
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

A Categorization of Interoperability
Issues in Networks of Transformations

Heiko Klarea Torsten Symaa Erik Burgera Ralf Reussnera

a. Chair for Software Design and Chair (SDQ),
Institute for Program Structures and Data Organization (IPD),
Karlsruhe Institute of Technology (KIT), Germany

Abstract Bidirectional transformations (BX) are a common approach
for keeping two types of models consistent, but consistency preservation
between more than two types of models is not researched well. One solution
is the composition of BX to networks of transformations. Nevertheless,
such networks are prone to failures due to interoperability issues between
the individual BX, which are independently developed by various experts.
We therefore systematically identify and categorize such issues. First, we
structure the process of consistency specification into different conceptual
levels. Then we develop a catalog of potential mistakes, which we derive
from those levels, and consequential failure types. Finally, we discuss
strategies to avoid mistakes at the different levels. This catalog is beneficial
for transformation developers and transformation language developers. It
improves awareness in developers of potential mistakes and consequential
failures, enables the development of techniques to avoid specific mistakes
by construction, and eases the identification of reasons for failures.

Keywords Model Transformation; Multidirectional Transformation; Trans-
formation Composition; Transformation Interoperability

1 Introduction
Models that contain concern-specific extracts of a system are a means to deal with
the increasing complexity in today’s software development. A common approach for
preserving consistency between such models are incremental Bidirectional Transforma-
tions (BX), which keep two types of models consistent. Usually, more than two types
of models are used in development processes. Keeping them consistent can be achieved
by combining BX to networks, which has not been focused in research yet [Ste17].
When such networks contain cycles, information can be propagated across different
paths during transformation execution, which may lead to problems on confluence.

Consider the simple consistency relations exemplified in Figure 1. A company uses
three software systems to manage (1) personnel data, (2) tasks and their assignment
to employees, and (3) schedules for work times of employees and the deadlines of

Heiko Klare, Torsten Syma, Erik Burger, Ralf Reussner. A Categorization of Interoperability Issues in
Networks of Transformations. Licensed under Attribution-NoDerivatives 4.0 International (CC BY-ND
4.0). In Journal of Object Technology, vol. 18, no. 3, 2019, pages 4:1–20.
doi:10.5381/jot.2019.18.3.a4

http://www.jot.fm/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://dx.doi.org/10.5381/jot.2019.18.3.a4
http://dx.doi.org/10.5381/jot.2019.18.3.a4

2 · H. Klare, T. Syma, E. Burger and R. Reussner

Employee
firstname
lastname
salary
workingTime
department

(1) Personnel Data

Task
name
description

Employee
name
department

* responsible for
*

(2) Task Management

Task
name
deadline

Schedule

WorkDay
dateEmployee

name
workingTime

*

*

*

working*
*responsible for

(3) Scheduling

(first/last)name,
department

name,
relation to task

(first/last)name, workingTime

name

Figure 1 – Exemplary Consistency Relations () between Three Simple Metamodels

tasks. The domain models contain dependent information, especially the data about
employees and their relations to tasks, but none of them contains a superset of
information of another, which requires to define consistency between all pairs of
them. If three domain experts define those binary constraints independently, they
can easily contradict. For example, imagine a direct mapping of employee name
representations between the task management and scheduling system, a concatenation
of firstname and lastname between personnel data and task management system and
a comma-separated concatenation of lastname and firstname between personnel data
and scheduling system. These constraints are obviously incompatible, as they cannot
be fulfilled at the same time.

While such a problem may be trivially solvable in this simple scenario, it gets
difficult in systems with more and larger metamodels, where each domain expert
only knows about the relation between two of them, but not about the others. In
consequence, each BX has to be constructed in such a way that it can be combined with
other, independently developed BX in a black-box manner later on. Issues that arise
from such a combination of independently developed BX have not been investigated
yet. In consequence, potential failures, causal mistakes and techniques to avoid them
by design are not systematically known.

Our research goal is to identify and categorize issues that can arise from the
combination of independently developed BX to networks and how those issues can be
avoided by construction. Our main contributions in this paper are:

Classification of consistency specification levels (C1): We identify different con-
ceptual levels at which consistency for a set of model types can be defined.

Categorization of interoperability issues (C2): We identify potential failures
and mistakes in transformation networks and relate them to the specification levels.

Issue avoidance strategies (C3): We discuss avoidance strategies for mistakes at
the different levels and their degree of independence from the concrete scenario.

Appropriateness evaluation (C4): We show completeness and appropriateness of
our categorization by applying it to independently developed transformations.

We want to achieve a development process in which BX are specified as partial
descriptions of consistency, which can be combined to a network on demand, so that
their repeated execution in arbitrary order leads to a consistent state after changes. Our
contributions help to achieve that by forming systematic knowledge on interoperability
issues that have to be considered and solved.

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a4

A Categorization of Interoperability Issues in Networks of Transformations · 3

2 Assumptions and Terminology
We shortly clarify our assumptions and introduce a terminology for consistency that we
use to explain our classification. We assume that consistency of more than two types
of models is specified using networks of BX rather than multidirectional approaches for
two reasons: First, it is easier to think about binary than about n-ary relations [Ste17].
Second, a domain expert usually only knows about consistency relations within a
subset of all model types used to develop a system, so modularizing transformations
is inevitable. It was also the result of a Dagstuhl seminar that “it seems likely
that networks of bidirectional transformations suffice for specifying multidirectional
transformations” [Cle+19, p. 7]. Finally, we investigate of a subset of problems that
can actually occur, as in a concrete scenario n-ary relations may exist that cannot
be expressed by sets of binary relations. Although we limit our considerations to the
assumed scenarios, most of our findings could also be extended to a modularization
into smaller n-ary relations rather than binary relations.

Definition 1 (Model). A model M = {e1, e2, . . .} is a finite set of not further defined
elements, such as objects, attribute and reference values.

The exact representation of the model contents is not relevant for our work, which
is why we use this lightweight definition. It allows us to transfer the insights to
arbitrary models, such as models that are conform to the EMOF [Obj16b].

Definition 2 (Model Type). A model type M = {M1, M2, . . . } is the (usually but
not necessarily infinite) set of all models M1, M2, . . . that are instances ofM.

In the following, let a model Mi be always an instance of model typeMi. This
definition constitutes an extensional description of models and does not explicitly
consider actual instantiation relations between classes and objects, attributes and
their values etc., other than containment in the respective model type. We also use
the term metamodel when referring to an abstract syntax of classes, attributes and
associations, as defined in the OCL standard [Obj14, A.1]. A metamodel constitutes
an intensional description of models, from which the model type could be derived by
enumerating all valid instances, i.e., all models with arbitrary instantiations of classes,
their attributes and associations.

Definition 3 (Consistency Specification). A consistency specification CS for model
typesM1, . . . ,Mn is a relation CS ⊂M1×. . .×Mn between models that are consistent.
We denote a binary consistency specification for model typesMi andMj as CS i,j.

Enumerating consistent instances to define consistency is comparable to [Ste17].
If there are no restrictions on when models are consistent, CS contains all tuples of
models. We denote restrictions for models to be in CS as consistency constraints. It
would, in theory, also be possible to define CS on an infinite number of model types.
However, for ease of understanding and because of missing practical examples, we
decided to fix the number of model types in a consistency specification.

We primarily consider binary consistency specifications, which are the binary
relations that define consistency pairs of models, and also binary specifications for
consistency preservation, which are functions that restore consistency between two
models after one of them was modified. In the following, we introduce such consistency
preservation specifications. Each consistency preservation specification concerns modi-
fications in instances of two model types. However, instead of defining such a function

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a4

4 · H. Klare, T. Syma, E. Burger and R. Reussner

on two model types, we define it on an arbitrary number of model types, but restrict
modifications to instances of two of them. In consequence, a set of binary consistency
preservation specifications for an arbitrary number of model types can be defined,
whose signatures of input and output are all equal. This leads to a rather verbose
definition of consistency preservation specifications, but eases the composition of such
functions between more than two model types. If the function only considered the
two involved model types, the composition definition would have to properly consider
matching function signatures, whereas our definition allows the composition of all
functions with each other. A consistency preservation specification expects and returns
a tuple of pairs, each representing a change by containing an original and a modified
model. The original models in a tuple are always consistent, but a specification may
update the modified models.

Definition 4 (Consistency Preservation Specification). For a binary consistency
specification CS i,j, a consistency preservation specification CPSCSi,j is a partial
function defined if (Mi, Mj) ∈ CS i,j that maps a tuple of model pairs, each containing
an original model Mk ∈Mk and a modified model M ′

k ∈Mk, to a new tuple of model
pairs:
CPSCSi,j

:
(
(M1,M1), . . . , (Mn,Mn)

)
→
(
(M1,M1), . . . , (Mn,Mn)

)
,(

(M1, M ′
1), . . . , (Mi, M ′

i), . . . , (Mj , M ′
j), . . . , (Mn, M ′

n)
)

7→

{(
(M1, M ′

1), . . . , (Mi, M ′′
i), . . . , (Mj , M ′′

j), . . . , (Mn, M ′
n)
)

(Mi, Mj) ∈ CS i,j

undefined otherwise
so that

(M ′′
i , M ′′

j) ∈ CS i,j

Remark: A specification that always maps to empty models would be valid regarding
our definition. It is up to the developer to provide reasonable specifications.

We are interested in consistency preservation specifications that can be executed
in arbitrary order, so that they finally terminate in a consistent state regarding
all consistency specifications, comparable to a fixed-point iteration. Therefore, it
is essential for all specifications to be hippocratic [Ste07], so that no changes are
performed when models are already consistent. Let CPS be a set of preservation
specifications for consistency specifications CS. We denote the set of consistent model
tuples regarding CS as MCS = {(M1, . . . , Mn) | ∀CS i,j ∈ CS : (Mi, Mj) ∈ CS i,j}. We
want to achieve that:
∀(M1, . . . , Mn) ∈MCS : ∀M ′

1 ∈M1, . . . , M ′
n ∈Mn : ∃CPS1, . . . , CPSk ∈ CPS :

CPS1 ◦ · · · ◦ CPSk

(
(M1, M ′

1), . . . , (Mn, M ′
n)
)

=
(
(M1, M ′′

1), . . . , (Mn, M ′′
n)
)

∧ ∀CS i,j ∈ CS : (M ′′
i , M ′′

j) ∈ CS i,j

This means that there is always a sequence of consistency preservation specification
applications, potentially with multiple applications of the same specification, that
ensures that the modified models in all tuples are consistent after applying it.

Declarative transformation languages are usually well suited to define consistency
specifications according to Definition 3, from which a consistency preservation specifica-
tion is derived. Imperative transformation languages can be used to define consistency
preservation specifications according to Definition 4.

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a4

A Categorization of Interoperability Issues in Networks of Transformations · 5

M1 M2

M3

M1 M2

M3

M1 M2

M3

∆

∆

∆

CPSCS1,2

CPSCS1,3

CS

CS1,3
CS2,3

CS1,2

Level 1: Global Level 2: Modularization Level 3: Operationalization

model of model typeMx

consistent models before user change
consistent models after consistency preservation

element of consistency specification
user change introducing inconsistency
execution of consistency preservation specification

Figure 2 – Examples for Abstraction Levels in the Consistency Specification Process

3 The Consistency Specification Process
The process of specifying consistency between n > 2 types of models using a network
of BX can be separated into different conceptual levels. We distinguish three such
levels: At the global level, we describe the (n-ary) relations between all involved model
types. At the modularization level, we split these global relations into modular, binary
relations. Finally, at the operationalization level, we define preservation of consistency
according to the modular relations. That classification forms our contribution C1.

All of these levels have to be considered during the consistency specification
process. A developer specifies consistency on one of these levels, depending on the
abstraction level that the transformation language provides, and the transformation
engine finally derives an operationalization from that. Although a developer does not
specify consistency on multiple levels, he or she has to think about the levels on and
above the one consistency is specified on. For example, to define an operationalization,
the developer must be aware of the modular consistency relations. The benefit of
clearly separating these levels is that they have different potentials for mistakes, faults,
and resulting failures. Consequently, avoiding a specific kind of mistake, which is
related to one of the identified levels, completely prevents a specific category of failures.
We exemplify these levels in Figure 2 and explain them in more detail in the following.

3.1 Consistency Specification Levels
Level 1 (Global):
At the most abstract level, we consider the knowledge about all actual consistency
relations between the involved model types. This knowledge can be represented by an
n-ary relation between all model types, containing all tuples of consistent instances of
the n model types according to a consistency specification (Definition 3). We refer to
this as a global consistency specification.

Level 2 (Modularization):
At the second level, the global knowledge of the first level is separated into partial,
binary consistency relations that, in combination, represent the overall knowledge
about consistency in the system. These relations should not contain any contradictions.

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a4

6 · H. Klare, T. Syma, E. Burger and R. Reussner

We do not necessarily need to describe relations between all pairs of model types,
since some may not share information that may become inconsistent, or some may be
represented transitively across other relations. This knowledge can be represented by
up to n∗(n−1)

2 binary relations, each containing all pairs of instances of two of the model
types that are consistent. This corresponds to a set of binary consistency specifica-
tions according to Definition 3. We refer to these as modular consistency specifications.
Remark: Although in theory not all kinds of n-ary relations can be separated into
binary relations [Ste17], we assume that all consistency relations considered in an
automated consistency preservation process can be expressed by binary relations. We
shortly discussed why this is a reasonable assumption in Section 2.

Level 3 (Operationalization):
At this level, the consistency preservation is operationalized in terms of binary consis-
tency preservation specifications according to Definition 4. As discussed in Section 2,
we consider a set of consistency preservation specifications that can be composed to
restore consistency. In contrast to a single BX, an operationalization in networks of
BX has to deal with confluence of information. This can lead to problems, such as
overwrites or duplications of information, whenever a change can be propagated across
at least two paths in the network of BX to the same model. We have seen an example,
in which such multiple transformation paths cannot be avoided, in Figure 1.

3.2 Selecting the Specification Level
A transformation language finally derives a consistency preservation specification from
a specification on any of the levels and executes it. Imperative transformation languages
expect specifications at the operationalization level, whereas rather declarative, usually
bidirectional transformation languages expect specification at the modularization level.
Specifications at the global level are rather unusual, but could for example be expressed
with multidirectional QVT-R [MCP14], or the Commonalities language [Gle17]. A
specification must finally be free of mistakes that can be made on any of those
levels. The responsibility depends on the abstraction level the transformation language
provides, as the developer is responsible for avoiding mistakes at or above the level
at which he or she specifies consistency, whereas the transformation language is
responsible for those below.

Specifications must especially be correct regarding all higher levels. This means
that an operationalization in consistency preservation specifications must preserve
consistency according to the underlying modular consistency specifications. So after
changing a consistent set of models, the consistency preservation has to return another
set of models that is consistent again, as shown in Figure 2. Additionally, modular
consistency specifications must be correct regarding the global specification in the
sense that it must contain the same sets of models as the global specification. Finally,
the global consistency specification has to be correct regarding some, usually informal,
notion of consistency for the considered model types. Since this can usually not be
validated, we assume a global specification to be correct. This conforms to the notion
of correctness already defined for BX [Ste07], but is used for the extension to networks
of BX here.

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a4

A Categorization of Interoperability Issues in Networks of Transformations · 7

Mistakes Faults Failures

Level 1:
Global

Level 2:
Modulari-
zation

Level 3:
Operatio-
nalization

incomplete system
knowledge

incorrect system
knowledge

incomplete modular
knowledge

contradicting modular
knowledge

unknown connection of
modular specifications

missing
consistency constraint

additional
consistency constraint

contradicting
consistency constraint

missing element
matching

inconsistent termination
• deterministic
• non-deterministic

non-termination
• alternating loop
• diverging loop

duplications
• multiple instantiations
• multiple insertions

Figure 3 – Categorization and Dependencies of Mistakes, Faults and Failures

4 Issues in Networks of Bidirectional Transformations
In this section, we categorize potential failures that can occur when executing BX in
a network to preserve consistency. We then consider mistakes that a developer can
make and that lead to faults in the specifications of consistency and its preservation.
We derive them from the specification levels introduced in Subsection 3.1, as each
kind of mistake is specific for one of those levels. We finally relate the mistakes to the
failures that can occur while executing the operationalization of a faulty consistency
specification. That categorization forms our contribution C2. In the following, we
only discuss failures and their causing mistakes, but no strategies to solve or avoid
them. Such strategies are discussed in Section 5.

4.1 Potential Failures
Mistakes in the specification of consistency, no matter on which of the specification
levels, can lead to failures when executing the preservation of consistency according to
that specification. Before identifying the causal mistakes, we first categorize the types
of potential failures into three categories. We depict them in Figure 3.

First, consistency preservation can fail by resulting in an inconsistent state.
This can either occur deterministically or non-deterministically, if the result depends
on the execution order of the consistency preservation specifications.

Second, consistency preservation can fail by not terminating. This can either
manifest in an alternating loop, when a feature, e.g., an attribute, alternates between
two or more values, or in a diverging loop, when at least one feature value diverges,
e.g., a number counting up or a string being repeatedly appended.

Third, consistency preservation can result in duplications. Multiple instantiation
can occur because different consistency preservation specifications instantiate an
element multiple times, although all of them represent the same element. For example,
an element is created by transformationsM1 →M2 →M3 and another is created
by transformationM1 →M3, although there should be only one element. Multiple

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a4

8 · H. Klare, T. Syma, E. Burger and R. Reussner

M1 M2

M3

M1 M2

M3

M1 M2

M3

∆

∆

∆

CPSCS1,2

CPSCS1,3

CS

CS1,3
CS2,3

CS1,2

Level 1: Global Level 2: Modularization Level 3: Operationalization

model of model typeMx

consistent models before user change
consistent models after consistency preservation

element of consistency specification
user change introducing inconsistency
execution of consistency preservation specification

Figure 4 – Examples for Mistakes on Different Specification Levels

referencing can occur due to the same reason because an element is inserted into a
reference or attribute list several times, although it should be inserted only once.

4.2 Mistakes and Faults
Developers or the transformation engine can make different kinds of mistakes on
each of the specification levels, which lead to faults in the specification and finally to
different kinds of failures during consistency preservation. In the following, we derive
mistakes and faults from the specification levels, depicted in Figure 3.

Global Level
Regarding global consistency specifications for a set of model types, two basic mistakes
can be made. These mistakes concern compliance of the defined consistency specifica-
tion with the actual notion of consistency between the involved model types. First, a
specification can be incomplete (underspecified), which means that some consistency
constraints are missed. As a result, the consistency specification according to Defini-
tion 3 would contain more tuples of models than are actually consistent to each other.
Another potential mistake are too restricted (overspecified) consistency specifications,
which means that additional, faulty consistency constraints are considered. As a result,
actually consistent tuples of models would be missing in the consistency specification
according to Definition 3.

Modularization Level
When developers modularize the global consistency specification by defining binary
consistency specifications, these modular specifications can be non-compliant with
the global one. Two kinds of mistakes, similar to those at the global level, can
be distinguished, regarding compliance of modular and global specifications. First,
modular consistency specifications can be incomplete (underspecified), so that there
are global constraints which are not covered by them. The modular consistency
specifications CS1,2, CS2,3 and CS1,3 in Figure 4 are incomplete iff
∃M1, M2, M3 :

(M1, M2) ∈ CS1,2 ∧ (M2, M3) ∈ CS2,3 ∧ (M1, M3) ∈ CS1,3 ∧ (M1, M2, M3) 6∈ CS

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a4

A Categorization of Interoperability Issues in Networks of Transformations · 9

This finally leads to false positives when investigating whether a given tuple of models
is consistent regarding the global specification. Modular consistency specifications
cannot only be incomplete because of an actual specification mistake, but also because
of n-ary relations on the global level that cannot be expressed by a set of binary
relations. We excluded that case by our assumption made in Subsection 3.1, as
otherwise a modularization into binary relations would not be possible at all. If such
cases have to be supported, the modularization would have to be extended to also
consider n-ary relations.

Second, a modular specification can be too restricted (overspecified) regarding
the global consistency specification if additional constraints are added. The modular
consistency specifications in Figure 4 are overspecified iff
∃M1, M2, M3 :

(M1, M2, M3) ∈ CS ∧
[
(M1, M2) 6∈ CS1,2 ∨ (M2, M3) 6∈ CS2,3 ∨ (M1, M3) 6∈ CS1,3

]
In Figure 4, omitting the dashed relation in CS2,3 would lead to such an overspecifiation.
Overspecifications lead to additional constraints regarding the global specification,
but also, and more severe, to contradicting constraints regarding other modular
specifications. In case of contradictions, the modular consistency specifications cannot
be fulfilled at the same time. In such a case, the graph of consistency relations
would contain no cylces, i.e. sets of models that are consistent to each other. We
have discussed an example for such contradicting specifications in Section 1, where
constraints for transferring an employee name contradicted. Such mistakes lead to
false negatives as actually consistent models (regarding the global specification) are
identified as inconsistent.

Operationalization Level
The types of mistakes that can be made at the operationalization level are different
from those at the other levels, because this level does not concern the definition of
consistency specifications (Definition 3), but of consistency preservation specifications
(Definition 4). Such specifications are faulty if no composition of them exists that
returns a consistent tuple of models for each possible change. In Figure 4, an exemplary
application of a single consistency preservation specification is depicted that leads
to models that are not consistent according to the (global and modular) consistency
specifications. Let CPS be a set of consistency preservation specifications for the
binary consistency specifications CS and let MCS be the set of model tuples that are
consistent regarding CS (cf. Section 2). The consistency preservation specifications
are faulty iff
∃(M1, . . . , Mn) ∈MCS , (M ′

1, . . . , M ′
n) ∈M1 × · · · ×Mn : ∀CPS1, . . . , CPSk ∈ CPS :

CPS1 ◦ · · · ◦ CPSk

(
(M1, M ′

1), . . . , (Mn, M ′
n)
)

=
(
(M1, M ′′

1), . . . , (Mn, M ′′
n)
)

∧ ∃CS i,j ∈ CS : (M ′′
i , M ′′

j) /∈ CS i,j

In practice, mistakes at the operationalization level occur due to missing iden-
tification of equal elements in different consistency preservation specifications. In
our motivational example (Figure 1), consider that an employee is created in the
personnel management system, transformed to the task management system and from
that to the scheduling system. The additional direct specification between personnel
management and scheduling system has to consider the already created employee
rather than instantiating a new one.

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a4

10 · H. Klare, T. Syma, E. Burger and R. Reussner

Task Management

Personnel Data
Scheduling

Task Management

Personnel Data
Scheduling

Task Management

Personnel Data

Scheduling

Employee
name
. . .Employee

firstName
lastName
. . .

Employee
name
. . .

name = firstName + "␣" + lastName name = name

Opt. 1 : name = lastName + ",␣" + firstname
Opt. 2 : name = firstName + "␣" + lastname

consistency constraint
user change
consistency preservation

: Employee
name="Alice Do"

: Employee
firstName="Alice"
lastName="Do"

: Employee
name="Do, Alice"

1.
«create» 2.

3.

4. E

5.

6.

: Employee
name="Alice Do"

: Employee
firstName="Alice"
lastName="Do"

: Employee
name="Alice Do"

: Employee
name="Alice Do"

1.
«create» 2. 3.

4.

Level 2 Mistake (Opt. 1) Level 3 Mistake (Opt. 2)

Figure 5 – Consistency Constraints on Metamodel Extract (top), Failure due to Mistake on
Modularization Level (left), Failure due to Mistake on Operationalization Level (right)

4.3 Categorization and Discussion
Although all failures occur during operationalization, the mistakes that lead to them can
also be made at a higher specification level, such as the modularization or global level.
More importantly, each type of failure can be traced back to specific types of mistakes,
or, vice versa, specific mistakes lead to specific kinds of failures. Figure 5 shows extracts
of the three metamodels from our motivation, as well as consistency constraints between
them. There are two options for a constraint between personnel data and scheduling
system. The first option is contradictory to the one defined between personnel data
and task management system, as already discussed in Section 1. This demonstrates
that contradictory constraints are a typical fault that can result from contradicting
modular knowledge, when different persons define such constraints independently. If,
nevertheless, such a contradictory consistency specification is operationalized to a
consistency preservation specification, the propagation of changes may never terminate.
This is shown in the left scenario in Figure 5, where the name is replaced repeatedly
in an alternating loop as indicated by the dashed arrows.

If no mistakes are made on the modularization level, so that no contradictions
exist, missing matching of equal elements in the consistency preservation specifications
can still lead to duplicate element instantiations. With the second option for the
constraint in Figure 5, no mistakes on modularization level exist. However, a missing
matching of elements can lead to the situation shown in the right scenario of Figure 5,
in which two employees are instantiated across different transformation paths.

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a4

A Categorization of Interoperability Issues in Networks of Transformations · 11

These were two of several causal chains for mistakes and faults to resulting failures.
We give a full overview of those dependencies in Figure 3. Missing constraints lead
to deterministic inconsistencies, because such inconsistencies are not modelled and
thus resolved. Additional consistency constraints do not lead to any actual failures,
but reduce the set of consistent models. The only consequence is that consistency
preservation does not consider models that would actually be consistent. Contradicting
constraints, which can arise from a faulty modularization, are more severe, as we
have seen in the example: They can either lead to non-deterministic inconsistencies,
e.g., depending on the execution order of consistency preservation specifications, or
to loops that alternate or diverge values. Finally, the missing element matching at
the operationalization level can lead to multiple instantiations, as we have seen in the
example, or multiple insertions.

5 Avoiding Interoperability Issues
To ensure that a network of BX operates properly, potential mistakes must be avoided.
We evaluate our categorization regarding correctness and completeness in a case study
that combines independently developed transformations. In that case study, we classify
occurring failures with our categorization and trace them back to a causal mistake. To
identify whether such a classification is correct, we need to be able to fix the mistake
and validate that the failure disappears. Therefore, we discuss general strategies to
avoid mistakes at the different levels as our contribution C3 and apply them in the
evaluation.

At the global level, mistakes occur due to non-conformance with an informal notion
of consistency and can only be avoided by careful requirements elicitation. We therefore
have to assume that global level mistakes are reliably avoided by the developers.
Analytic approaches [Kla18] can ensure that specifications at the modularization
and operationalization level are free of faults. Nevertheless, the drawback of such
an approach is that it works a-posteriori, when transformations are combined to
a network. We, in contrast, want to achieve avoidance of interoperability issues
a-priori, so that transformations can be developed independently and combined
afterwards. It is easy to see that mistakes at the modularization level cannot be
avoided a-priori. Ensuring that transformations are non-contradictory would require
developers to have knowledge about the other transformations, which breaks the
assumption of independent development. Finally, mistakes regarding element matching
at the operationalization level are domain-independent. This enables the development
of generic mechanisms to ensure interoperability at the operationalization level by
construction, without knowing about other transformations.

In the following, we discuss one strategy to avoid mistakes at the modularization
and one to avoid those at the operationalization level. Developers can use these
strategies to build networks that are free of faults, or can use them to fix mistakes if
failures occur.

5.1 Contradiction-free Modularizations
Contradictions in binary consistency specifications cannot be avoided by design.
However, the structure of the network of specifications influences how prone to
mistakes it is [Kla18]. Two extremes of networks are depicted in Figure 6: One is
to have a specification for each pair of model types, inducing a dense graph. This

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a4

12 · H. Klare, T. Syma, E. Burger and R. Reussner

model type

consistency
specification

Figure 6 – Extremes of Strategies for Modularizing Consistency Specifications

extreme is prone to contradictions, because all relations are redundantly specified
across several paths. Another extreme is to define each relation, potentially indirectly,
only once, so that only one path of consistency specifications exists between each
pair of model types. This leads to a tree of specifications, which is inherently free of
contradictions and avoids modularization mistakes by design. However, it requires
that such a network structure exists at all, because between three model types there
must always be one relation that can be expressed transitively across the other two
(cf. [Kla18]). For example, if CS1,3 in Figure 4 shall be omitted and transitively
expressed across CS1,2 and CS2,3, it must hold that:
∀M1, M2, M3 : (M1, M2, M3) ∈ CS ⇔ (M1, M2) ∈ CS1,2 ∧ (M2, M3) ∈ CS2,3

In consequence, if a network of transformation can be built that is a tree, mistakes
at the modularization level are avoided by design. If a tree cannot be achieved, it is
necessary to find and fix mistakes when transformations are combined to a network. In
this case, the consistency specifications must be revised whenever non-termination or
non-deterministic termination of consistency preservation is observed (see Figure 3).

5.2 Matching Elements in Operationalizations
To avoid failures due to mistakes at the operationalization level, transformations must
respect that other transformations may have already created elements. In the binary
case, this is unnecessary. A single incremental BX can assume that elements are
either created by the user, or were created by the transformation itself. To identify
corresponding elements, transformation languages usually use trace models, which
are created by the transformations. When BX are combined to networks, direct trace
links may be missing because a sequence of other transformations created the elements
and trace links only indirectly across elements in other models. In this scenario,
corresponding elements can be matched by information at three levels:

1. Explicit unique: The information that elements correspond is unique and repre-
sented explicitly, e.g., within a trace model.

2. Implicit unique: The information that elements correspond is unique, but rep-
resented implicitly, e.g., in terms of key information within the models such as
element names.

3. Non-unique: If no unique information exists, heuristics must be used, e.g. based
on ambiguous information or transitive resolution of indirect trace links.

Indirect trace links, which link elements transitively across other models, usually
exist for elements that correspond, because other transformations have already created
them. Nevertheless, indirect trace links cannot be used to unambiguously identify
such elements. An element can correspond to multiple elements in another model,

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a4

A Categorization of Interoperability Issues in Networks of Transformations · 13

which is why most transformation languages offer tagging of trace links with additional
information to identify the correct element. For example, a language may tag trace
links with the transformation rule they were instantiated in. This is helpful in the
bidirectional case, but when links are resolved transitively, these tags have been created
by other, independently developed transformations, and are thus unknown. Therefore,
resolving indirect trace links is only a heuristic, but does not unambiguously retrieve
corresponding elements.

Finally, it is up to the transformation engine or the transformation developer
to ensure that elements are correctly matched. In contrast to the bidirectional
case, direct trace links cannot be assumed in case of networks of BX. Therefore,
key information within the models must always be considered to identify matching
elements. Whenever direct trace links or unique key information exists, relevant
elements can be unambiguously matched. In all other cases, heuristics must be used,
which potentially leads to failures.

6 Evaluation
We have systematically constructed the categorization in Section 4 from the potentials
for mistakes that are induced by the different specification levels. To further improve
evidence regarding completeness and correctness of our categorization, we validate
it in a case study as our contribution C4. The goal is to show completeness of the
identified mistakes and failures, and to investigate correctness of the dependencies
between them.

6.1 Case Study
The evaluation is based on a case study developed for the Ecore-based Vitruvius
framework1 [KBL13] for consistent system development. Vitruvius uses incremental,
delta-based consistency preservation. It records atomic changes in models and executes
consistency preservation specifications, according to Definition 4, to inductively pre-
serve consistency. Those specifications are written in the Reactions language [Kla16],
which is a language for unidirectional transformations at the operationalization level.

The case study is based on consistency between UML class models, instances of
the Palladio Component Model (PCM), which is an architecture description language
for performance prediction [RHK16], and Java code. For these metamodels, different
persons have independently developed transformations [Kra17], especially without
knowing about the other transformations with which they shall be combined. This
made the specifications prone to mistakes at the modularization and operationalization
level. The specifications are available on GitHub2. For the evaluation, we employ
the pairs of unidirectional specifications between PCM and UML, as well as between
UML and Java. Although this induces only two bidirectional specifications, we have
four transformations since both directions of the transformations have been specified
independently. They have to interoperate correctly, may also contradict, and need
to perform element matching. Thus, our scenario is prone to the same mistakes as a
scenario with three or more BX.

The transformations realize rather trivial constraints between UML and Java. Most
elements are mapped one-to-one, whereas multi-valued parameters and associations

1http://vitruv.tools
2https://github.com/vitruv-tools/Vitruv-Applications-ComponentBasedSystems

Journal of Object Technology, vol. 18, no. 3, 2019

http://vitruv.tools
https://github.com/vitruv-tools/Vitruv-Applications-ComponentBasedSystems
http://dx.doi.org/10.5381/jot.2019.18.3.a4

14 · H. Klare, T. Syma, E. Burger and R. Reussner

are mapped to collection types in Java. The relations between PCM and UML were
proposed by Langhammer et al. [LK15]. Interfaces are equally represented, PCM
components and data types are mapped to classes in UML. PCM components contain
Service Effect Specifications (SEFFs), which are an abstraction of their behavior
specification used for performance prediction. Those SEFFs are mapped to methods
in UML and Java. In total, the transformations between PCM and UML react to 57
change types in PCM and 65 change types in UML, and the transformations between
UML and Java react to 66 change types in UML and to 48 change types in Java to
restore consistency in the other model.

In total, we have used 187 test cases that perform different kinds of relevant
fine-grained changes in instances of all metamodels, such as insertions, modifications
and deletions of all types of elements that have to be kept consistent. Additionally,
we have simulated the construction of the Media Store system [SK16], which is a
sophisticated case study system for the PCM. This system is available as a PCM
model as well as Java code.

6.2 Methodology
Process
We executed the test cases on a transformation network, which we created as a
combination of the existing transformations. They were executed until no further
changes occurred. We then classified the occurring failures according to Subsection 4.1.
Based on our categorization in Subsection 4.3, we traced back the failures to mistakes
and fixed them according to the strategies discussed in Section 5. Failures can be
hidden by others: For example, an incompatible constraint may produce no failure
because the scenarios fail earlier due to missing element matching or vice versa. For
this reason, we re-executed the process until no further failures occurred. Finally, we
applied the transformations to the more complex Media Store construction case to
validate that all mistakes were fixed.

Measurements
We measured the number of failures in each of the iterations. We relate the number
of failures that we were able to categorize to the total number of recognized failures
(identifiedFailureRatio = # of categorized failures

of total failures) to show completeness of the identified
failure types. This metric is rather weak, because it does not identify whether a failure
is categorized correctly. We therefore relate the total number of resolved failures, which
are those that do not occur in the subsequent iteration anymore, to the number of
detected failures (resolvedFailureRatio = # of resolved failures

of total failures). If a failure disappears
after fixing the causing mistakes, the classification of the failure and also the relation
to the causing mistake was correct. Therefore, this metric gives an indicator for both
completeness of the identified failure types and the relation of mistakes to failures.

6.3 Results
We had to perform two iterations of the previously described process. In the first
iteration, we faced failures due to mistakes at the operationalization level, whereas in
the second iteration only failures due to remaining mistakes at the modularization
level occurred. We have tagged the states before and after the evaluation process in
the GitHub repository2.

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a4

A Categorization of Interoperability Issues in Networks of Transformations · 15

In the first iteration, all 187 tests failed. The reason was that all transformations
assumed that new elements are only created by the user or the transformation itself.
In consequence, we observed multiple instantiations and insertions in 187 cases, which
we could trace back to 35 missing matchings of elements in the transformations. After
adding appropriate matchings, all these failures disappeared in a second iteration,
so for the first iteration identifiedFailureRatio = resolvedFailureRatio = 1 , since all
detected failures were identified and resolved.

In the second iteration, 5 new failures occurred. Three of them were diverging loops,
which were caused by a namespace repeatedly prefixed to the name of classes, interfaces
and enumerations in Java. The causing mistakes were incompatible constraints: The
Java model contains the fully qualified name of a class, whereas the UML model only
contains the simple name, which was correctly propagated from UML to Java, but the
namespace prefix was not removed in the opposite direction. The two other failures were
alternating loops, which were caused by alternations of element visibilities. For methods
and constructors, the visibilities were repeatedly changed due to an inconsistent
mapping of visibilities from UML to Java and vice versa. After fixing those mistakes, no
failures remained. So we again have identifiedFailureRatio = resolvedFailureRatio = 1 ,
since all detected failures were identified and resolved.

Summarizing, we were able to classify and resolve all failures in the case study and
trace them back to mistakes with our classification in Section 4. This demonstrates
the applicability of our categorization and is an indicator for the completeness and
correctness of our catalog. Most important, we did not find any failures that were
caused by mistakes at a different specification level than we expected. To further
validate the catalog, we should apply it to further case studies. It is however hard to find
existing, independently developed transformations between at least three metamodels.
They would have to be developed in a schema similar to the one proposed by Kramer
et al. [Kra+16].

7 Related Work
Macedo et al. [MJC17] provide a classification of consistency preservation approaches
also considering support for multi-model scenarios. In the following, we compare our
work to research areas related to preserving consistency between multiple model types.

Networks of Bidirectional Transformations
Networks of BX are the focus of our research. Stevens [Ste17] investigates the ability
to split global into binary constraints. She gives arguments to stick to networks of BX
rather than using multidirectional transformations. Important for such networks is
the transformation execution order. While we aim to allow arbitrary execution orders,
other approaches focus on finding or defining appropriate orders [Ste18].

Multidirectional Transformations
Multidirectional transformations are an alternative to networks of BX. Although they
benefit from being less prone to interoperability issues, they do not allow for modular
definitions of consistency specifications. The QVT-R standard [Obj16a] considers
multidirectional transformations, but Macedo et al. [MCP14] reveal several limitations
of its applicability. An extension of Triple Graph Grammars (TGGs) to multiple

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a4

16 · H. Klare, T. Syma, E. Burger and R. Reussner

models [TA15; TA16] focuses on the specification of multidirectional rules but not on
potential conceptual and operational issues that we investigated. Commonalities meta-
models offer a different approach to reduce the number of transformations and potential
issues. Gleitze [Gle17] proposes a generic idea for them, whereas DUALLy [Mal+10;
Era+12] uses a domain-specific commonalities metamodel for architecture description
languages. Stünkel et al. [Stü+18] and Diskin et al. [DKL18] discuss such common-
alities metamodels from a theoretical viewpoint. Several topics of multidirectional
transformations, especially the usage of networks of bidirectional transformations and
the interaction of several bidirectional transformations, were discussed in a Dagstuhl
seminar [Cle+19]. The focus in related working groups was the investigation of scenar-
ios, in which networks of bidirectional transformations do not suffice and thus checked
our assumption in Section 2.

Transformation Chains
Transformation chains are sets of transformations executed one after another to
transform one (high-level) model into one (low-level) model across one or more
others. It is a special case of networks of BXs, in which chains between all pairs of
metamodels are realized. Specification languages for transformation chains, such as
FTG+PM [Lúc+13], allow to combine transformations to chains. Another approach
is UniTI [Van+07], which treats and combines transformations as black-boxes like
we do. However, it derives compatibility from external specifications rather than
achieving compatibility by construction. To improve maintainability, approaches for
separating transformation chains into smaller concern-specific ones [Yie+12] and to
support evolution [Yie+09] have been developed.

Transformation Composition
Transformation composition techniques are a means to build networks of BX. They
can be separated into internal techniques, which are white-box approaches integrated
into the language [Wag08; WVD10; Wag+11], e.g. inheritance or superimposition
techniques, and external techniques. External approaches consider the transformations
as black-boxes, which makes them related to our work. Most approaches especially
focus on factorization and re-composition as a refactoring technique for transforma-
tions [SG08] and consider syntactic compatibility on the level of external specifications
and matching metamodels rather than investigating techniques to achieve interop-
erability by construction. Lano et al. [Lan+14] present a catalog of patterns that
foster correct composition of transformations. This also includes patterns for unique
instantiation like we proposed in Subsection 5.2. In contrast, our contribution primar-
ily comprises a categorization of mistakes and only uses one specific pattern that is
appropriate to avoid mistakes of a certain category.

Model Merging and Constraint Solving
Model merging and constraint solving are further approaches to achieve consistency
preservation between multiple models. For example, Eramo et al. [Era+08] consider
the usage of Answer Set Programming (ASP) for preserving model consistency. We,
however, focus on transformation-based techniques and issues related to that, which is
why we do not discuss that research area in more detail.

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a4

A Categorization of Interoperability Issues in Networks of Transformations · 17

8 Conclusion
Issues that can arise from the combination of independently developed BX to networks
have not been systematically investigated yet. In this paper, we therefore categorized
failures that can occur when executing faulty networks of BX. Additionally, we
structured the process of specifying consistency into three levels: the global level, the
modularization level and the operationalization level. These levels carry the danger
for different kinds of mistakes, which we categorized and related to potential failures
they can result in. We found that each of the levels is prone to different types of
mistakes, and that each type of failure is specific for one category of mistake. This
enables developers to easily identify the kind of mistake they made when recognizing a
failure. Additionally, the systematic knowledge about potential mistakes, failures, and
their relations makes it possible to further develop techniques to avoid them. We have
discussed two general avoidance strategies at the modularization and operationalization
level in this paper. In future work, we will especially investigate how far and under
which assumptions BX can be analyzed regarding contradictions at the modularization
level when they are combined.

References
[Cle+19] A. Cleve, E. Kindler, P. Stevens, and V. Zaytsev. “Multidirectional Trans-

formations and Synchronisations (Dagstuhl Seminar 18491)”. In: Dagstuhl
Reports 8.12 (2019), pp. 1–48. doi: 10.4230/DagRep.8.12.1.

[DKL18] Z. Diskin, H. König, and M. Lawford. “Multiple Model Synchronization
with Multiary Delta Lenses”. In: Fundamental Approaches to Software
Engineering. Springer International Publishing, 2018, pp. 21–37. doi:
10.1007/978-3-319-89363-1_2.

[Era+08] R. Eramo, A. Pierantonio, J. R. Romero, and A. Vallecillo. “Change
Management in Multi-Viewpoint System Using ASP”. In: Enterprise
Distributed Object Computing Conference Workshops, 2008 12th. 2008,
pp. 433–440. doi: 10.1109/EDOCW.2008.22.

[Era+12] R. Eramo, I. Malavolta, H. Muccini, P. Pelliccione, and A. Pierantonio.
“A model-driven approach to automate the propagation of changes among
Architecture Description Languages”. In: Software and Systems Modeling
11 (1 2012), pp. 29–53. doi: 10.1007/s10270-010-0170-z.

[Gle17] J. Gleitze. “A Declarative Language for Preserving Consistency of Multiple
Models”. Bachelor’s Thesis. Karlsruhe Institute of Technology (KIT), 2017.
doi: 10.5445/IR/1000076905.

[KBL13] M. E. Kramer, E. Burger, and M. Langhammer. “View-Centric Engineer-
ing with Synchronized Heterogeneous Models”. In: Proceedings of the 1st
Workshop on View-Based, Aspect-Oriented and Orthographic Software Mod-
elling. VAO ’13. ACM, 2013, 5:1–5:6. doi: 10.1145/2489861.2489864.

[Kla16] H. Klare. “Designing a Change-Driven Language for Model Consistency
Repair Routines”. Master’s Thesis. Karlsruhe Institute of Technology
(KIT), 2016. doi: 10.5445/IR/1000080138.

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.4230/DagRep.8.12.1
http://dx.doi.org/10.4230/DagRep.8.12.1
https://doi.org/10.4230/DagRep.8.12.1
https://doi.org/10.1007/978-3-319-89363-1_2
https://doi.org/10.1109/EDOCW.2008.22
http://dx.doi.org/10.1007/s10270-010-0170-z
http://dx.doi.org/10.1007/s10270-010-0170-z
https://doi.org/10.1007/s10270-010-0170-z
https://doi.org/10.5445/IR/1000076905
https://doi.org/10.1145/2489861.2489864
https://doi.org/10.5445/IR/1000080138
http://dx.doi.org/10.5381/jot.2019.18.3.a4

18 · H. Klare, T. Syma, E. Burger and R. Reussner

[Kla18] H. Klare. “Multi-model Consistency Preservation”. In: Proceedings of the
21st ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems: Companion Proceedings, MODELS 2018. 2018,
pp. 156–161. doi: 10.1145/3270112.3275335.

[Kra+16] M. E. Kramer, G. Hinkel, H. Klare, M. Langhammer, and E. Burger. “A
Controlled Experiment Template for Evaluating the Understandability of
Model Transformation Languages”. In: Proceedings of the Second Inter-
national Workshop on Human Factors in Modeling. (Saint Malo, France).
Vol. 1805. CEUR-WS.org, 2016, pp. 11–18.

[Kra17] M. E. Kramer. “Specification Languages for Preserving Consistency be-
tween Models of Different Languages”. PhD thesis. Karlsruhe Institute of
Technology (KIT), 2017. 278 pp. doi: 10.5445/IR/1000069284.

[Lan+14] K. Lano, S. Kolahdouz-Rahimi, I. Poernomo, J. Terrell, and S. Zschaler.
“Correct-by-construction synthesis of model transformations using transfor-
mation patterns”. In: Software & Systems Modeling 13.2 (2014), pp. 873–
907. doi: 10.1007/s10270-012-0291-7.

[LK15] M. Langhammer and K. Krogmann. “A Co-evolution Approach for Source
Code and Component-based Architecture Models”. In: 17. Workshop
Software-Reengineering und-Evolution. Vol. 4. 2015.

[Lúc+13] L. Lúcio, S. Mustafiz, J. Denil, H. Vangheluwe, and M. Jukss. “FTG+PM:
An Integrated Framework for Investigating Model Transformation Chains”.
In: SDL 2013: Model-Driven Dependability Engineering. Springer Berlin
Heidelberg, 2013, pp. 182–202. doi: 10.1007/978-3-642-38911-5_11.

[Mal+10] I. Malavolta, H. Muccini, P. Pelliccione, and D. A. Tamburri. “Providing
Architectural Languages and Tools Interoperability through Model Trans-
formation Technologies”. In: IEEE Transactions of Software Engineering
36.1 (2010), pp. 119–140. doi: 10.1109/TSE.2009.51.

[MCP14] N. Macedo, A. Cunha, and H. Pacheco. “Towards a framework for multi-
directional model transformations”. In: 3rd International Workshop on
Bidirectional Transformations - BX. Vol. 1133. CEUR-WS.org, 2014.

[MJC17] N. Macedo, T. Jorge, and A. Cunha. “A Feature-based Classification of
Model Repair Approaches”. In: IEEE Transactions on Software Engineer-
ing 43.7 (2017), pp. 615–640. doi: 10.1109/TSE.2016.2620145.

[Obj14] Object Management Group (OMG). OMG Object Constraint Language
(OCL). Version 2.4. 2014.

[Obj16a] Object Management Group (OMG). Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification. Version 1.3. 2016.

[Obj16b] Object Management Group (OMG). Meta Object Facility (MOF) Core
Specification. Version 2.5.1. 2016.

[RHK16] R. H. Reussner, J. Henss, and M. Kramer. “Introduction”. In: Modeling
and Simulating Software Architectures – The Palladio Approach. MIT
Press, 2016. Chap. 1, pp. 3–15.

[SG08] J. Sánchez Cuadrado and J. García Molina. “Approaches for Model Trans-
formation Reuse: Factorization and Composition”. In: Theory and Practice
of Model Transformations. Springer Berlin Heidelberg, 2008, pp. 168–182.
doi: 10.1007/978-3-540-69927-9_12.

Journal of Object Technology, vol. 18, no. 3, 2019

https://doi.org/10.1145/3270112.3275335
https://doi.org/10.5445/IR/1000069284
http://dx.doi.org/10.1007/s10270-012-0291-7
http://dx.doi.org/10.1007/s10270-012-0291-7
https://doi.org/10.1007/s10270-012-0291-7
https://doi.org/10.1007/978-3-642-38911-5_11
http://dx.doi.org/10.1109/TSE.2009.51
http://dx.doi.org/10.1109/TSE.2009.51
http://dx.doi.org/10.1109/TSE.2009.51
https://doi.org/10.1109/TSE.2009.51
http://dx.doi.org/10.1109/TSE.2016.2620145
http://dx.doi.org/10.1109/TSE.2016.2620145
https://doi.org/10.1109/TSE.2016.2620145
http://www.omg.org/spec/OCL/2.4/
http://www.omg.org/spec/OCL/2.4/
http://www.omg.org/spec/QVT/1.3
http://www.omg.org/spec/QVT/1.3
http://www.omg.org/spec/MOF/2.5.1/
http://www.omg.org/spec/MOF/2.5.1/
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
https://doi.org/10.1007/978-3-540-69927-9_12
http://dx.doi.org/10.5381/jot.2019.18.3.a4

A Categorization of Interoperability Issues in Networks of Transformations · 19

[SK16] M. Strittmatter and A. Kechaou. The Media Store 3 Case Study System.
Tech. rep. 2016,1. Faculty of Informatics, Karlsruhe Institute of Technology,
2016. doi: 10.5445/IR/1000052197.

[Ste07] P. Stevens. “Bidirectional Model Transformations in QVT: Semantic
Issues and Open Questions”. In: Model Driven Engineering Languages and
Systems. Springer Berlin Heidelberg, 2007, pp. 1–15. doi: 10.1007/978-
3-540-75209-7_1.

[Ste17] P. Stevens. “Bidirectional Transformations in the Large”. In: ACM/IEEE
20th International Conference on Model Driven Engineering Languages
and Systems (MODELS). 2017, pp. 1–11. doi: 10.1109/MODELS.2017.8.

[Ste18] P. Stevens. “Towards sound, optimal, and flexible building from megamod-
els”. In: Proceedings of the 21th ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems. ACM, 2018, pp. 301–
311. doi: 10.1145/3239372.3239378.

[Stü+18] P. Stünkel, H. König, Y. Lamo, and A. Rutle. “Multimodel Correspon-
dence Through Inter-model Constraints”. In: Conference Companion of
the 2Nd International Conference on Art, Science, and Engineering of
Programming. Programming’18 Companion. ACM, 2018, pp. 9–17. doi:
10.1145/3191697.3191715.

[TA15] F. Trollmann and S. Albayrak. “Extending Model to Model Transformation
Results from Triple Graph Grammars to Multiple Models”. In: Proceedings
of the 8th International Conference on Theory and Practice of Model
Transformations. Springer International Publishing, 2015, pp. 214–229.
doi: 10.1007/978-3-319-21155-8_16.

[TA16] F. Trollmann and S. Albayrak. “Extending Model Synchronization Re-
sults from Triple Graph Grammars to Multiple Models”. In: Proceedings
of the 9th International Conference on Theory and Practice of Model
Transformations. Springer International Publishing, 2016, pp. 91–106. doi:
10.1007/978-3-319-42064-6_7.

[Van+07] B. Vanhooff, D. Ayed, S. Van Baelen, W. Joosen, and Y. Berbers. “UniTI:
A Unified Transformation Infrastructure”. In: Model Driven Engineering
Languages and Systems. Springer Berlin Heidelberg, 2007, pp. 31–45. doi:
10.1007/978-3-540-75209-7_3.

[Wag+11] D. Wagelaar, M. Tisi, J. Cabot, and F. Jouault. “Towards a General
Composition Semantics for Rule-Based Model Transformation”. In: Model
Driven Engineering Languages and Systems. Springer Berlin Heidelberg,
2011, pp. 623–637. doi: 10.1007/978-3-642-24485-8_46.

[Wag08] D. Wagelaar. “Composition Techniques for Rule-Based Model Transfor-
mation Languages”. In: Theory and Practice of Model Transformations.
Springer Berlin Heidelberg, 2008, pp. 152–167. doi: 10.1007/978-3-540-
69927-9_11.

[WVD10] D. Wagelaar, R. Van Der Straeten, and D. Deridder. “Module superim-
position: a composition technique for rule-based model transformation
languages”. In: Software & Systems Modeling 9.3 (2010), pp. 285–309. doi:
10.1007/s10270-009-0134-3.

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5445/IR/1000052197
https://doi.org/10.5445/IR/1000052197
https://doi.org/10.1007/978-3-540-75209-7_1
https://doi.org/10.1007/978-3-540-75209-7_1
https://doi.org/10.1109/MODELS.2017.8
https://doi.org/10.1145/3239372.3239378
https://doi.org/10.1145/3191697.3191715
https://doi.org/10.1007/978-3-319-21155-8_16
https://doi.org/10.1007/978-3-319-42064-6_7
https://doi.org/10.1007/978-3-540-75209-7_3
https://doi.org/10.1007/978-3-642-24485-8_46
https://doi.org/10.1007/978-3-540-69927-9_11
https://doi.org/10.1007/978-3-540-69927-9_11
http://dx.doi.org/10.1007/s10270-009-0134-3
http://dx.doi.org/10.1007/s10270-009-0134-3
http://dx.doi.org/10.1007/s10270-009-0134-3
https://doi.org/10.1007/s10270-009-0134-3
http://dx.doi.org/10.5381/jot.2019.18.3.a4

20 · H. Klare, T. Syma, E. Burger and R. Reussner

[Yie+09] A. Yie, R. Casallas, D. Wagelaar, and D. Deridder. “An Approach for
Evolving Transformation Chains”. In: Model Driven Engineering Lan-
guages and Systems. Springer Berlin Heidelberg, 2009, pp. 551–555. doi:
10.1007/978-3-642-04425-0_42.

[Yie+12] A. Yie, R. Casallas, D. Deridder, and D. Wagelaar. “Realizing Model
Transformation Chain interoperability”. In: Software & Systems Modeling
11.1 (2012), pp. 55–75. doi: 10.1007/s10270-010-0179-3.

About the authors

Heiko Klare is a doctoral researcher at the chair for Software
Design and Quality (SDQ) at the Karlsruhe Institute of Technology
(KIT) since 2016. His research interests involve model consistency
preservation, consistency-aware collaborative modelling, variants
and versions management, as well as view-based modelling and
development processes. Contact him at klare@kit.edu, or visit
https://sdq.ipd.kit.edu/people/heiko-klare/.

Torsten Syma wrote his Master’s thesis at the chair for Software
Design and Quality (SDQ) about model transformation composi-
tion and interoperability issues in transformation networks. He
received his M.Sc. from the Karlsruhe Institute of Technology
(KIT) in 2018. Contact him at torsten.syma@student.kit.edu.

Erik Burger is a postdoctoral researcher and head of the model-
driven development group at the chair for Software Design and
Quality (SDQ) at the Karlsruhe Intitute of Technology (KIT). He
received his PhD in 2014. His research interests are view-based
development, metamodel evolution and model co-evolution, as well
as distributed development. Contact him at burger@kit.edu, or
visit https://sdq.ipd.kit.edu/people/erik-burger/.

Ralf Reussner is a computer science professor at the Karlsruhe In-
stitute of Technology (KIT). He holds the chair for Software Design
and Quality (SDQ) since 2006 and heads the Institute for Program
Structures and Data Organization. His research group works in the
interplay of software architecture and predictable software quality
as well as on view-based design methods for software-intensive
technical systems. Contact him at reussner@kit.edu, or visit
https://sdq.ipd.kit.edu/people/ralf-reussner/.

Journal of Object Technology, vol. 18, no. 3, 2019

https://doi.org/10.1007/978-3-642-04425-0_42
http://dx.doi.org/10.1007/s10270-010-0179-3
http://dx.doi.org/10.1007/s10270-010-0179-3
https://doi.org/10.1007/s10270-010-0179-3
mailto:klare@kit.edu
https://sdq.ipd.kit.edu/people/heiko-klare/
mailto:torsten.syma@student.kit.edu
mailto:burger@kit.edu
https://sdq.ipd.kit.edu/people/erik-burger/
mailto:reussner@kit.edu
https://sdq.ipd.kit.edu/people/ralf-reussner/
http://dx.doi.org/10.5381/jot.2019.18.3.a4

	Introduction
	Assumptions and Terminology
	The Consistency Specification Process
	Consistency Specification Levels
	Selecting the Specification Level

	Issues in Networks of Bidirectional Transformations
	Potential Failures
	Mistakes and Faults
	Categorization and Discussion

	Avoiding Interoperability Issues
	Contradiction-free Modularizations
	Matching Elements in Operationalizations

	Evaluation
	Case Study
	Methodology
	Results

	Related Work
	Conclusion
	About the authors

