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Abstract Collections are at the heart of every program. Modern pro-
gramming languages have acknowledged this fact by including increasingly
better expression mechanisms for manipulating collections of data and
objects. When existing objects are selected as elements of collections, often
there is an implicit intention that those objects, by means of having been
selected, take on new roles. Such is the case, for example, with shared data
in distributed simulations, which changes over time, and which distributed
components may use for different purposes as the simulation unfolds.

This paper presents the concept of Predicate Collection Classes (PCCs).
PCCs are both classes and specifications of how to select and reclassify
objects from existing collections. We describe the informal semantics of
PCCs and demonstrate how they can be used to express several iterative
algorithms that make heavy use of collections. Finally, we summarize our
use of PCCs in a framework for distributed simulations.
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1 Introduction
In many branches of study, including mathematics, the word class is, formally or
informally, used to denote sets of things that can be unambiguously defined by a
property that all of its members share [Lev79]. In this sense, classification is the process
of placing data with common properties into sets or collections. For historical reasons,
in OOP languages, the word class has a related, but slightly different, meaning: a
class is a template for constructing objects that have one property in common, namely,
they are modeled after the same nominal pattern of state and behavior, the class
itself [Bru02]. In OOP, we can look at a class C as a function that takes data and
returns an object with a specific set of fields and methods, as defined by some pattern;
all objects instantiated using C are said to be of the same class.

We are interested in expression mechanisms that allow us to classify data depending
on runtime conditions, or predicates, associating it with behavior dynamically. We
use the words classify and classification to denote both the identification of data
with certain properties (i.e. the broader meaning) and the process of associating
that data with certain pre-existing patterns (i.e. the OOP meaning). The idea is
that of predicate collection classes (PCCs, from here on), those whose extents are
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automatically determined by a predicate, rather than being explicitly manipulated, and
whose behavior is given by [OOP] classes. Such expression mechanisms are extremely
convenient, especially in long-lived, complex applications where the data changes
dynamically and may need to be reclassified often, such as simulations [Fuj00] and
the processing of streaming data [Mut05].

As a motivating example, consider two functionally independent, but data de-
pendent, simulations: a traffic simulation and a pedestrian simulation. The traffic
simulation moves cars along roads, performing collision avoidance between them, using
a rich model of cars and roads. The pedestrian simulation moves pedestrians in
sidewalks who can, at points, cross roads. The process of detecting possible collisions
between cars and pedestrians establishes a data dependency between the two otherwise
independent simulations: information about cars must flow, directly or indirectly, to
the pedestrian simulation, or vice-versa.

There are several alternatives to model this situation. One option is for the
car simulation to import/access, at every simulation step, the entire collection of
pedestrians from the pedestrian simulation; another option is for data to flow the other
way around. None is these options is ideal, for two reasons: (1) the vast majority of
cars and pedestrians are not at risk of colliding, so it will be wasteful to replicate/access
them all when only a subset of them is of interest; and (2) the information that the
car simulation needs of pedestrian objects, or that the pedestrian simulation needs
of car objects, is only a small portion (i.e., a projection) of the potentially rich data
models used by the respective simulations – essentially only their positions are needed.
A better alternative is for one of the simulations to only import/access portions of the
other simulation’s objects that are within a certain range of its own objects. But, in
this case, an even better alternative is to not import or access the other simulation’s
objects at all, and, instead, rely on an external substrate of all data that can help
model and classify the internal data more expressively. For example, the pedestrian
simulation can model the concept of pedestrian in danger, which corresponds to the
subset of its own pedestrians that are at a certain distance of any car in the other
simulation. In doing so, no car flows explicitly into the pedestrian simulation; the
collection of pedestrians in danger is simply a subset of the existing pedestrians
predicated on state that exists on another collection elsewhere. Pedestrians in danger
behave differently than all other pedestrians, for example, they may move faster or
stop. Once they move out of danger ranges, they become regular pedestrians again.

1 pclass PedestrianInDanger(Pedestrian pedestrian, List<Car> cars) :
2 predicate : :
3 foreach c ∈ cars :
4 if pedestrian.near(c) :
5 return True
6 end
7 end
8 return False
9 end

10 method avoid() :
11 // Move the pedestrian out of the road!
12 end
13 end

Algorithm 1: Potential Pedestrian and Car collision avoidance code.
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The pseudo-code in Algorithm 1 sketches the main idea of what we want to achieve:
we want to create and classify collections of objects automatically from other collections.
In this case we want the collection class PedestrianInDanger to contain Pedestrian
objects predicated on a given list of Car objects, and we want this predicate collection
class to have its own specific methods – in this case, method avoid.

Proposals for how to achieve similar goals can be traced to the early days of OOP,
and include predicate classes [Cha93], multiple most specific classes [BG95], dynamic
reclassification of objects [DDDCG01], and dependent classes [GMO07]. We take a
fresh look at this idea, placing it in the context of modern applications and frameworks.
Two characteristics make our approach different from what has been proposed before:
(1) our focus on collections of objects (predicate classes), rather than on construction
of individual instances (attributive classes); and (2) our approach to handling object
state changes.

In languages with mutable state, PCCs pose many challenges, some of which are
critical to both the semantics and the implementation of the concept. An object that
is classified as an instance of some predicate class C at one point in time, may see
its internal predicate become invalid some time later. In the example above, a call
to the method avoid (line 10) may change the position of the pedestrian in danger,
violating the property that made that object exist in the first place. From that point
on, it is unclear what should happen to that object. Should it cease to exist? Should
it continue to exist but in a zombie state? Should it continue to exist within a certain
scope, but with the understanding that the predicate may be invalid? We chose this
latter option, as it is the closest to the semantics of modern collection classes. This is
will be explained in more detail later on.

We present a programming model based on collections of objects created from
other collections of objects, where the classification predicates are declared by static
queries defined in classes, rather than being intermingled with the rest of the program
logic. Although this programming model can be used in many situations, it is designed
specifically for applications where the input data changes as the application runs,
requiring frequent (re-)classification.

Our work builds on many ideas that came before related to dynamic reclassification
of objects. The main contribution is the design of a single mechanism that serves
two goals simultaneously: selecting objects from collections and dynamically
associating their data with specific behavior, effectively making them be objects
of additional classes.

It should be noted that this paper describes design work that is implemented,
publicly available, and used by the authors in non-trivial applications, but whose main
tenet – that the design is beneficial for software development – is not yet assessed
systematically. This paper focuses on the design itself, and the motivations for it; a
systematic evaluation of its benefits will be the topic of another study.

This paper is organized as follows. Section 2 gives an overview of predicate collection
classes and how they can be used to create object frames. Section 3 describes object
reclassification in more detail and Section 4 presents the complete list of algebraic
operations that underlie PCCs. Section 5 shows how our programming model can be
used by data processing applications. Related work is presented in Section 6. Finally,
Section 7 discusses open issues with the design and concludes the paper.
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Decorator Target Origin
@subset(Class) class PCC
@projection(Class, F ield1, ..., F ieldm) class PCC
@join(Class1, ..., ClassN ) class PCC
@union(Class1, ..., ClassN ) class PCC
@intersection(Class1, ..., ClassN ) class PCC
@parameter(Class, mode) class PCC
@dimension(Type) property PCC
@Property.setter property Python
@staticmethod method Python

Table 1 – Summary of decorators used by PCCs.

2 Predicate Collection Classes: Overview
This section gives an overview of the main design elements of PCCs using as an
example the simplest of all operations, subsetting. Given that our first implementation
of PCCs is in Python, the examples are written in Python. The PCC capabilities are
embedded without changing the language, using our own decorators as well as some
pre-existing ones. Table 1 summarizes these decorators, the elements they apply to,
and whether they are our own or Python’s.

In general, PCCs are collections of objects created from one or more collections of
objects of certain classes or types, for which certain predicates hold. A PCC defines
both a class and a collection of instances of that class. Listing 1 shows one example
where the PCC ActiveCar is defined as a subset of instances of the regular class Car.

This first example lends itself to a few observations, all of which are applicable to
all PCCs, not just subsets.

• The data of the elements in these collections is given by properties tagged
as @dimension (see lines 2, 5, 8).1 The set operations are established by
declarations immediately above the class declarations, in this case @subset(Car)
(line 13). Other operations will be introduced in the next section.

• Besides the operation declaration (in this case, Subset), the other user specifi-
cation pertaining to PCC is the predicate, __predicate__, a static method,
which, in this case, establishes that a Car c is active if its Velocity field is neither
the zero vector nor None (line 16). The arguments for predicate depend on the
operation declaration, and this is enforced by the PCC language processor; in
the case of subsets, there is only one argument, one whose type is that of the
subsetting declaration above (in this case, Car). This allows the programmer
to define the filter for determining which elements of the original set are to be
selected.

• PCCs construct instances of their type, not of the type of their supersets. In
this case, the ActiveCar PCC will create instances of ActiveCar, not of Car. In
other words, PCCs are not just about selecting objects from lists and returning
the objects that honor in invariant; for each object that honors the predicate, a
new instance of the PCC class will be created.

1For simplicity sake, we omit the setter methods in these examples, but they need to exist if the
values of properties are to be changed.
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1 class Car:
2 @dimension(int)
3 def ID(self): return self._ID
4
5 @dimension(list)
6 def Position(self): return self._Position
7
8 @dimension(list)
9 def Velocity(self): return self._Velocity
10
11 #...methods of Car...
12
13 @subset(Car)
14 class ActiveCar:
15 @staticmethod
16 def __predicate__(car): return not (car.Velocity == [0,0] or car.Velocity == None)
17
18 def Move(self):
19 self.Position[0] += self.Velocity[0]
20 self.Position[1] += self.Velocity[1]
21 if self.Position == (100, 100): self.Velocity = None
22
23 cars = []
24 # ...fill in the list of cars...
25 while (True):
26 foreach aCar in pcc.create(ActiveCar, cars) as aCars:
27 aCar.Move()

Listing 1 – Subsetting
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• PCCs can define their own fields, properties and methods. In the example
above, the PCC ActiveCar defines a method Move() (lines 18–21) that doesn’t
necessarily exist in class Car (if it exists, it is an unrelated method). In this sense,
PCCs are regular OOP classes, with their own behavior that is independent of
the original objects’ classes.

• PCCs acquire dimensions (i.e. properties) defined in the original classes of their
supersets. In this case, ActiveCar acquires all the dimensions of class Car; that
can be seen in the body of method Move, which refers to the fields Velocity and
Position defined in class Car (lines 18–21). This mechanism is not inheritance,
even though for subset operations, in particular, the dimension acquisition
semantics is very similar to inheritance. For other operations, the differences
will become much clearer in the following sections.

• Lines 23–26 show how PCCs are created and used: a function pcc.create takes
a PCC class name (in this case ActiveCar) and a collection of objects from which
to create reclassified instances, and returns those new instances.

The next two sections cover object reclassification and the different kinds of PCCs,
respectively, in more detail.

3 Object Reclassification
In order to explain object reclassification, we will use the example of the previous
section involving collections of cars and subsets of active cars (see Listing 1). We
now focus on the bottom part of that snippet, the infinite loop (lines 25–27). Within
that loop, in each iteration, a collection of reclassified objects is created given a list
of cars (line 26). The collection aCars is a subset of the collection of cars that honor
the predicate defined in ActiveCar. For every active car in this collection, the method
Move is invoked (line 27); that method, which does not exist in class Car, changes
the active car’s position (lines 18–21), and may change its velocity to None (line 21).
Those changes may or may nor be propagated to the original car instances, depending
on whether copy or reference semantics is used; both semantics will be explained next.
In either case, in the next iteration, the next reclassification will get a new collection
of active cars.

3.1 Object Model and Reclassification
Figure 1 illustrates the required object model upon which PCCs can be defined. The
creation of a class instance, for example aCar = Car(), results in two components
being created: a set of fields that hold the object’s state and a set of methods that
access that state. The object state exists independently of the methods, and is a
first-class object in itself – i.e. it can be referenced.

Several object-oriented languages provide this object model, or some version of
it; Python is one of them. Other languages such as Java and C# do not expose the
object’s state as first-class, but the set of fields and properties of the object can be
accessed via reflection, which make it possible for PCCs to be implemented in those
languages too.

PCC objects go through a process of reclassification, which means that they are
instances of different classes than their originals. In the Cars example (1), in line 28,

Journal of Object Technology, vol. 16, no. 2, 2017

http://dx.doi.org/10.5381/jot.2017.16.2.a3


Predicate Collection Classes · 7

Figure 1 – Object model: an instance of a class is a combination of state and behavior
(methods). Different behavior may be dynamically associated with the same instance
state.

Figure 2 – PCC creation by reference (left) vs. by copy (right).

the car instances that honor the predicate (line 16) will be available as instances of
ActiveCar. The relation between the reclassified instance and its original depends on
whether a reference or copy semantics is used, which is the topic of the next subsection.

3.2 Reference vs. Copy Semantics
There are two mechanisms by which reclassification can be achieved: by referencing
the state of the original object directly, or by copying data between the original and
the reclassified instance. Figure 2 illustrates the two semantics. Both are possible,
and we have experimented with both, but ultimately, we decided to adopt a reference
semantics for the core of PCCs (Figure 2, left). Nevertheless, here, we discuss the two
possibilities, their strengths and weaknesses, and the context where copy semantics is
required.

If the state is used by reference, the PCC object and the original have different
types (and therefore different interfaces) but point to the same object state. State
changes can be done via any of the interfaces. In Python, we achieve reference
semantics between the state of different instances of different classes simply by setting

Journal of Object Technology, vol. 16, no. 2, 2017

http://dx.doi.org/10.5381/jot.2017.16.2.a3


8 · Lopes, Achar and Valadares

the __dict__ field of reclassified instances to that of their original counterparts.
If the reclassification is done with a copy semantics, then the creation of a PCC

involves making deep copies of the objects’ state at that point in time. From then
on, the state of the PCC instance becomes independent of original. In order to
prevent copying more than necessary, only attributes marked as dimensions are copied.
Additionally, dimensions that are object references are followed and copied recursively.
The copying process keeps track of which objects have been ingested, so that no two
copies of the same object are included.

Reference semantics provides true multi-classification of objects, which makes many
problems easier to model. It also has much better performance than copy semantics,
since no memory is copied when creating PCCs. As such, even though we experimented
with both, the current implementation of PCCs supports only reference semantics.

In multi-threaded applications, the reference semantics suffers from the general
problems associated with the lack of isolation. In programs where changes to the
reclassified objects do not need to be reflected back to the originals, copy semantics
might be preferred and that is a drawback of our choice to support only reference
semantics.

Copy semantics can be achieved with an additional layer on top of PCCs. For
example, in one of our main applications of PCCs involving distributed simulations, we
designed and implemented a layer on top of PCCs that serializes and deserializes PCCs,
and that merges changes made to PCC objects back with the state of their originals.
We call this extra layer a dataframe. Dataframes could also be implemented in
a non-distributed setting, but, so far, we have no strong justification for doing so,
since all non-distributed implementations of PCCs can be done much more easily
with reference semantics. While interesting in its own right, especially with respect
to merging changes, the dataframe layer is not part of PCCs, and hence it is not
described here.

3.3 Constant Consistency vs. One-Time Consistency
As the example shows, PCC instances can, at points, be in violation of the predicate
that classified them and placed them in the resulting collection. In this example, when
active cars reach the final point, their Velocity is set to None (Listing 1, line 21). This,
however, does not remove them from the collection, or from the class – ActiveCar –
even though from that point on they are in violation of the predicate.

This is a feature, not a flaw, of the design of PCCs. PCCs are designed to be
used in iterative computations. As such, at each step, we want stability of the data
in the collections. As such, we support one-time consistency. The semantics of
one-time consistency is as follows: at the time of creation of a PCC, before any
processing occurs, the state of the instances that make it to the PCC is guaranteed to
be consistent with the predicate of the PCC. Once the objects start being processed,
however, there are no guarantees of consistency with the predicate that placed them
there.

While this choice of semantics may at first seem strange, we note that a similar
choice has also been done in mainstream collection libraries. Consider, for example,
the iteration over a hash map/dictionary; in most modern programming languages
(Java, Python, C#, etc.) the collection cannot be changed during iteration, even if
some elements of the collection logically stop belonging to it or new elements logically
become members of it. The same happens in sorted collections based on the objects’
hashcode, or comparator method: given that the hashcodes and comparisons are
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based on the objects’ state, when that state changes after the original insertion, the
position of the object in the collection may be temporarily inconsistent until explicit
adjustments are made.

An alternative to this design choice would be to keep strict constant consistency of
the objects with the PCC predicates, and to move objects in and out of collections
immediately as their state changes. Constant consistency would make certain instances
be reclassified in, and even disappear from, the collection before the processing step
would be over. While feasible, this choice would be considerably more complex to
implement, slow, and, most importantly, potentially confusing. We decided to keep
with the design choices of mainstream collection libraries.

3.4 Inheritance
The relational operations underlying PCCs, of which subsetting is only one, have
interesting implications for the traditional concept of inheritance in OOP. Even before
presenting the other operations, it is important to clarify the relation between PCCs
and inheritance; subsetting serves as a good illustration of the subtleties of this relation.
More subtleties will emerge when we present other PCCs. The overall design principle
is that PCCs can use inheritance, but do not try to reappropriate it. When inheritance
is desired, programmers can complement the PCC declaration with the inheritance
features provided by the host language.

In the example of Listing 1, the PCC ActiveCar is a subset of Car, but does not
inherit from the class Car. Because there is no inheritance relation, ActiveCar is not a
subtype of Car, nor does it inherit any method from Car. The only elements reused
from Car by ActiveCar are the fields explicitly marked as dimensions, in this case ID,
Position, and Velocity. The lack of implicit inheritance is intentional: it may very well
be that programmers want completely different behavior for ActiveCar objects than
that present in Car. When behavioral subtyping is desired, the programmer can add
it in the usual manner. In the example, if subtyping had been desired, we would have
declared ActiveCar as:
@subset(Car)
class ActiveCar(Car):
...

In this case, ActiveCar would be a subclass of Car, and all methods and fields would
be inherited.

4 Relational Operations of Predicate Collection Classes
A PCC is both a class of objects and a specification for collection of objects of that
class. As such, it is defined by both a dimensions rule Γ (Gamma) and an extension
rule Ψ (Psi). The predicate collections result from relational operations on collections
of existing objects. This section revisits subsets and presents the other main relational
operations: projection, cross product (join), union, intersection, and parameterization
of collections. A summary of these rules is presented in Tables 2 and 3. This section
contains the explanation of these rules.
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Γ (Fields Rule)
Subset
SubP (A) γ(SubP (A)) ⊇ γ(A)
Projection
Proj(A : f1, ..., fm) γ(Proj(A : f1, ..., fm)) ⊇ {f1, ..., fm}
Join
A1 ×P A2 γ(A1 ×P A2) ⊇ γ(A1) ∪ γ(A2)
Union
A1 ∪A2 γ(A1 ∪A2) ⊇ γ(A1) ∩ γ(A2)
Intersection
A1 ∩A2 γ(A1 ∩A2) ⊇ γ(A1) ∩ γ(A2)

Table 2 – Dimensions rules (Γ) for PCCs, which dictate the fields of PCCs.

Ψ (Extension Rule)
Subset
SubP (A) ψ(SubP (A)) = {a ∈ ψ(A)|P (a)}
Projection
Proj(A : f1, ..., fn) ψ(Proj(A : f1, ..., fm)) = ψ(A)
Join
A1 ×P A2 ψ(A1 ×P A2) = {(a1, a2) ∈ ψ(A1)× ψ(A2)|P (a1, a2)}
Union
A1 ∪A2 ψ(A1 ∪A2) = {a ∈ ψ(A1) ∪ ψ(A2)}
Intersection
A1 ∩A2 ψ(A1 ∩A2) = {a ∈ ψ(A1) ∩ ψ(A2)}

Table 3 – Extension rules (Ψ) for PCCs, which define which instances are in the PCC.

4.1 Subset
Listing 1 presented an example of a subset PCC. More formally, given a collection A
of objects of class A, a subset PCC of A for a certain predicate P , written SubP (A),
which is also a class, is ruled by the following:

Γ Rule: SubP (A), as a class, includes all dimensions of class A, and can include
additional dimensions of its own.
Ψ Rule: SubP (A), as a set, consists of instances of class SubP (A) constructed from
instances in A that honor the given predicate P .

4.2 Projection
Given a collection A of objects of class A, a projection PCC of A over a subset of
dimensions of A, written Proj(A : f1...fm), is defined by the following:

Γ Rule: Proj(A : f1...fm) , as a class, includes the dimensions of class A onto which
it is being projected, f1...fm, and can include additional dimensions of its own.
Ψ Rule: Proj(A : f1...fm), as a set, consists of instances of class Proj(A : f1...fm)
constructed from all instances in A.

Listing 2 shows an example where a class Person, with multiple dimensions, is
projected as PCC PersonInfo, in which the objects have only two of the dimensions of
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1 class Person:
2 @dimension(int)
3 def ID(self): return self._ID
4 @dimension(str)
5 def Name(self): return self._Name
6 # plus 20 other dimensions
7
8 @projection(Person, Person.ID, Person.Name)
9 class PersonInfo:
10 def PrintSummary(self):
11 print ‘‘ID=’’ + str(self.ID) + ‘‘ Name=’’ + self.Name
12
13 @Name.setter
14 def Name(self, value): self._Name = value
15 # More fields and methods for PersonInfo

Listing 2 – Projection

1 @join(Person, Card, Transaction)
2 class RedAlert:
3 def __init__(self, p, c, t):
4 self.p = p
5 self.c = c
6 self.t = t
7
8 @staticmethod
9 def __predicate__(p, c, t):
10 p.id==c.owner and t.card==c.id and
11 t.amount > 2000 and t.holdstate==False
12
13 # Dimensions of Person, Card and Transaction are available. For example:
14 def Protect(self):
15 self.c.holdstate = True

Listing 3 – Cross Product (Join)

Person (line 8). PersonInfo can be tasked with methods not available to the objects
of the class Person. For example, PersonInfo can have exclusive set access to Name
(line 13). This means that any function that uses Person will not be able to change
the Name, until the projection PersonInfo is used. By making this explicit we are
enforcing a certain protocol for data access that is much more expressive than simple
accessibility qualifiers.

4.3 Cross Product (Join)
Given a collection A of objects of class A, and a collection B of objects of class B, the
join PCC of A and B under a certain given predicate P , written (A×P B), is ruled
by the following:
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1 class Fruit:
2 @dimension(float)
3 def size(self): return self._size
4 ...
5
6 class Lemon(Fruit): ...
7 class Orange(Fruit): ...
8 class Banana(Fruit) ...
9
10 @union(Lemon, Orange)
11 class Citrus(Fruit):
12 def MakeJuice(): return size/50
13 # more fields and methods

Listing 4 – Union

Γ Rule: A×P B, as a class, includes all dimensions of class A and all dimensions of
class B, either directly as the same dimensions or possibly indirectly via instances of
A and B as fields, and can include additional dimensions of its own.
Ψ Rule: A ×P B, as a set, consists of instances of class A × B constructed from
instance pairs (a ∈ A, b ∈ B) that honor the given predicate P .

The cross product of two sets is defined as the set of all combinations of elements
of the first set and elements of the second, possibly with some additional constraints.
In Listing 3, the declaration @join(Person, Card, Transaction) establishes that
RedAlert is a cross product operation between instances of those three classes. The
predicate P , in this case, establishes some constraints regarding identifiers, amounts
and status of the transactions.

4.4 Union
Given a collection A of objects of class A, and a collection B of objects of class B, the
union PCC of A and B, written (A∪B), which is also a class, is ruled by the following:

Γ Rule: A ∪B, as a class, includes all dimensions resulting from the intersection of
the dimensions of class A and class B, and can include additional dimensions of its
own.
Ψ Rule: A ∪ B, as a set, consists of instances of class A ∪ B constructed from all
instances a ∈ A and b ∈ B.

While it is possible to define the union of two sets with elements of the same type
(e.g. List<Car> c1 ∪ List<Car> c2), it is more interesting to add sets with elements
of different types, producing a union that can have meaningful semantic differences
from the original sets. Listing 4 shows one such example, where the PCC Citrus
defines a set containing all instances of Lemon and Orange, but not of Banana.

As the example illustrates, Unions are an expression a mechanism that can be
seen as post-hoc inheritance, i.e. commonalities that are established later rather being
modeled in. In the example of Listing 4, using traditional inheritance, a Citrus class
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would be defined as inheriting from Fruit, and then classes Lemon and Orange would
inherit from Citrus. With the union PCC, such strict hierarchies are not necessary,
as new unions can be added relating existing classes to each other externally to their
inheritance definitions.

Dimension compatibility in unions is determined by their names. The less fields
the elements have in common, the less fields will be available for the methods of the
union PCC to use. In the extreme, when the only thing in common between the
elements is that they are objects, no fields are available in the union PCC; but the
union is still valid.2

Because PCCs relate to their domain sets structurally, the union of sets applies to
any sets, not just those whose elements have a common user-defined super type, as in
the example. The following code shows the union of two sets that have elements with
no type in common, other than Object, but that have one field in common, size:
class Car:
@dimension(float)
def size(self): return self._size

class Lemon:
@dimension(float)
def size(self): return self._size

@union(Lemon, Car)
class Prize:
def Box(): return size + 10

In cases where the two sets have some overlap, the union, by default, will include
only one of the duplicate objects (so, the DISTINCT semantics of union in SQL). For
example:
class Car: ...
@subset(Car)
class ActiveCar(Car): ...
@subset(Car)
class RedCar(Car):...

@union(ActiveCar, RedCar)
class RedOrActive(Car): ...

In this example, there may be cars that are both active and red. By default, those
objects appear only once in the resulting collection RedOrActive.

4.5 Intersection
Given a collection A of objects of class A, and a collection B of objects of class B, the
intersection PCC of A and B, written (A ∩B), which is also a class, is ruled by the
following:

2Many SQL engines support attribute renaming in order to enrich the expression of unions and
intersections. For the time being, our model and language does not support field renaming, although
it can easily be added in the future.

Journal of Object Technology, vol. 16, no. 2, 2017

http://dx.doi.org/10.5381/jot.2017.16.2.a3


14 · Lopes, Achar and Valadares

1 class Car: ...
2
3 @subset(Car)
4 class ActiveCar(Car): ...
5
6 @subset(Car)
7 class RedCar(Car): ...
8
9 @intersection(ActiveCar, RedCar)
10 class RedActiveCar(Car): ...

Listing 5 – Intersection

Γ Rule: A ∩B, as a class, includes all dimensions resulting from the intersection of
the dimensions of class A and class B, and can include additional dimensions of its
own. (Similar to union)
Ψ Rule: A ∩ B, as a set, consists of instances of class PCCI constructed from all
instances that belong to the intersection of A and B.

As stated above, the Γ rule is the same as for unions. This requires some explanation,
as it may be surprising. Unions and intersections must operate on structurally
compatible objects, hence the intersection of the fields in both cases, which gives the
minimum common structure. The differences are in the extension (Ψ) rule, i.e. the
objects that end up in the resulting set. Our design decision for unions and intersections
follows that of SQL’s unions and intersections.

Listing 5 shows an example where the set of active cars is intersected with the set
of red cars, resulting in a set of cars that are both active and red.

Although the concept of an object being an instance of ActiveCar and of RedCar
simultaneously may seem strange, this is explained by the fact that PCCs create
objects that are entangled with their originals: a specific car that is both active and
red will end up having an incarnation as ActiveCar and another as RedCar; but, due
to entanglement, object identification is never lost. Therefore, two PCC instances
derived from the same original object pass the equality test.

4.6 Parameterized Collections
Additionally to the basic algebraic operations on collections, we also support parame-
terization of queries when constructing PCCs. Listing 6 shows one example in the
domain of graphs (nodes and edges). The PCC collection InEdge is defined as a
parameterized subset. InEdge is a subset of Edge. However, the subset cannot be
instantiated without providing specific run-time context: the Node to which the subset
collection of Edges are incident upon. Node is therefore the parameter. A Node has
to be passed during the creation of the InEdge collection for it to be successful.

Parameters can be also collections of objects. Listing 7 illustrates this with the
concept of a pedestrian in danger of being hit by a car. The parameter is a collection
(list) of cars.
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class Node(object):
@dimension(int)
def id(self): return self._id
...

class Edge(object):
@dimension(Node)
def start(self): return self._start
@dimension(Node)
def end(self): return self._end
...

@parameter(Node, mode=Singleton)
@subset(Edge)
class InEdge(Edge):
@staticmethod
def __predicate__(e, n): return e.end.id == n.id

Listing 6 – Parameterized subset with single parameter

@parameter(Car, mode=Collection)
@subset(Pedestrian)
class PedestrianInDanger(Pedestrian):
@staticmethod
def __predicate__(p, cars):
for c in cars:
if abs(c.Position.X − p.X) < 130 and c.Position.Y == p.Y:

return True
return False

Listing 7 – Parameterized subset with a list as parameter
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4.7 Final Note on PCC Creation
This section showed the different relational operations that underlie the different
kinds of PCCs, but it didn’t yet cover how these PCCs are constructed from existing
collections of objects. As briefly mentioned in Section 2, PCCs are created with the
pcc.create function – see Listing 1, lines 23–27. This function takes a PCC name
(the class to be constructed), one or more lists of objects from which to select the
members of the PCC, and possibly additional parameters. For completeness’ sake,
the following shows examples of how to obtain the different PCCs explained in this
section.
Type Listing Creation example
Subset 1 cars = list of cars

acars = pcc.create(ActiveCar, cars)
Projection 2 persons = list of persons

pinfos = pcc.create(PersonInfo, persons)
Join 3 persons, cards, trans = lists of persons, cards, and transactions

ralert = pcc.create(RedAlert, persons, cards, trans)
Union 4 fruits = list of several types of fruits

citrus = pcc.create(Citrus, fruits)
Intersection 5 cars = list of cars

acars = pcc.create(ActiveCar, cars)
rcars = pcc.create(RedCar, cars)
racars = cc.create(RedActiveCar, acars, rcars)

Parameterization 6 edges = list of edges; node = Node()
inedges = pcc.create(InEdge, edges, params=(node,))

Parameterization 7 peds = list of pedestrians; cars = list of cars
pdanger = pcc.create(PedestrianInDanger, peds, params=(cars,))

5 Usage Examples
We have used PCC in both small algorithms and as a component of a simulation
framework that we are developing. This section illustrates the expressiveness of PCCs
using four of those examples. All of these examples are available from the PCC
repository in Github (See https://github.com/Mondego/pcc). Parts of the code are
omitted, so that the code shown here can fit in one page. The indentation shown here
deviates from the stylistic indentation of Python code, for the same reason. Please see
the project repository for the complete code.

5.1 K-Nearest Neighbor
Listings 8 and 9 give the PCC implementation of the K Nearest Neighbor algorithm as
applied to the clustering of flowers.3 The goal here is to identify the type of a flower
using four characteristics of flowers: the width and length of the sepal and petals. The
example code is shown in two parts, the data model (Listing 8) and the procedural
part that uses it (Listing 9).

The main class in this example is flower (Listing 8, lines 1–15). A parameterized
subset knn is defined (Listing 8, lines 17–36), whose purpose is to model the K nearest
neighbors of any given flower. As such, it requires two parameters: a flower, and the

3Adapted from http://machinelearningmastery.com/
tutorial-to-implement-k-nearest-neighbors-in-python-from-scratch/.
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1 class flower(object):
2 @dimension(float)
3 def sepal_length(self): return self._sepal_length
4 @dimension(float)
5 def sepal_width(self): return self._sepal_width
6 @dimension(float)
7 def petal_length(self): return self._petal_length
8 @dimension(float)
9 def petal_width(self): return self._petal_width
10 @dimension(str)
11 def fl_type(self): return self._fl_type
12 @dimension(str)
13 def predicted_type(self): return self._predicted_type
14 def __init__(self, sl, sw, pl, pw, tp):
15 # initialize fields
16
17 @parameter(flower, int)
18 @subset(flower)
19 class knn(object):
20 @staticmethod
21 def euclideanDistance(fl1, fl2):
22 return math.sqrt(pow((fl1.sepal_length − fl2.sepal_length), 2)
23 + pow((fl1.sepal_width − fl2.sepal_width), 2)
24 + pow((fl1.petal_length − fl2.petal_length), 2)
25 + pow((fl1.petal_width − fl2.petal_width), 2))
26 @staticmethod
27 def __query__(training_flowers, test, k):
28 final_items = sorted([tr_f for tr_f in training_flowers],
29 key = lambda x: knn.euclideanDistance(test, x))
30 return [final_items[i]
31 for i in range(len(final_items))
32 if knn.__predicate__(i, k)]
33 @staticmethod
34 def __predicate__(index, k): return index < k
35
36 def vote(self): return self.fl_type

Listing 8 – K Nearest Neighbor – data model
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1 def getResponse(knns):
2 classVotes = {}
3 for one_neighbour in knns:
4 response = one_neighbour.vote()
5 classVotes[response] = classVotes.setdefault(response, 0) + 1
6 sortedVotes = sorted(classVotes.iteritems(), key = lambda x: x[1], reverse = True)
7 return sortedVotes[0][0]
8
9 def main():
10 trainingSet, testSet, predictions = [], [], []
11 split, k = 0.67, 3
12 loadDataset("iris.data", split, trainingSet, testSet)
13 for one_flower in testSet:
14 with pcc.create(knn, trainingSet, params = (one_flower, k)) as knns:
15 one_flower.predicted_type = getResponse(knns)
16 print(’Accuracy:␣’ + repr(getAccuracy(testSet)) + ’%’)
17
18 main()

Listing 9 – K Nearest Neighbor – algorithm

number of nearest neighbors to be selected. A few facts are interesting about the knn
PCC:

• The knn PCC does not inherit from flower, but it is a subset of flower collections.
As such, all dimensions of the flower class are available in knn instances.
Methods, however, are not inherited.

• The __query__ defined in the knn PCC is tasked with sorting the training set
of flowers using the Euclidean distance with the characteristics of the given flower
as dimensions (Listing 8, lines 21–25). It selects and returns the nearest K flowers.
The default __query__ cannot be used to create this subset, because the final
subset is a limited collection that depends on sorting order. Additional controls
like __order_by__ and __limit__ would be needed in order to provide this
functionality, something we still do not support. Advanced queries such as this
one can be directly defined by the programmer.

• The knn PCC defines an additional method vote (Listing 8, line 36), which
returns the label of the flower as neighbor of some other flower. In other words,
voting is not a general behavior of flowers; it’s only a behavior of flowers that
are K-distance similar to some other flower.

Listing 9 shows the procedural part. After loading the data and dividing it into a
training and test set (Listing 9, line 20), we iterate over every flower that has to be
labeled (Listing 9, lines 21–23). For each of those flowers, we create the corresponding
knn subset with the flower to be labeled and the number of neighbors to look for as the
parameters (Listing 9, line 22). We then decide what type of flower this is by polling
its nearest neighbors for votes (Listing 9, line 23). In the getResponses function, each
of the neighbors votes on a label (line 8), and the majority wins (lines 11-12).
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5.2 Car and Pedestrian
We also used PCCs to develop proof-of-concept simulations. The simulation example
we worked on involved cars and pedestrians moving towards each other. When a
pedestrian is in danger of colliding with a car, it gets out of the way. In this simulation,
PCCs were used to drive the state changes for cars and pedestrians, rather than being
used to calculate intermediate steps like in the previous example. PCCs are both
creators and consumers of the state change.

Listing 10 shows the base classes that were used for this example. Car and
Pedestrians have their own classes (lines 1–17 and lines 19–45 respectively). Both
classes are derived from the Sprite class in pygame, a module that was used to
render the car and pedestrians in the simulation viewer. The attributes required for
visualization are not registered as dimensions, and so they will not be copied when
PCCs are created from Car and Pedestrian.

Listing 11 details the mechanism needed to move a car. We track two states: Inac-
tiveCar (defined in lines 1–9) and ActiveCar (defined in lines 11–21). An InactiveCar
is one that has its Velocity dimension set to zero. ActiveCar is naturally the opposite.
Both are Subsets of Car, but they do not inherit from Car. This means that they get
the dimensions from Car (as they are declared as Subsets) but they do not inherit the
methods or the non dimension attributes from Car. This is useful in this case as Car
is also a sprite object and has properties and methods that are not needed.

ActiveCar and InactiveCar also define their own methods relevant to the state of
the car that it models. An ActiveCar cannot be started, and an InactiveCar cannot be
Moved. When an InactiveCar is started, in the next iteration it gets classified as an
ActiveCar and gains the ability to move. This is done by two parallel threads, one that
starts InActiveCars (lines 26–35) and one that moves ActiveCars (lines 37–44). All the
pcc changes are done under the scope of the dataframe object. The dataframe object
performs two tasks. First, it uses a synchronization lock to make the computation
within its scope thread safe. Second, it allows us to create PCC objects using the copy
semantics, and provides a mechanism to copy changes performed on the copied object
back to the original. This merge operation is performed at the end of its scope.

Listing 12 shows us the PCC classes, and the mechanisms needed to move pedes-
trians, and make them avoid danger when they are close to cars. StoppedPedestrian
(lines 1–6), and Walker (lines 8–13) are similar to ActiveCar, and InactiveCar classes.
They are subsets of Pedestrian that track the state of the pedestrian object. A
StoppedPedestrian is one that has not moved from the initial position. A Walker is a
pedestrian that has moved from the initial position. There are two threads that create
and use these objects in the same way as cars. To make the walkers avoid cars, the
PedestrianInDanger class (lines 15–28) was created. This is a parameterized subset of
Pedestrians, that takes a list of Cars as a parameter. To shorten the search space, it
can also be made a subset of Walker, and parameterized on a list of ActiveCar. The
Move function in the PedestrianInDanger class overrides the Move in the Pedestrian
class. So when an object gets classified as a PedestrianInDanger, the Move that is
executed is different, and it will avoid the car (lines 44–47).

There are many ways in which PCCs allow pedestrians in danger to be calculated.
Appendix A.1 shows a couple of different ways of modeling the pedestrians in danger
situation.
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1 class Car(pygame.sprite.Sprite):
2 # The class that shows the image of a car.
3 # Normal class that holds the state of a car.
4 FINAL_POSITION = 500
5 SPEED = 10
6 @dimension(str)
7 def ID(self): return self._ID
8 @dimension(tuple)
9 def position(self): return self._position
10 @dimension(tuple)
11 def velocity(self): return self._velocity
12
13 def __init__(self, position):
14 # Constructor
15
16 def update(self):
17 # Changes the position of the car in the graphics window.
18
19 class Pedestrian(pygame.sprite.Sprite):
20 # base pedestrian class
21 INITIAL_POSITION = (400, 0)
22 SPEED = 10
23 @dimension(str)
24 def ID(self): return self._ID
25 @dimension(int)
26 def X(self): return self._X
27 @dimension(int)
28 def Y(self): return self._Y
29
30 def __init__(self):
31 # Constructor
32
33 def Move(self):
34 self.X −= Pedestrian.SPEED
35 if self.X <= 0:
36 self.Stop()
37
38 def Stop(self):
39 self.X, self.Y = Pedestrian.INITIAL_POSITION
40
41 def SetPosition(self, x):
42 self.X = x
43
44 def update(self):
45 # updates the graphics with changes to state.

Listing 10 – Normal classes needed for the Car and Pedestrian Simulation
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1 @subset(Car)
2 class InactiveCar(object):
3 # Car that is not moving, Velocity is zero
4 @staticmethod
5 def __predicate__(c):
6 return c.velocity == (0, 0, 0) or c.velocity == None
7
8 def Start(self):
9 self.velocity = (Car.SPEED, 0, 0)
10
11 @subset(Car)
12 class ActiveCar(object):
13 # car that is moving, velocity is not zero
14 @staticmethod
15 def __predicate__(c):
16 return not (c.velocity == (0, 0, 0) or c.velocity == None)
17
18 def Move(self):
19 x,y,z = self.position
20 xvel, yvel, zvel = self.velocity
21 self.position = (x + xvel, y + yvel, z + zvel)
22
23 def Stop(self):
24 self.position, self.velocity = (0,0,0), (0,0,0)
25
26 def StartInactiveCars(cars, MainWindow):
27 # Starts inactive cars every 5 secs
28 while True:
29 with dataframe(carlock) as df:
30 iacs = df.add(InactiveCar, cars)
31 for car in iacs:
32 car.Start()
33 register(car.ID, cars, MainWindow)
34 break
35 sleep(5)
36
37 def MoveActiveCars(cars, MainWindow):
38 # Moves active cars every 300 ms
39 while True:
40 with dataframe(carlock) as df:
41 acs = df.add(ActiveCar, cars)
42 for car in acs:
43 car.Move()
44 sleep(0.3)

Listing 11 – PCC classes and its usage needed to move the Car

Journal of Object Technology, vol. 16, no. 2, 2017

http://dx.doi.org/10.5381/jot.2017.16.2.a3


22 · Lopes, Achar and Valadares

1 @subset(Pedestrian)
2 class StoppedPedestrian(Pedestrian):
3 # A person that is not moving
4 @staticmethod
5 def __predicate__(p): return p.X, p.Y == Pedestrian.INITIAL_POSITION
6
7 @subset(Pedestrian)
8 class Walker(Pedestrian):
9 # A person who is walking.
10 @staticmethod
11 def __predicate__(p): return p.X, p.Y != Pedestrian.INITIAL_POSITION
12
13 @parameter(list)
14 @subset(Pedestrian)
15 class PedestrianInDanger(Pedestrian):
16 # A person who is in danger of colliding with a car
17 @staticmethod
18 def __predicate__(p, cars):
19 for c in cars:
20 cx, cy, cz = c.position
21 if cy == p.Y and abs(cx − p.X) < 70:
22 return True
23 return False
24
25 def Move(self):
26 self.Y += 50
27
28 def StartPedestrian(peds, MainWindow):
29 # Make a stopped pedestrian walk every 3 secs.
30
31 def MovePedestrian(peds, cars, MainWindow):
32 # Make a Walker move.
33 while True:
34 with dataframe(pedlock) as df:
35 pids = df.add(PedestrianInDanger, peds, params = (cars,))
36 wks = df.add(Walker, peds)
37 for p in (pids + wks):
38 pid.Move()
39 _sleep(0.5)

Listing 12 – PCC classes and its usage needed to move Pedestrians
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Figure 3 – Urban simulation.

5.3 Distributed Simulations: The Spacetime Framework
The previous example is a proof-of-concept of a much more complex framework that
we are developing for collaborative distributed simulations, called the Spacetime
Framework (https://github.com/Mondego/spacetime). The details of the Space-
time Framework are out of the scope of this paper, but we present a short summary.
This is, by far, our most meaningful application of PCCs.

5.3.1 Background: Modeling and Simulation
Modeling and simulation is a mature field in both research and development. When
studying some real-world process or activity, one starts with developing a model for
it, typically a mathematical model of some kind that abstracts away unnecessary
complexity; then, when the model does not have a closed form solution, computer
simulation can be used to study its characteristics (behavioral and performance). This
approach to studying the real world is used in almost all branches of Science and
Engineering.

Microscopic model simulations can capture richer real world scenarios than macro-
scopic ones, but they require much greater computational resources. The finer the
level of granularity and the larger the number of individual units modeled, the more
resources they need. For that reason, these simulations tend to be limited in size
and/or purpose. There is no easy way of designing and implementing multi-purpose
simulations; each study requires not just its own separate model, something that would
be expected, but also a separate simulation.

Over the past few years, we have been involved in simulation projects that challenge
this state of affairs – see picture in Figure 3 showing one of the 3D simulated cities.
These projects have evolved towards multi-purpose microscopic simulations of urban
areas. It has become clear that there are lines of expertise for the different subsystems,
and that, for that reason alone, we need a decentralized simulation architecture
allowing different groups to provide relatively independent simulations of their models,
but in a coordinated way, because the models are mutually interdependent.

PCCs were designed to address this application domain, and its need to support
separation of concerns at the systems design level.

5.3.2 Spacetime Frames: Time-Framed PCCs
Our use of PCCs in time-discrete simulations combines them with time frames, resulting
in what we call spacetime frames. In time-discrete simulations [Fuj00], each simulation
unit consists of a stepping function (stepper, for short) that is executed periodically,
and that changes the state of the world at each step. Each step is a time frame.
Steppers pull data in the form of PCCs from the shared store in the beginning of a
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Figure 4 – Architecture of the Spacetime simulation framework.

time frame, and may push data back at the end of each time frame. Hence the concept
of spacetime frames: local snapshots of global world state that are used during a time
window, and whose changes may be reflected back to the global state at the end of
the time frame.

An external data store is shared by several simulation units (see Figure 4). One
important part of the use of PCCs in the Spacetime Framework is that the predicates
for selecting objects are run at the store, therefore minimizing the amount of data
that is brought in over the network. PCCs are critical in allowing different developers
to classify raw shared data according to the role that such data plays in their local
simulations. For example, the state of cars may be used by one simulation to construct
graphical objects, while being used by another one to construct polluting objects.

6 Related Work
Since the early days of OOP, the simple use of classes and single inheritance has been
questioned. From multiple inheritance to traits to predicate classes (and dispatch),
many alternatives have been proposed over the years. Here we cover some of the work
most related to PCCs.

6.1 Predicate Classes
Some of the inspiration for PCCs, including the name, comes from predicate classes [Cha93].
The idea behind predicate classes is for objects to be dynamically classified, taking
new/different behavior as they change state. Objects that satisfy predicates specified
in predicate classes automatically become instances of those classes; when they stop
satisfying those predicates, they stop being instances of those classes. This is very
similar to PCCs, but there are some important differences.

The major difference is that PCCs, as the name indicates, pertain to collections of
objects, rather than to individual objects. This difference changes the focus and the
capabilities of the basic idea substantially. In the case of simple predicate classes, the
programmer simply states the predicate to be satisfied (e.g. a car whose velocity is
zero), but there are no handles for collections of objects that satisfy those predicates
at any point in time. The PCCs’ focus on collections not only exposes these handles
but also enables the full expressive power of relational operations on collections, such
as subsetting, projection, cross product, etc. Simple predicate classes express implicit
subsets only: subsets, because predicates on field values constrain the state of the
parent objects; implicit, because there is no handle for that subset.
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More importantly, one of the goals underlying simple predicate classes is to always
ensure the satisfiablity of the predicate. For example, given a normal class buffer and
a predicate class empty buffer, if the last element is removed from a buffer object,
that object immediately4 becomes an instance of the empty buffer predicate class;
similarly, if an element is added to an empty buffer object, that object immediately
stops being an instance of the empty buffer predicate class. Classification is always
consistent with the state of the objects. That is not a goal of PCCs. PCCs classify
the objects at some point in time, at which point the predicate is guaranteed to be
satisfied; but once included in the collection, the state of the objects may later change,
possibly becoming inconsistent with the predicate that placed them in the data frame.
That is not just acceptable: it is a desired semantics. PCCs are meant to hold a fixed
collection of objects whose state can change. Take, for example, the case of a collection
of non-empty buffer objects; if during subsequent processing all elements are removed
from a given buffer object in that collection, we still want that buffer object to be
in the collection, even though it is empty; we don’t want it to suddenly disappear
because it became empty. So the semantics of predicates in PCCs is quite different
from that of predicates in simple predicate classes: always true (in the case of simple
predicate classes) vs. true at the time of data frame creation (in the case of PCCs).

The relaxation of satisfiability is also what makes it possible to implement relational
operations in practice, not just subsetting. Unlike subsetting, that looks only at internal
state of the objects, joins (cross product) and parameterization pertain to combinations
of objects. Take for example, a join between cars and their owners. If at some point
in the framed computation the car ownership changes from one person to another
(or to no one), we would need to search combinations of a car and persons again to
check whether the resulting join object satisfies the predicate. Strict satisfiability of
predicates for objects involved in join operations, as well as parameterizations, would
be prohibitive to implement.

6.2 Other Class-Instance Associations
Besides predicate classes, the OOP literature presents a considerable number of ideas
aimed at making the instance-class relationships more flexible. We describe some of
them here, and how they relate to PCCs.

Fickle [DDDCG01] includes another idea for dynamic object reclassification that is
not based on predicates, but on explicit reclassification by the programmer. The Fickle
language provides a construct to reclassify instances of special "state" classes that can
be used by programmers. These special classes, however, cannot be used as types for
fields of parameters, as that would violate type safety. The main difference between
PCCs and this older work is, again, the focus on collections rather than on individual
instances. Additionally the Fickle reclassification construct is not declarative but
imperative in nature. In contrast, PCCs are defined using declarations (the predicates).

First introduced in Flavors by Moon [Moo86], and then in CLOS, mixins (abstract
subclasses) are a powerful way of combining object behavior, as they can be applied to
existing superclasses in order to create a related family of modified classes. Bracha and
Cook introduced mixin-based inheritance [BC90], a form of class inheritance formulated
as a composition of mixins. Mixin layers [SB98] are a form of decomposition that
targets the encapsulation of class collaborations: each class encapsulates several roles,

4“Immediately” here includes lazyness, i.e. not necessarily instantly but as soon as classification is
needed.

Journal of Object Technology, vol. 16, no. 2, 2017

http://dx.doi.org/10.5381/jot.2017.16.2.a3


26 · Lopes, Achar and Valadares

where each role embodies a separate aspect of the class’s behavior. A cooperating
suite of roles is called a collaboration. Mixins are only vaguely related to PCCs in
that they make reuse of behavior more flexible than inheritance, allowing objects to
be given several different roles. But the classification is still static, meaning that it
is established before any instances are created. In contrast, PCCs serve to reclassify
objects at runtime.

Self [US87], and many languages inspired by it, including recent ones such as
YinYang [ME14], include the concept of dynamic inheritance, which “allows the
inheritance graph to change during program execution.” While PCCs focus on the
dynamics of program execution, our goal is not to change the inheritance hierarchy
at runtime, but to change the classification of objects among existing (fixed) classes
at runtime. In our model, the class hierarchy is static, as it reflects the important
activity of designing and modeling the application entities; but the classification of
data can change at runtime based on specific predicates on the state of the objects.

Bertino and Guerrini proposed a technique that allows objects to belong simulta-
neously to multiple [most specific] classes [BG95]. The motivation was data modeling
situations in which a single instance (e.g. a person) is naturally associated with multi-
ple classes (e.g. student, and female). Although similar to multiple inheritance, the
technique proposed in that paper aimed at avoiding the proliferation of subclasses that
are simple combinations of other classes. This work built on the idea of mixin-based
inheritance [BC90], and it predates traits [SDNB03, OZ05]. Traits are another way
of reusing behavior. PCC instances do not have traits, but rather they are instances
associated with a single class, that take the state from existing objects.

Finally, virtual classes [MMP89, EOC06], dependent classes [GMO07], and gener-
ics [MMN75, BOSW98] are mechanisms to parameterize classes. That work is vaguely
related to PCCs in that it is particularly useful for collection classes such as lists, sets,
etc. But the purpose of parameterized classes is quite different from that of predicate
[collection] classes: the former targets the generalization of type definitions (types
parameterized on other types), whereas the latter targets the association between
instances and their classes.

7 Conclusions and Future Work
This paper has introduced the concept of Predicate Collection Classes, PCCs for short.
PCCs are a declarative mechanism of selecting objects from collections, reclassifying
them along the way. PCCs are both classes and specifications of collections of objects
of those classes. Composition of collections can be expressed very easily using concepts
from relational algebra such as subsetting, projection, cross product, union and
intersection. PCCs are useful for filtering and manipulating collections, including
when the elements of those collections may behave differently depending on which
collection they are placed.

We have implemented PCCs in Python via Python’s decorators. Our implementa-
tion is publicly available at https://github.com/Mondego/pcc, and can be installed
via Python’s pip.

We have successfully used PCCs to model several iterative algorithms that use
collections heavily. This showed us that PCCs are an expressive mechanism for
declaring operations on collections while, at the same time, establishing new behaviors
for objects that fall into those collections. Our most serious use of PCCs so far is
on a framework we are developing for distributed collaborative simulations called
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Spacetime Framework (https://github.com/Mondego/spacetime). PCCs are a core
component of that framework, as they allow the declarative specification of optimized
dataframes that are streamed from a data server to distributed simulation components,
allowing each component to give their own behavior to the data – that behavior may
change over time. The Spacetime Framework was used in a graduate-level course
on distributed simulations; the students’ reactions to PCCs so far have been quite
positive. The framework is currently being integrated in a product related to urban
simulations. While the first impressions are encouraging, in this paper we do not
provide any systematic evidence of benefit.

PCCs are inspired by relational query languages, which have proven to follow a
timeless model for manipulating collections of data. As future work, we plan to: (1)
extend the expressibility of our PCC language to better match SQL, (2) strengthen
the pre-runtime checks of the programmer’s declarations, (3) further explore the
application of PCCs to refactor existing libraries, and (4) assess the tradeoffs on
performance vs. elegance when comparing PCCs with non-PCC programs. We also
plan to implement PCCs in a statically-typed language, namely C#.
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A Additional Examples
A.1 Car and Pedestrian: Alternative Models
Section 5.2 showed the proof-of-concept simulation example with cars and pedestrians,
including the concept of PedestrianInDanger. There are several ways of modeling the
situation where a pedestrian is in danger of colliding with a car. Here we show two
additional ones.

Listing 13 shows the definition of a join class CarAndPedestrianNearBy. This class
is a join of cars, and pedestrians that meet the condition of the predicate. When
executed, a collection of pairs of cars and pedestrians will be created. However, if the
wish is to collect an object representing one pedestrian and all cars that it is in danger
of colliding with, the PedestrianAndManyCarsNearby class defined in Listing 14 can
be used. A collection of cars is stored in the dimension cars instead of just one car as
seen in the previous alternative. The form of the dimensions in the join class is up to
the developers needs and creativity. Object references found within the join object are
tracked.

A.2 Page Rank
Listing 15 shows an implementation of the PageRank algorithm using PCCs. There
are two main classes: Node (lines 1–6) and Edge (lines 8–13). Edge objects refer to two
nodes, the start node (line 10) and the end node (line 12). InEdge (lines 15–19) and
OutEdge (lines 21–25) are subsets of Edge sets parameterized on a node, so it models
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1 @join(Car, Pedestrian)
2 class CarAndPedestrianNearBy(object):
3 @dimension(Car)
4 def car(self): return self._car
5 @dimesnion(Pedestrian)
6 def pedestrian(self): return self._pedestrian
7
8 def __init__(self, car, pedestrian):
9 self.car, self.pedestrian = car, pedestrian
10
11 @staticmethod
12 def __predicate__(p, c):
13 cx, cy, cz = c.position
14 if cy == p.Y and abs(cx − p.X) < 70:
15 return True
16 return False
17
18 def Move(self):
19 self.pedestrian.Y += 50

Listing 13 – An alternative to PedestrianInDanger using joins

the in-edges and out-edges, respectively, of any given node. To calculate PageRank
for each node (line 34–onward), we iterate several times through the list of nodes until
the amount of change crosses a certain threshold (line 34). In each iteration, and for
each node, the collection of the in-edges of the node is created (line 39). Then, for
each in-edge, we compute the out-edges of the start node (line 41), and accumulate
the normalized count (line 42). Finally, we update the PageRank value (line 43).

The main take away from this simple example is that the logic of finding in-edges
and out-edges of nodes is declared in the form of PCCs, instead of being imperatively
embedded in the algorithm. Modeling important set operations as classes makes the
algorithm more readable. The PCC programming style forces programmers to make
deliberate changes to the predicate of the PCCs in order to make changes to the logic
of the program.

A.3 Travel Salesman Problem
The traveling salesman problem is an optimization problem, where, given a finite
number of cities and knowing the cost of travel between these cities, an optimal route
of travel must be calculated for a salesman with the sole condition that the salesman
does not visit the same city more than once. This can be modeled as a undirected
weighted graph, with cities as vertices, and the cost of travel between cities as the
weights of the edge between the corresponding vertices. The Christofides algorithm is
one of many approximate solutions for this problem [Chr76]. Listings 16, 18, 19, 20
and 17 together show an implementation of this algorithm using PCCs.

Listing 16 shows the definitions of the main classes in the example: City (lines
1–9) and Path (lines 11–23). Every City has a name dimension and a dimension to
determine if it has been connected by a chosen path to another City. Path objects have
references to both the cities that they connect, a dimension (distance) that provides
the cost of travel between the two cities, and another dimension that determines if it
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1 @join(Car, Pedestrian)
2 class PedestrianAndManyCarsNearby(object):
3 @dimension(list)
4 def cars(self): return self._cars
5 @dimesnion(Pedestrian)
6 def pedestrian(self): return self._pedestrian
7
8 def __init__(self, cars, pedestrian):
9 self.car, self.pedestrian = cars, pedestrian
10
11 @staticmethod
12 def __query__(pedestrians, cars):
13 return [(p, [c for c in cars if PedestrianAndManyCarsNearby.__predicate__(c, p)]) for p in pedestrians]
14
15 @staticmethod
16 def __predicate__(p, c):
17 cx, cy, cz = c.position
18 if cy == p.Y and abs(cx − p.X) < 70:
19 return True
20 return False
21
22 def Move(self):
23 self.pedestrian.Y += 50

Listing 14 – Another alternative to PedestrianInDanger using joins

has been chosen or not. When objects of both City and Path are created, a path for
every city to every other city is created, but not all are chosen for the final solution.

We start from the procedural part of the algorithm, which has six main steps
(Listing 17). The first step is to create a minimum spanning tree (MST) from the
vertices and edges. Then, a subgraph is induced by using only the vertices that have
odd degree in the MST. A minimum weight, perfect matching is found in this subgraph
and combined with the MST to form a connected multigraph. Every vertex in this
multigraph has an even degree which is an important prerequisite for the next step. An
Eulerian trail is formed from this multigraph which is then made into a Hamiltonian
circuit by skipping repeated vertices. In this main function, apart from building the
MST, there are no iterations, and there are no updates made to the original collections
of cities and paths. PCC are used as a means to retrieve data transformed in certain
ways, and used as intermediate steps in calculating the final output. They were used
as components in a pipeline. We now proceed to explain the PCC model.

To build the MST from these cities (vertices), and paths (edges), we implemented
the Prim’s algorithm using three PCC classes. Listing 18 provides the details. Con-
nectedCity (lines 13–17) can create a collection of all cities that are connected by
a chosen path. DisconnectedPath (lines 7–11) is a subset of paths that have not
been chosen yet. NearbyDisconnectedPath (lines 19–28) is a parameterized subset of
DisconnectedPath. The parameter needed to instantiate this class is the collection of
ConnectedCity. This class allows us to retrieve a collection of paths, that have not
been chosen (subset of DisconenctedPath), and only one of the cities in the path is
connected to a chosen path (by using the list of ConnectedCity sent as a parameter).
From this list of paths, we choose the path with the least weight, and make it a chosen
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1 class Node(object):
2 @dimension(int)
3 def id(self): return self._id
4 @dimension(float)
5 def pagerank(self): return self._pagerank
6 def __init__(self, id, pagerank): self.id, self.pagerank = id, pagerank
7
8 class Edge(object):
9 @dimension(Node)
10 def start(self): return self._start
11 @dimension(Node)
12 def end(self): return self._end
13 def __init__(self, n1, n2): self.start, self.end = (n1, n2)
14
15 @parameter(Node)
16 @subset(Edge)
17 class InEdge(Edge):
18 @staticmethod
19 def __predicate__(e, n): return e.end.id == n.id
20
21 @parameter(Node)
22 @subset(Edge)
23 class OutEdge(Edge):
24 @staticmethod
25 def __predicate__(e, n): return e.start.id == n.id
26
27 def CreateNodesAndEdges():
28 # ... create nodes and edges
29 return nodes, edges
30
31 nodes, edges = CreateNodesAndEdges()
32 largest_change, allowed_delta, damp = 100, 0.001, 0.85
33
34 while largest_change > allowed_delta:
35 largest_change = 0.0
36 for n in nodes:
37 old = n.pagerank
38 sum = 0.0
39 for inedge_of_n in PCC.create(InEdge, edges, params = (n,)):
40 pg_contributor = inedge_of_n.start
41 outedges_of_contrib = PCC.create(OutEdge, edges, params = (pg_contributor,))
42 sum += pg_contributor.pagerank / len(outedges_of_contrib)
43 n.pagerank = ((1.0 − damp) / len(nodes)) + (damp ∗ sum)
44 diff = n.pagerank − old
45 if diff > largest_change:
46 largest_change = diff
47
48 for n in nodes:
49 print n.id, n.pagerank

Listing 15 – PageRank
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1 class City(object):
2 # Class for a city
3 @dimension(str)
4 def name(self): return self._name
5 @dimension(bool)
6 def isconnected(self): return self._isconnected
7
8 def __init__(self, name):
9 # initialize fields
10
11 class Path(object):
12 # Class for a connection between cities
13 @dimension(City)
14 def city1(self): return self._city1
15 @dimension(City)
16 def city2(self): return self._city2
17 @dimension(float)
18 def distance(self): return self._distance
19 @dimension(bool)
20 def isconnected(self): return self._isconnected
21
22 def __init__(self, city1, city2, distance):
23 # Initialize Fields

Listing 16 – Main classes defined for solution to Traveling salesman problem

path. The PCC objects are used directly without a dataframe to manage entanglement.
The objects are entangled by reference and changes made to the PCC objects are
reflected instantaneously in the original. These steps are repeated until all cities have
been connected. The collection of chosen paths is the minimum spanning tree for this
graph. ConnectedPath is a subset of Path that can give us a collection of all chosen
paths. After the construction of the minimum spanning tree, ConnectedPath gives
us a way to retrieve the edges in that tree. The algorithm is defined in the BuildMst
function (lines 30–53).

The rest of the steps are not iterative, so PCC collections was used as a way to com-
pute the output of each step and pass it along to the next step. Listing lst:tspmultigraph
shows the PCC classes that are required for steps 2-5 that create the multigraph of
even vertices required to compute the Eulerian tour in Step 6.

Step 2 of algorithm is to get a subset of vertices in the MST that have odd degree.
The subset class CityWithOddDegree (lines 1–16) was used to retrieve this. It is a
subset of cities and takes the MST (ConnectedPath subset) as a parameter.

Step 3 is creating a subgraph from all paths not chosen using only the cities with
odd degree in the MST. The subset class PathsWithGivenCities (lines 18–30) is used to
obtain the paths in that subgraph. It is a parameterized subset of DisconnectedPaths
parameterized on the collection of cities that have odd degree.

The next step in the algorithm is to create a minimum weight perfect matching on
the paths obtained in the previous step. A subset of the paths created in the previous
step must be chosen such that they satisfy two conditions: every city in the subgraph
must be chosen only once, the edges chosen must have the least weight possible. The
subset class min_weight_perfect_match (lines 32–46) is used to create this collection.
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1 def CreateRandomGraph(number):
2 # Load/Create cities, and paths
3 return cities, paths
4
5 def PrintTSPPath(cities, paths):
6 # Step 1: Building a Minimun spanning tree using Prim’s Algorithm
7 BuildMst(cities, paths)
8 MST = pcc.create(ConnectedPath, paths)
9 # Step 2: Find all cities in the MST that have odd degree (O)
10 O = pcc.create(CityWithOddDegree, cities, params = (MST,))
11 # Step 3: Find the induced subgraph given by the vertices from O
12 not_MST_paths = pcc.create(DisconnectedPath, paths)
13 subgraph = pcc.create(PathsWithGivenCities, not_MST_paths, params = (O,))
14 # Step 4: Find the Minimum weight perfect matching M in the subgraph
15 M = pcc.create(min_weight_perfect_match, subgraph)
16 # Step 5: Combining the edges of M and T to form a connected multigraph H
17 # in which each vertex has even degree
18 H = pcc.create(multigraph, M, MST)
19 # Step 6: Form an Eulerian circuit in H.
20 eulertour = pcc.create(EulerTour, cities, params = (H,))
21 # Step 7: Making the circuit found in previous step into a Hamiltonian
22 # circuit by skipping repeated vertices (shortcutting).
23 finaltour = pcc.create(HamiltonianTour, eulertour)
24 # Printing out the resulting tour.
25 PrintConnections(finaltour)
26
27 cities, paths = CreateRandomGraph(10)
28 PrintTSPPath(cities, paths)

Listing 17 – Christofides algorithm for the Traveling Salesman Problem

Journal of Object Technology, vol. 16, no. 2, 2017

http://dx.doi.org/10.5381/jot.2017.16.2.a3


Predicate Collection Classes · 35

1 @subset(Path)
2 class ConnectedPath(Path):
3 # Subset of path, if this path between cities is chosen
4 @staticmethod
5 def __predicate__(p): return p.isconnected
6
7 @subset(Path)
8 class DisconnectedPath(Path):
9 # Subset of path, if this path between the cities is not chosen
10 @staticmethod
11 def __predicate__(p): return not p.isconnected
12
13 @subset(City)
14 class ConnectedCity(object):
15 # Subset of cities that are connected by some chosen path.
16 @staticmethod
17 def __predicate__(c): return c.isconnected
18
19 @parameter(list) #connected_cities
20 @subset(DisconnectedPath.Class())
21 class NearByDisconnectedPath(Path):
22 # Subset of disconnected paths that can connect to one
23 # among the connected cities given
24 # in the parameter.
25 @staticmethod
26 def __predicate__(dis_path, connected_cities):
27 set_cities = set([city.name for city in connected_cities])
28 return (dis_path.city1.name in set_cities) ^ (dis_path.city2.name in set_cities)
29
30 def BuildMst(cities, paths):
31 # Treat a random node as the start,
32 # Make it a forest with one node.
33 randomstart = random.choice(cities)
34 randomstart.isconnected = True
35 while True:
36 # Collect all Nodes that are part of the forest.
37 connected_cities = pcc.create(ConnectedCity, cities)
38 # If all nodes are part of the forest exit loop.
39 if len(connected_cities) == len(cities):
40 break
41 # Find all paths that are have not been chosen.
42 disconnected_paths = pcc.create(DisconnectedPath, paths)
43 # Find all the paths that are not chosen
44 # but can be connected to the existing forest.
45 all_nearby_discon_paths = pcc.create(NearByDisconnectedPath, disconnected_paths,
46 params = (connected_cities,))
47 if len(all_nearby_discon_paths) != 0:
48 # Choose the path with the least weight.
49 best_choice_path = sorted(all_nearby_discon_paths, key = lambda x: x.distance)[0]
50 # Join it to the forest.
51 best_choice_path.isconnected = True
52 best_choice_path.city1.isconnected = True
53 best_choice_path.city2.isconnected = True

Listing 18 – PCCs needed for building the Minimum Spanning Tree using Prim’s algorithm
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1 @parameter(ConnectedPath)
2 @subset(City)
3 class CityWithOddDegree(object):
4 # Subset of cities that have Odd degree in the Graph passed as a parameter
5 @staticmethod
6 def __query__(cities, paths):
7 result = []
8 for city in cities:
9 pcs = [p for p in paths if city.name in set([p.city1.name, p.city2.name])]
10 if CityWithOddDegree.__predicate__(pcs):
11 result.append(city)
12 return result
13
14 @staticmethod
15 def __predicate__(pcs):
16 return len(pcs) % 2 == 1
17
18 @parameter(CityWithOddDegree)
19 @subset(DisconnectedPath)
20 class PathsWithGivenCities(Path):
21 # Subclass of Path,
22 # Class to find subgraph of given graph using only given vertices
23 @staticmethod
24 def __query__(paths, cods):
25 cities = set([cod.name for cod in cods])
26 return [path for path in paths if PathsWithGivenCities.__predicate__(path, cities)]
27
28 @staticmethod
29 def __predicate__(path, cities):
30 return path.city1.name in cities and path.city2.name in cities
31
32 @subset(PathsWithGivenCities)
33 class min_weight_perfect_match(Path):
34 # Subset of path, paths that make up the minimun weighted perfect matching edges
35 # using the given vertices.
36 @staticmethod
37 def __query__(subgraph_paths):
38 objs = maxWeightMatching([(int(p.city1.name), int(p.city2.name), 1−p.distance) \
39 for p in subgraph_paths], True)
40 req_paths = [(str(i), str(objs[i])) for i in range(len(objs)) if objs[i] != −1]
41 return [path for path in subgraph_paths for req_path in req_paths \
42 if min_weight_perfect_match.__predicate__(path, req_path)]
43
44 @staticmethod
45 def __predicate__(path, req_path):
46 return path.city1.name == req_path[0] and path.city2.name == req_path[1]
47
48 @union(min_weight_perfect_match, ConnectedPath)
49 class multigraph(Path):
50 # A Union of two graphs
51 pass

Listing 19 – PCCs needed for building the multigraph with even degree vertices
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It is a subset of PathsWithGivenCities, and retrieves the perfect matching.
To create the multigraph in the Step 5, a Union class multigraph (line 48–51) was

created using the perfect matching paths from the previous step and the whole MST
computed earlier.

Listing 20 shows the PCC classes needed for generating the Hamiltonian tour
of the multigraph. First a Eulerian tour of this multigraph is computed using the
parameterized subset class EulerTour (line 1–29 ). It is a subset of City and takes
the multigraph as a parameter. The algorithm to find the Eulerian tour was the
Hierholzer’s algorithm. Since the basic algorithm will sometimes not cover all cities,
cities was a parameter that was used to calculate the route from multiple start points
and we picked the first route that included all cities. The last step is to make this a
Hamiltonian circuit by removing the repeated cities in the loop. This was done using
the HamiltonianTour subset class (line 31–47). It is a subset of the EulerTour, and
returns unique cities in the order they were found in the EulerTour. This ordered
collection of cities is the approximate solution to the traveling salesman problem.
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1 @parameter(multigraph)
2 @subset(City)
3 class EulerTour(object):
4 # A subset of cities in order of the Euler Tour Route.
5 @staticmethod
6 def __query__(cities, paths):
7 for start_city in cities:
8 totake = {}
9 travel = []
10 visited = set()
11 for path in paths:
12 totake.setdefault(path.city1, set()).add(path)
13 totake.setdefault(path.city2, set()).add(path)
14 city = [key for key in totake.keys() if key.name == start_city.name][0]
15 visited.add(city.name)
16 while len(totake[city]) > 0:
17 next_path = totake[city].pop()
18 travel.append(city)
19 city = next_path.city1 if city == next_path.city2 else next_path.city2
20 visited.add(city.name)
21 totake[city].remove(next_path)
22 travel.append(city)
23 if len(set(travel)) == len(cities):
24 return travel
25 return []
26
27 @staticmethod
28 def __predicate__():
29 return True
30
31 @subset(EulerTour)
32 class HamiltonianTour(object):
33 # A subset of cities that represents the
34 # complete tour the travelling salesman takes.
35 @staticmethod
36 def __query__(cities):
37 seen = set()
38 result = []
39 for city in cities:
40 if HamiltonianTour.__predicate__(city, seen):
41 result.append(city)
42 seen.add(city)
43 return result
44
45 @staticmethod
46 def __predicate__(city, seen):
47 return city not in seen

Listing 20 – PCC classes needed for building the Hamiltonian circuit
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