
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

Developing Comprehensive
Postconditions Through

a Model Transformation Chain
Nisha Desaia Martin Gogollaa

a. University of Bremen, Department of Mathematics and Computer Sci-
ence, D-28334 Bremen, Germany

Abstract
One important approach for describing behavior in UML and OCL

models is the use of OCL pre- and postconditions. This contribution
proposes a new method for developing comprehensive OCL postconditions
for operations in UML and OCL models, including so-called frame condi-
tions. The method is realized by a transformation chain from an initial
user-developed model into a semi-automatically derived test case model for
checking the model quality. On the technical side, the method consists of
a new formal distinction between deleted, sustained and added objects for
operation behavior. On the methodological side, the development process
is accompanied by a systematic case distinction, effective defaults and
iterative improvement steps through test cases.

Keywords UML and OCL model; OCL pre- and postcondition; OCL
contract; Frame condition; Transformation chain.

1 Introduction

In model-driven engineering (MDE), models are used as an abstraction of a system to
deal with the growing complexity of large software systems. Modeling languages such
as the UML (Unified Modeling Language) together with formal specification languages
such as the OCL (Object Constraint Language) are used to describe structural and
behavioral aspects of the system [WK99]. Structural properties can be described in
terms of OCL invariants and behavioral properties in terms of operation pre- and
postconditions in a UML and OCL model.

Pre- and postconditions describe the functionality of an operation in a declarative
way. They limit system states in which an operation may be performed and describe
properties that the resulting system state must meet. However, sometimes they maybe
not comprehensive enough to describe what may or may not be changed in a transition
between two system states and could lead to unexpected behavior of an operation. As

Nisha Desai, Martin Gogolla. Developing Comprehensive Postconditions Through a Model
Transformation Chain. Licensed under Attribution-NonCommercial-NoDerivatives 4.0 International (CC
BY-NC-ND 4.0). In Journal of Object Technology, vol. 18, no. 3, 2019, pages 5:1–18.
doi:10.5381/jot.2019.18.3.a5

http://www.jot.fm/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.5381/jot.2019.18.3.a5
http://dx.doi.org/10.5381/jot.2019.18.3.a5


2 � Nisha Desai and Martin Gogolla

the solution of this problem, so-called frame conditions [BKW09, Kos13] have been
proposed in addition to pre- and postconditions. However, frame conditions are usually
written manually and could be cumbersome to write, as the model may contain a large
number of elements which all have to be considered. This can lead to inconsistent and
flawed constraints.

As a solution, we propose concepts for a so-called post-/frame condition determining
language (PCDL) in order to systematically generate combined post- and frame
conditions (comprehensive postconditions) and which is grounded on a table format.
In the presented approach, PCDL elements are introduced which are based on a new
formal distinction for operation behavior between deleted, sustained and added objects,
and simplify the postcondition specification in the PCDL table for a developer. Here, a
developer only needs to define the model elements which are affected by the execution
of an operation in the context of PCDL elements and the other elements by default are
considered as unaffected. We also propose a method to automatically transform these
PCDL elements into OCL postconditions. The aim of this work is to give developers
the ultimate chance to reduce the burden of formulating post- and frame conditions
by offering an option to express the behavior of an operation systematically through
the PCDL elements using effort reducing, supportive defaults.

To realize this method, and to generate comprehensive postconditions effectively
and precisely, we propose a transformation chain which starts with an application model
without postconditions (user-developed model) and yields an automatically generated
model with postconditions (test case model), using the PCDL concepts. For checking
the model properties, the tool USE (UML-Based Specification Environment) [GH16]
is employed to transform the test case model into an equivalent (so-called) filmstrip
model [GHH+14]. The filmstripping approach captures several application model
states in one object diagram. In Fig. 1, two different exemplary states (snapshots) on
January 3rd (JAN3 ) and on January 4th (JAN4 ) are shown and between them the
operation hire is executed, which creates the Job link between the company Sun and
the employee Ada. Both states are described in a single figure. Basically, the resulting
object diagrams of this structure involve a sequence of snapshots with operation calls
linking them, like a filmstrip consists of many consecutive pictures that change from
frame to frame.

Figure 1 – Basic idea of the filmstripping approach

In USE, a model validator [KG12] is available that can automatically generate
test cases in the form of filmstrip object diagrams based on a given configuration. By
analyzing the object diagrams, a developer can check behavioral model properties

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a5


Developing Comprehensive Postconditions Through a Model Transformation Chain � 3

and accordingly, if required, can modify the model or the PCDL elements. Thus, the
transformation chain offers iterative improvement steps with the help of test cases to
develop a comprehensive behavioral model.

The rest of the paper is structured as follows. Section 2 discusses the motivation
and basic idea of our approach and provides a brief background on our model behavior
validation technique. Section 3 describes the proposed PCDL concepts and the trans-
formation chain with a demonstration for developing comprehensive postconditions.
Section 4 explains the transformation of the PCDL concepts into OCL postconditions.
Section 5 presents related work, and the paper is closed with conclusions and future
work in Sect. 6.

2 Basic Idea and Background

2.1 Basic Idea

The behavioral aspects of the model are defined by operation pre- and postconditions
which provide declarative descriptions of the transition from one system state to
another through an operation call. Typically, the pre- and postconditions focus only
on the model elements which will be affected by the desired execution of an operation
and often avoid other elements of the model that may not be affected. For validation
and verification methods, however, it is also important which model elements may
be changed or may not be changed in addition to the elements which are covered
by pre- and postconditions. The determination of concrete behavior of an operation
from the given pre- and postconditions is referred to in the literature as a the frame
problem [BMR95] and can be addressed by additionally specifying so-called frame
conditions [BKW09, Kos13, NPWD18] that explicitly characterize unchanged elements.
The specification of frame conditions along with pre- and postconditions provides a
complete description of the functionality of a model operation.

However, the process of generating frame conditions for any UML and OCL model
is a complex and unwieldy task, as a significant amount of model elements, as well as
their relations, has to be considered [dDDBC14, HNGW14]. So far, the works related
to frame conditions (more detail in Sect. 5) mostly rely on manual generation, which
leads to a time-consuming task and often results in erroneous constraints and extra
overhead to a developer.

To address this problem, we propose a tabular, so-called post-/frame condition
determining language (PCDL) to generate post- and frame conditions together. Rather
than generating separate post- and frame conditions, we construct comprehensive
postconditions by systematically considering all model properties. The PCDL table is
initialized with meaningful settings that ease the developer burden for standard cases.
Typically only few default table entries need to be fixed. The approach is based on a
new formal distinction between deleted, sustained and added objects (this leads to
special PCDL elements) to cover all aspects of operation behavior. The method is
realized by a transformation chain depicted in Fig. 2 to develop a precise and adequate
behavioral model.

In Fig. 2, the gray-highlighted part shows newly introduced transformation steps
that are integrated into our existing filmstripping and validation process. In the textual
to tabular transformation step, a given UML and OCL application model without
postconditions (user-developed model) is transformed into a PCDL model which is
basically a tabular structure consisting of default (initial) PCDL elements and is

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a5


4 � Nisha Desai and Martin Gogolla

Figure 2 – Model transformation chain for developing comprehensive postconditions.

based on the desired operation execution. The developer modifies only necessary
elements. In the tabular to OCL transformation step, we introduce a method to
automatically transform those elements into OCL postconditions. With help of our
filmstripping approach for validating model behavior, the model with newly generated
postconditions (test case model) is transformed into the filmstrip model and along with
a configuration is given to the model validator. As an outcome, the model validator
automatically generates a valid object diagram, and by analyzing the state transitions
in the diagram, properties for model dynamics can be validated [GH16]. Overall, the
transformation chain starting from the user-developed model into a semi-automatically
derived test case model helps the developer to check the model quality.

2.2 Background

In our tool USE, for validation purposes, a so-called model validator is available, which
is specifically designed for structural analysis of models. Therefore, to validate the
behavioral aspects of the model, our filmstrip transformation approach is used. In this
transformation, a given UML and OCL model which is comprised of invariants and
pre- and postconditions is transformed into an equivalent model which possesses only
invariants. This transformed model is called a filmstrip model, involves only structural
elements and can thus be validated with the USE model validator [GHH+14].

To demonstrate the filmstripping approach, a simple CompEmp application model
in which a system can have many companies and employees, and a company can hire
and fire an employee, is chosen as an example and shown in Fig. 3. The original
application model is indicated in a gray-shaded style, namely the classes Sys, Emp,
and Comp with the associations SysEmp, SysComp and Job in the class diagram, and
the small sequence diagram represents part of the application model. The automatic
transformation of the application model into the filmstrip model (the non-gray shaded
classes and the object diagram in Fig. 3) is realized through a USE plugin. A sequence
diagram and intermediate object diagrams of the application model correspond to a
single object diagram in the filmstrip model. In the filmstrip object diagram (bottom
right in Fig. 3), snapshot objects explicitly allow to capture single system states from
the application model. OperationCall objects (Sufix OpC) describe operation calls
from the application model. Basically, each operation of the application model is
transformed into an OperationCall class with attributes for the operation parameters.
The scenario in the example is such that the company Sun hires the employee Ada on
January 3rd, and on January 4th, the employee Ada works for (Job link) the company
Sun. The six Sys, Comp and Emp objects represent different object states before and
after the operation call. One could say that the object sunJAN4 is a later incarnation

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a5


http://dx.doi.org/10.5381/jot.2019.18.3.a5

	Introduction
	Basic Idea and Background
	Basic Idea
	Background

	PCDL Concepts
	Distinction between Deleted, Sustained and Added Objects
	Representing Postconditions in Tabular Form
	Demonstration (A): Transformation to PCDL
	Demonstration (B): Improving the PCDL Model
	Demonstration (C): Transformation to Filmstripping
	Demonstration (D): Transformation to Object Diagram
	Demonstration (E): Improving the PCDL Model

	Transformation of PCDL into Postconditions
	Related Work
	Conclusion
	Bibliography
	About the authors

