
JOURNAL OF OBJECT TECHNOLOGY
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

When do Software Complexity
Metrics Mean Nothing?

– When Examined out of Context
Joseph (Yossi) Gila Gal Lalouchea

a. Department of Computer Science, Technion—Israel Institute of Technology,
Technion City, Haifa 32000, Israel

Abstract This paper places its attention on a familiar phenomena: that code
metrics such as lines of code are extremely context dependent and their distri-
bution differs from project to project. We apply visual inspection, as well as
statistical reasoning and testing, to show that such metric values are so sensitive
to context, that their measurement in one project offers little prediction regarding
their measurement in another project.

On the positive side, we show that context bias can be neutralized, at least
for the majority of metrics that we considered, by what we call Log Normal
Standardization (LNS). Concretely, the LNS transformation is obtained by shift-
ing (by subtracting the mean) and scaling (by dividing by the standard deviation)
of the log of a metric value.

Thus, we conclude that the LNS-transformed-, are to be preferred over the
plain-, values of metrics, especially in comparing modules from different projects.
Conversely, the LNS-transformation suggests that the “context bias” of a soft-
ware project with respect to a specific metric can be summarized with two num-
bers: the mean of the logarithm of the metric value, and its standard deviation.

1 Introduction

Internal software metrics or “code metrics”, such as Lines of Code (henceforth, LOC), are
concrete, well-defined, and easy to compute. In contrast, external software metrics—quality
traits such as maintainability, correctness, and robustness, are more illusive, yet much more
important [30, pp. 3–10]. A holy grail of the software engineering community is finding ties
between the readily available and the useful, e.g., computing a predictor of maintainability
from LOC.

This work does not make an attempt to find this legendary grail. Our less ambitious
objective is to show that the search may have been pursuing a somewhat false track.

Allusion to the famous “When do changes induce fixes?” [38] is intentional.

Joseph (Yossi) Gil, Gal Lalouche. When do Software Complexity Metrics Mean Nothing? – When
Examined out of Context . Licensed under Attribution 4.0 International (CC BY 4.0). In Journal of
Object Technology, vol. 15, no. 1, 2016, pages 2:1–25. doi:10.5381/jot.2016.15.1.a2

http://www.jot.fm/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.5381/jot.2016.15.1.a2
http://dx.doi.org/10.5381/jot.2016.15.1.a2
http://dx.doi.org/10.5381/jot.2016.15.1.a2


2 · Joseph (Yossi) Gil, Gal Lalouche

Our line of reasoning is as follows: to correlate internal metrics with external metrics (or
with anything else for that matter), researchers cannot use only one software project, because
of (at least) two reasons:

• Results obtained in a single project must be substantiated against others.

• Rarely does a single project provides enough data for useful statistical inference.

However, we show that software code metrics measured in one such project are seldom rel-
evant as-is to other projects: Mixing measurements drawn from different contexts may con-
found statistical results.

This work is thus dedicated to the study of context bias—the bias of metric values due to
the project in which these were measured—and finding means for eliminating this bias. To
this end, we set granularity at the software module level. Specifically, the study focus is on
JAVA [4] software, where modules are .java files, each of which contains at least one class,
and, typically, no more than that.

1.1 Background: Code Metrics as Indicators of Software Defects

There is a long history of trying to use code metrics to predict software defects. Recent
research along these lines includes that of Kim, Whitehead, and Zhang [27] who applied
machine-learning classification techniques to detect software defects. They trained separate
Support Vector Machines (SVM) on the file-change histories of a dozen separate open-source
projects and achieved a mean prediction accuracy of 78%. Hata, Mizuno and Kikuno [23]
applied a Bayesian spam-filtering approach to classifying program modules as either fault
prone or not and achieved F1 rates of 71% and 58% in their two experiments. A comparison
of machine learning techniques can be found in the work of Challagulla, Bastani, Yen, and
Paul [13].

Unfortunately, the fruits of this research direction largely contradict the notion that exter-
nal qualities are related to internal code metrics: For example, Moser, Pedrycz, and Succi [31]
used two different kinds of metrics to analyze JAVA sources from the Eclipse project by apply-
ing logistic regression, Naı̈ve Bayes Classifiers (NBC), and classifying decision trees. They
found more than 75% classification accuracy and concluded that software engineering pro-
cess metrics predict defects much better than code metrics for the Eclipse project. Recently,
Shivanji, Whitehead, Akella, and Kim [37] described their efforts to locate a small set of fea-
tures out of tens of thousands that would strongly predict software defects in an SVM or an
NBC model; NBC generally won out. More importantly, they found that their “top 100” lists
of statistically significant features did not include any conventional code-complexity metrics.

Still, an extensive statistical benchmark of a large variety of different bug-finding metrics,
due to D’Ambros, Lanza, and Robbes [14], did manage to correlate internal metrics with bug
prediction with some statistical significance but had substantial problems generalizing their
metrics to predict bugs out-of-sample. This previous work left bug prediction as open a
problem as ever.

1.2 Possible Causes of Poor Results

A possible explanation for this failure could be that code metrics tend to exhibit context bias,
sometimes phrased as the cliche: “every software project is different”. In “How does Context
Affect the Distribution of Software Maintainability Metrics?”, Zhang, Mockus, Zou, Khomh,
and Hassan [40] ask whether code metrics are affected by context of the containing software
artifact, including diverse factors such as programming language, age, and lifespan. The

Journal of Object Technology, vol. 15, no. 1, 2016

http://dx.doi.org/10.5381/jot.2016.15.1.a2


When do Software Complexity Metrics Mean Nothing? · 3

thrust of the work of Zhang et al. is that the majority of metrics are correlated with what the
authors call “contextual factors”.

Applying a suite of 20 file-level code metrics to dataset of 26 open-source JAVA software
artifacts with a similar profile, we find that context bias is the norm, rather than the exception.
More importantly, we show that this bias can be (almost) eliminated by a process which we
will call “rank-transformation”. (As explained below in Sect. 3, our work can be seen as
complementing that of Zhang et al.)

Further, we show that context bias can be neutralized, by the LNS (Log Normal Standardization
transformation, defined by shifting (by subtracting the mean) and scaling (by dividing by the
standard deviation) of the log of a metric value.

The implication is not only that LNS-transformed-, are to be preferred over the plain-,
values of metrics, especially in comparing modules from different projects. The discovery of
the LNS-transformation suggests that the “context bias” of a software project with respect to
a specific metric can be summarized by two numbers: the mean of the logarithm of the metric
value, and its standard deviation.

Our thesis is then that if a tie between internal and external metrics is ever found, it is
unlikely that it would solely employ the traditional, “context independent” manner of com-
puting metrics. We support this claim by bringing statistical evidence that internal metric
values of a software module are more likely to be meaningful when “normalized” against
their context, i.e., the containing global software artifact from which this module was drawn.

Thus, we demonstrate that the plain positive integer value of (say) LOC of a given soft-
ware module m is inferior to a transformed value of LOC, where the transformation takes
into account the distribution of the LOC metric in other modules in the software artifact from
whichm was drawn, when comparing between metric values of different artifacts in different
projects. With this conclusion, it remains to redo, e.g., the work of Shivanji et al. [37] to check
whether normalized metric values are better defect predictors than their non-normalized ver-
sions. We leave such a study for continued research.

The direction taken by this study is different than some of the other work on metrics. Con-
sider, e.g., the definition of QMOOD [8,35], in which the set of metrics are computed for the
project as a whole. Unlike our work, individual module-level metrics and their distributions
play no role in the study of project level metrics, whose purpose is aiding software managers
evaluate overall project quality. Module-level metric values are used in project level metrics
only in an aggregated, e.g., sum of average, form.

Concrete contributions made by the analysis of this empirical data include:

1. Introduction of the similarity measure.

2. Demonstration that context bias exists for all code metrics in our suite.

3. Definition of rank-normalization and showing that it eliminates context bias in the ma-
jority of metrics.

4. Showing that context bias is largely about shifting (with the negative of the mean) and
scaling (by the standard deviation), though not of the metric itself, but its logarithm.

5. Finding that the common theme of those metrics that we could normalize is a small
variety of metric values, as measured by its information-theoretic entropy.

Readers may also find the method that we use for statistical analysis to be of value: Recall
that a major limitation of any statistical test is that it can be used for rejecting a hypothesis
(the null-hypothesis in the respective lingo) but it never yields a result which confirms a hy-
pothesis. In this work, we overcome this predicament by applying a test not to just one data

Journal of Object Technology, vol. 15, no. 1, 2016

http://dx.doi.org/10.5381/jot.2016.15.1.a2


4 · Joseph (Yossi) Gil, Gal Lalouche

instance but rather to an ensemble of these. Suppose that the test fails to reject the null
hypothesis in the majority of the ensemble. Then, we may be convinced that the null hypoth-
esis is true. Such inference requires caution, e.g., it is required that each of the instances is
sufficiently large that the null hypothesis is unlikely to be rejected due to statistical noise.

Outline. The remainder of this document is organized as follows: Destined for readers in-
terested in furthering their understanding of the background of this work Sect. 3 is concerned
with delicate issues of statistical inference raised in comparing the current work with that
of Zhang et al. The body of the paper begins with Sect. 4 which describes the dataset and
the twenty-six projects constituting it. Sect. 5 enumerates the code metrics employed in this
study. Some visual evidence to the context bias of metrics is presented in Sect. 6. In Sect. 7,
the main section of this article, we apply statistical tests and reasoning to substantiate the
claims made above. This section also presents a novel technique for statistical analysis, the
similarity measure, for estimating the number of distinct distributions that a metric follows.

Threats to the validity of our results are discussed in Sect. 8. Sect. 9 concludes.

2 Related Work

This paper is concerned with the question of extrapolation from one software project to an-
other. As might be expected, this question intrigued many others in the research community.
This section visits a number (but naturally not all) of research works revolving around this
topic.

Alves, Ypma and Visser, in a publication entitled “Deriving metric thresholds from bench-
mark data” [7], propose thresholds to metrics; values that exceed these thresholds trigger an
alarm for more careful, manual, inspection. The authors acknowledge that the distributions
of the same metric in distinct project might be vastly different, and meet this challenge with
a sophisticated transformation of the numerical values. However, unlike the word presented
here, the validity of this transformation is demonstrated merely by visual inspection of plots
(which might be misleading as can be seen below), instead of rigorous statistical tests.

Marinescu [28] take another perspective at setting threshold values, by correlating these
with human judgment of design flaws such as “God Class”, “Feature Envy” and “Shotgun
Surgery”. The methodology involved relies also on examining what might be called survival
rate (between consecutive versions of the project), in attempt to asses the quality of judgment.
Unfortunately, this work fails to recognize that the inferred thresholds might be distinct in
different projects; in particular, this study revolves around a single project.

Another work that recognizes the need for setting threshold values is that of Capiluppi,
Faria and Ramil [11], where thresholds are based on rank. The use of rank is justified (rather
implicitly) by the skewness of the distribution of metrics. This work however is concerned
solely with one project.

A subsequent publication entitled “A model to predict anti-regressive effort in Open
Source Software” by Capiluppi and Ramil [12] pays tribute to the stark variations between
projects on which we dwell: The said work proposes a model for inferring anti-regressive
work in the course of evolution of projects. The Capiluppi and Ramil “MGM” model uses
intra-project rank of metric values as the main predictor. Further, it is implicitly argued that
project are idiosyncratic in that the best predicting metric is project dependent. (We discuss
the idiosyncraticity of projects in detail below in Sect. 3.)

Blondeau et al. ” [10] take the following approach to variations between projects: A
relatively large number of metrics is subjected into a Principle Component Analysis (PCA).
PCA makes it possible to identify outliers and for finding an “adequate” way of weighing the

Journal of Object Technology, vol. 15, no. 1, 2016

http://dx.doi.org/10.5381/jot.2016.15.1.a2


When do Software Complexity Metrics Mean Nothing? · 5

projects. However, other than acknowledgment of this variance, their work is not relevant to
ours for two reasons. Firstly, the metrics of Blondeau et al. are product-, not code-, metrics.
Secondly, their metrics are not of individual modules, but of the entire project.

Nagappan, Ball and Zeller [32] used PCA to predict faults. The authors note that there is
no subset of metrics that can be applied to all projects. Further, when trying to extrapolate
PCA predictions from one project to the next, they had “mixed” results, admitting such ex-
trapolation makes sense only for “similar” projects, but leaving open the question of how this
similarity might be measured.

Later [41], a larger scale experiment on the use of cross-project data for predicting post-
release defects suggested means for estimating such similarity. As before, one conclusion of
the experiment was that raw values of code metrics are poor predictors in the cross-project
setting. (The current research, in highlighting how the distributions of such metrics vary
between projects, might be viewed as an explanation.) Similarity between projects could
only be detected when using “compound” metrics. However, even when using these new set
of metrics, similarity was found only in less than 4% of the cases.

3 The Idiosyncratic Context Presumption

The only previous publication that takes interest in the impact of “context” on metrics, is
that of Zhang, Mockus, Zou, Khomh, and Hassan [40]. The authors report on a large scale
empirical study, involving 320 open source software systems, whose aim was “to understand
if the distributions of metrics do, in fact, vary with contexts.”. Towards this end, the study
first classifies software systems according to seven “context factors”: application domain,
programming language, age, lifespan, number of changes, and number of downloads, and
then employs statistical analysis to evaluate the impact of these factors on the distribution of
39 code metrics.

There are several differences in terminology between this work and that of Zhang et
al.: First, the term “code metric” is used by Zhang at al. to refer to three kinds of metrics:
(i) project level metrics, such as “total number of files” which assign a single number to the
entire project; (ii) method level metrics, such as “number of parameters”, by which each
method in each class is ranked; and (iii) class level metrics, such as “response for a class”,
applicable to each class in the project. Our study is concerned solely with class metrics, and
the term “metric” is henceforth restricted to class level metrics.

Second, we use the term “context” or “project’s context” here to include individual and
idiosyncratic properties of the project. These individual properties are not necessarily related
to the context factors studied by Zhang et alii.

We argue that the Zhang et al.’s study tacitly makes the assumption that distributions of
the same metric in distinct projects should be similar, all other factors being equal.

To see this, we follow the same analysis of Zhang et al.’s study, but this time employing a
nonsensical context factor:

Definition. Red herring context factor. The red herring context factor of a software system
named n is an integer h ∈ {0, 1, 2}, computed by h = s mod 3, where s is the sum of the
ASCII values of the characters comprising n.

Specifically, as in Zhang et al.’s study, we use the h value to partition our set of software
projects into three groups, and then we employ the Kruskal-Wallis statistical test, for each
metric µ drawn from our suite of 20 metrics, to check whether the distributions of µ in the
three groups are distinct. In accordance with the original empirical study, the input to the test

Journal of Object Technology, vol. 15, no. 1, 2016

http://dx.doi.org/10.5381/jot.2016.15.1.a2


6 · Joseph (Yossi) Gil, Gal Lalouche

are three distributions: D0(µ), D1(µ), and D2(µ), where Di(µ) is simply the union of the µ
values in all projects whose h value is i.

The largest p value returned by the test is 0.00051. In fact, in all but three metrics,
the p value returned was lower than the smallest non-zero positive number represented by
the system. Following the Zhang et al.’s line of reasoning leads to conclusion that the red
herring context factor has its impact on all metrics in our suite.

The fault in the deduction can be explained by the idiosyncratic context presumption.

Definition. The idiosyncratic context presumption. The distribution of a code metric within
a specific software system may be unique to that software system and may be unrelated to
traditional “context factors”.

By this presumption, two projects may be inherently distinct even if they appear to be the
same being judged by the above seven “context factors” or other objective factors. Stated dif-
ferently, the presumption is that differences between projects may be linked to non-objective
and hard to measure factors such as dynamics of personal interactions among members of the
development team.

If this presumption is true, then the collection of values in each Di(µ) depends on id-
iosyncratic properties of the projects whose h value happens to be i. Worse, since it is well
known that the size of projects is long-tailed, it is likely that the majority of values in Di(µ)
are drawn a small number of dominant projects2. Thus, the Kruskal-Wallis test applied to dis-
tributions D0(µ), D1(µ), and D2(µ) estimates the impact of idiosyncratic variation between
dominant projects rather than the desired impact of the context factor.

We show that the distributions of values of code metric value are quite distinct, even for
projects of similar profile. Thus, our results support the idiosyncratic context conjecture, and
in this sense complement the work of Zhang et al. This support, together with the fallacy we
demonstrated with the red herring conjecture, indeed casts doubt on some of the analysis car-
ried out in Zhang et al.’s work, but stops short of invalidating them. The impact of contextual
factors could be still demonstrated by subjecting the gathered empirical data to an analysis
that accounts for variation in size and to the idiosyncratic context presumption.

Moreover, our results may contribute to future research of contextual factors by showing
that the idiosyncratic properties of a project for any given metric can be reduced to the two
parameters that define the LNS transformation. If this is done, then the method of analysis
Zhang et al. employ for project level metrics may be applicable to class level code metrics,
and perhaps even method level code metrics.

4 The Dataset

We shall be using the term “project” to denote a software artifact augmented with its revision
history. Our dataset comprises twenty-six such projects, which are either full blown appli-
cations, libraries, or frameworks. Each project comprises a substantial number of software
modules and is managed as a distinct project in a version control system. In the interest of
brevity of presentation, we denote the projects by the capital letters of the Latin alphabet:
‘A’, ‘B’,. . . , ‘Z’.

The process by which the projects were selected tried to eliminate niche projects and
identify the profiles common to projects that make the “top lists” of open source repositories.

1Note that this value indicates high statistical significant even after multiplying it by Bonferroni correction (20
in our case).

2Note that this set of dominating projects does not depend on µ.

Journal of Object Technology, vol. 15, no. 1, 2016

http://dx.doi.org/10.5381/jot.2016.15.1.a2


When do Software Complexity Metrics Mean Nothing? · 7

Specifically, the following criteria were applied in the making of the dataset: public avail-
ability, programming language uniformity, longevity, community of developers, non-meager
development effort, and reasonable recency.

• Public Availability. For the sake of reproducibility, among other reasons, all projects
are open-source. Moreover, we required that both the source and its history be available
through a publicly accessible version management repository; specifically all projects
were drawn from two well-known repositories: GitHub3 and Google Code4.

• Programming Language Uniformity. The primary programming language of all projects
3http://github.com/
4https://code.google.com/

Table 1 – Software projects constituting the dataset (in descending number of commits). We trace
over a century of development and follow the behavior of almost 2,000 software engineers. The
last column is added for reproducibility.

Id Project First
Version

Last
Version

#Days #Authors
Last
Commit
ID

A wildfly ’10-06-08 ’14-04-22 1,413 194 5a29c860
B hibernate-orm ’09-07-07 ’14-07-02 1,821 150 b0a2ae9d
C hadoop-common ’11-08-25 ’14-08-21 1,092 69 0c648ba0
D jclouds ’09-04-28 ’14-04-25 1,823 100 f1a0370b
E elasticsearch ’11-10-31 ’14-06-20 963 129 812972ab
F hazelcast ’09-07-21 ’14-07-05 1,809 65 3c4bc794
G spring-framework ’10-10-25 ’14-01-28 1,190 53 c5f908b1
H hbase ’12-05-26 ’14-01-30 613 25 c67682c8
I netty ’11-12-28 ’14-01-28 762 72 3061b154
J voldemort ’01-01-01 ’14-04-28 4,865 56 fb3203f3
K guava ’11-04-15 ’14-02-25 1,047 12 6fdaf506
L openmrs-core ’10-08-16 ’14-06-18 1,401 119 05292d98
M CraftBukkit ’11-01-01 ’14-04-23 1,208 156 62ca8158
N Essentials ’11-03-19 ’14-04-27 1,134 67 229ff9f0
O docx4j ’12-05-12 ’14-07-04 783 19 8edaddfa
P atmosphere ’10-04-30 ’14-04-28 1,459 62 557e1044
Q k-9 ’08-10-28 ’14-05-04 2,014 81 95f33c38
R mongo-java-driver ’09-01-08 ’14-06-16 1,984 75 5565c46e
S lombok ’09-10-14 ’14-07-01 1,721 22 3c4f6841
T RxJava ’13-01-23 ’14-04-25 456 47 12723ef0
U titan ’13-01-04 ’14-04-17 468 17 55de01a3
V hector ’10-12-05 ’14-05-28 1,270 95 f2fc542c
W junit ’07-12-07 ’14-05-03 2,338 91 56a03468
X cucumber-jvm ’11-06-27 ’14-07-22 1,120 93 fd764318
Y guice ’07-12-19 ’14-07-01 2,386 17 76be88e8
Z jna ’11-06-22 ’14-07-07 1,110 46 a5942aaf

Total 38,250 1,932
Average 1,471 74
Median 1,239 68

Journal of Object Technology, vol. 15, no. 1, 2016

http://github.com/
https://code.google.com/
http://dx.doi.org/10.5381/jot.2016.15.1.a2


8 · Joseph (Yossi) Gil, Gal Lalouche

is JAVA5.

• Longevity. The duration of recorded project evolution is at least a year.

• Community of Developers. The software development involved at least ten authors.

• Non-Meager Development Effort. At least 100 files were added during the history of
each project, and at least 300 commit operations were performed. (Observe that even
the smallest projects in the table are in the same order of magnitude as that of the entire
data set used in seminal work of Abreu, Goulão, and Esteves [16] on the “MOOD”
metric set.)

• Reasonable Recency. Project is in active development (most recent change was no
longer than a year ago6).

In selecting projects for our dataset, we scanned—in no particular order or priority—the
JAVA projects in GitHub’s Trending repositories7 and the list provided by the GitHub JAVA
Project due to Charles and Allamanis [6]8, selecting projects that match the above criteria.

Tab. 1 supplies the essential characteristics of the dataset. The first table’s column is the
project’s ID (in the range ‘A’–‘Z’), while the second is the name by which it is known in its
respective public repository. The dataset constitutes all publicly available versions of each
of the projects, as specified in the next three table columns: date of first and last commit
operations, and the number of days between these two operations. We see that overall, our
dataset traces more than a century of software development. The penultimate column of
Table 1 teaches that we follow the behavior of circa 2,000 software engineers.

Each git commit includes a SHA-1 [17] hash value to identify it. The identifier of the
last commit in the repository is listed in the last column for reproducibility.

The second column of Tab. 2 shows the number of repository commits. A file commit
is an addition of a new file or a modification of an existing file, and is distinguished from a
repository commit (of GIT, SVN, etc.). A single repository commit may include commits of
more than one file or none at all (e.g., file deletions).

Our study concerned only .java files embodying JAVA classes; source files offering a
JAVA interface as well package-info.java files were ignored.

The third column of Tab. 2 notes the total number of inspected files in each project, while
the next three columns show that, while the public repositories not always keep trace of the
full development history the project, they still record the bulk of the development 9. The
penultimate column shows the median number of commits per file. This number indicates
that most files are changed multiple times in their respective repositories. The last column
notes the maximum number of commits for a given file. As evident, this number can be very
large, even in the smaller projects.

Recall that a single file may change often during the lifetime of a project; in fact, it is not
uncommon for files to be modified hundreds of times. To avoid introducing a bias for files
which have been modified several times, while still reflecting the evolution, the metric value
for a given file is computed by averaging across all its values across all its versions in the
project.

5It is possible for a project to contain non-JAVA code (e.g., shell scripts) but we only analysed JAVA code.
6Our dataset was assembled in the course of 2014.
7https://github.com/trending?l=java&since=monthly
8http://groups.inf.ed.ac.uk/cup/javaGithub/
9To see this bulk, compare “#Files added” column with the “#Files in first version” column.

Journal of Object Technology, vol. 15, no. 1, 2016

https://github.com/trending?l=java&since=monthly
http://groups.inf.ed.ac.uk/cup/javaGithub/
http://dx.doi.org/10.5381/jot.2016.15.1.a2


When do Software Complexity Metrics Mean Nothing? · 9

Table 2 – Essential statistics of commit operations in the dataset. We see that the bulk of the devel-
opment is recorded in the repository’s history. Also, most files are changed more than once, and
some are changed even hundreds of times.

Id #Repo.
commits

#Files
inspected

#Files in
first
Version

#Files in
last
version

#Files
added

Median
commits
per file

Max commits
per file

A 7,705 36,045 1 8,374 8,373 2 182
B 2,355 27,445 8 7,615 7,607 4 116
C 2,545 25,281 9 4,655 4,646 5 146
D 4,830 26,626 1,836 5,282 3,446 2 458
E 3,663 26,406 3 3,764 3,761 5 93
F 4,353 20,417 1 2,430 2,429 5 338
G 1,773 20,223 1 5,405 5,404 4 39
H 2,177 12,081 672 2,074 1,402 3 214
I 2,080 9,924 286 1,062 776 6 177
J 2,446 9,413 3 954 951 5 249
K 1,849 8,803 337 1,665 1,328 4 86
L 2,406 7,589 972 1,495 523 3 197
M 1,979 7,618 7 541 534 6 255
N 2,702 6,714 99 367 268 11 292
O 618 5,493 2,348 2,776 428 2 31
P 2,554 5,210 58 335 277 8 329
Q 2,638 5,492 44 347 303 3 492
R 1,514 4,153 42 359 317 5 194
S 832 3,323 2 702 700 2 93
T 1,001 3,524 1 450 449 4 575
U 637 2,833 202 534 332 4 69
V 745 2,670 182 459 277 4 74
W 866 2,566 205 386 181 3 89
X 745 2,492 19 462 443 2 116
Y 316 1,793 10 511 501 3 41
Z 525 1,788 188 303 115 3 90

Total 55,854 285,922 7,536 53,307 45,771 108 5,035
Average 2,148 10,997 289 2,050 1,760 4 193
Median 2,029 7,151 43 828 528 4 161

5 The Metrics Suite

Hundreds of code metrics are discussed in the literature [3, 19, 26]. We restrict ourselves to
module level metrics, i.e., metrics pertaining to individual classes (rather than to an entire
project, packages or individual methods). Our suite includes a sample of the most common
module metrics, some variants of these, and a number of newly introduced metrics:

The Chidamber & Kemerer metrics [2] CBO, DIT, NOC, RFC and the WMC metric.
The variant used for weighting methods for WMC is a count of the number of the tokens
present in a methods. Metric NOM (Number of Methods) represents another variant of
WMC, in which all methods receive the weight of 1.

Class metrics: In addition to NOM, we employ NIV (Number of Instance Variables),
MTE (Mutability (Explicit)–number of non-final instance fields), CON (Constructor Count).
The CHAM (Chameleonicity) metric we introduce here also belongs in this group; it is de-
fined as the maximum, over all methods of the number of polymorphic variables accessed by
the method.10

10The rationale is that CHAM is the best approximation (within the limits of the depth of our code analysis) of
the “Chameleonicity” [18] metric, which was shown to be linked to the algorithmic complexity of analyzing virtual
function calls.

Journal of Object Technology, vol. 15, no. 1, 2016

http://dx.doi.org/10.5381/jot.2016.15.1.a2


10 · Joseph (Yossi) Gil, Gal Lalouche

Size metrics: LOC (Lines of Code), as well as NOT (Number of Tokens) and NOS
(Number of Statements)11.

Comment metrics: Comment lines are counted in LOC, but the suite include two more
specific metrics: ABC (Alpha betical Comment Character Count) and CCC (Comment
Characters Count). Both are computed on all line-, block-, and JAVAdoc- comments, with
the exclusion of comments occurring before the package declaration, as these are typi-
cally boilerplate. The reason for excluding of non-alphabetical characters (punctuation and
the such) in ABC is the practice, witnessed in our dataset, of using these for embellishing
comments.

Regularity metrics: It was suggested (e.g., by Jbara and Feitelson [25]) that regularity
is a better predictor of maintainability than size. The suite therefore includes metric LZW
(Regularity (Lempel-Ziv-Welch compression)), defines as the number of compressed tokens
after applying the LZW compression algorithm [42] to the tokens of a class. Another regular-
ity metric is GZIP (Regularity (GZIP compression)), the number of bytes in the GZip [15]
compressed byte-stream of the class’s source code.

Flow complexity metrics: First of these is MCC, the famous McCabe [29] Cyclomatic
Complexity. We also use a simpler variant, MCCS, which ignores lazy circuit evaluation.s
A newly introduced metrics is also present in this group: HOR (Horizontal complexity),
which is similar to NOS except that in the statements count, each statement is weighted by
the number of control structures (if, while, etc.) that surround it.12

For easy reference the metrics comprising our suite are summarized in Tab. 3. (The “Clas-
sic” column is somewhat subjective, expressing our personal perspective on how entrenched
the metric is.)

Comparing our method suite with that of Zhang et al. [40], ours is limited to file/class-
level metrics, while Zhang et al. also investigate project-level and method-level metrics. In
contrast, the suite employed in this work introduces a number of new metrics, including
chameleonicity—the number of polymorphic variables in the code—and code regularity, first
proposed by Jbara and Feitelson [25].

6 Comparing Distributions of Metric Values

In this section, we make a (partial) visual comparison of the distribution of the same metric
in different projects. The plots here are meant to demonstrate that, although judgement of
the visual data presented in the plots might be subjective, we believe that the data indicate
context bias. For the sake of comparability, the values of all metrics were normalized such
that the range of different metrics is somewhat similar. Firstly, that the similarity between the
distributions is not great, and secondly, that precise statistical tests should be employed.

Fig. 1 depicts the probability distributions of metrics in our suite. For each metric, the
probability density functions of the distribution of its values in each of the projects are plotted
together under a log-log scale of the axis. Evidently the PDFs are noisy, although it is hard
to argue that any two such distributions of values are due to the same common PDFs.

Fig. 2 depicts the Complementary Cumulative Distribution Function (CCDF) of the met-
rics in our suite. Given a random continuous variable x ∈ R with its probability density
function PDF(x), function CCDF is defined by CCDF(y) = 1 −

∫ y

−∞ PDF(x)dx. It holds
that CCDF(y) = P (x ≥ y).

11both are based on a syntactical code analysis: tokens are the language lexical tokens while the term “statements”
refers to the respective production in the language EBNF, except that bracketed blocks are ignored

12Similar metrics are mentioned in the literature, e.g., Harrison and Magel [22] suggested “a complexity measure
based on nesting level”. See also the work of Piwowarsky [34] and that of Hindle, Godfrey and Holt [24]

Journal of Object Technology, vol. 15, no. 1, 2016

http://dx.doi.org/10.5381/jot.2016.15.1.a2


When do Software Complexity Metrics Mean Nothing? · 11

Acronym Full name Object-
Oriented

Classic Citation

ABC Alpha betical Comment Character Count 7 7
CBO Coupling Between Class Objects 3 3 [2]
CCC Comment Characters Count 7 7
CHAM Chameleonicity 3 7 [18]
CON Constructor Count 3 7
DIT Depth of Inheritance 3 3 [2]
GZIP Regularity (GZIP compression) 7 7 [25]
HOR Horizontal complexity 7 7 [22, 24, 34]
LOC Lines of Code 7 3
LZW Regularity (Lempel-Ziv-Welch compression) 7 7 [25]
MCC McCabe Cyclomatic Complexity 7 3 [29]
MCCS McCabe Cyclomatic Complexity (simple) 7 3 [29]
MTE Mutability (Explicit) 3 7
NIV Number of Instance Variables 3 3
NOC Number of Children 3 3 [2]
NOM Number of Methods 3 3 [2]
NOS Number of Statements 7 3
NOT Number of Tokens 7 7
RFC Response for a Class 3 3 [2]
WMC Weighted Methods per Class 3 3 [2]

Table 3 – Metrics used in this study. We use a mixture of object-oriented and classical metrics.

Comparing Fig. 1 with Fig. 2, we see that (as expected) the mathematical integration
carried out by the CCDF significantly reduces noise. This smoothing also highlights the fact
that although the distributions are close, they are distinct, and it is difficult to believe that
they are all due to a single, omnipresent distribution inherent to this metric, which does not
depend on the actual project.

The CCDF plots in each of the X/Y graphs of Fig. 2 may look “quite similar” to some
readers and “quite distinct” to others. To set a baseline for comparison, we introduce yet an-
other “metric”, which uses the value of the cryptographic SHA-1 [17] function of the source
code. Specifically, metric SHA-1 is defined as the lower 8 bits of the hash code. Obviously,
SHA-1 demonstrates an almost uniform distribution in the range of [0, 255]. Deviations be-
tween the distributions of SHA-1 in distinct projects, is due only to statistical noise.

To visually compare the closeness of distributions of a “real” metric such as NOT with
that of SHA-1, we need to draw these on the same scale. To this end, we employ a linear,
same-scale transformation, defined by the following property:

The median value of the metric is 0.5, while its decile value of the metric is 0.1,
i.e., 10% of the transformed metric value are in the range (0, 0.1), 40% are in the
range (0.1, 0.5) and the remaining 50% in the range (0.5,∞).

Fig. 3 shows the CCDF distributions of the thus transformed SHA-1 metric in all projects.
As expected, these distributions are very close to each other.

Fig. 2 also uses the same transformation, where the median and the decile used in comput-
ing the parameters of same-scale transformation were computed from the entire set of metric
values for all projects.

Journal of Object Technology, vol. 15, no. 1, 2016

http://dx.doi.org/10.5381/jot.2016.15.1.a2


12 · Joseph (Yossi) Gil, Gal Lalouche

10^-2 10^-1 10^0 10^1 10^2

L
o
g
(D

e
n
s
it

y
 [

s
m

o
o
th

e
d
])

Log(ABC3)

Distribution of Values of Metric ABC3

10^-2 10^-1 10^0 10^1 10^2

L
o
g
(D

e
n
s
it

y
 [

s
m

o
o
th

e
d
])

Log(CBO)

Distribution of Values of Metric CBO

10^-2 10^-1 10^0 10^1 10^2

L
o
g
(D

e
n
s
it

y
 [

s
m

o
o
th

e
d
])

Log(CCC)

Distribution of Values of Metric CCC

10^-2 10^-1 10^0 10^1 10^2

L
o
g
(D

e
n
s
it

y
 [

s
m

o
o
th

e
d
])

Log(CHAM)

Distribution of Values of Metric CHAM

10^-2 10^-1 10^0 10^1 10^2

L
o
g
(D

e
n
s
it

y
 [

s
m

o
o
th

e
d
])

Log(CON)

Distribution of Values of Metric CON

10^-2 10^-1 10^0 10^1 10^2

L
o
g
(D

e
n
s
it

y
 [

s
m

o
o
th

e
d
])

Log(DIT)

Distribution of Values of Metric DIT

10^-2 10^-1 10^0 10^1 10^2

L
o
g
(D

e
n
s
it

y
 [

s
m

o
o
th

e
d
])

Log(GZIP)

Distribution of Values of Metric GZIP

10^-2 10^-1 10^0 10^1 10^2

L
o
g
(D

e
n
s
it

y
 [

s
m

o
o
th

e
d
])

Log(HOR)

Distribution of Values of Metric HOR

10^-2 10^-1 10^0 10^1 10^2

L
o
g
(D

e
n
s
it

y
 [

s
m

o
o
th

e
d
])

Log(LOC)

Distribution of Values of Metric LOC

10^-2 10^-1 10^0 10^1 10^2

L
o
g
(D

e
n
s
it

y
 [

s
m

o
o
th

e
d
])

Log(LZW)

Distribution of Values of Metric LZW

10^-2 10^-1 10^0 10^1 10^2

L
o
g
(D

e
n
s
it

y
 [

s
m

o
o
th

e
d
])

Log(MCC)

Distribution of Values of Metric MCC

10^-2 10^-1 10^0 10^1 10^2

L
o
g
(D

e
n
s
it

y
 [

s
m

o
o
th

e
d
])

Log(MCCS)

Distribution of Values of Metric MCCS

10^-2 10^-1 10^0 10^1 10^2

L
o
g
(D

e
n
s
it

y
 [

s
m

o
o
th

e
d
])

Log(MTE)

Distribution of Values of Metric MTE

10^-2 10^-1 10^0 10^1 10^2

L
o
g
(D

e
n
s
it

y
 [

s
m

o
o
th

e
d
])

Log(NIV)

Distribution of Values of Metric NIV

10^-2 10^-1 10^0 10^1 10^2

L
o
g
(D

e
n
s
it

y
 [

s
m

o
o
th

e
d
])

Log(NOC)

Distribution of Values of Metric NOC

10^-2 10^-1 10^0 10^1 10^2

L
o
g
(D

e
n
s
it

y
 [

s
m

o
o
th

e
d
])

Log(NOM)

Distribution of Values of Metric NOM

10^-2 10^-1 10^0 10^1 10^2

L
o
g
(D

e
n
s
it

y
 [

s
m

o
o
th

e
d
])

Log(NOS)

Distribution of Values of Metric NOS

10^-2 10^-1 10^0 10^1 10^2

L
o
g
(D

e
n
s
it

y
 [

s
m

o
o
th

e
d
])

Log(NOT)

Distribution of Values of Metric NOT

10^-2 10^-1 10^0 10^1 10^2

L
o
g
(D

e
n
s
it

y
 [

s
m

o
o
th

e
d
])

Log(RFC)

Distribution of Values of Metric RFC

10^-2 10^-1 10^0 10^1 10^2

L
o
g
(D

e
n
s
it

y
 [

s
m

o
o
th

e
d
])

Log(WMC)

Distribution of Values of Metric WMC

Figure 1 – Probability Density Functions (PDF) of all metrics in our suite. Although the plots are noisy, it is hard to argue that
any two distributions of values are due to the same common PDFs.

Comparing the closeness of the curves in each of the X/Y graphs in Fig. 2 with that of
Fig. 3 (while observing that the X-range and the Y -range are identical in all of these), we
can conclude that the deviation of the variety of distributions of the same metric in distinct
projects cannot be explained by statistical noise.

7 Statistical-Tests

This section applies statistical reasoning to verify the suggestion raised by the visual inspec-
tion of sample of figures sample of the previous section, i.e., that: “the same metric tends

Journal of Object Technology, vol. 15, no. 1, 2016

http://dx.doi.org/10.5381/jot.2016.15.1.a2


When do Software Complexity Metrics Mean Nothing? · 13

0%

20%

40%

60%

80%

100%

10^-2 10^-1 10^0 10^1

Log(ABC3)

CCDF of Metric ABC3

A
B
C
D
E
F
G
H
I
J

K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

0%

20%

40%

60%

80%

100%

10^-2 10^-1 10^0 10^1

Log(CBO)

CCDF of Metric CBO

A
B
C
D
E
F
G
H
I
J

K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

0%

20%

40%

60%

80%

100%

10^-2 10^-1 10^0 10^1

Log(CCC)

CCDF of Metric CCC

A
B
C
D
E
F
G
H
I
J

K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

0%

20%

40%

60%

80%

100%

10^-2 10^-1 10^0 10^1

Log(CHAM)

CCDF of Metric CHAM

A
B
C
D
E
F
G
H
I
J

K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

0%

20%

40%

60%

80%

100%

10^-2 10^-1 10^0 10^1

Log(CON)

CCDF of Metric CON

A
B
C
D
E
F
G
H
I
J

K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

0%

20%

40%

60%

80%

100%

10^-2 10^-1 10^0 10^1

Log(DIT)

CCDF of Metric DIT

A
B
C
D
E
F
G
H
I
J

K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

0%

20%

40%

60%

80%

100%

10^-2 10^-1 10^0 10^1

Log(GZIP)

CCDF of Metric GZIP

A
B
C
D
E
F
G
H
I
J

K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

0%

20%

40%

60%

80%

100%

10^-2 10^-1 10^0 10^1

Log(HOR)

CCDF of Metric HOR

A
B
C
D
E
F
G
H
I
J

K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

0%

20%

40%

60%

80%

100%

10^-2 10^-1 10^0 10^1

Log(LOC)

CCDF of Metric LOC

A
B
C
D
E
F
G
H
I
J

K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

0%

20%

40%

60%

80%

100%

10^-2 10^-1 10^0 10^1

Log(LZW)

CCDF of Metric LZW

A
B
C
D
E
F
G
H
I
J

K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

0%

20%

40%

60%

80%

100%

10^-2 10^-1 10^0 10^1

Log(MCC)

CCDF of Metric MCC

A
B
C
D
E
F
G
H
I
J

K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

0%

20%

40%

60%

80%

100%

10^-2 10^-1 10^0 10^1

Log(MCCS)

CCDF of Metric MCCS

A
B
C
D
E
F
G
H
I
J

K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

0%

20%

40%

60%

80%

100%

10^-2 10^-1 10^0 10^1

Log(MTE)

CCDF of Metric MTE

A
B
C
D
E
F
G
H
I
J

K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

0%

20%

40%

60%

80%

100%

10^-2 10^-1 10^0 10^1

Log(NIV)

CCDF of Metric NIV

A
B
C
D
E
F
G
H
I
J

K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

0%

20%

40%

60%

80%

100%

10^-2 10^-1 10^0 10^1

Log(NOC)

CCDF of Metric NOC

A
B
C
D
E
F
G
H
I
J

K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

0%

20%

40%

60%

80%

100%

10^-2 10^-1 10^0 10^1

Log(NOM)

CCDF of Metric NOM

A
B
C
D
E
F
G
H
I
J

K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

0%

20%

40%

60%

80%

100%

10^-2 10^-1 10^0 10^1

Log(NOS)

CCDF of Metric NOS

A
B
C
D
E
F
G
H
I
J

K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

0%

20%

40%

60%

80%

100%

10^-2 10^-1 10^0 10^1

Log(NOT)

CCDF of Metric NOT

A
B
C
D
E
F
G
H
I
J

K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

0%

20%

40%

60%

80%

100%

10^-2 10^-1 10^0 10^1

Log(RFC)

CCDF of Metric RFC

A
B
C
D
E
F
G
H
I
J

K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

0%

20%

40%

60%

80%

100%

10^-2 10^-1 10^0 10^1

Log(WMC)

CCDF of Metric WMC

A
B
C
D
E
F
G
H
I
J

K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

Figure 2 – CCDF of the distributions of selected metrics in all projects. The mathematical integration significantly reduced the
noise levels of the PDF metrics. There is clear difference between metrics in different projects.

to distribute in distinct manners in different projects”. Concretely, we shall observe that for
each metric µ, the multi-sets of values that µ assumes in the projects, µA, µB ,. . . , µZ , ap-
pear as if they are drawn from distinct distributions, and search for metrics’ transformation to
eliminate this predicament.

Sect. 7.1 provides a brief reminder of the U -test, which we employ for statistically mea-
suring the similarity of two multi-sets. Sect. 7.2 then discusses our “similarity measure”,
designed for dealing with more than two multi-sets and confirms the suggestion that the dis-
tributions of the plain metrics are indeed distinct in distinct projects. In Sect. 7.3 we define
“rank transformation” and show that it is “normalizing” in the sense that after applying it to

Journal of Object Technology, vol. 15, no. 1, 2016

http://dx.doi.org/10.5381/jot.2016.15.1.a2


14 · Joseph (Yossi) Gil, Gal Lalouche

0%

20%

40%

60%

80%

100%

10^-2 10^-1 10^0 10^1

Log(SHA1)

CCDF of Metric SHA1

A
B
C
D
E
F
G
H
I
J

K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

Figure 3 – CCDF of the SHA metric. This plot is an example of a metric that behaves exactly the
same in each project

(most) metrics, their distributions in distinct projects become similar. Other candidates for
normalizing transformations are the subject of Sect. 7.4. Finally, Sect. 7.6 reflects on the
search for normalizing transformations arguing that it is more difficult when the entropy of
metric distribution is small.

7.1 The U -Test

As evident from the figures of the previous section, the distribution of metrics does not make
a simple Gaussian, which suggests we should employ a non-parametric test. We will use
the U -test in our analysis13.

Recall that the input to a U -test is a pair of two multi-sets of numbers: DA and DB .
The test examines the null hypothesis: DA and DB are drawn from some common (yet,
unknown) distribution, conjugated with the claim that values in any of {DA,DB} are not
significantly greater than those values found in the other such multi-set. Such judgment is
made by computing the U statistics, defined by the summation carried over each d1 ∈ DA

of its rank in DB , i.e., the number of values d2 ∈ DB such that d2 < d1. As usual with
statistical tests, values of U exceeding certain critical points, reject the null hypothesis for the
desired statistical significance level.

Just like the Kolmogorov-Smirnov (K-S) test, the U -test is non-parametric in the sense
that it ignores the magnitude of values. Also, just like the K-S test, and unlike the χ2-test,
the U -test is ordinal: even though magnitude is ignored, the test uses the relative ordering of
the values. Consequently, statistical preserving transformations applied to both DA and DB

are transparent to the test.
The U -test is preferred over K-S in the case of software metrics, because it is better suited

to discrete distributions where repetitions are the norm, not the exception.

7.2 Comparing Multiple Sets

How should we quantify statistical similarity between more than two multi-sets? A funda-
mental difficulty is that statistical tests can never prove similarity; all they can do is disprove
it. Another issue is that the generalization of the U -test for more than two samples, i.e., the
Kruskal-Wallis test invalidates the null hypothesis even if only one multi-set is drawn from a
distribution distinct to that of the others.

Instead, we propose to apply a U -test to each pair of multi-sets. Specifically, for a given
metric µ, we apply a U -test to each of the 325 unordered pairs: µi, µj ∈ {µA, µB , . . . , µZ}
for all integers: 1 ≤ i < j ≤ 26. Let s be the percentage of pairs in which the null hypothesis

13The test is known mainly as the Mann-Whitney-Wilcoxon U test, but also as the Wilcoxon rank-sum test

Journal of Object Technology, vol. 15, no. 1, 2016

http://dx.doi.org/10.5381/jot.2016.15.1.a2


When do Software Complexity Metrics Mean Nothing? · 15

is not rejected, i.e.,

s = s(µ) =
#{〈µi, µj〉|i, j ∈ C, i < j, U(µi, µj) ≥ 0.05}

#{〈µi, µj〉|i, j ∈ C, i < j}
· 100% (1)

where C is the collection of all projects and µi ∈ C is the distribution of metric µ in the
ith project. We shall use s(µ) as a measure of the similarity of the distributions of µ in the
different projects: If s(µ) = 100%, then the U test is unable to distinguish between any of
the distributions of µ in the constituents of C.

Note that although we perform multiple statistical tests, the Bonferroni correction is not
applicable here. We do not seek the few individual cases in which the null hypothesis is
rejected. Actually, confidence in the desired conclusion is increased by the opposite case
in which the null-hypothesis is not rejected by the majority of comparisons. However, the
confidence behind the Bonferroni correction is still applicable in the following sense: if sig-
nificance level is set at 0.05, then confidence in the conclusion is not reduced if the null
hypothesis is rejected in as many as 5% of the cases.

Values of s(µ) for all µ in our suite, are shown in Tab. 4. For now, concentrate only on
the first and the third table’s columns—showing metric’s name and the value of this measure,
respectively. Subsequent columns show the values of s(Φ(µ)) for a variety of transformation
functions Φ; these are discussed below in Sect. 7.3 and Sect. 7.4.

To appreciate the numbers in the table, if it is the case that a metric is distributed in the
same manner in all projects, then the similarity-measure is expected to be in the range of 95%
to 100%, depending on the conservativeness of the U -test.

In case there are two, equally popular, distinct distributions, this expectation drops to
about 52.5%; in the case there are ten such distributions, to about 10%.

We set the threshold at 75%, considering a set of distributions as “similar” when the
measure exceeds this level. This threshold means that the number of different distributions,
normalized by their frequency, is somewhere between one and two.

For example, the third column in the LOC row shows that 13% of the projects pairs did
not reject the null hypothesis. This measure value can be interpreted as:

Choose two projects at random. Then, in six out of seven cases, values of the
lines-of-code metric in one project are going to be noticeably greater than those
found in the other project.

We see that even the popular LOC metric is sensitive enough to what might be called context
bias, i.e., that metric values found in one project are largely irrelevant to another project.

Examining the third column, we see that LOC is not unique among its peers. The low
measure value characterizes all metrics in our suite. Thus, a grasp on the distribution of
values of any metric in one project is highly unlikely to be useful for another project.

7.3 Metric Normalization

This section affirms that the context bias can be neutralized for most metrics in our suite.
Consider the right-most column of Tab. 4. This column is similar to third column explained
above, except that the depicted values are with respect to the “rank-normalized” metric. Rank
normalization transforms the ith largest metric value into (i − 1)/n, where n is the total
number of distinct values that the metric assumes. Therefore, rank normalization converts any
discrete distribution to a discrete approximation of the uniform distribution in the range [0, 1].

TheU -test should judge any two rank-normalized discrete distributions as being the same,
except when the approximation of the uniform distribution is poor, which happens if n is
small or if there is a bias in repetition of values.

Journal of Object Technology, vol. 15, no. 1, 2016

http://dx.doi.org/10.5381/jot.2016.15.1.a2


16 · Joseph (Yossi) Gil, Gal Lalouche

Table 4 – Similarity measure of the distributions in the projects of plain and normalized metric values
(Measure defined as the percentage of projects pairs that do not reject the “same distribution”
hypothesis at significance level ≤ 0.95). Values above 75% are considered “similar”. All metrics
initially exhibit low similarity. Using rank normalization or log-normal-standardizationmanages
to eliminate context bias in most of the metrics.

Metric Entropy (·) (·)
σ

(·)− µ (·)−µ
σ

log (·)
σ

log (·)− µ log (·)−µ
σ

rank(·)

ABC 3 10.87 12% 13% 1% 11% 5% 63% 75% 99%
CBO 7.26 21% 22% 29% 76% 19% 92% 94% 100%
CCC 10.94 11% 13% 1% 12% 6% 62% 76% 99%
CHAM 6.30 26% 18% 10% 19% 15% 70% 83% 95%
CON 2.90 24% 14% 22% 38% 8% 35% 24% 37%
DIT 2.25 20% 8% 15% 20% 22% 16% 17% 19%
ENT 15.12 20% 2% 95% 100% 2% 89% 100% 100%
GZIP 13.60 13% 11% 10% 38% 3% 76% 92% 100%
HOR 9.30 17% 16% 4% 10% 19% 96% 95% 100%
LOC 11.36 18% 13% 8% 21% 8% 96% 99% 100%
LPC 2.92 31% 38% 0% 0% 0% 2% 0% 0%
LZW 12.60 19% 11% 16% 38% 7% 99% 100% 100%
MCC 5.78 18% 10% 3% 6% 27% 64% 64% 59%
MCCS 5.66 20% 8% 3% 8% 26% 64% 64% 58%
MTE 3.95 25% 33% 2% 6% 2% 18% 10% 16%
NIV 5.44 26% 22% 11% 25% 18% 65% 75% 88%
NOC 1.14 52% 53% 0% 0% 0% 0% 0% 0%
NOM 6.78 32% 13% 11% 26% 16% 80% 90% 99%
NOS 8.91 17% 15% 5% 17% 19% 96% 96% 100%
NOT 12.78 20% 13% 11% 25% 9% 99% 100% 100%
RFC 8.48 24% 22% 16% 55% 20% 96% 98% 100%
WMC 11.21 19% 18% 6% 14% 14% 89% 93% 100%

Mean 22% 18% 13% 26% 12% 67% 70% 76%
σ 8% 10% 19% 24% 8% 31% 34% 35%

Median 20% 14% 9% 20% 12% 73% 86% 99%
MAD 3% 4% 6% 10% 7% 20% 12% 0%

Min 11% 2% 0% 0% 0% 0% 0% 0%
Max 52% 53% 95% 100% 27% 99% 100% 100%

Journal of Object Technology, vol. 15, no. 1, 2016

http://dx.doi.org/10.5381/jot.2016.15.1.a2


When do Software Complexity Metrics Mean Nothing? · 17

A case in point is the value of 40% in the MCC row of this column. The judgment of
the U test is that the distribution of the rank normalized MCC in two projects i, j, i¬j is
distinct in 60% of all such pairs. The explanation is that the number of values that MCC
assumes is small and repetitions of these values shows different bias in distinct projects.

The last column is an approximate upper bound on the score of similarity that can be
achieved with any transformation. Eleven out of the fourteen metrics scored more than 80%
in the similarity scale; seven metrics even scored a perfect 100%.

0%

20%

40%

60%

80%

100%

10^-2 10^-1 10^0 10^1

Log(rank(NOC))

CCDF of Metric NOC

A
B
C
D
E
F
G
H
I
J

K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

0%

20%

40%

60%

80%

100%

10^-2 10^-1 10^0 10^1

Log(rank(NOT))

CCDF of Metric NOT

A
B
C
D
E
F
G
H
I
J

K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

Figure 4 – Cumulative Complementary Density Function of the distribution of selected metrics in our
projects, after applying rank normalization. The difference between the metric on the left, which
still exhibits context bias, and the metric on the right, which no longer does, is clearly evident.

Fig. 4 depicts the CCDF of the distributions of two selected metrics in all projects. To
appreciate the visual information carried by the figure, recall that in the absence of repetitions,
rank normalization makes the best discrete approximation of the uniform distribution and that
this approximation is not subject to statistical noise. Thus, in metric NOT where the set of
values is large and repetitions are scarce, the closeness of the curves is even better than that
of SHA-1 (Fig. 3). We do expect such a behavior in, e.g., metric NOC where the relatively
small discrete range forces many repetitions. Even with plot smoothing, the curves in the left
hand side of Fig. 4 look much farther away than in Fig. 3.

From the two figures and Tab. 4, we conclude that the rank normalized value of a metric
largely eliminates context bias. Rank normalization is a useful pre-processing stage when
values of a metric in one project are mixed with values drawn from another project or conclu-
sions drawn based on one project are to be applied to another. Its major drawback is in being
irreversible, i.e., it is impossible to retrieve the original values after using it.

7.4 Investigating Context Bias

We proceed in our attempts to identify the means to eliminate “context bias”. Various “nor-
malization” functions are applied to the metric values prior to the computation of the similar-
ity measure. The results are presented in the inner columns of Tab. 4.

Consider for example, the fourth column showing the similarity measure computed by
dividing the metric value by the standard deviation of the project from which the value was
drawn. This column tests the hypothesis that projects differ only by their standard deviation.
The low similarity measure values found in this column indicate that this is not a worthy
pre-processing state.

Similarly, the two subsequent columns test the conjecture that subtracting the mean elimi-
nates the context bias and that by subtracting the mean and dividing by the standard deviation
also eliminates context bias. Other than isolated the high similarities for metrics CBO, the
generally low measure values under these two columns lead us to eliminate the possibility
that the mean or the standard deviations capture context bias.

Journal of Object Technology, vol. 15, no. 1, 2016

http://dx.doi.org/10.5381/jot.2016.15.1.a2


18 · Joseph (Yossi) Gil, Gal Lalouche

7.4.1 log-Normal-Standardization

The next three columns follow the recommendation proposed by Cohen & Gil [39] to con-
sider the logarithm of the metric values. As witnessed by the larger similarity measures in
these three columns, this recommendation is a promising direction. In fact, the penultimate
column of Tab. 4 rivals its ultimate column. This rivalry suggests that the effects of the con-
text bias are limited to scaling (by the standard deviation) and shifting (by the negative of
the mean) in the logarithmic scale. We call the penultimate normalization the log-normal-
standardization (LNS). The name is not to imply that the metrics follow a log-normal dis-
tribution. In fact, the Shapiro-Wilk test rejects the log-normal null hypothesis for the vast
majority of the selection of a metric and a project pair. It is rather in suggestion to the stan-
dard score for normal distributions.

The CCDF plots of some of the metrics, after being subjected to LNS, are depicted in
Fig. 514.

The actual curves were subjected to same-scale transformation (see Sect. 6) to allow
visual comparison with Fig. 3. Obviously, curves in each of the X/Y graphs of Fig. 5 are
not overwhelmingly more distant than in Fig. 3. Moreover, each of the X/Y graphs of
Fig. 5 when compared with its Fig. 2 counterpart shows that LNS makes close to identical
distributions in different projects of the same metric. It can even be argued that closeness of
some of the curve bundles may be at the level of statistical fluctuations of the SHA-1 metric
(Fig. 3).

Yet, we are compelled to draw attention to the curves associated with the NOC metric.
As can be seen in Tab. 4, both rank and LNS fail to make the distributions of NOC to be
as close as curves in other metrics. The raggedness of the curves in Fig. 5 associated to this
metric is explained by this failure, which, in turn, might be explained by the relatively small
number of values that NOC typically assumes.

7.5 Median-Based Normalization

Since the U test is non-parametric, better normalization results might be obtained by replac-
ing the mean and standard deviation statistics with the median and median absolute deviation
(MAD), respectively. The results of these normalizations are aggregated in Tab. 5.

Consider the fifth column in Tab. 5, which is analogue to the standard normalization in
Tab. 4 (the sixth column). The results of this column, as summarized in the last 6 rows of each
table, are much higher. However, inspecting the last column of Tab. 5, we see that not only
was the log transformation less beneficial than it was in Tab. 4, but the results are actually
poorer. We conclude that this direction is not preferable to either rank or LNS.

7.6 The Effects of Low Entropy on Metric Normalization

We turn our attention to the metrics that we could not normalize. One metric in which the
similarity measure is low, even after rank normalization, is easy to explain. It was shown [20]
that the average number of constructors in a class is slightly greater than one. Subsequently,
the variety (measured, e.g., by the entropy of the distribution) of values of CON must be
small. Consider now a typical case where in one project 60% (say) of all classes have one
constructor, while this ratio is 70% in another project. Then, the discrete nature of the rank
function makes it impossible to apply an order preserving, non-collapsing, transformation
under which this gap can be explained as statistical noise about some common distribution.
The above deduction may also be applicable to other metrics, e.g., NIV and NOC.

14The PDF plots are omitted as they are, even after normalization, still too noisy.

Journal of Object Technology, vol. 15, no. 1, 2016

http://dx.doi.org/10.5381/jot.2016.15.1.a2


When do Software Complexity Metrics Mean Nothing? · 19

0%

20%

40%

60%

80%

100%

10^-2 10^-1 10^0 10^1

Log(ABC3)

CCDF of Metric ABC3

A
B
C
D
E
F
G
H
I
J

K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

0%

20%

40%

60%

80%

100%

10^-2 10^-1 10^0 10^1

Log(CBO)

CCDF of Metric CBO

A
B
C
D
E
F
G
H
I
J

K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

0%

20%

40%

60%

80%

100%

10^-2 10^-1 10^0 10^1

Log(CCC)

CCDF of Metric CCC

A
B
C
D
E
F
G
H
I
J

K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

0%

20%

40%

60%

80%

100%

10^-2 10^-1 10^0 10^1

Log(CHAM)

CCDF of Metric CHAM

A
B
C
D
E
F
G
H
I
J

K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

0%

20%

40%

60%

80%

100%

10^-2 10^-1 10^0 10^1

Log(CON)

CCDF of Metric CON

A
B
C
D
E
F
G
H
I
J

K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

0%

20%

40%

60%

80%

100%

10^-2 10^-1 10^0 10^1

Log(DIT)

CCDF of Metric DIT

A
B
C
D
E
F
G
H
I
J

K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

0%

20%

40%

60%

80%

100%

10^-2 10^-1 10^0 10^1

Log(GZIP)

CCDF of Metric GZIP

A
B
C
D
E
F
G
H
I
J

K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

0%

20%

40%

60%

80%

100%

10^-2 10^-1 10^0 10^1

Log(HOR)

CCDF of Metric HOR

A
B
C
D
E
F
G
H
I
J

K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

0%

20%

40%

60%

80%

100%

10^-2 10^-1 10^0 10^1

Log(LOC)

CCDF of Metric LOC

A
B
C
D
E
F
G
H
I
J

K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

0%

20%

40%

60%

80%

100%

10^-2 10^-1 10^0 10^1

Log(LZW)

CCDF of Metric LZW

A
B
C
D
E
F
G
H
I
J

K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

0%

20%

40%

60%

80%

100%

10^-2 10^-1 10^0 10^1

Log(MCC)

CCDF of Metric MCC

A
B
C
D
E
F
G
H
I
J

K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

0%

20%

40%

60%

80%

100%

10^-2 10^-1 10^0 10^1

Log(MCCS)

CCDF of Metric MCCS

A
B
C
D
E
F
G
H
I
J

K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

0%

20%

40%

60%

80%

100%

10^-2 10^-1 10^0 10^1

Log(MTE)

CCDF of Metric MTE

A
B
C
D
E
F
G
H
I
J

K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

0%

20%

40%

60%

80%

100%

10^-2 10^-1 10^0 10^1

Log(NIV)

CCDF of Metric NIV

A
B
C
D
E
F
G
H
I
J

K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

0%

20%

40%

60%

80%

100%

10^-2 10^-1 10^0 10^1

Log(NOC)

CCDF of Metric NOC

A
B
C
D
E
F
G
H
I
J

K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

0%

20%

40%

60%

80%

100%

10^-2 10^-1 10^0 10^1

Log(NOM)

CCDF of Metric NOM

A
B
C
D
E
F
G
H
I
J

K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

0%

20%

40%

60%

80%

100%

10^-2 10^-1 10^0 10^1

Log(NOS)

CCDF of Metric NOS

A
B
C
D
E
F
G
H
I
J

K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

0%

20%

40%

60%

80%

100%

10^-2 10^-1 10^0 10^1

Log(NOT)

CCDF of Metric NOT

A
B
C
D
E
F
G
H
I
J

K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

0%

20%

40%

60%

80%

100%

10^-2 10^-1 10^0 10^1

Log(RFC)

CCDF of Metric RFC

A
B
C
D
E
F
G
H
I
J

K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

0%

20%

40%

60%

80%

100%

10^-2 10^-1 10^0 10^1

Log(WMC)

CCDF of Metric WMC

A
B
C
D
E
F
G
H
I
J

K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

Figure 5 – Cumulative Complementary Density Function of the distribution of selected metrics in our projects, after using
the log-normal-standardization. For some metrics, e.g., NOT, the context bias has been greatly reduced, while for some,
e.g., DIT, it didn’t.

This points us towards finding a commonality between those metrics. We hypothesize
that metrics that exhibit only small variation in values would be more resistant to normaliza-
tions. One way of measuring the variation in values is measuring the information theoretical
entropy [36] of the set of metric values in the unified project15. Given a metric value µ, the
entropy of µ’s values is defined as: −

∑
v∈V

P (v) · log2 P (v), where V is the set of all values

and P (v) is the relative frequency of a given value v. A possible interpretation of entropy is

15The unified project is made up from all classes in all projects in our dataset

Journal of Object Technology, vol. 15, no. 1, 2016

http://dx.doi.org/10.5381/jot.2016.15.1.a2


20 · Joseph (Yossi) Gil, Gal Lalouche

Table 5 – Similarity measure of the distributions in the projects using median-based normalizations
(Measure defined as the percentage of projects pairs that do not reject the “same distribution”
hypothesis at significance level ≤ 0.95). Values above 75% are considered “similar”. Compared
with the normalizations in Tab. 4, median-based normalizations are actually poorer for the most
part.

Metric Entropy (·)− µ1/2
(·)

MAD
(·)−µ1/2

MAD log (·)− µ1/2
log (·)
MAD

log (·)−µ1/2

MAD

ABC 3 10.87 32% 46% 59% 59% 7% 55%
CBO 7.26 69% 29% 84% 88% 10% 90%
CCC 10.94 35% 47% 59% 60% 8% 56%
CHAM 6.30 62% 37% 72% 69% 14% 63%
CON 2.90 26% 15% 27% 14% 11% 19%
DIT 2.25 15% 16% 17% 15% 13% 16%
ENT 15.12 96% 1% 93% 97% 1% 95%
GZIP 13.60 72% 16% 78% 82% 1% 79%
HOR 9.30 44% 69% 90% 86% 15% 86%
LOC 11.36 78% 29% 87% 89% 6% 92%
LPC 2.92 27% 27% 36% 22% 0% 27%
LZW 12.60 83% 38% 96% 96% 6% 97%
MCC 5.78 28% 19% 67% 39% 33% 48%
MCCS 5.66 24% 16% 60% 33% 36% 36%
MTE 3.95 22% 23% 32% 14% 3% 15%
NIV 5.44 45% 44% 54% 48% 17% 55%
NOC 1.14 52% 52% 52% 52% 0% 52%
NOM 6.78 58% 48% 68% 65% 20% 66%
NOS 8.91 56% 58% 90% 84% 19% 84%
NOT 12.78 65% 48% 91% 89% 7% 91%
RFC 8.48 68% 59% 92% 90% 17% 90%
WMC 11.21 51% 64% 82% 86% 8% 85%

Mean 50% 36% 67% 62% 11% 63%
σ 21% 18% 23% 28% 9% 26%

Median 51% 38% 70% 67% 9% 65%
MAD 18% 14% 17% 21% 6% 23%

Min 15% 1% 17% 14% 0% 15%
Max 96% 69% 96% 97% 36% 97%

the expected number of bits needed to specify a value. By observing the second column of
Tab. 4, we conclude that all of the metrics that we could not normalize have low entropy.

8 Threats to Validity

1. Dataset Selection. Sect. 4 outlined our methods for selecting the dataset. As it is
invariably the case with empirical research, our selection involves many arbitrary de-
cisions: the specific number of projects, the repositories from which these are drawn,
our adequacy criteria and the particular threshold levels for each of these, etc.

Perturbing any of these decisions, even slightly, shall alter the dataset under inspection.
The numbers in the tables above will then change as well. Perturbations here, as in all
empirical studies, may invalidate the results. This technical threat to validity is no
different than in other works of this sort. Moreover, in targeting mainstream projects

Journal of Object Technology, vol. 15, no. 1, 2016

http://dx.doi.org/10.5381/jot.2016.15.1.a2


When do Software Complexity Metrics Mean Nothing? · 21

from a mainstream programming language, our conclusions should be useful in a wide
array of domains at least as baseline for comparison.

Conversely, a justification for this particular selections employs the perspective of a
software engineer appreciating the values of the code metrics in his current project:
Past projects—carried out in the same store and under controlled development environ-
ment [33]—are the ideal baseline for comparison. However, experience indicates [21]
that such previous data is rarely available. Our engineer may then turn to using data
gathered in “similar” projects. We argue that our selection process is sufficiently simi-
lar to that of a “reasonable” engineer, to advise against the plain use of the code metrics,
and to recommend the LNS process.

2. The Metrics Suite. We cannot claim that our suite is definitive; but, we do suggest that
it is sufficiently representative to cast a doubt on un-normalized uses of code metrics.
Also, it should be clear that rank-normalization is applicable to any metric with suffi-
ciently large entropy. Partial extrapolation to method-level metrics can be made relying
on data found in the literature [9, 39], showing that the distributions of many of these
is Pareto or log-normal.

3. Concentrating on Open Source Software. Does our decision to concentrate on open-
source software raise a threat to validity? Obviously, caution must be exercised before
extrapolating to software developed in a closed-source setting. Yet, we argue that this
extrapolation makes our conclusions even more likely to be true. To see this, consider
two projects drawn from distinct closed-source stores. The separate and sometimes
secretive nature of non-free software development is likely to make these projects even
more “different”. (Clearly, the threat to validity is in effect when comparing projects
of the same factory.)

4. The Sole Use of JAVA Projects. Would one expect the results to be valid in other
programming languages? We cannot offer a definite answer here. On the one hand,
none of our research methods or metrics were unique to JAVA. On the other, we know
that coding style (e.g., typical method and module length) varies greatly between lan-
guages. Consider, for example, the tendency of SMALLTALK [1] methods to be terse,
or, the habit of C++ [5] programmers to place several classes in a single compilation
unit, in contrast to JAVA’s idiom of one class in each compilation unit. It remains to
determine whether these style differences affect context bias.

5. Correlation vs. Causation. The famous “correlation vs. causation” trap exists in al-
most every statistical study. In our case though, it takes a different shape, because
our conclusion relies on demonstrating “non-correlation” rather than “correlation”. An
(apparent) fallacy in our line of reasoning can be phrased as:

It is obvious that some software artifacts are more complex, buggy, risky,
etc., than others. Therefore, with the belief that code metrics predict com-
plexity (bugginess, risk-factor, etc.) we should expect each artifact to ex-
hibit its own bias of code metrics. Context bias is hence nothing more than
a paler reflection of the inherent variation in artifacts’ complexity.

We suggest that this devil-advocating claim be rejected outright. Suppose to the con-
trary that correlation between internal and external metrics is indeed so profound to
make the above claim true. Now, it would be relatively easy to measure external qual-
ities of software projects (rather than individual modules) using such internal metrics.

Journal of Object Technology, vol. 15, no. 1, 2016

http://dx.doi.org/10.5381/jot.2016.15.1.a2


22 · Joseph (Yossi) Gil, Gal Lalouche

Then, it is highly unlikely that such a correlation would never have been detected by
the research community.

9 Discussion

The suspicion of the existence of context bias raised by the PDF and CCDF plots of Sect. 6,
and fed by the general belief that “every software project is different”, was confirmed in
Sect. 7:

For all metrics we examined, we found that the distribution of the metric value
in one software artifact yields, with high probability, a biased judgement of the
values in another such artifact.

Bluntly, the code metric values, when inspected out of context, mean nothing.
As noted above in Sect. 3, we do not go as much as studying the impact of criteria such

as host, size, and recency on projects’ similarity. However, we do show that a study of this
sort is at risk to lead to fallacies unless caution is exercised to account for the idiosyncratic
context presumption.

Our work is applicable to research of ties between internal and external properties: for
this research to be of general value, it cannot concentrate on artifacts developed in a single
controlled environment. We also argue that LNS (or rank-normalization) should be applied
prior to merging data collected in such research.

Sect. 7 also substantiates other claims made in Sect. 1: rank normalization, obtained by
re-scaling the ordinal rank into the [0, 1] range, removes the context-bias of the majority of
metrics. We also learned that most of the context bias is captured by two factors: the mean
and the standard deviation of the logarithm of—rather than the plain version of—the metric
values. Using LNS is preferable because it is reversible.

Overall, we have shown that the plain, un-corrected value of a software metric is unlikely
to predict external qualities of software. The major research question that this research leaves
open is whether corrected values can be correlated with such external qualities.

Other directions for further research may include:

• Impact of Entropy. We have shown that while we could not neutralize the context bias
in all of the metrics, the values of those metrics also exhibit smaller entropy. Fur-
ther research may provide better insight into the relationship of entropy and software
metrics.

• Use of Average Metric Value. Software artifacts are never stagnate; so are the modules
that constitute the artifact. Previous work on software metrics tends to ignore this fact,
measuring the code metrics of modules in a snapshot of the enclosing artifact, usually
on the most recently available snapshot.

Our work is different in that the value assigned to a code metric of a certain module is
computed by averaging this metric’s value across all versions of this module. We argue
that this makes the results more robust.

Repeating the analysis and considering only the latest snapshot, the context bias was
even more apparent, because the entropy of the metric values actually decreases. Con-
sider, for example, the NOC metric: by default, its set of values is very limited (as
discussed in Sect. 7). However, when averaging these value across several files, they
are no longer necessarily integers. Hence, the set of values increases greatly.

Journal of Object Technology, vol. 15, no. 1, 2016

http://dx.doi.org/10.5381/jot.2016.15.1.a2


When do Software Complexity Metrics Mean Nothing? · 23

• Using the U -Test. The null hypothesis standing trial by the U -test is that values in one
distribution are neither greater nor lesser than the other. Therefore, the high-percentage
values, reaching 100% in the last column Tab. 4, are a bit misleading. These ratios do
not mean that the distributions in different project of a certain metric value are the
same (as far as the test can detect). To show that the distribution are the “same”, future
research may need to employ the Kolmogorov-Smirnoff test.

Acknowledgements This research was supported by the Israel Science Foundation (ISF),
grant No. 1803/13. We thank Eli Sennesh (Gottlieb) for inspiring discussions and for coop-
erating in the development of the software base underlying our empirical work.

References

[1] Smalltalk-80: The Interactive Programming Environment. Addison-Wesley Publishing
Company, Reading, MA, 1984.

[2] A metrics suite for object oriented design. IEEE Transactions on Software Engineer-
ing, 20(6):476–493, June 1994.

[3] Software Metrics. Prentice-Hall, Englewood Cliffs, New Jersy 07632, 1996.

[4] The JAVA Programming Language. The Java Series. Addison-Wesley Publishing Com-
pany, Reading, MA, 1996.

[5] The C++ Programming Language. Addison-Wesley Publishing Company, Reading,
MA, 1997.

[6] M. Allamanis and S. Charles. Mining source code repositories at massive scale using
language modeling. In The 10th Working Conference on Mining Software Reposito-
ries, pages 207–216. IEEE, 2013.

[7] T. L. Alves, C. Ypma, and J. Visser. Deriving metric thresholds from benchmark data.
In Software Maintenance (ICSM), 2010 IEEE International Conference on, pages 1–
10. IEEE, 2010.

[8] J. Bansiya and C. G. Davis. A hierarchical model for object-oriented design quality
assessment. IEEE Trans. Softw. Eng., 28(1):4–17, Jan. 2002.

[9] G. Baxter, M. Frean, J. Noble, M. Rickerby, H. Smith, M. Visser, H. Melton, and
E. Tempero. Understanding the shape of java software. In P. L. Tarr and W. R. Cook,
editors, (OOPSLA’06), Portland, Oregon, Oct.22-26 2006. ACM.

[10] V. Blondeau, N. Anquetil, S. Ducasse, S. Cresson, and P. Croisy. Software metrics to
predict the health of a project? In IWST’15, page 8, 2015.

[11] A. Capiluppi, A. E. Faria, and J. Fernández-Ramil. Exploring the relationship between
cumulative change and complexity in an open source system. In Software Mainte-
nance and Reengineering, 2005. CSMR 2005. Ninth European Conference on, pages
21–29. IEEE, 2005.

[12] A. Capiluppi and J. Fernández-Ramil. A model to predict anti-regressive effort in open
source software. In Software Maintenance, 2007. ICSM 2007. IEEE International
Conference on, pages 194–203. IEEE, 2007.

[13] V. U. B. Challagulla, F. B. Bastani, I.-L. Yen, and R. A. Paul. Empirical assessment of
machine learning based software defect prediction techniques. International Journal
on Artificial Intelligence Tools, 17(02):389–400, 2008.

Journal of Object Technology, vol. 15, no. 1, 2016

http://dx.doi.org/10.5381/jot.2016.15.1.a2


24 · Joseph (Yossi) Gil, Gal Lalouche

[14] M. D’Ambros, M. Lanza, and R. Robbes. An extensive comparison of bug prediction
approaches. In Mining Soft. Repo. (MSR), 2010 7th IEEE Working Conference on,
pages 31–41. IEEE, 2010.

[15] L. P. Deutsch. Gzip file format specification version 4.3. RFC #1952, 1996.

[16] F. B. e Abreu, M. G. ao, and R. Esteves. Toward the design quality evaluation of
object-oriented software. In (ICSE’95), pages 44–57, Seattle, WA, USA, Apr. 23-30
1995.

[17] D. Eastlake and P. Jones. US secure hash algorithm 1 (SHA1), 2001.

[18] The complexity of type analysis of object oriented programs. In E. Jul, editor,
(ECOOP’98), volume 1445, pages 601–634, Brussels, Belgium, July 20–24 1998.
Springer Verlag.

[19] N. Fenton and J. Bieman. Software Metrics: A Rigorous and Practical Approach,
Third Edition. CRC Press, Inc., Boca Raton, FL, USA, 3rd edition, 2014.

[20] J. Y. Gil and T. Shragai. Are we ready for a safer construction environment? In
J. Vitek, editor, (ECOOP’08), volume 5142, pages 495–519, Cyprus, July7–11 2008.
Springer Verlag.

[21] K. P. Grant and J. S. Pennypacker. Project management maturity: an assessment of
project management capabilities among and between selected industries. IEEE Trans-
actions on Software Engineering, 53(1):59–68, 2006.

[22] W. A. Harrison and K. I. Magel. A complexity measure based on nesting level. ACM
Sigplan Notices, 16(3):63–74, 1981.

[23] H. Hata, O. Mizuno, and T. Kikuno. An extension of fault-prone filtering using precise
training and a dynamic threshold. In Proc. of the 2008 Int. working Conf. on Mining
Software Repositories, pages 89–98. ACM, 2008.

[24] A. Hindle, M. Godfrey, and R. Holt. Reading beside the lines: Indentation as a proxy
for complexity metric. In The 16th IEEE Int. Conf. on Program Comprehension
(ICPC’08), pages 133–142, June10-13 2008.

[25] A. Jbara and D. G. Feitelson. On the effect of code regularity on comprehension. In
ICPC, pages 189–200, 2014.

[26] J. Kidd. Object-Oriented Software Metrics: a practical guide. Prentice-Hall, Engle-
wood Cliffs, New Jersy 07632, 1994.

[27] S. Kim, E. J. Whitehead, and Y. Zhang. Classifying software changes: Clean or
buggy? IEEE Transactions on Software Engineering, 34(2):181–196, 2008.

[28] R. Marinescu. Detection strategies: metrics-based rules for detecting design flaws. In
Software Maintenance, 2004. Proceedings. 20th IEEE International Conference on,
pages 350–359, Sept 2004.

[29] T. J. McCabe. A complexity measure. IEEE Transactions on Software Engineering,
2(4):308–320, Dec. 1976.

[30] B. Meyer. Object-Oriented Software Construction. International Series in Computer
Science. Prentice-Hall, Englewood Cliffs, New Jersy 07632, 1988.

[31] R. Moser, W. Pedrycz, and G. Succi. A comparative analysis of the efficiency of
change metrics and static code attributes for defect prediction. In (ICSE’08), pages
181–190, Leipzig, Germany, May10-18 2008. ACM.

Journal of Object Technology, vol. 15, no. 1, 2016

http://dx.doi.org/10.5381/jot.2016.15.1.a2


When do Software Complexity Metrics Mean Nothing? · 25

[32] N. Nagappan, T. Ball, and A. Zeller. Mining metrics to predict component failures. In
L. J. Osterweil, H. D. Rombach, and M. L. Soffa, editors, (ICSE’06), pages 452–461,
Shanghai, China, May20-28 2006. ACM Press, New York, NY, USA.

[33] M. Paulk. Capability maturity model for software. Wiley Online Library, 1993.

[34] P. Piwowarski. A nesting level complexity measure. ACM Sigplan Notices, 17(9):44–
50, 1982.

[35] P. L. Roden, S. Virani, L. H. Etzkorn, and S. Messimer. An empirical study of the re-
lationship of stability metrics and the qmood quality models over software developed
using highly iterative or agile software processes. In Source Code Analysis and Ma-
nipulation, 2007. SCAM 2007. Seventh IEEE International Working Conference on,
pages 171–179. IEEE, 2007.

[36] C. E. Shannon. A mathematical theory of communication. ACM SIGMOBILE Mobile
Computing and Communications Review, 5(1):3–55, 2001.

[37] S. Shivaji, E. J. Whitehead, R. Akella, and S. Kim. Reducing features to improve code
change-based bug prediction. IEEE Transactions on Software Engineering, 39(4):552–
569, 2013.

[38] J. Śliwerski, T. Zimmermann, and A. Zeller. When do changes induce fixes? 30(4):1–
5, 2005.

[39] Self-calibration of metrics of Java methods. In (TOOLS’00 Pacific), pages 94–106,
Sydney, Australia, Nov. 20-23 2000. Prentice-Hall, Englewood Cliffs, New Jersy
07632.

[40] F. Zhang, A. Mockus, Y. Zou, F. Khomh, and A. E. Hassan. How does context affect
the distribution of software maintainability metrics? In (ICSM’13), pages 350–359,
Eindhoven, The Netherlands, Sept.22–28 2013. IEEE Computer Society.

[41] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy. Cross-project defect
prediction: a large scale experiment on data vs. domain vs. process. In Proceedings
of the the 7th joint meeting of the European software engineering conference and the
ACM SIGSOFT symposium on The foundations of software engineering, pages 91–
100. ACM, 2009.

[42] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding.
Information Theory, IEEE Transactions on, 24(5):530–536, 1978.

Journal of Object Technology, vol. 15, no. 1, 2016

http://dx.doi.org/10.5381/jot.2016.15.1.a2

	Introduction
	Background: Code Metrics as Indicators of Software Defects
	Possible Causes of Poor Results

	Related Work
	The Idiosyncratic Context Presumption
	The Dataset
	The Metrics Suite
	Comparing Distributions of Metric Values
	Statistical-Tests
	The U-Test
	Comparing Multiple Sets
	Metric Normalization
	Investigating Context Bias
	log-Normal-Standardization

	Median-Based Normalization
	The Effects of Low Entropy on Metric Normalization

	Threats to Validity
	Discussion
	References

