the following decomposition:

State.rep: name, cont <- FSM.init, cont <- FSM.end, center

Note the backward arrows from cont which express that this State has to follow the
cont reference backwards to navigate to the containing FSM. Such backward arrows (later
called reverse edges) are generally needed when relevant data is not accessible via forward
references.

Finally the Transition representation, given by typed function Transition.rep, depends
on the names of the source and target States as well as the label of the Transition. In
FUDOMO we write this as:

Transition.rep: source -> State.name, target -> State.name, label

The full FUDOMO model thus contains six decompositions:

FSM.fsm2dot: header, content, footer
FSM.header:
FSM.content: cont -> State.rep, cont -> Transition.rep

1The corresponding function will be formally defined in section 4 (definition 8)

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a15

6 · Pierre Kelsen, Qin Ma, Christian Glodt

State.rep: name, cont <- FSM.init, cont <- FSM.end, center
Transition.rep: source -> State.name, target -> State.name, label
FSM.footer:

We can stop here since the decompositions have broken the original typed function
FSM.fsm2dot down to the level of attributes and references, which can be directly obtained
from the object model (without further calculations).

2.4 Implementing the Transformation Function
After having decomposed the FSM.fsm2dot function we still need to specify how to exactly
compute the function from its constituent functions. The transformation approach we present
in this paper is hybrid in the sense that it combines model and code: the model describes the
decomposition of the transformation function and the code describes the exact computation.
The model is expressed in the FUDOMO language. The code can we expressed in a number
of common GPLs: currently Javascript and Python are supported by our tool [10].

We choose to implement the transformation function in JavaScript. For this the FUDOMO
tool allows us to generate function headers, to be filled in with the missing code. Here is the
resulting code with the manually added code highlighted:

module.exports = {
/**
* FSM.fsm2dot:

* @param header The "header" of this FSM

* @param content The "content" of this FSM

* @param footer The "footer" of this FSM

*/
FSM_fsm2dot: function(header, content, footer) {

return header + content + footer;

},
/**
* FSM.content

* @param cont_State_rep {Array} The sequence of "rep" values of State

* objects contained in this FSM

* @param cont_Transition_rep {Array} The sequence of "rep" values of

* Transition objects contained in this

* FSM

*/
FSM_content: function(cont_State_rep, cont_Transition_rep) {

return ’ ’ + cont_State_rep.join(’\n ’) + cont_Transition_rep.join(’\n ’)
+ ’\n’;}}

},
/**
* State.rep:

* @param name The "name" of this State

* @param _cont_FSM_init {Set} The set of "init" values of FSM objects that

* contain this State

* @param _cont_FSM_end {Set} The set of "end" values of FSM objects that

* contain this State

* @param center This State

*/
State_rep: function(name, _cont_FSM_init, _cont_FSM_end, center) {

let s_rep = ’’;
if (_cont_FSM_end.has(center)){

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a15

Lightweight Modeling Approach · 7

\textbf{s_rep = name + ’ [peripheries = 2]’;}
\textbf{} else {}

\textbf{s_rep = name;}
\textbf{}}}
let re = ’’;
if (_cont_FSM_init.has(center)){
re = ’ sinit [shape=point]\n’
+ ’ ’ + s_rep + ’\n’
+ ’ sinit -> ’ + name;

} else {
re = s_rep;

}
return re;

},
/**
* Transition.rep:

* @param source_State_name {Array} The sequence of "name" values of State

* objects referred to by attribute "source" in this Transition

* @param target_State_name {Array} The sequence of "name" values of State

* objects referred to by attribute "target" in this Transition

* @param label The "label" of this Transition

*/
Transition_rep: function(source_State_name, target_State_name, label) {

return ’ ’ + source_State_name + ’ -> ’ + target_State_name + ’ [label=\"’
+ label + ’\"]’;

},
/**
* FSM.header:

*/
FSM_header: function() {

return ’digraph {\n’;

},
/**
* FSM.footer:

*/
FSM_footer: function() {

return ’}\n’;

},
};

We note again that the implementation of most functions is quite straightforward. This
is mainly due to the fact that these functions are pure functions in the sense that all relevant
data is provided as parameters.

3 The OYAML Object Model Notation
OYAML is a sub-language of YAML for object (example) modeling. It is a light-weight,
human-understandable and machine-readable textual notation. Like YAML files, OYAML
files have “.yaml” as extension. Before we delve into OYAML we review basic notions of
YAML.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a15

8 · Pierre Kelsen, Qin Ma, Christian Glodt

3.1 YAML in a Nutshell
YAML [9] is a human readable data serialization language. It is broadly used for programming
related tasks such as configuration files, internet messaging and object persistence.

YAML organizes data into different levels. It marks levels of data by indentation: data
at the same level are aligned to the left with the same indentation. Spaces are to be used
instead of tabs for indentation. One can use any number of spaces to indicate one level of
indentation.

YAML supports the following data structures:

• Scalars

• Mappings

• Sequences

Scalar values (scalars in short) are the most basic and indivisible data type. Here are
examples of scalar types and associated values:

String: Paul, Cat
Boolean: True, False
Integer: 5, 8
Floating Point: 3.14159, 314159e-05

A mapping is a set of key: value pairs. A colon and space (“:␣”) is used to separate the
key from the value, with each key: value pair starting on its own line. For example:

lastName: Smith
firstName: Paul
age: 18
isMarried: False

A sequence is a list of data items. We use a dash followed by a space (“-␣”) to indicate
each entry/element in the sequence. For example:

- Cat
- Dog
- Goldfish

Sequences and mappings can be nested. Note the use of "#" to start single line comments
in (O)YAML. For example:

a mapping with two key value pairs
languages:

the first value is a sequence
- YAML
- Ruby
- Perl
- Python

websites:
the second value is a mapping
YAML: yaml.org
Ruby: ruby-lang.org
Python: python.org
Perl: use.perl.org

3.2 From YAML to OYAML
OYAML is a sub-language of YAML for object (example) modeling. The top level data
structure in an OYAML object model is a sequence. Each element of the top level sequence
represents an object. An object is represented by a singleton mapping “key:␣value”, where:

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a15

Lightweight Modeling Approach · 9

Figure 3 – Abstract Syntax of OYAML given as a Metamodel

• “key” indicates the type (and optionally the id) of the object, when the id is present,
type and id are separated by a space, namely “type␣id” (Note: types must start with
upper case letter.);

• and “value” gives the content of the object.

There are two kinds of objects in OYAML:

• simple objects: the value of a simple object is a scalar;

• composite object: the value of a composite object is a sequence. Elements of the
sequence can be either:

– an attribute: represented by attributeName:␣attributeValue, where attributeValue
is a scalar value

– a reference: represented by referenceName␣>:␣referenceValue, where reference-
Value is a comma-separated list of object ids.
Note: attribute and reference names must start with a lower case letter.

– a contained object

For an example of an object model written in OYAML the reader is referred to the one
given in section 2.

We can define the abstract syntax of OYAML by the metamodel given in Figure 3.

4 Functional Decomposition
Notation: We use angle brackets < and > surrounding comma-delimited elements to denote
sequences.

In mathematics functional decomposition [4] is a technique for decomposing a function
f into simpler functions such that the initial function f can be reconstructed from those
simpler functions using function composition. More precisely if f is a multivariate function

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a15

10 · Pierre Kelsen, Qin Ma, Christian Glodt

f(x1, . . . , xn), functional decomposition amounts to identifying a set of multivariate functions
gi(x1, . . . , xn) and a function F such that

f(x1, . . . , xn) = F (g1(x1, . . . , xn), . . . , gm(x1, . . . , xn))

We call F the decomposition function throughout this paper. One key advantage of functional
decomposition is that in many cases the functions gi’s are simpler than the initial function f
by depending for instance on fewer variables. In these cases functional decomposition may
contribute to reducing the complexity of the functional description.

In the context of this paper we do not deal with multivariate functions but rather with
functions defined over object models. We start by defining the basic notions of object model
and typed function.

Definition 1 (Object Model, Object, Reference) An object model m consists of a set
of objects, each having a type. An object in m may refer to an ordered sequence of other
objects via a reference. If object o refers to the sequence of objects < o1, ..., ok > via reference
r, we write this as: o.r =< o1, ..., ok >.

Remarks: in the equality o.r =< o1, ..., ok > we omit the mention of m because m will
generally be clear from the context. We only consider the case of ordered references since for
unordered references we can simply ignore the order. Also note that we do not distinguish
between attributes and references since attributes can be thought of as references whose
target type is a scalar type.

Definition 2 (Successors, Predecessors) Let r be a reference and o be an object. If
o.r =< o1, ..., ok >, we call each oi an r-successor of o and o an r-predecessor of each oi.

Definition 3 (Centered Object Model) A centered object model - centered model for
short - is a pair M = (m, o) where m is an object model and o an object in m. We call o the
center of M .

Definition 4 (t-model and t-function) A t-model is a centered model whose center is
of type t. A t-function is a function whose domain only consists of t-models. We write a
t-function f as t.f and the image of f for t-model (m, o) as t.f(m, o)

Definition 5 (Typed Function) A typed function is a t-function for some type t.

We are now ready to define the decomposition of typed functions.

Definition 6 (Decomposition of Typed Function) A set of typed functions
{t.g1, . . . , t.gk} is a decomposition of typed function t.f if there exists a function F such that,
for all t-models (m, o) in the domain of t.f , (m, o) is also in the domain of every t.gi and

t.f(m, o) = F (t.g1(m, o), . . . , t.gk(m, o))

We say that F is the decomposition function for the decomposition of t.f . We shall assume
that if the decomposition is empty then t.f = F () is a constant function.

For decomposing a typed function the following special functions come in handy:

Definition 7 (Reference Function) The reference function for type t and reference r is
defined by: t.f(m, o) = o.r for any t-model (m, o).

Definition 8 (Center Function) For any type t the function t.center returns the center
of the argument t-model.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a15

Lightweight Modeling Approach · 11

Definition 9 (Forward Function) A forward function for type t, reference r and t’-
function t′.g, denoted by t.(r → t′.g), is defined by

t.(r → t′.g)(m, o) =< t′.g(m, o1), . . . , t
′.g(m, ok) >

where < o1, . . . , ok > is the sequence of those r-successors of o that are of type t′.

Definition 10 (Reverse Function) A reverse function for type t, reference r and t’-
function t′.g, denoted by t.(r ← t′.g), is defined by

t.(r ← t′.g)(m, o) = {t′.g(m, o1), . . . , t
′.g(m, ok)}

where {o1, . . . , ok} is the set of those r-predecessors of o that are of type t′.

We can represent the decomposition of a typed function conveniently by a graph.

Definition 11 (Decomposition Graph) A decomposition graph for a typed function t.f
is a directed graph Dt.f defined as follows:

• The vertices of Dt.f are typed functions.
• There are three types of edges:

– Local edges, denoted by (t.g1, t.g2)

– Forward edges labeled by a reference r, denoted by (t.g1, r, t
′.g2)

– Reverse edges labeled by a reference r, denoted by (t.g1,∼ r, t′.g2)

• There is a mapping d from each edge e to a typed function de defined as follows:

– For a local edge e = (t.g1, t.g2): de = t.g2

– For a forward edge e = (t.g1, r, t
′.g2): de = t.(r → t′.g2)

– For a reverse edge e = (t.g1,∼ r, t′.g2): de = t.(r ← t′.g2)

There are two constraints that Dt.f must satisfy:
1. Typed function t.f is a root of this digraph, i.e., there is a path from t.f to every vertex

in this graph.
2. For every node t′.g with at least one outgoing edge: the set of functions {de : e is an

outgoing edge of t′.g } is a decomposition for t′.g.

Definition 12 (Complete Decomposition Graph) We say that the decomposition graph
Dt.f is complete if every sink node in Dt.f is either a constant function, the center function,
or a reference function.

We present the complete decomposition graph corresponding to the transformation FSM.fsm2dot
defined in Section 2 in Figure 4. Note that reverse edges have their label preceded by ’∼’

5 Generalized Typed Decomposition Graphs
The basic setup for typed functions we have just described is not always applicable. Suppose
a function t.f(m, o) wants to call a function g on (m, oi) for each r-successor oi of o. If all
oi’s have the same type t′ the singleton set {t.(r → t′.g)} is a straightforward decomposition
of t.f .

In the current rather relaxed definition of object models an object may refer to objects of
different types. In this case there is no obvious way to decompose t.f . To deal with such a
case we introduce a new type Object, assuming this to be a supertype of all existing types.
The set {t.(r → Object.g)} can then be viewed as a decomposition of t.f , assuming that for
each type ti of an r-successor of o there is a redefinition of function g as typed function ti.g.
Note that this in fact introduces polymorphism to functional decomposition.

Adding polymorphism leads to generalizing the notion of decomposition graph.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a15

12 · Pierre Kelsen, Qin Ma, Christian Glodt

FSM.fsm2dot

FSM.header FSM.footerFSM.content

State.rep Transition.rep

State.name
FSM.init FSM.end

State.center

Transition.label

cont cont

~cont ~cont source target

Figure 4 – Decomposition Graph of Transformation FSM.fsm2dot

Definition 13 (Generalized Decomposition Graph) A generalized decomposition graph
for a typed function t.f is a decomposition graph that may include Object-functions and an
additional edge type called redefinition edge: a redefinition edge links a function Object.g to a
function t′.g with the meaning that t′.g redefines Object.g on t′-models. There is an additional
constraint that only Object-functions may have outgoing redefinition edges. Furthermore if
Object.g has at least one outgoing redefinition edge, then all outgoing edges must be redefinition
edges.

We may view decomposition graphs as a special case of generalized decomposition graphs
that happen not to include Object-functions.

Suppose that we have a generalized decomposition graph for a t-function t.f . We can
compute t.f using the following procedure:
compute(t.f, m, o): // (m,o) is a t-model

if t.f has no outgoing edges: // i.e., it is a sink node in decomposition graph
if t.f is a constant function:

return F() // constant value defined by decomposition function F of t.f
else if t.f is a center function:

return o
else: // f must be a reference function for some reference r

return o.r
else: // at least one outgoing edge

if t.f has outgoing redefinition edges:
// all outgoing edges must then be redefinition edges and t = Object
let t’ be the type of o
// there must be a redefinition edge from Object.f to t’.f
return compute(t’.f, m, o)

else: // local, forward or reverse outgoing edges
for outgoing edges e1,...,ek of t.f:
if ei is local edge (t.f,t.g):
vi = compute(t.g, m, o)

else if ei is forward edge (t.f, r, t’.g):
vi = <compute(t’.g, m, oi): i = 1,...,k>
// where <o1,...,ok> is sequence of r-successors of o of type t’

else: // ei is reverse edge (t.f, ~r, t’.g)
vi = {compute(g, m, oi): i = 1,...,k}
// where {o1,...,ok} is set of r-predecessors of o of type t’

return F(v1,...,vk)// F is decomposition function for t.f

The above compute procedure reduces the computation of typed function t.f to that
of computing the decomposition functions associated with the nodes in the decomposition

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a15

Lightweight Modeling Approach · 13

graph. This procedure is called by our tool when executing a transformation. Of course some
non-trivial “glue” code is involved to make sure that this works for different target languages
but this is not visible to the user.

6 The FUDOMO Language
To keep the overall approach lightweight in terms of tooling and involved languages, we shall
introduce a simple textual notation for the decomposition graph. The notation is defined by
the following BNF grammar:

<transformation> ::= <decomposition> | <transformation> <decomposition>
<decomposition> ::= <typedFunction>":" <links>
<links> ::= " " | <link> {"," <link>}
<link> ::= <localLink> | <forwardLink> | <reverseLink>
<localLink> ::= <untypedfunction>
<forwardLink> ::= <reference> "->" <typedfunction>
<reverseLink> ::= <reference> "<-" <typedfunction>
<typedFunction> ::= <type> "." <untypedfunction>

We note that <reference>, <untypedfunction> and <type> are all represented by string
identifiers; the corresponding productions are omitted in the above grammar. We also note
that redefinition edges do not occur in these decompositions. Indeed we will assume that
redefinition edges are implicitly defined as follows: if Object.g occurs on the right-hand side
of the decomposition it is redefined by all typed functions of the form t.g on the left-hand
side of decompositions for some type t.

Let us illustrate the use of the grammar with an excerpt from the example from section 2:

FSM.fsm2dot: header, content, footer
FSM.content: cont -> State.rep, cont -> Transition.rep
State.rep: name, cont <- FSM.init, cont <- FSM.end, center

The first decomposition contains 3 local links. The second decomposition contains two
forward links, and the third decomposition contains two reverse links and a local link.

7 Case Study: the presi2beamer Transformation
With the help of the FSM example we illustrated in section 2 some concepts and features
of our approach. We need a more complete and realistic example to better bring out the
advantages of using our approach but also to illustrate an important feature that has not been
used in the FSM example, namely redefinition edges. The transformation we now describe
takes as input an object model describing a presentation (in fact a lecture) and the output is
LATEX code that can be used to render the content as a PDF file suitable for presentations.
The generated LATEX code is based on the use of the beamer class [2], a LATEX class specifically
designed for creating presentations.

Here is an excerpt of an example input model written in OYAML:

- Lesson:
- course: Programming 1
- number: 6
- teacher: John Doe

- Section: Files
- Slide:

- title: Text
- Bullets: |

The very first code snippet we saw in
this course is the following (from lesson 1):

- Code: |
n = int(input(’Please enter a number: ’))
print(-n)

- Bullets: |

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a15

14 · Pierre Kelsen, Qin Ma, Christian Glodt

cont

cont

cont

Figure 5 – Metamodel Inferred from the Example Lecture Presentation

The program uses the \lstinline{input}
function which reads a line of \alert{text} from the
keyboard. Each line is terminated by the
"non-printable" newline character,
denoted {\tt $\backslash n$}

comment: some slides omitted
- Slide:

- title: Variable Naming - Advice
- Question:

- text:|
Which of the following two code snippets
is easier to understand, and why?

- Column:
- width: .3\textwidth
- scale: small
- Code: |

x1 = 3.14
x2 = 13.1
c = x1*(x2**2)

- Column:
- width: .4\textwidth
- scale: small
- Code: |

pi = 3.14
diameter = 13.1
area = pi*(diameter**2)

The above object model is a sequence of 4 objects of types Lesson, Section, Slide and
Slide again. One of the four objects, the Section object, is a simple object in the sense
that its value is a single string (a so-called scalar type in YAML). The other three objects
are composite, meaning their value is again a sequence of elements. The Lesson object
has three attributes named course, number, and teacher, telling us that this is the sixth
lesson that was taught by John Doe in the context of the "Programming 1" course. The
corresponding metamodel inferred by the FUDOMO tool, presented in Figure. 5 in a graphical
form, summarizes the structure of lecture presentations.

As we already said, the Section object is a simple object. It tells us that the active (or
current) section is called "Files". The following Slide objects are again composite objects,
their value being a sequence of elements. As was the case for the Lesson object, the sequence
for each Slide starts with attributes, in this case a single attribute named title, telling
us the title of the slide. Unlike the Lesson object the Slide object contains other objects,
namely, those elements that start with an upper-case identifier denoting a type name. In this
case the first slide contains a sequence of three objects of types Bullets, Code, and Bullets

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a15

Lightweight Modeling Approach · 15

again. Type Bullets indicates a bulleted list and type Code indicates a code snippet. We
notice that these three objects are all simple objects because their values are scalar (strings
in this case). Note that the vertical bar "|" introduces a multi-line string. In such a string no
special escape characters are needed for special characters because of the indentation. The
second Slide contains a question and a pair of columns, each containing a code snippet.

The following is an excerpt of the decomposition graph written in the FUDOMO language
introduced in the previous section.

Root.presi2beamer:
header, body, footer

Root.header:
cont -> Lesson.course, cont -> Lesson.number,
cont -> Lesson.teacher

Root.body:
cont -> Slide.f

Root.footer:
Slide.f:
header, body, footer

Slide.header:
title, hasCode, activeSection

Slide.hasCode:
cont -> Bullets.hasCode, cont -> Code.center,
cont -> Verbatim.center, cont -> Column.hasCode

Bullets.hasCode: val
Slide.activeSection:
cont <- Root.cont

Slide.body:
cont -> Object.f

Slide.footer:
Column.f:
cont -> Object.f, isFirst

Column.isFirst:
cont <- Slide.firstCol, center

Column.hasCode:
cont -> Code.center

Slide.firstCol:
cont -> Column.center

Code.f: val
Bullets.f: val
Question.f: text

We will now discuss the typed functions that intervene in the transformation. The
function Root.presi2beamer represents the main transformation function. It simply returns
the concatenation of a header, body and footer, each represented by a typed function.

The Root.header function produces LATEX code containing the preamble. Part of the
preamble is static, not depending on the object model. The part that depends on the
presentation model is given in this example by the following lines of LATEX-code:

\title{Programming 1}
\subtitle{Lesson 6}
\author{John Doe}

We notice that the LATEX code is a mixture of static parts (latex commands) and dynamic
parts (the actual data), in this case depending on the course, number and teacher attributes.

The Root.body function accounts for the bulk of the generated LATEX code: it computes the
transformed image of each slide via the Slide.f function (returning a string) and concatenates

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a15

16 · Pierre Kelsen, Qin Ma, Christian Glodt

the resulting strings of each slide (in the order the slides have in the presentation model).
The output of each slide, computed by Slide.f is composed of a header followed by the body
and the footer, in that order.

As an example here is the header of the output for the first slide in the above object
model:

\begin{frame}[fragile]
\frametitle{Files}
\framesubtitle{Text}

Although this output is quite short, it is not so trivial to compute. First we notice that
this frame is "fragile". In Beamer a frame needs to be declared as fragile if it contains code
(in lstlisting environment) or verbatim text. This is the purpose of the hasCode function: it
returns true if a slide contains code or verbatim text. The frame title is the name of the
activeSection, which is computed by the function of the same name in the decomposition of
Slide.header. Here is code snippet that computes the header of the slide. For presi2beamer
we use as target language Javascript so this snippet is written in Javascript. We note that the
code is fairly straightforward because the supplied arguments provide the needed information.

Slide_header: function(title, hasCode, activeSection, label) {
let res = ’’;
if (hasCode) {
res += ’\\begin{frame}[fragile]\n’;

} else {
res += ’\\begin{frame}\n’;

}
if (activeSection) {
res += ‘\\frametitle{${activeSection}}\n‘;

}
if (title) {
res += ‘\\framesubtitle{${title}}\n‘;

}
if (label) {
res += ‘\\label{${label}}\n‘;

}
return res;

}

Next we consider the Slide.hasCode function. This function returns true if a bulleted
list contained in the slide contains (inline) code or if the slide contains a Code object or
Verbatim object. Therefore we decompose Slide.hasCode using four forward edges labeled
by reference cont with target functions Bullets.hasCode, Code.center, Verbatim.center
and Column.hasCode. Recall that the typed function center - defined for any type - returns
the center of a centered model. Here is the Javascript code for computing Slide.hasCode.
Again it is fairly simple since we have deferred the main complexity to the functions in the
decomposition, whose values are supplied by the parameters:

Slide_hasCode: function(cont_Bullets_hasCode, cont_Code_center,
cont_Verbatim_center, cont_Column_hasCode) {

let anyBulletHasCode = false;
for (const bulletHasCode of cont_Bullets_hasCode) {
if (bulletHasCode) {
anyBulletHasCode = true;

}
}
let anyColumnHasCode = false;
for (const columnHasCode of cont_Column_hasCode) {

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a15

Lightweight Modeling Approach · 17

if (columnHasCode) {
anyColumnHasCode = true;

}
}
return anyBulletHasCode

|| anyColumnHasCode
|| cont_Code_center.length > 0
|| cont_Verbatim_center.length > 0;

}

The function Bullets.hasCode essentially does a string search for || (signaling the
presence of inline code) in its value string.

The Slide.activeSection function computes the active section of this slide. It decom-
poses into function Root.cont via a reverse edge labeled by reference cont. We note that
there is a single Root object containing this slide so that the set of its cont-predecessors is a
set having the Root object as single element. From Root.cont we can compute in a simple
for-loop the active section: it is the last object in this sequence that precedes this Slide
object.

The Slide.body function computes the body of the frame. It is obtained by computing
the output for the contained objects using typed function Object.f, which is redefined (via
implicit redefinition edges) by typed functions Column.f, Code.f, Bullets.f and Question.f.

The slide footer, computed by Slide.footer, has an empty decomposition since it is the
constant string \end{frame}.

Column objects always come in pairs (as can be seen in the second Slide in our example).
The first and second column in a pair have different headers and footers (not explicitly
represented here). This explains the presence of typed function Column.isFirst in the
decomposition; Column.isFirst returns true if it is the first element in the pair. To compute
this function, we need to inspect the Column objects contained in the parent slide, explaining
the reverse edge to the Slide.firstCol function.

Functions Code.f and Bullets.f compute the output for code snippets and bulleted
lists. They only depend on their value string. Note that Code.val and Bullets.val are both
reference functions that do not need to be decomposed further.

Last but not least function Root.footer returns the constant string \end{document} and
thus has an empty decomposition.

8 FUDOMO in Action
Figure 6 presents the FUDOMO process. Two roles are involved in the execution of the
process: (1) a domain expert who knows the application domain but does not necessarily have
a technical background in (meta-)modelling and programming; (2) an engineer capable of
working with a target language (a GPL such as Python or JavaScript or a formal language).

A role is attached to an activity to indicate who performs the action. If no role is attached,
this means this activity is performed automatically by the FUDUMO tool.

The domain expert creates one or more examples in OYAML (activity 1). A metamodel
can be inferred from the set of examples automatically by the FUDOMO tool (activity 2).
New examples can be further provided by the domain expert (activity 1). Two options are
available in the presence of new examples. One can either check the conformance of the new
examples against the previously inferred metamodel (activity 3). In case an example does
not conform to the metamodel, conflicts are reported to the domain expert, who then has
the possibility to revise the example and make it conformant (activity 1). Alternatively, one
can also extend the set of examples with the new example and infer a new metamodel from
the extended set of examples (activity 2).

Once the metamodel reaches a stable stage, the domain expert can proceed with the model-
to-text transformation specification. First (s)he will define the functional decomposition of

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a15

18 · Pierre Kelsen, Qin Ma, Christian Glodt

MetaModel

Roles

Engineer

Domain Expert

Model2Text Transformation Specification Phase

Transformation
Result

Example Driven Metamodeling Phase

example
definition/revision

inference

transformation
definition/revision transformation

decomposition

skeleton
generation

code
completion

Transformation
Model

<<FUDOMO>>

model
update

Instance
ModelInstance

ModelExample-1
<<OYAML>>

Transformation
Code

.js

Transformation
Code

.py

……

Transformation
Code

.js

Transformation
Code

Skeleton

.py

……

OR

code
update

transformation
revision

Example-n
<<OYAML>>

+
notCorrect

isCorrect

isValid

notValid

transformation
execution

11

1

2

conformance
checking

3

4

5

6 7

8

transformation
validation

9 10
transformation
result review

Validation & Execution Phase

Figure 6 – FUDOMO Process

the transformation function in a FUDOMO model (activities 4 and 5). From the FUDOMO
model, the tool can automatically generate implementation code skeletons in a selected target
language (activity 6), such as Python and Javascript. An engineer capable of working with
the selected target language will fill in the missing code implementing the computation in
the generated skeleton (activity 7).

After completing the specification, the transformation will be validated (activity 8). The
validation of a transformation entails two checks: firstly, the types and elements referred
to in the transformation shall all be defined accordingly in the metamodel; secondly, the
transformation code should be in sync with the transformation model, namely there is a
function corresponds to a decomposition, and one parameter corresponds to a decomposition
edge. If validation of the transformation fails, the transformation has to be revised (activity 11).
A valid transformation can be executed (activity 9) on examples to produce transformation
results, which are in text format. The domain expert can review the transformation results.
If the domain expert judges the transformation result to be correct (activity 10), the domain
expert may define more examples or revise existing ones (activity 1) to be transformed.
Otherwise, if the result is not correct, revision of the transformation specification is needed
(activity 11).

9 Discussion and Related Work
The purpose of this section is two-fold: first we review and evaluate our approach. Second
we place the approach in the context of related work.

The declared main goal for developing our approach is the drive to make modeling more
accessible. Let us elaborate on the main points for supporting this claim that ware already
mentioned in the introduction:

• Our approach is example-driven rather than metamodel-driven: the user starts out

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a15

Lightweight Modeling Approach · 19

by creating concrete examples from which s(h)e can then infer a metamodel. That
example-driven approaches make modeling more accessible has already been amply
documented by research works in example driven modeling (see below).
A peculiarity of our approach is the use of a new human-readable textual notation
OYAML for writing object models. The reason for introducing a new notation rather
than using an existing one will be discussed in more detail below when review existing
notations. The small size of the OYAML language (judging by the size of its metamodel
given in Figure 3), should make it easy to learn. The compatibility with YAML allows
to reuse tool support for YAML such as editors with syntax-highlighting and parsers.
Finally the availability of YAML libraries for a multitude of languages [9] reduces the
effort to add support in our tool for different target languages.

• The idea of basing a transformation language directly on functional decomposition in
the way we do is novel as far as we know. Modeling the decomposition graph should be
facilitated by the small size of the FUDOMO language (about 10 productions) and the
clear separation of concerns, relieving the user from having to worry about the details
of the transformation and instead focus on the data dependencies of the computation.
The separation of the decomposition model and the computation of the decomposition
function, with the latter one being expressed by pure functions, makes our framework
extendible to a multitude of target languages. This should allow many users to
reuse a GPL they already know, rather than having to learn a special purpose model
transformation language.

Let us now compare our work with related approaches. We start by placing our approach
in the context of research on example driven modeling. The work in [14] is high-level in the
sense that the key ingredients of an example driven approach are discussed without advocating
a particular implementation of these ideas. Two main activities are identified in the context of
example driven modeling: abstraction inference for synthesizing abstractions from examples
and example derivation for generating examples from abstractions. Our approach uses only
abstraction inference: metamodel concepts and features are extracted from the concrete object
models. The authors of [22] propose a concrete approach for developing metamodels based on
an iterative abstraction inference process. Compared to our approach they provide a richer
language for expressing metamodels and also foresee for the user to refactor metamodels.
Unlike our approach transformations are not integrated in their approach but the metamodels
can be compiled into implementation models in existing modeling frameworks such as EMF;
traditional languages for model transformations such as ATL can then be used to write
model transformations. The work in [13] presents a language named Clafer that can be
used to represent both examples and abstractions. No particular transformation approach is
presented. The main scope is domain analysis and requirements elicitation.

The OYAML object model notation that we introduce in this paper can be compared to
the Human-Usable Textual Notation (HUTN) [8]. HUTN is an OMG standard for encoding
MOF-based models. An implementation of HUTN has been done within the Epsilon modeling
framework [5]. The reason for us basing our object modeling notation on YAML rather than
HUTN is the availability of libraries for YAML for many GPLs, which greatly facilitates
implementing parser and syntax highlighting in our tool for different target languages.
Furthermore not being tied to a particular modeling framework allowed us to implement
our tool on top of a web-based platform, not requiring any installation by the user and thus
keeping tooling fairly lightweight.

Our approach is strongly inspired by that proposed by [19]: the authors of that paper
propose a modeling language named EP allowing the specification of both structural and
behavioral aspects of a system. The main concepts in the EP-language are events and
properties. Query properties are similar to typed functions. The property graphs used to
describe a functional decomposition of query properties are similar to our decomposition
graphs. The main contributions of the present paper with respect to [19] are: on one side
a more general description of the functional decomposition technique that only relies on a

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a15

20 · Pierre Kelsen, Qin Ma, Christian Glodt

rather general notion of object model, without relying on a particular modeling language, and
on the other side the introduction of polymorphism (via redefinition edges) in the functional
decomposition. Another difference is the use of a fixed target language (OCL) in [19] for
implementing the code snippet while our approach allows the free choice of a target language.

An essential component of functional decomposition is the underlying navigation. The idea
of separating navigation from computation is not new: for instance the Visitor Design pattern
[18] is based on separating navigation (called traversal) from computation. Computation
is encapsulated in visitor classes that are separate from the classes defining the types used
in the object models. The Visitor pattern has a wider scope than our method since the
operations specified in the Visitor classes do not need to be side-effect free, that is, they
can modify objects. Our approach provides a more light-weight separation of navigation
and computation: the "operations" are encapsulated into local functions. This is possible
because we compute side-effect free functions. Another difference is the fact that we provide
a more abstract description of the navigation in terms of the decomposition graph. This
approach is declarative in the sense that a number of traversals can correspond to the same
decomposition graph. We notice that a more flexible version of the Visitor pattern called
the Guide pattern was proposed by [17]: this pattern allows to use a variety of navigation
schemes.

Another example of an approach based on separating navigation (or traversal) from
computation is adaptive programming [20]. The motivation behind adaptive programming is
not so much complexity reduction but rather adaptiveness to changes in a class structure:
by specifying traversals in terms of propagation patterns which can be satisfied by different
class structures adaptive programs become less prone to modification when the underlying
class structure changes. Computation is focused on essential calculations rather than those
that simply pass on information.

The pure nature of the decomposition functions mentioned above is related to coupling
between typed functions: each typed function only "talks" to typed functions whose argument
(centered model) is an immediate successor or predecessor of the argument (centered model)
of this function. This idea of objects only talking to their neighbors has been pioneered earlier
by Ian Holland and is known as the Law of Demeter [21]. The Law of Demeter is a design
principle for designing object-oriented programs: it promotes loose coupling by having each
"unit" talk only to units directly related to it. We can view our approach as following the
Law of Demeter when viewing the typed functions in the functional decomposition as units.

We close this section by comparing our example applications to existing approaches to
model-to-text transformations. There are two major approaches to model-to-text transforma-
tions [16]: programmatically or through special model-to-text transformation languages. The
first approach relies on writing a program (e.g., in Java) that queries the model using a model
API. This can be done for instance using Java as a programming language and an EMF-based
model API [23]. The advantage of this approach is that no additional programming skills
are necessary but there are also some disadvantages: (i) static and dynamic parts (in the
output) are intermingled; (ii) the output structure is difficult to grasp since it is embedded in
code; (iii) large amounts of code are needed because there is no declarative query language
for accessing models; (iv) code cannot be easily reused.

To remediate these disadvantages, DSLs have been developed for specifying model-to-text
transformations. We will refer to these DSLs as M2T transformation languages. Examples of
such languages are: Acceleo [1] (based on the MOF standard MOFM2T [6]), XSLT [11], and
Xtend [12], to name just a few. These languages are typically template-based: they represent
static and dynamic parts differently (for the latter ones they use meta-markers). The code
for generating the dynamic parts is embedded in the static parts, thus making the structure
of the output easier to comprehend. Less code is needed because declarative query languages
are used to query models (usually OCL [7]). Because functionalities for importing models
and serializing output are part of most M2T languages, code reuse is simplified.

We now review our approach to model-to-text transformations according the criteria we
just considered: the static parts of the generated text correspond to constant functions. These

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a15

Lightweight Modeling Approach · 21

are fairly easily detectable because they correspond to leaves of the decomposition graph.
Regarding the second criteria the output structure can be comprehended in a hierarchical
manner by defining corresponding functions. For instance in the presi2beamer transformation
the first decomposition tells us that the output is made up of header, body and footer. Each
of these can be further explored to understand the structure of the output. As for the third
criteria, the presence of a declarative query language: we do not require such a language
because the necessary queries are done in the glue (or auxiliary) code that is generated once
per target language. Note that this glue code is essentially a transcription of the "compute"
procedure (given in section 5) into the target language. Finally this glue code represents
excellent code reuse since it relieves us from writing intricate queries.

10 Conclusion
In this paper we present a modeling framework that combines an example-driven approach
for modeling with a novel model transformation approach based on functional decomposition.
The learning effort required for using the framework can be assessed in terms of the involved
languages: OYAML, a human-readable notation for expressing object models, FUDOMO, a
textual language for expressing functional decompositions of transformation functions, and
a GPL for implementing the pure functions expressing the detailed computations. Both
OYAML and FUDOMO are small languages, judging by their expressive power. By allowing
the user to make use of a GPL to express the detailed behavior of transformation functions,
without having to worry about navigation, our approach has the potential to make modeling
indeed more accessible.

Our current support for example-driven modeling is rather rudimentary in the sense
that constraints (even simple multiplicity constraints) cannot directly be included in the
metamodel. Future work will explore to what extent constraints can be automatically inferred
from the object models (so as to keep our modeling framework lightweight).

Because of the generality of the decomposition method, we expect that our technique to
be applicable in other contexts. Another obvious next step would be to widen the application
scope to general model transformations. In that context it would be important to use
benchmark examples like the CD2RDBMS transformation [15] to compare our approach to
existing approaches.

To assess the practicality of the approach the rather small examples treated in this paper
are not sufficient. Because the tool is web-based and does not need any installation, we are
counting on user feedback that should help in assessing the accessibility of the tool and in
making the tool more relevant for practitioners.

References
[1] Acceleo. https://www.eclipse.org/acceleo/.
[2] beamer - A LATEX class for producing presentations and slides. https://ctan.org/pkg/

beamer.
[3] The DOT language. https://www.graphviz.org/doc/info/lang.html.
[4] Functional decomposition — Wikipedia, the free encyclopedia. https://en.wikipedia.

org/wiki/Functional_decomposition.
[5] Human Usable Textual Notation. https://www.eclipse.org/epsilon/doc/hutn/.
[6] MOFM2T. https://www.omg.org/spec/MOFM2T/About-MOFM2T/.
[7] Object Constraint Language. https://www.omg.org/spec/OCL/About-OCL/.
[8] Object management group. Human-Usable Textual Notation Specification (2004).

http://www.omg.org/technology/documents/formal/hutn.htm.
[9] The Official YAML Web Site. https://yaml.org.

Journal of Object Technology, vol. 19, no. 2, 2020

https://www.eclipse.org/acceleo/
https://ctan.org/pkg/beamer
https://ctan.org/pkg/beamer
https://www.graphviz.org/doc/info/lang.html
https://en.wikipedia.org/wiki/Functional_decomposition
https://en.wikipedia.org/wiki/Functional_decomposition
https://www.eclipse.org/epsilon/doc/hutn/
https://www.omg.org/spec/MOFM2T/About-MOFM2T/
https://www.omg.org/spec/OCL/About-OCL/
http://www.omg.org/technology/documents/formal/hutn.htm
https://yaml.org
http://dx.doi.org/10.5381/jot.2020.19.2.a15

22 · Pierre Kelsen, Qin Ma, Christian Glodt

[10] The FUDOMO tool. https://fudomo.uni.lu.
[11] XSLT. https://www.w3.org/TR/xslt.
[12] XTend. https://www.eclipse.org/xtend.
[13] Michal Antkiewicz, Kacper Bak, Krzysztof Czarnecki, Zinovy Diskin, Dina Zayan,

and Andrzej Wasowski. Example-driven modeling using clafer. In MDEBE@ MoDELS,
volume 1104, pages 32–41, 2013.

[14] Kacper Bak, Dina Zayan, Krzysztof Czarnecki, Michal Antkiewicz, Zinovy Diskin, An-
drzej Wasowski, and Derek Rayside. Example-driven modeling: model = abstractions
+ examples. In ICSE ’13, pages 1273–1276. IEEE Computer Society, 2013.

[15] Jean Bézivin, Fabian Büttner, Martin Gogolla, Frédéric Jouault, Ivan Kurtev, and
Arne Lindow. Model Transformations? Transformation Models! In MoDELS, pages
440–453. Springer, 2006.

[16] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-driven software engineer-
ing in practice. Synthesis Lectures on Software Engineering, 1(1):1–182, 2012.

[17] Martin Bravenboer and Eelco Visser. Guiding visitors: Separating navigation from
computation. Utrecht University Repository, 2001.

[18] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Professional, 1994.

[19] Pierre Kelsen. A declarative executable model for object-based systems based on
functional decomposition. In ICSOFT 2006, pages 63–71, 2006.

[20] Karl Lieberherr. Adaptive Object-Oriented Software. The Demeter Method. PWS
Boston, 1996.

[21] Karl J. Lieberherr and Ian M. Holland. Assuring good style for object-oriented pro-
grams. IEEE Software, 6(5):38–48, 1989.

[22] Jesús J. López-Fernández, Jesús Sánchez Cuadrado, Esther Guerra, and Juan de Lara.
Example-driven meta-model development. Software and Systems Modeling, 14(4):1323–
1347, 2015.

[23] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro. EMF: Eclipse
Modeling Framework. Pearson Education, 2008.

Journal of Object Technology, vol. 19, no. 2, 2020

https://fudomo.uni.lu
https://www.w3.org/TR/xslt
https://www.eclipse.org/xtend
http://dx.doi.org/10.5381/jot.2020.19.2.a15

	Introduction
	Guided Tour
	Writing Down the Object Model
	Inferring the Metamodel
	Transforming the Example
	Implementing the Transformation Function

	The OYAML Object Model Notation
	YAML in a Nutshell
	From YAML to OYAML

	Functional Decomposition
	Generalized Typed Decomposition Graphs
	The FUDOMO Language
	 Case Study: the presi2beamer Transformation
	FUDOMO in Action
	Discussion and Related Work
	Conclusion
	Bibliography

