
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

On Softening OCL Invariants

Martin Gogollaa Antonio Vallecillob

a. University of Bremen, Germany.

b. Universidad de Málaga, Spain.

Abstract Invariants play a crucial role in system development. This
contribution focuses on invariants in systems with so-called occurrence
uncertainty, where we are interested in deciding whether a certain pop-
ulation (a set of instances from a class model) of the system satisfies an
invariant or not, but we are unsure about the actual occurrence of the
elements of that population, and also about the degree of satisfaction that
is actually required for the invariant to be fulfilled. Invariants are soft
in the sense that they are required to hold only for a particular, and a
priori uncertain, percentage of the population. The contribution proposes
a systematic approach to occurrence uncertainty and a prototypical im-
plementation for models with uncertainty and soft invariants allowing to
build system states and to make experiments with them.

Keywords UML model; Integrity constraint; OCL invariant; Uncertainty.

1 Introduction

Integrity constraints are essential elements of the specification of any information
system [Oli07]. They are in charge of defining the conditions that the information
system and its elements must fulfill, as imposed by the system requirements, the
company business rules, the legal or fiscal regulations in force, or by the physics of the
environment in which the system operates.

In UML models [Obj15], integrity constraints are normally specified by means of
OCL invariants, which are OCL expressions of type Boolean that must be true for
each instance of an entity type at any time [Obj14]. However, when dealing with
models of physical systems or with those that operate in unreliable environments, these
logic expressions may not be flexible and expressive enough to faithfully represent the
intrinsic uncertainty of such systems.

For example, suppose that φ is an invariant that states that the number of instances
of class X should be greater than 300. Then, if m1 is a model with 400 instances
of class X, and m2 is a model with none, we can clearly conclude that φ holds for
m1 (or m1 satisfies φ, also noted as m1 |= φ), but it does not hold for m2. Imagine
then a model that represents a Wireless Sensor Network (WSN) composed of many
spatially dispersed autonomous sensors for monitoring the physical conditions of the

Martin Gogolla, Antonio Vallecillo. On Softening OCL Invariants. Licensed under
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0). In Journal of Object
Technology, vol. 18, no. 2, 2019, pages 6:1–22. doi:10.5381/jot.201Y.18.2.a6

http://www.jot.fm/
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.5381/jot.201Y.18.2.a6
http://dx.doi.org/10.5381/jot.201Y.18.2.a6
http://dx.doi.org/10.5381/jot.201Y.18.2.a6

2 · Gogolla and Vallecillo

environment — like temperature, sound, pollution levels, humidity, wind, and so on.
Normally these are small and inexpensive devices, whose batteries and connections
are rather unreliable, and therefore there is a high uncertainty about the number of
sensors that are operating at a given moment in time — because we cannot be sure
that the sensor represented by a model instance is actually working, or if the links
represented in the model are really active. Suppose that our system requires around
300 active and connected sensors to provide meaningful results. In this case, checking
whether condition φ holds for this system is not easy, because we are uncertain about
the actual number of sensors currently active and connected, and also about the degree
of satisfaction required to fulfill it.

This paper proposes a softer version of OCL invariants that allows for some degree
of flexibility on the constraints defined for a system when it is subject to uncertainty.
In particular, we aim at answering the following research questions:

Q1. How do we soften (i.e., relax) existing OCL invariants that represent integrity
constraints of a system to express some degree of uncertainty about their level
of fulfillment?

Q2. How do we represent these soft invariants at the model level, so that existing
modeling tools can properly operate with them, and modelers and other system
stakeholders can reason about them?

Q3. How do we compose soft invariants using logical connectives such as ∧, ∨ or ¬,
to produce further soft invariants? How is uncertainty propagated?

Q4. What is the semantics of invariant independence in this context? Two invariants
are said to be independent if none of them implies the other.

This contribution addresses two kinds of uncertainties. We first introduce the
degree of satisfaction that is required for an invariant to hold, permitting invariants to
be partially fulfilled—hence the name of soft invariants. In addition, we focus on those
systems affected by occurrence uncertainty [BBMV18], whereby we are interested in
deciding whether a given population of the system satisfies an invariant or not, but
we are unsure about the actual occurrence of the elements of that population, i.e., the
set of its instances.

Solving this problem is relevant in several situations. For example, in social media
applications with millions of users, and running on thousands of nodes, where some
of the relationships between the users are uncertain because they are derived, e.g.,
by recommended systems, and therefore the confidence on their existence should be
taken into account when making informed decisions based upon them. Similarly, some
of the invariants of these systems do not need to be satisfied by all instances, but just
by a percentage of them: e.g., a constraint can be considered as fulfilled if more than
99.5% of the users satisfy it; or the system can be considered as working acceptably if
less than 0.01% of the nodes are inactive. Another situation of interest happens when
dealing with physical systems whose instances have an erratic or unreliable behavior,
like the networks of low-cost autonomous sensors mentioned above.

Our proposal consists of softening OCL constraints by using confidence values,
inequalities and thresholds. We identify several patterns that can be used to soften
the OCL constraints in a systematic way, and show how standard OCL tools can be
used to analyze the model, now taking uncertainty into account. In this paper we
will employ the USE toolkit [GBR07] for the specification and validation of UML and
OCL models.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.201Y.18.2.a6

On Softening OCL Invariants · 3

This paper is structured in 7 sections. After this introduction, Sect. 2 briefly
presents the background of our work. Then, Sect. 3 describes our proposal using an
example to motivate it, and to illustrate its main concepts and mechanisms. It also
presents how these concepts and mechanisms have been prototypically implemented in
practice. Section 4 shows how to transform further kinds of invariants into soft ones,
depending on the way they are expressed in OCL. Section 5 discusses two issues of
interest in this domain: how to compose soft invariants with logical operators ∧, ∨, ¬
and their combinations; and what it means for two soft invariants to be independent.
Finally, Sect. 6 relates our work to other similar approaches and, Sect. 7 concludes
and outlines some possible extensions and future lines of work.

2 Background

2.1 Integrity constraints and OCL invariants

Integrity constraints are rules that the system and its elements must fulfill. For
example, in relational database technologies, integrity constraints are used to ensure
accuracy and consistency of data. In business information systems, they define the
conditions that must hold, as determined by the company policies, business regulations,
or legal matters. In software applications that deal with physical systems, they are
used to represent physical laws or the system environmental conditions.

In logic, integrity constraints can be defined by closed first-order formulas that the
system and its elements must satisfy (i.e., they must be true) at any time. Equivalently,
such constraints can be defined by predicates, called inconsistency predicates [Kow78],
which cannot have any corresponding fact in the information base. Constraints may
be atomic or compound. A constraint is compound if it can be decomposed into a
conjunction of other constraints; otherwise, it is atomic.

In UML, invariant constraints are represented by means of OCL expressions that
define the invariant of a type, and which must be true for all instances of that type
at any time. Each invariant is always linked to the Classifier that represents that
type, and that defines the scope of the invariant. Other authors propose alternative
representations of invariants, e.g., by using query operations that evaluate the invariant
and return a Boolean value [Oli07].

OCL invariants impose completely intransigent (crisp) requirements on the system:
either they are satisfied or not. However, in many realistic situations, uncertainty
needs to be explicitly accounted for in the invariants, in order to faithfully represent the
uncertainty of the system. Otherwise, this oversimplification of the specifications would
neglect some intrinsic properties of the system’s nature. This is also the approach
lately proposed in AI to cope with ethical decisions, where some authors suggest to
let the system be explicitly unsure, the user being the one who finally decides [Eck18].

2.2 Occurrence uncertainty

Uncertainty can be defined as the quality or state that involves imperfect and/or
unknown information. It applies to predictions of future events, estimations, physical
measurements, or unknown properties of a system [JCG08]. We can distinguish
between aleatory and epistemic uncertainty [ODR+02]. Aleatory uncertainty refers to
the inherent variation associated with the physical system under consideration, or its

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.201Y.18.2.a6

4 · Gogolla and Vallecillo

environment. In contrast, epistemic uncertainty refers to the potential inaccuracy in
any phase of the modeling process that is due to the lack of knowledge.

The U-Model [ZSA+16, ZAY+17] identifies different kinds of uncertainties, each
one requiring its own representation and operations for propagating it (measurement,
occurrence, location, belief, and indeterminacy uncertainty, among others).

Among them, Occurrence Uncertainty (OU) is a kind of aleatory uncertainty that
refers to the degree of belief that we have on the actual existence of an entity, i.e., the
real entity that a model element represents. A very typical example occurs in systems
whose objects represent physical events, such as those produced by (unreliable) sensors.
Sometimes we may find false negatives — i.e., the event has occurred but it was lost,
or the system did not record it properly. Likewise, in a social network environment,
the establishment of certain derived relationships between two objects (friendship,
closeness, preference) may be subject to uncertainty because the person or program
estimating such a derived relationship (e.g., a recommender system) may not be fully
reliable, or not completely sure about the suggestion made, and therefore it may have
some associated margin of error. Here, it is interesting to distinguish between the real
and the model elements: the former ones happen in reality; the latter are the ones
contained in the system model, representing the real ones.

To associate occurrence uncertainty to model elements — both to objects and to
relationships — we will follow [BBMV18], and use attributes that permit indicating
the confidence (i.e, the degree of belief) that we have on their existence, by means of
probabilities associated to them.

3 Expressing Soft Invariants

Fig. 1 gives a simple example for our approach of handling soft OCL invariants. It
shows a crisp and a soft UML and OCL model, representing a registry of Persons,
each one with a certain age, together with an integrity constraint AllowDrive that
states that all persons in the system should be older than 18 (i.e., p.age>=18).

In the upper part, a conventional crisp UML model with only one OCL invari-
ant expressing that integrity constraint, together with a system state violating the
constraint, is displayed: two persons, bob and ada, are younger than required.

The lower part of Fig. 1 captures the corresponding soft model. Most notably,
the soft model introduces (a) for the original class Person an additional attribute
confid(ence) that expresses the degree of occurrence uncertainty of a respective object,
and (b) an additional (singleton) class Dashboard that is responsible for expressing the
degree of uncertainty (or softness) of the OCL invariant. This class holds an attribute
PersonConfidTh for a threshold level that determines which objects are considered as
relevant for the soft constraint, an attribute AllowDriveRSL (Required Satisfaction
Level) expressing the degree of softness of the OCL invariant, and a derived attribute
AllowDriveCSL (Current Satisfaction Level) determining the degree to which a current
system state satisfies the soft invariant.

Both, confidence and satisfaction levels, are expressed in our prototypical imple-
mentation by small integers between 0 and 10: the higher the integer, the higher the
confidence; a percentage of, e.g., 7 encodes 70 percent. Although the natural choice
for expressing probabilities and confidence levels would have been to use real numbers
in the range [0..1], it would have prevented us to employ the USE model validator for
reasoning about the softened invariants, because it relies on a constraint solver and
hence it uses integer arithmetic. For this reason, we have preferred to lose precision,

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.201Y.18.2.a6

On Softening OCL Invariants · 5

Figure 1 – Crisp and soft version of CarDriver example model.

even when some of the OCL expressions become more complex and therefore less
readable; but in return we can efficiently perform different types of analyses on the
invariants (see Sect. 5). In any case, if the model validator is not required in any
particular application, real numbers representing probabilities could be used instead,
since the proposed approach can be equally applied.

The original invariant is expressed by requiring that the CSL is greater or equal to
the RSL; in this way, the original invariant becomes part of the CSL derivation rule.
The original failing system state now becomes a valid state, because AllowDriveRSL=5
states that only 50 percent of the objects (that have a threshold greater or equal to
the Person threshold) have to fulfill the age requirement.

This is the standard method in which OCL invariants are softened in our proposal:

(a) Decide which are the entities that can be subject to occurrence uncertainty, and
add to them an attribute confid with a probability; this is normally done by
extending from abstract class ProbableElement [BBMV18].

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.201Y.18.2.a6

6 · Gogolla and Vallecillo

(b) For each invariant <Inv>, associated to class <C>, create three attributes.

• The first one, <C>ConfidTh:Integer, determines the minimum level of
confidence required for an object of class <C> to be considered as existing.

• The second attribute, <Inv>CSL:Integer, is derived. It defines the current
satisfaction level for the invariant.

• The last attribute, <Inv>RSL:Integer, is defined by the user and deter-
mines the minimum required satisfaction level for the invariant to hold,
according to the user’s requirements or judgments.

(c) A new class Dahsboard contains all these newly defined attributes for each
invariant. Changing the values of these thresholds will allow modelers to easily
simulate different uncertainty levels and degrees of satisfactions for the invariants.

(d) Finally, we reformulate each invariant <Inv> in terms of the corresponding
expression, <Inv>CSL >= <Inv>RSL, that states that the current satisfaction
level for the invariant should be above the required one.

Note how the model in the lower part of Fig. 1 has been developed using the steps
defined in this process.

Fig. 2 shows how the valid soft constraint and the system state from Fig. 1, which
is repeated in the centre, could be violated and lead to 4 different failing system states:

(1) Changing the class threshold. A first option for achieving an invalid system
state is to increase the confidence threshold for the objects (top-left). Raising it
from 5 to 6 disregards all 4 objects as being relevant, and reduces the CSL to 0.

(2) Changing the required satisfaction level. A second option (top-right) is to
raise the required satisfaction level. Increasing RSL to 6 means that at least
60 percent of the objects over the threshold have to satisfy the age condition
age>=18. This leads to the violation, since exactly 50 percent satisfy it.

(3) Changing an object threshold. A third option (bottom-left) is to decrease
the confidence for one object satisfying the age condition. This means the
CSL becomes only 2, which represents the percentage 25 and that is below the
required satisfaction level 5.

(4) Changing an object attribute value. A last option (bottom-right) is to lower
the age attribute value for one object previously satisfying the age condition.
Again this means that the CSL is lowered to 2, making the constraint fail.

In this way, we can use the Dashboard to simulate how changes in these different
parameters affect the invariants. The higher the thresholds and the required satisfaction
levels, the more stringent the invariants. And vice-versa: lowering the thresholds and
the degree of satisfaction required for an invariant, the more permissive they become.

This is graphically displayed in Fig. 3 that explains in form of a table the classifica-
tion and distinction between crisp and soft invariants which is prominently determined
by the dashboard settings. In the left, vertical dimension, the confidence specifications
from the model are represented, whereas in the bottom, horizontal dimension, the
degree of constraint uncertainty is displayed. A completely crisp invariant would
refer to model elements with confidence 10 and a required satisfaction level of 10. A
completely soft invariant would refer to completely uncertain model elements with

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.201Y.18.2.a6

On Softening OCL Invariants · 7

Figure 2 – Four options for introduction of failing object diagrams.

confidence 0 and a required satisfaction level of 0. Changing the values of the confi-
dence threshold and the required satisfaction level of an invariant enables interesting
simulations that permit representing different degrees of uncertainty: both on the
occurrence of the instances and on the degree of satisfaction required for the invariant
to hold. For example, we can specify that we only need an invariant to be fulfilled in
90% of the cases, and that we want to consider only those instances for which we are
more than 99% confidence of their occurrence.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.201Y.18.2.a6

8 · Gogolla and Vallecillo

Figure 3 – Using the elements’ confidence thresholds and the required satisfaction level of
the soft invariants to obtain different grades of flexibility/stiffness in invariants.

4 Invariant Patterns

Once we know how to associate degrees of satisfaction to the invariants, and uncertainty
to the model elements restricted by them, we are faced with the problem of how to
define the derivation expression that calculates the current satisfaction level (CSL) for
a given OCL invariant, which is precisely how to write the expression that softens the
invariant. In this section we see how the formula of such a derived OCL expression
will depend on the kind of invariant, since it is based on the structure and the type of
constraint they impose on the model.

In the previous example, the relaxed (i.e., softened) invariant was about requiring
that an attribute of the instances of a given class should fulfill a certain constraint
defined by an OCL expression (age>=18). Here we will also analyze other invariant
patterns, namely those that impose that a certain object, or a link between two
instances, exists; that certain sets of instances of a model should have the same size;
or that the set of instances that satisfies a given condition should be empty (or not).
We will introduce these kinds of constraints and how to relax them using examples.

4.1 The LOTR Wars example

Figure 4 – The LOTR Wars metamodel.

This example illustrates how invariants of
two different types can be softened. The
first one represents the kind of invariant
that asks two sets to be of the same size,
i.e., SetA->size()=SetB->size(). The sec-
ond one requests a set not to be empty, i.e.,
SetC->notEmpty().

Suppose the model described in Fig. 4,
which specifies a typical scenario in the Lord
of The Rings (LOTR) saga. There are
Battles between Allies and Enemies. Sup-
pose two kinds of allies, Dwarfs and Elves,
and two kinds of enemies, Orcs and Spiders.

The system defines three constraints. The first one (FairBattle) requires that
all battles should be fair, i.e., the number of enemies should be on par with the numer

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.201Y.18.2.a6

On Softening OCL Invariants · 9

Figure 5 – The LOTR Wars metamodel, enriched with confidence and a dashboard.

of allies. The other two invariants (EnoughAllies and EnoughEnemies) state that
the sets of allies and enemies of a battle can not be empty. These invariants can be
specified in OCL as follows.
context Battle inv FairBattle: self.enemies−>size = self.allies−>size
context Battle inv EnoughAllies: self.allies−>notEmpty
context Battle inv EnoughEnemies: self.enemies−>notEmpty

In this example, taking into account the information about the occurrence uncer-
tainty of each element is very relevant. From the distance, due to the smoke of the
battle, we can not be completely sure if the objects that we see are enemies, allies,
or simply rocks. This is why we need to assign a degree of confidence to the model
instances that represent allies and enemies.

Fig. 5 shows the LOTR Wars metamodel enriched with the information required
to describe the confidence of the elements that are subject to occurrence uncertainty
(abstract class ProbableElement) and the Dashboard.

The Dashboard defines the attributes for regulating the level of flexibility of each
invariant. Note that in this case we are associating a dashboard to each Battle
object, instead of having only one for the complete system. The dashboard defines the
thresholds that determine the minimum level of confidence to consider an enemy or
an ally as such (EnemyConfigTh and AllyConfidTh), as well as the required (RSL)
and current satisfaction (CSL) levels for the three original OCL invariants.

The required satisfaction level (RSL) is an attribute that the modeler can set (and
change) during the system execution. In contrast, the current satisfaction level (CSL)
is a derived attribute that computes the percentage of objects that currently satisfy
the invariant. In the LOTR Wars example, invariant FairBattle can be relaxed by
requiring that difference between the sizes of the sets of enemies and allies is a small
percentage of the overall size of the set of enemies and allies together. With this idea
in mind, the corresponding attributes for invariant FairBattle are defined as follows.
FairBattleRSL : Integer -- Required satisfaction level (user defined)
FairBattleCSL : Integer derive = -- Current satisfaction level

let YesE=battle.enemies−>select(e|e.confid>=EnemyConfidTh)−>size in -- # real enemies
let YesA=battle.allies−>select(a|a.confid>=AllyConfidTh)−>size in -- # real allies
let diff = if YesA>=YesE then YesA−YesE else YesE−YesA endif in
10 − ((diff ∗ 10) div (YesE + YesA)) -- i.e., 1-(YesA-YesE).abs()/(YesE+YesA)

As described earlier, we use integer numbers between 0 and 10 to represent
probabilities, so that the USE model validator can employ integer arithmetic. In this
case, the current satisfaction level (FairBattleCSL) is computed as the difference (in

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.201Y.18.2.a6

10 · Gogolla and Vallecillo

absolute value) between real enemies and allies (as determined by the corresponding
thresholds), divided by the total number of real enemies and allies. With this, the
FairBattle invariant can be simply reformulated as a comparison that checks if the
current satisfaction level (as automatically derived) is above the required one (as
stated by the user):
context b:Battle inv FairBattle:

b.dashboard.FairBattleCSL >= b.dashboard.FairBattleRSL

Using this approach, we can allow for a small percentage of variation, e.g., a 5 or a
10%, between the two sides of the battle. The value of such a allowed percentage is
precisely what attribute FairBattleRSL expresses.

The other two invariants required the sets of enemies and allies not to be empty.
We will show here how to soften one of them (EnoughAllies), the other is similar.

Again, we need to define two attributes in the dashboard, one for the required
satisfaction level and another for the current one:
EnoughAlliesRSL : Integer
EnoughAlliesCSL : Integer derive =

let AllA=battle.allies−>size in -- all allies
let YesA=battle.allies−>select(a|a.confid>=AllyConfidTh)−>size in -- real allies
(YesA ∗ 10) div AllA

In this case, the current satisfaction level represents the ratio of real allies in the
battle against the ones declared as such in the model.

With this, the expression of the softened invariant becomes a comparison between
the required and the current satisfaction levels:
context b:Battle inv EnoughAllies:

b.dashboard.EnoughAlliesCSL >= b.dashboard.EnoughAlliesRSL

Now, to simulate the system, we need to decide first the lower and upper limits on
the number of instances of each type, and determine the thresholds and satisfaction
levels that we want to achieve. We can ask the USE model validator to find a model
that satisfies these restrictions. For example, we can provide the USE model validator
with a set of restrictions that limits the number of allies and enemies to 3 orcs, 2
spiders, 4 elfs and 1 dawrf, and that sets to 0.8 all thresholds and satisfaction levels:
Orc_min = 3
Orc_max = 3
Spider_min = 2
Spider_max = 2
...
Dashboard_EnoughAlliesRSL = Set{ 8 }
Dashboard_EnoughEnemiesRSL = Set{ 8 }
Dashboard_FairBattleRSL = Set{ 8 }
Dashboard_AllyConfidTh = Set{ 8 }
Dashboard_EnemyConfidTh = Set{ 8 }

The USE model validator tries to generate a system state of instances and links
that respects these restrictions, and also satisfies all the system OCL invariants. Fig. 6
shows the system state found in this case, as well as the invariants. Using this system
state as starting point, we can now simulate the effect of setting different thresholds
or required satisfaction levels, and how the evaluation of the system invariants change,
as we did for the CarDriver example.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.201Y.18.2.a6

On Softening OCL Invariants · 11

Object diagram

battle1:Battle
elf1:Elf

confid=8

orc3:Orc

confid=7

elf4:Elf

confid=7

dwarf1:Dwarf

confid=8

elf3:Elf

confid=7spider2:Spider

confid=4

orc1:Orc

confid=8

elf2:Elf

confid=7
dashboard1:Dashboard

IsEnemyTh=8
IsAllyTh=8
FairBattleRSL=8
/FairBattleASL=8
EnoughAlliesRSL=8
/EnoughAlliesASL=10
EnoughEnemiesRSL=8
/EnoughEnemiesASL=10

orc2:Orc

confid=8

spider1:Spider

confid=8

Figure 6 – System state generated by the USE model validator for the LOTR example.

4.2 The Likes-Follows example

In this section we will discuss how to soften invariants that require certain objects to
exist, or not, in the system.

Figure 7 – The Likes-Follows metamodel.

Fig. 7 represents a system composed
of Users and Items. Users may follow
other users, and may like items. Re-
lations Likes and Follows are repre-
sented as classes, too. It is common in
recommender systems to create these
two types of relationships (likes and fol-
lows) based on the current state of the
users. For example, if more than N followers of a user u like a particular item itm, the
system creates a Likes relationship between u and itm. Probabilities are normally
assigned to those auto-generated relationships. They define the degree of confidence
that the system assigns to them depending, e.g., on the number N of followers that
also like the item, on the confidence of these Likes relationships (since they can be
derived, too), and on the confidence the system has on the derivation rule.

The system defines four constraints. The first one (notFollowingSelf) requires
that users do not follow themselves. The next two (noLikesDups and noFollowsDups)
forbid the occurrence of duplicate relationships between two users, or a user and an
item. The last invariant (allLiked) does not permit an item to exist without any
user liking it. In a real system, however, we should allow things to be more flexible —
especially if we introduce the use of confidence level assigned to relationships. The
crisp version of these OCL invariants in shown below; we have also added, as comments,
how each individual invariant can be relaxed.
context u:User inv notFollowingSelf: -- SOFT: few following with low confidence

u.follower−>forAll(fR | fR.follower<>u)
context l1:Likes inv noLikesDups: -- SOFT: few dups with low confidence

not Likes.allInstances−>exists(l2 |
not (l1<>l2 implies (l1.user<>l2.user or l1.item<>l2.item)))

context f1:Follows inv noFollowsDups: -- SOFT: few dups with low confidence
Follows.allInstances−>forAll(f2 |
f1<>f2 implies (f1.follower<>f2.follower or f1.followed<>f2.followed))

context i:Item inv allLiked: -- SOFT: few not liked with low confidence
i.likes−>notEmpty

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.201Y.18.2.a6

12 · Gogolla and Vallecillo

Figure 8 – The Likes-Follows metamodel, enriched with confidence and a dashboard.

Fig. 8 shows the Likes-Follows metamodel enriched with the information required
to describe the confidence of the elements that are subject to occurrence uncertainty
(abstract class ProbableElement) and the Dashboard.

In this case we are associating a dashboard to the complete system. It defines the
attributes for regulating the level of flexibility of each invariant. These attributes specify
the thresholds that determine the minimum level of confidence to consider a Likes
or Follows relationship to be significant (LikesConfidTh and FollowsConfidTh), as
well as the required and current satisfaction levels for the four (crisp) OCL invariants.

In the Likes-Follows example, the notFollowing invariant can be relaxed by allow-
ing a small percentage of users to follow themselves. That percentage is precisely what
required satisfaction level notFollowingSelfRSL determines. Then, the corresponding
attributes for the notFollowing invariant can be defined as follows.
notFollowingSelfRSL : Integer -- required satisfaction level (user defined)
notFollowingSelfCSL : Integer derive = -- current satisfaction level

let Yes = User.allInstances−>select(u | u.follower−>select(fR |
fR.confidence>=FollowsConfidTh and fR.follower=u)−>isEmpty)−>size in

let No = User.allInstances−>select(u | u.follower−>select(fR |
fR.confidence>=FollowsConfidTh and fR.follower=u)−>notEmpty)−>size in

(Yes∗10) div (Yes+No)

Here, the current satisfaction level (notFollowingSelfCSL) is computed as the
ratio, expressed in integer arithmetic, between the actual users that fulfill the constraint,
and the total number of real users. Then, the notFollowingSelf invariant can
be simply reformulated as a comparison between the current satisfaction level (as
automatically derived) and the required one (as stated by the user):
context Dashboard inv notFollowingSelf: notFollowingSelfCSL >= notFollowingSelfRSL

The following two invariants banned the existence of duplicated instances of the
objects that reify the two relationships, Follows and Likes. The dashboard defines
again the corresponding attributes, to set the required and current satisfaction levels.
noLikesDupsRSL : Integer -- required satisfaction level
noLikesDupsCSL : Integer derive = -- current satisfaction level

let Yes = Likes.allInstances−>select(l1 | l1.confidence>=LikesConfidTh and
Likes.allInstances−>select(l2 | l2.confidence>=LikesConfidTh and
l1<>l2 and l1.user=l2.user and l1.item=l2.item)−>isEmpty)−>size in

let No = Likes.allInstances−>select(l1 | l1.confidence>=LikesConfidTh and
Likes.allInstances−>select(l2 | l2.confidence>=LikesConfidTh and
l1<>l2 and l1.user=l2.user and l1.item=l2.item)−>notEmpty)−>size in

if Yes+No=0 then 0 else (Yes∗10) div (Yes+No) endif

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.201Y.18.2.a6

On Softening OCL Invariants · 13

The current satisfaction level represents the ratio of duplicates against the total
number of instances of that relationship, considering only those instances whose
confidence is above threshold LikesConfidTh. The expression of the softened invariant
becomes a comparison between the required and current satisfaction levels:
context Dashboard inv noLikesDups: noLikesDupsCSL >= noLikesDupsRSL

The final invariant banned items that no single user liked. This invariant can
be softened by requesting that the percentage of items which are either not liked
by any users, or liked with very little confidence, is small — or, equivalently, that
the percentage of items which are either liked by some users, or liked with enough
confidence, is above the the required satisfaction level:
allLikedRSL : Integer -- required satisfaction level
allLikedCSL : Integer derive = -- current satisfaction level

let Yes = Item.allInstances−>select(i|i.likes−>notEmpty)−>
select(i|i.likes−>exists(l|l.confid>=LikesConfidTh))−>size in

let No = Item.allInstances−>select(i|i.likes−>isEmpty or
(i.likes−>notEmpty and i.likes−>forAll(l|l.confid>=LikesConfidTh)))−>size in

if Yes+No=0 then 0 else (Yes∗10) div (Yes+No) endif

The corresponding invariant is specified as follows:
context Dashboard inv allLiked: allLikedCSL >= allLikedRSL

4.3 OCL invariant patterns

So far we have seen how various types of OCL invariants can be relaxed, and how
their soft versions are produced. These types (or patterns) of OCL expressions are
listed below, and summarized in Table 1:

• If an invariant I1 requests that the sizes of two sets are the same, or that one is
larger or equal than the other, we can relax it by requesting that the difference
between these sizes is below a percentage of the sum of the sizes of the two
elements, considering only the elements above the confidence thresholds defined
by the user for the invariant.

• If an invariant I2 requires that there should be at least one element of a given
type X, we can soften it by considering the elements whose confidence is above
the threshold defined by the user, dividing it by the total number of instances of
X in order to obtain a ratio.

• If an invariant I3 requires that a set of elements that fulfill a property P must not
be empty, we can soften it by considering: (a) the elements whose confidence is
above the threshold defined by the user and that fulfill P ; (b) the elements whose
confidence is above the threshold defined by the user and that do not fulfill P ,
and calculate the current satisfaction level of I3 as the proportion (a)/(a)+(b).

To soften compound invariants, obtained by the combination of other invariants
with logical operators ¬, ∧ and ∨, we compose their current satisfaction levels. Table 1
shows the derivation expression for them, assuming the invariants to combine are
independent. The explanations for these expressions are detailed in the next section.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.201Y.18.2.a6

14 · Gogolla and Vallecillo

Table 1 – Softening OCL invariants.

Crisp invariant pattern Corresponding soft invariant
Invariant1 ≡ let a=X->select(x|x.confid>=XConfidTh)->size in
X->size = Y->size or let b=Y->select(y|y.confid>=YConfidTh)->size in
X->size >= Y->size let Invariant1CSL = if (a+b)=0 then 0

else (1-((a-b).abs()/(a+b))) endif in
Invariant1CSL >= Invariant1RSL

Invariant2 ≡ let a=X.allInstances->select(x|x.confid>=XConfidTh)->size in
X.allInstances-> let b=X.allInstances->size in

notEmpty() let Invariant2CSL = if b=0 then 0 else (a/b) endif in
Invariant2CSL >= Invariant2RSL

Invariant3 ≡ let a=X->select(x|x.confid>=XConfidTh and P(x))->size in
X->select(x|P(x))-> let b=X->select(x|x.confid>=XConfidTh and not P(x))->size in

size()>0 let Invariant3CSL = if (a+b)=0 then 0 else a/(a+b) endif in
Invariant3CSL >= Invariant3RSL

Invariant4 ≡ let Invariant4CSL = 1.0 - OtherInvariantCSL in
not (OtherInvariant) Invariant4CSL >= Invariant4RSL

Invariant5 ≡ let Invariant5CSL = InvXCSL * InvYCSL in
InvX and InvY Invariant5CSL >= Invariant5RSL

Invariant6 ≡ let Invariant6CSL = InvXCSL + InvYCSL - InvXCSL*InvYCSL in
InvX or InvY Invariant6CSL >= Invariant6RSL

5 Operating with Compound Soft Invariants

5.1 Combining soft invariants with logical operators

This section discusses two issues: how to compose soft invariants with logical operators
∧, ∨, ¬ and their combinations; and what does it mean for two invariants to be
independent. For this, we need to formulate the problem in different terms.

In logic, an integrity constraint can be defined in terms of a closed first-order
formula that the information base must satisfy, i.e., it must be true. Then, if M
represents the set of models, LP the set of logic predicates, and B the Booleans, we
talk about the satisfaction relationship |= :M×LP → B that, given a model m and
a logic predicate φ that represents an invariant, returns whether model m satisfies
invariant φ or not (we will also note this as m |= φ).

To obtain a softer version of an OCL invariant and of the satisfaction relationship
“|=”, instead of returning a Boolean value, we extend it to return a real number in the
range [0..1] that represents how much the model satisfies the invariant, i.e., what we
have called its current satisfaction level.1 This new relationship is called uncertain
satisfaction, |' :M×LP → [0..1].

It can be considered as an extension of relationship |=, because given a model m,
and an invariant φ, we always have that (m |' φ) = 1 ⇐⇒ (m |= φ).

This extension is similar to the one that lifts the Boolean datatype to UBoolean,
as described in [BBMV18], and where Boolean values are extended to pairs of the
form (true, c), with c a real number in the range [0..1] that represents the confidence
that we have on the fact that the Boolean value is true. With this, false is lifted to
(true, 0) and true is lifted to (true, 1).

The algebra of operations defined for UBoolean can be used here and, if φ1 and φ2
1Although in the preceding sections we represented probabilities and confidence levels by means

of small integer numbers for technical reasons (namely, in order to be able to employ the USE Model
Validator), in this more theoretical section we have preferred to use their more natural representation
as real numbers in the range [0..1] instead.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.201Y.18.2.a6

On Softening OCL Invariants · 15

are independent invariants (see Sect. 5.2), then the following expressions hold:

m |' (¬φ1) = 1.0−m |' φ1 (1)
m |' (φ1 ∧ φ2) = m |' φ1 ∗m |' φ2 (2)
m |' (φ1 ∨ φ2) = m |' φ1 +m |' φ2 − (m |' φ1 ∗m |' φ2) (3)

Note that we are using here probability theory [dF17], and not fuzzy logic [Zim01]:
although both approaches deal with states of uncertainty, and represent degrees of
subjective belief, fuzzy set theory uses the concept of fuzzy set membership, whereby
an element can belong to different sets of one partition of the whole space. In contrast,
probability theory uses the concept of subjective probability, i.e., the likelihood of an
event or condition to belong to each set of the partition, assuming it can only belong
to one set [Kos90, DP93]. These expressions justify the equations used in Table 1.

Moreover, notice that the value of m |' φ coincides with the current satisfaction
level of model m with respect to invariant φ, and which is defined by the derived
attribute <φ>CSL stored in the Dashboard of our prototypical implementation.

5.2 Invariant independence

Traditionally, two invariants are said to be independent if none of them implies the
other. Conversely, they are dependent if every object model that satisfies one of them,
satisfies the other. This definition can be extended to sets of invariants, when no
invariant from the set is an implication from the rest [GHD18].

In mathematical terms, let us suppose two invariants φ1 and φ2 that specify
constraints on UML models defined by metamodel M. Let m, m1, m2 be object
models of M. Traditionally, we say that φ2 is dependent on φ1, or that φ2 is an
implication from φ1 (also noted as φ1 ⇒ φ2), iff every model that satisfies φ1 also
satisfies φ2:

∀m ∈M • (m |= φ1 ⇒ m |= φ2) (4)

Contrarily, φ1 and φ2 are independent iff:

∃ m1,m2 ∈M • (m1 |= φ1 ∧m1 6|= φ2) ∧ (m2 |= φ2 ∧m2 6|= φ1) (5)

In our context, we need to extend these definitions for the uncertain satisfaction
relationship |', that returns a real number in the range [0..1] instead of a Boolean
value. In this case, the definition of dependence can be easily lifted using the natural
order defined for real numbers, and then define that φ2 is dependent on φ1 (also
noted as φ1 ⇒ φ2) iff:

∀m ∈M • (m |' φ1) 6 (m |' φ2) (6)

In other words, dependency holds, if the satisfaction levels of all models w.r.t. φ1
is less or equal than their satisfaction level w.r.t. φ2. To improve the readability of
the formulas, we will also use a shorthand notation for m |' φ, and write it as φ(m).
With this, the previous expression can be written as follows:

∀m ∈M • φ1(m) 6 φ2(m) (7)

We also say that two invariants φ1 and φ2 are independent iff:

∃ m1,m2 ∈M • φ1(m1) > φ2(m2) ∧ φ1(m2) > φ2(m1) (8)

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.201Y.18.2.a6

16 · Gogolla and Vallecillo

Figure 9 – Degrees of independence between invariants.

Note how this condition naturally generalizes the condition for the traditional
notion of independence represented by equation (5).

However, in this context we need to express that independence is no longer a
boolean (i.e., binary) property, but a continuous one (see Fig. 9), and thus we need to
define a degree of independence between two invariants φ1 and φ2. For this, we need
to notice first that the following condition always holds, for all models ofM:

φ1(m) ∗ φ2(m) 6 (φ1 ∧ φ2)(m) 6 min{φ1(m), φ2(m)} (9)

When the invariants are dependent, we get that (φ1∧φ2)(m) = min{φ1(m), φ2(m)},
and when they are completely independent, we know by equation (2) that (φ1∧φ2)(m) =
φ1(m) ∗ φ2(m).

Then, we can define the degree of independence between two invariants φ1 and φ2,
as a real number in the range [0..1], as follows:

i(φ1, φ2) = 1− #{m ∈M • (φ1 ∧ φ2)(m) > 0}
#{m ∈M • (φ1 ∨ φ2)(m) > 0}

(10)

In that equation, the hash sign (#) denotes the size of the set, which is defined using
a set comprehension expression. The problem with this equation is that it is difficult to
use in practice, because the number of models in these sets can be unbounded. What
can be interesting is to concentrate on the extreme cases of complete independence
and complete dependence.

Complete dependence was already defined by equation (7). Now, we can define
that two invariants φ1 and φ2 are completely independent iff:

∀ m ∈M • (φ1 ∧ φ2)(m) = φ1(m) ∗ φ2(m) (11)

Once we have all these theoretical definitions, let us show how we can define
practical tests for them, employing the USE model validator.

• Invariant independence can be checked by asking the model validator to look
for a model m1 such that φ1(m1) > φ2(m1) and another model m2 such that
φ2(m2) > φ1(m2).

For instance, in the LOTR example, we selected the EnoughAllies and FairBattle
invariants, and asked the model validator to look first for one model m1 that
satisfied the first invariant and not the second one, and for another model m2

that satisfied the second invariant and not the first one. We used the model

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.201Y.18.2.a6

On Softening OCL Invariants · 17

Figure 10 – First found system state for showing invariant independence.

validator invariant negation feature to easily achieve this. The model validator
successfully found a modelm1 composed of 2 allies and 1 enemy whose confidence
was above the threshold (hence satisfying the request; see Fig. 10), and another
model m2 with 1 enemy and 2 allies; from the 2 allies, one had a confidence
above the threshold, and the other didn’t. Therefore, the model validator was
able to find the models that show that these two invariants are independent.

• Invariant dependence can be checked by letting the model validator look for a
model m such that φ2(m) < φ1(m).
In order to have two dependent invariants, we developed a new one, Enough-
AlliesANDFairBattle, which is basically the conjunction of the two invariants
EnoughAllies and FairBattle. We wanted to use the fact that for any two
invariants φ1 and φ2, we know that φ1 ∧ φ2 ⇒ φ1. We then wanted to check
that EnoughAlliesANDFairBattle is dependent on EnoughAllies. For this, we
asked the model validator to find a model m for which the current satisfaction
level EnoughAlliesCSL (which corresponds to m |' EnoughAllies) is greater
than EnoughAlliesANDFairBattleCSL. The model validator was unable to find
such a model. Of course, this result is relative to the search space used, as
defined by the developer when specifying the context of the search — by means of
the properties file of the model validator. Similarly, invariants EnoughAllies,
EnoughEnemies and FairBattle are not independent invariants, and in fact it
can be checked that EnoughAllies ∧ FairBattle implies EnoughEnemies, e.g.,
by using the -invIndep option of the model validator [GHD18].

• Invariant complete independence can be checked by asking the model valida-
tor to look for a model m such that (φ1 ∧ φ2)(m) 6= φ1(m) ∗ φ2(m).
In this case we also used the invariant EnoughAlliesANDFairBattle, defined as
the conjunction of EnoughAllies and FairBattle, and asked the model validator
to look for a model for which the dashboard attribute EnoughAlliesANDFairBattleCSL
did not coincide with the product EnoughAlliesCSL * FairBattleCSL. The
search was unsatisfiable, confirming that the two invariants EnoughAllies and
FairBattle are completely independent.

With all this, we have been able to extend the concept of invariant independence,
replacing a binary definition by a softer version that admits degrees of independence

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.201Y.18.2.a6

18 · Gogolla and Vallecillo

(or dependence) between invariants. Furthermore, we have provided practical tests for
checking these notions in current software models, using a tool.

Finally, the expressions of operations ∧ and ∨ on invariants in Table 1 were defined
assuming complete independence between the combined invariants. Their definitions
under the presence of some degree of dependency is ruled by equation (8) and is left
as part of our future work, as well as the expression of further operations such as
implies, xor, or logical equivalence.

6 Related Work

The idea of softening constraints is mostly used in the context of Constraint Satisfaction
Problems (CSP), which are mathematical equations defined as a set of objects whose
state must satisfy a number of constraints or limitations. In this domain, a soft
constraint is a classical constraint where each instantiation of its variables has an
associated value from a partially ordered set [BMR97]. When a CSP has parameters
with interval values, it is called CSP with uncertainties [GN05]. Three main extensions
of CSP permit softening constraints [Bar98]: Fuzzy CSP models constraints as fuzzy
relations in which the satisfaction of a constraint is a continuous function of its
variables’ values, ranging from fully satisfied (1.0) to fully violated (0.0); Probabilistic
CSP models those situations where each constraint has a certain probability to occur
in the real system, hence allowing the modeler to reason about problems which are
only partially known; finally, in Weighted CSPs, tuples come with an associated cost,
which permits modeling optimization problems. Our approach could be seen similar
to Fuzzy CSP, but in the context of OCL invariants and not as a CSP problem, and
using Probability theory [dF17] instead of Fuzzy logic [Zim01].

A complete taxonomy of integrity constraints and their possible representations in
OCL is described in Chapter 9 of [Oli07]. This taxonomy, together with the library of
patterns for OCL expressions [AT07], provide interesting insights for characterizing
different kinds of OCL invariants and how they can be softened.

The work [GHD18] presents different kinds of automated analysis of OCL invariants.
In the current work we have covered invariant satisfaction and independence. Adapting
the remaining six types of analyses to soft OCL invariants is part of our future research.

Our present work can also be considered as a generalization of our proposal
for modeling occurrence uncertainty in models [BBMV18] using probabilities. In
this paper, we have extended it to the case of OCL invariants, beyond objects and
links. Our recent proposal on adding belief uncertainty to the UML elements of a
model [BCC+19], allows belief agents to assign a degree of belief to individual UML
objects and statements. It deals however with a different type of uncertainty, hence
providing an interesting complementary work to the one presented here.

Uncertainty has been considered in the UML context from various perspectives.
For instance, the work [BMB+18] shows how to extend the UML and OCL primitive
datatypes with measurement uncertainty. The approach in [JPP+08] concentrates
on aspects of the modeling process of data, and UML models with explicit uncertain
modeling of time are subject to [Gar08]. Imprecision in UML models is the topic of
[SFP08]. The paper compares pros and cons of imprecision in the modeling languages
UML and Modelica. Uncertainty has also been considered for model transformations.
The work in [FSDC13] discusses how to handle transformations between models that
incorporate uncertainty. Special emphasis on bidirectional transformation is handled
in [EPR15] and within the lenses framework in [DEPC16].

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.201Y.18.2.a6

On Softening OCL Invariants · 19

None of the mentioned approaches considers uncertainty from a fundamental
modeling perspective in the sense that (a) the satisfaction of logical statements can be
expressed in an uncertain way and (b) a prototypical implementation to experiment
with uncertain constraints is provided.

Finally, other works propose extensions to OCL to account for further features,
either as additions to the standard language, or in terms of libraries. Examples of the
former include extensions for expressing temporal properties [DBB14, ZG03], system
verification [ARAK17], or real time [LBJ15]. Extensions to OCL as libraries permit
adding random operations [VG17], aggregation functions [CMPT10] or documentation
and testing facilities [Chi09]. We initially considered developing a new, dedicated,
extension to OCL, instead of staying with standard OCL. Such an extension would
have probably resulted in a more readable, scalable and modular expression of the
uncertainty in invariants. However, from our point of view, the benefits of using
standard OCL and tools outweigh the disadvantages of deviating from it: our pro-
posal is entirely backwards compatible with existing modeling languages, tools and
methodologies, which can be used without any adaptation. This facilitates reusability,
improves applicability, and significantly reduces the adoption costs of our proposal.

7 Conclusions and Future Work

This contribution discusses how OCL invariants can be relaxed to represent occurrence
uncertainty in particular systems: we are interested in deciding whether a certain
population of the system satisfies an invariant or not, but we are unsure about the actual
occurrence of the elements of that population, and also about the degree of satisfaction
that is actually required for the invariant to be fulfilled. A new satisfaction relationship
has been defined, and we have shown how the new concepts and mechanisms have
been prototypically implemented in practice, allowing system modelers to build system
states and to reason about them.

The ideas presented in this paper can be continued in different directions. First,
we would like to extend the initial list presented in Sect. 4.3 of OCL invariants
‘patterns’ that can be transformed into soft invariants, increasing the expressiveness
of our approach. Second, we have currently studied satisfiability and independence
of invariants. However, there are more validation use cases, as defined in [GHD18],
which can be of interest for reasoning about the OCL specifications of the system.
Third, more and larger case studies should give us more feedback on the features
and expressiveness of our approach. In this sense, empirical validation and exercises
with industrial modelers and users would help us validate its applicability, usability
and effectiveness. We have proposed the use of Dashboard objects to represent the
attributes that specify and regulate the level of flexibility of each invariant. However,
the size of these objects can hinder their usability, particularly when dealing with
large models that contain hundreds of invariants. Finding modular solutions to cope
with this problem is another line of research we would like to explore next. Finally, we
have initially focused on occurrence uncertainty. Extending our proposal to consider
further kinds of uncertainties, in particular, belief and measurement uncertainty, is
also left as part of our future work.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.201Y.18.2.a6

20 · Gogolla and Vallecillo

References

[ARAK17] Muhammad Waseem Anwar, Muhammad Rashid, Farooque Azam,
and Muhammad Kashif. Model-based design verification for em-
bedded systems through SVOCL: an OCL extension for systemver-
ilog. Design Autom. for Emb. Sys., 21(1):1–36, 2017. doi:10.1007/
s10617-017-9182-z.

[AT07] Jörg Ackermann and Klaus Turowski. A library of OCL specification
patterns for behavioral specification of software components. In Proc.
CAiSE’06, volume 4001 of LNCS, pages 255–269. Springer, 2007. doi:
10.1007/11767138_18.

[Bar98] Roman Barták. Guide to Constraint Programming, 1998. URL: https:
//kti.mff.cuni.cz/~bartak/constraints/extend_csp.html.

[BBMV18] Loli Burgueño, Manuel F. Bertoa, Nathalie Moreno, and Antonio
Vallecillo. Expressing confidence in models and in model transfor-
mation elements. In Proc. MODELS’18, pages 57–66. ACM, 2018.
doi:10.1145/3239372.

[BCC+19] Loli Burgueño, Robert Clarisó, Jordi Cabot, Sébastien Gerard, and
Antonio Vallecillo. Belief uncertainty in software models. In Proc.
MISE’19. ACM, 2019.

[BMB+18] Manuel F. Bertoa, Nathalie Moreno, Gala Barquero, Loli Burgueño,
Javier Troya, and Antonio Vallecillo. Expressing measurement uncertainty
in OCL/UML datatypes. In Proc. ECMFA’18, volume 10890 of LNCS,
pages 46–62. Springer, 2018. doi:10.1007/978-3-319-92997-2_4.

[BMR97] Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Semiring-based
constraint satisfaction and optimization. J. ACM, 44(2):201–236, March
1997. doi:10.1145/256303.256306.

[Chi09] Joanna Chimiak-Opoka. OCLLib, OCLUnit, OCLDoc: Pragmatic
Extensions for the Object Constraint Language. In Proc. of MOD-
ELS’09, volume 5795 of LNCS, pages 665–669. Springer, 2009. doi:
10.1007/978-3-642-04425-0_53.

[CMPT10] Jordi Cabot, Jose-Norberto Mazón, Jesús Pardillo, and Juan Trujillo.
Specifying aggregation functions in multidimensional models with OCL.
In Proc. of ER’10, volume 6412 of LNCS, pages 419–432. Springer, 2010.
doi:10.1007/978-3-642-16373-9_30.

[DBB14] Wei Dou, Domenico Bianculli, and Lionel C. Briand. OCLR: A
more expressive, pattern-based temporal extension of OCL. In Proc.
of ECMFA’14, volume 8569 of LNCS, pages 51–66. Springer, 2014.
doi:10.1007/978-3-319-09195-2_4.

[DEPC16] Zinovy Diskin, Romina Eramo, Alfonso Pierantonio, and Krzysztof Czar-
necki. Incorporating uncertainty into bidirectional model transforma-
tions and their delta-lens formalization. In Proc. of BX’16, volume
1571 of CEUR Proceedings, pages 15–31. CEUR-WS.org, 2016. URL:
http://ceur-ws.org/Vol-1571/paper_9.pdf.

[dF17] Bruno de Finetti. Theory of Probability: A critical introductory treatment.
John Wiley & Sons, 2017. doi:10.1002/9781119286387.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.1007/s10617-017-9182-z
http://dx.doi.org/10.1007/s10617-017-9182-z
http://dx.doi.org/10.1007/11767138_18
http://dx.doi.org/10.1007/11767138_18
https://kti.mff.cuni.cz/~bartak/constraints/extend_csp.html
https://kti.mff.cuni.cz/~bartak/constraints/extend_csp.html
http://dx.doi.org/10.1145/3239372
http://dx.doi.org/10.1007/978-3-319-92997-2_4
http://dx.doi.org/10.1145/256303.256306
http://dx.doi.org/10.1007/978-3-642-04425-0_53
http://dx.doi.org/10.1007/978-3-642-04425-0_53
http://dx.doi.org/10.1007/978-3-642-16373-9_30
http://dx.doi.org/10.1007/978-3-319-09195-2_4
http://ceur-ws.org/Vol-1571/paper_9.pdf
http://dx.doi.org/10.1002/9781119286387
http://dx.doi.org/10.5381/jot.201Y.18.2.a6

On Softening OCL Invariants · 21

[DP93] Didier Dubois and Henri Prade. Fuzzy sets and probability: Misunder-
standings, bridges and gaps. In Proc. of the IEEE Conf. on Fuzzy Sys-
tems, pages 1059–1068. IEEE, 1993. doi:10.1109/FUZZY.1993.327367.

[Eck18] Peter Eckersley. Impossibility and uncertainty theorems in AI value
alignment. Technical report, Partnership on AI & EFF, December 2018.
URL: https://arxiv.org/pdf/1901.00064.pdf.

[EPR15] Romina Eramo, Alfonso Pierantonio, and Gianni Rosa. Managing uncer-
tainty in bidirectional model transformations. In Proc. of SLE’15, pages
49–58. ACM, 2015. doi:10.1145/2814251.2814259.

[FSDC13] M. Famelis, R. Salay, A. Di Sandro, and M. Chechik. Transforma-
tion of models containing uncertainty. In Proc. of MODELS’13, vol-
ume 8107 of LNCS, pages 673–689. Springer, 2013. doi:10.1007/
978-3-642-41533-3_41.

[Gar08] V. Garousi. Traffic-aware stress testing of distributed real-time systems
based on UML models in the presence of time uncertainty. In Proc. of
ICST’08, pages 92–101. IEEE, 2008. doi:10.1109/ICST.2008.7.

[GBR07] Martin Gogolla, Fabian Büttner, and Mark Richters. USE: A UML-based
specification environment for validating UML and OCL. Science of Comp.
Programming, 69:27–34, 2007. doi:10.1016/j.scico.2007.01.013.

[GHD18] Martin Gogolla, Frank Hilken, and Khanh-Hoang Doan. Achieving
model quality through model validation, verification and exploration.
Computer Languages, Systems & Structures, 54:474–511, 2018. doi:
10.1016/j.cl.2017.10.001.

[GN05] Carlos Grandón and Bertrand Neveu. Using constraint programming for
solving distance CSP with uncertainty. In Proc. PPCP’05, volume 3709
of LNCS, page 847. Springer, 2005. doi:10.1007/11564751_85.

[JCG08] JCGM 100:2008. Evaluation of measurement data—Guide to the ex-
pression of uncertainty in measurement (GUM). Joint Com. for Guides
in Metrology, 2008. http://www.bipm.org/utils/common/documents/
jcgm/JCGM_100_2008_E.pdf.

[JPP+08] Xiao Jing, Pierre Pinel, Lei Pi, Vincent Aranega, and Claude Baron.
Modeling uncertain and imprecise information in process modeling with
UML. In Proc. of COMAD’08, pages 237–240, 2008.

[Kos90] Bart Kosko. Fuzziness vs. Probability. International Journal of General
Systems, 17(2–3):211–240, 1990. doi:10.1080/03081079008935108.

[Kow78] Robert A. Kowalski. Logic for data description. In Proc. of Logic and
Data Bases, Advances in Data Base Theory, pages 77–103. Plemum
Press, 1978. doi:10.1007/978-1-4684-3384-5_4.

[LBJ15] Aymen Louati, Kamel Barkaoui, and Chadlia Jerad. Temporal properties
verification of real-time systems using UML/MARTE/OCL-RT. In
Formalisms for Reuse and Systems Integration, pages 133–147. Springer,
2015. doi:10.1007/978-3-319-16577-6_6.

[Obj14] Object Management Group. Object Constraint Language (OCL) Specifi-
cation. Version 2.4, February 2014. OMG Document formal/2014-02-03.

[Obj15] Object Management Group. Unified Modeling Language (UML) Specifi-
cation. Version 2.5, March 2015. OMG document formal/2015-03-01.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.1109/FUZZY.1993.327367
https://arxiv.org/pdf/1901.00064.pdf
http://dx.doi.org/10.1145/2814251.2814259
http://dx.doi.org/10.1007/978-3-642-41533-3_41
http://dx.doi.org/10.1007/978-3-642-41533-3_41
http://dx.doi.org/10.1109/ICST.2008.7
http://dx.doi.org/10.1016/j.scico.2007.01.013
http://dx.doi.org/10.1016/j.cl.2017.10.001
http://dx.doi.org/10.1016/j.cl.2017.10.001
http://dx.doi.org/10.1007/11564751_85
http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
http://dx.doi.org/10.1080/03081079008935108
http://dx.doi.org/10.1007/978-1-4684-3384-5_4
http://dx.doi.org/10.1007/978-3-319-16577-6_6
http://dx.doi.org/10.5381/jot.201Y.18.2.a6

22 · Gogolla and Vallecillo

[ODR+02] William Oberkampf, Sharon M. DeLand, Brian Rutherford, Kathleen V.
Diegert, and Kenneth F. Alvin. Error and uncertainty in modeling
and simulation. Rel. Eng. & Sys. Safety, 75(3):333–357, 2002. doi:
10.1016/S0951-8320(01)00120-X.

[Oli07] Antoni Olive. Conceptual Modeling of Information Systems. Springer,
2007. doi:10.1007/978-3-540-39390-0.

[SFP08] Jörn Guy Süß, Peter Fritzson, and Adrian Pop. The impreciseness of
UML and implications for ModelicaML. In Proc. EOOLT’08, pages 17–26.
Linköping University Electronic Press, 2008.

[VG17] Antonio Vallecillo and Martin Gogolla. Adding random operations to
OCL. In Proc. of MoDeVVa’17, volume 2019 of CEUR Proceedings, pages
324–328. CEUR-WS.org, 2017. URL: http://ceur-ws.org/Vol-2019/
modevva_5.pdf.

[ZAY+17] Man Zhang, Shaukat Ali, Tao Yue, Roland Norgren, and Oscar Okariz.
Uncertainty-wise cyber-physical system test modeling. Software & Sys-
tems Modeling, Jul 2017. doi:10.1007/s10270-017-0609-6.

[ZG03] Paul Ziemann and Martin Gogolla. OCL extended with temporal logic.
In Proc. of PSI’03, volume 2890 of LNCS, pages 351–357. Springer,
2003. doi:10.1007/978-3-540-39866-0_35.

[Zim01] Hans-Jürgen Zimmermann. Fuzzy Set Theory – and Its Applica-
tions. Springer Science+Business Media, 2001. doi:10.1007/
978-94-010-0646-0.

[ZSA+16] Man Zhang, Bran Selic, Shaukat Ali, Tao Yue, Oscar Okariz, and
Roland Norgren. Understanding uncertainty in cyber-physical systems:
A conceptual model. In Proc. ECMFA’16, volume 9764 of LNCS, pages
247–264. Springer, 2016. doi:10.1007/978-3-319-42061-5_16.

About the authors

Martin Gogolla is professor for Computer Science at University of Bremen, Germany
and is the head of the Research Group Database Systems. In his group, foundational
work on the semantics of and the tooling for UML, OCL and general modeling languages
has been carried out. The group develops the OCL and UML tool USE (UML-based
Specification Environment). Contact him at gogolla@uni-bremen.de.

Antonio Vallecillo is Professor of Software Engineering at the University of Málaga,
Spain. His current research interests include Model-based Software Engineering, Open
Distributed Processing, and Software Quality. Contact him at av@lcc.uma.es, or
visit http://www.lcc.uma.es/~av.

Acknowledgments We should tank the anonymous reviewers for their insightful
comments and suggestions, that have significantly helped to improve the paper. This
project has been partially funded by Spanish Research Projects TIN2014-52034-R and
PGC2018-094905-B-I00.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.1016/S0951-8320(01)00120-X
http://dx.doi.org/10.1016/S0951-8320(01)00120-X
http://dx.doi.org/10.1007/978-3-540-39390-0
http://ceur-ws.org/Vol-2019/modevva_5.pdf
http://ceur-ws.org/Vol-2019/modevva_5.pdf
http://dx.doi.org/10.1007/s10270-017-0609-6
http://dx.doi.org/10.1007/978-3-540-39866-0_35
http://dx.doi.org/10.1007/978-94-010-0646-0
http://dx.doi.org/10.1007/978-94-010-0646-0
http://dx.doi.org/10.1007/978-3-319-42061-5_16
mailto:gogolla@uni-bremen.de
mailto:av@lcc.uma.es
http://www.lcc.uma.es/~av
http://dx.doi.org/10.5381/jot.201Y.18.2.a6

	Introduction
	Background
	Integrity constraints and OCL invariants
	Occurrence uncertainty

	Expressing Soft Invariants
	Invariant Patterns
	The LOTR Wars example
	The Likes-Follows example
	OCL invariant patterns

	Operating with Compound Soft Invariants
	Combining soft invariants with logical operators
	Invariant independence

	Related Work
	Conclusions and Future Work
	Bibliography
	About the authors

