JOURNAL OF OBJECT TECHNOLOGY

Published by AITO — Association Internationale pour les Technologies Objets
http://wuw.jot.fm/

Babelsberg: Specifying and Solving
Constraints on Object Behavior

Tim Felgentreff*>¢ Alan Borning®® Robert Hirschfeld®®

a. Hasso Plattner Institute, University of Potsdam
b. University of Washington

¢. Communications Design Group, SAP Labs

Abstract Constraints allow developers to specify desired properties of
systems in a number of domains, and have those properties be maintained
automatically. This results in compact, declarative code, avoiding scat-
tered code to check and imperatively re-satisfy invariants. Despite these
advantages, constraint programming is not yet widespread, with imperative
programming still the norm.

There is a long history of research on integrating constraint program-
ming with the imperative paradigm. However, this integration typically
does not unify the constructs for encapsulation and abstraction from both
paradigms. This impedes re-use of modules, as client code written in one
paradigm can only use modules written to support that paradigm. Modules
require redundant definitions if they are to be used in both paradigms.

We present a language — BABELSBERG — that unifies the constructs
for encapsulation and abstraction by using only object-oriented method
definitions for both declarative and imperative code. Our prototype —
BABELSBERG /R — is an extension to Ruby, and continues to support Ruby’s
object-oriented semantics. It allows programmers to add constraints to
existing Ruby programs in incremental steps by placing them on the results
of normal object-oriented message sends. It is implemented by modifying
a state-of-the-art Ruby virtual machine. The performance of Ruby code
without constraints is only modestly impacted, with typically less than 10%
overhead compared with the unmodified virtual machine. Furthermore,
our architecture for adding multiple constraint solvers allows BABELSBERG
to deal with constraints in a variety of domains.

We argue that our approach provides a useful step toward making
constraint solving a useful tool for object-oriented programmers. We also
provide example applications, written in our Ruby-based implementation,
which use constraints in a variety of application domains, including inter-
active graphics, circuit simulations, data streaming with both hard and
soft constraints on performance, and configuration file management.

Keywords Constraints, Object Constraint Programming

Tim Felgentreff, Alan Borning, Robert Hirschfeld. Babelsberg: Specifying and Solving Constraints on
Object Behavior. Licensed under Attribution-NoDerivs CC BY-ND. In Journal of Object Technology,
vol. 13, no. 4, 2014, pages 1:1-38. doi:10.5381/jot.2014.13.4.al

http://www.jot.fm/
http://creativecommons.org/licenses/by-nd/4.0/
http://dx.doi.org/10.5381/jot.2014.13.4.a1
http://dx.doi.org/10.5381/jot.2014.13.4.a1
http://dx.doi.org/10.5381/jot.2014.13.4.a1

2 - Tim Felgentreff, Alan Borning, Robert Hirschfeld

1 Introduction

Constraints and constraint programming occur in a variety of application domains
within computer science and related fields, including graphics, CAD/CAM, planning
and operations research, artificial intelligence, user interface toolkits, and programming
languages. A constraint is simply a relation that should hold. Some examples of
constraints from a variety of application domains are: that there be a minimum of
10 pixels horizontal space between two buttons on a screen, that a resistor in an
electrical circuit simulation obey Ohm’s Law, that a maximum of 10 parts per hour
can be produced by a machine in a factory, that all of the digits in a row or column
or subregion of a Sudoku puzzle must be different, that the height of a bar in a
bar chart correspond to a value produced by a simulation, or that a streamed video
play smoothly in the presence of changing CPU and network load. Constraints are
declarative: they specify what should be the case rather than how to achieve it. They
thus provide flexibility in the way they can be employed, since a single constraint can
typically be used in multiple ways.

A number of features are desirable in constraint programming to solve a useful set of
problems. Unfortunately it is in general much easier to state constraint problems than
to solve them — some problems are extremely difficult, and others are undecidable. On
the other hand, for some restricted but very useful classes of constraints, quite efficient
solvers are available. Therefore, practical solvers impose restrictions on the kinds of
constraints they can solve, for example, by supporting only floats and not integers or
requiring numeric equalities and inequalities to be linear. For example, the Cassowary
solver [BBSO01] can solve multi-way constraints on floats; Z3 [DMBO08] can do the same
for reals, integers, and booleans; Kodkod [TJ07], Z3, and Ilog [Pug94, IBM14] can
enumerate solutions; and DeltaBlue [FBM89] can solve multi-way constraints using
local propagation. An even more restricted approach is to only consider one-way
constraints that can compute an output value given new inputs, but not vice versa
(e.g., [HS96, MGDT90]).

Thus, in general a variety of solvers are needed, depending on the type domain
and particular characteristics of the constraints. It is also useful to have these
solvers interoperate to find a solution to a particular problem. Furthermore, in some
application domains, it is important to support soft as well as hard constraints, that
is, constraints that should be satisfied if possible as well as constraints that must
be satisfied. Finally, in the presence of frequent changes, incremental solvers are
required that can efficiently re-solve a set of constraints as input values are changed or
constraints added and deleted. Interactive graphical systems provide examples of all
of these: they include constraints on complex objects such as points and rectangles as
well as floats and integers, soft constraints to express preferences regarding layout, and
require incremental solvers to efficiently re-solve constraints repeatedly, for example
when a part of the figure is moved.

In this work, we focus on constraints over objects and primitive types such as floats,
integers, and booleans (e.g., for interactive graphical applications) that can describe
system invariants, for example to write systems that adhere to a specification, as well
as highly dynamic constraints that can be created, added, modified, and removed
at run-time. In contrast, this work does not support constraints for searching or
enumerating multiple solutions to a constraint model.

There are two main alternatives for incorporating constraints into imperative
programs. The most common way is via a constraint solver library. This has the
advantage that no changes are required to the underlying programming language,

Journal of Object Technology, vol. 13, no. 4, 2014

http://dx.doi.org/10.5381/jot.2014.13.4.a1

Specifying and Solving Constraints on Object Behavior - 3

but the disadvantage that the solver needs to be invoked explicitly at appropriate
times during the execution. If it is not, the programmer may inadvertently ignore or
bypass the constraints. An alternate technique is to support constraints directly in
the underlying programming language. This addresses the problem of inadvertently
bypassing the constraint system, because the programming language ensures that
the solver is invoked whenever neccessary. This approach also typically provides a
more convenient syntax for writing constraints, either using a separate domain specific
language (DSL) in conjunction with the host language (with the drawback of having
to learn essentially two programming languages), or (as in the work reported here) by
allowing constraints to be written in the host language itself. In both cases there is
the cost of having to support a new or extended programming language.

Prior approaches of the latter kind typically provide a unified runtime, a semantics
for the interactions between declarative and imperative code, and a linguistic symbiosis.
As an extension of these, this work additionally unifies the programming constructs
for encapsulation and abstraction by using only object-oriented methods, classes, and
inheritance for defining behavior and structure in both the imperative and declarative
paradigm.

We present our design for integrating constraints with a dynamic, object-oriented
language that preserves a familiar imperative programming model, called BABELSBERG,
and describe an implementation of that design as an extension to Ruby [FMO08], called
BABELSBERG /R. Key contributions for BABELSBERG with respect to language design
are as follows.

e The semantic model for BABELSBERG is a direct extension of an object-oriented
model with dynamic typing, object encapsulation, classes and instances or
prototypes with methods, and message sends. It supports placing constraints on
the results of message sends rather than just on object attributes — thus, we
argue, being more compatible with object-oriented encapsulation and abstraction
than prior approaches in constraint imperative programming (c1p). The only
restrictions are: a) an expression that is used as a constraint must evaluate to
a boolean (the constraint is that it evaluate to true); b) the expression should
return the same result on repeated evaluation (so that, for example, a random
number generator would not qualify); and c) variables used in the expression
must be used in single assignment fashion.

e The syntax of BABELSBERG is a strict superset of that of the base language
— with only one minor extension to allow a question-mark as method name —
making it easy for the programmer to write and read constraints and object-
oriented code.

e BABELSBERG includes meta-level facilities that allow libraries to construct soft
as well as hard constraints, and constraints that support incremental solving.

Additional contributions with respect to implementation techniques are as follows.

o We present a technique for implementing object constraint languages, which uses
a primitive to switch the interpreter between imperative evaluation, constraint
construction, and constraint solving modes. In imperative evaluation mode,
the interpreter operates in the standard fashion, except that LOAD and STORE
operations on variables check for constraints, and if present, obtain the variable’s
value from the constraint solver or send the new value to the solver (which

Journal of Object Technology, vol. 13, no. 4, 2014

http://dx.doi.org/10.5381/jot.2014.13.4.a1

4 - Tim Felgentreff, Alan Borning, Robert Hirschfeld

may trigger a cascade of other changes to satisfy the constraints). In constraint
construction mode, the expression that defines the constraint is evaluated, not for
its value, but rather to build up a network of primitive constraints that represent
the constraint being added. The interpreter keeps track of dependencies in the
process, so that, as needed, the solver can be activated or the code to construct
the constraint can be re-evaluated.

e« BABELSBERG provides an architecture that supports multiple constraint solvers,
which makes it straightforward to add new solvers, and which does not privilege
the solvers provided with the basic implementation (they are simply the solvers
that are in the initial library).

o We describe a working prototype system, integrated with a state of the art Ruby
virtual machine and just-in-time (JIT) compiler. In the absence of constraints, the
performance of a program written in the host language (Ruby) is only modestly
impacted.

BABELSBERG/R is a general-purpose object constraint language, and we have
implemented a variety of example programs, including a video streaming example with
both hard and soft constraints on performance, interactive graphical layout examples
(which exercise soft constraints and incrementality), electrical circuit simulations, and
solvers for puzzles such as Eight Queens and cryptarithmetic.

The rest of this paper is structured as follows. Section 2 presents an overview of
related work in constraint programming. Section 3 provides the theoretical background
for constraint priorities and incremental solving. In Section 4, we present the features of
BABELSBERG; how these features are implemented is described in Section 5. Section 6
presents our performance evaluation, applications written in BABELSBERG/R, and a
comparison of BABELSBERG'’s features with related approaches. Section 7 describes
future work and concludes. A companion technical report [FBH14a] provides additional
details and sample BABELSBERG programs in an appendix. (The body of the technical
report is the same as an earlier draft of this article.)

2 Related Work

Consider a graphical rectangle implemented as a pair of points — origin and extent —
with a method to test whether the origin is in the visible (i.e., positive) part of the
coordinate system, and a method to calculate its area.

class Rectangle
attr__accessor :origin, :extent

def visible?
origin.x >= 0 and origin.y >= 0
end

def area
extent.x * extent.y
end
end

Suppose this rectangle encompasses some information that we want to make sure
remains on screen entirely. To that end, the area of the rectangle should never be
less than 100 square pixels and its origin should remain visible. The constraints are
that the visible? method always returns true, and the area method always returns

Journal of Object Technology, vol. 13, no. 4, 2014

http://dx.doi.org/10.5381/jot.2014.13.4.a1

Specifying and Solving Constraints on Object Behavior - 5

a value > 100. (Note that the visible? method contains two inequalities to form a
conjunctive constraint — both conditions must be satisfied to satisfy the constraint. It
would be straightforward to include two additional tests that origin.x + extent.x
<= DISPLAYWIDTH and origin.y + extent.y <= DISPLAYHEIGHT; these are omitted
for simplicity.)

For imperative languages, the usual approach to dealing with such dynamic con-
straints is to leave it entirely up to the programmer to ensure that they are satisfied
— the constraints are either just in comments and documentation, or perhaps in the
form of machine-checkable assertions. For the latter case, programmers typically write
assertions to fail early if these constraints are unexpectedly not satisfied [RCNO5].

Alternatively, in an object-oriented language like Ruby, we might ensure that these
constraints are satisfied, for example using aspect-oriented programming [KLM*97]
to intercept writes to either origin or extent (lines 9-10 in the following code) and

execute a corrective action (lines 3-5).
1 class RectAspect < Aspect
2 def ensure__constraints(method, rect, status, sargs)
rect . origin.x = 0 if rect.origin.x < 0
1 rect.origin.y = 0 if rect.origin.y < 0
5 rect. extent.x = 100.0 / rect.extent.y if rect.area < 100

6 end
7 end

9 RectAspect.new.wrap(Rectangle, :postAdvice, "extent=")
10 RectAspect.new.wrap(Rectangle, :postAdvice, "origin=")

However, the above code has a number of problems:

e The constraints are expressed in a form that makes them non-obvious — the
branch conditions have to be carefully checked to ensure they catch all undesired
states, and the reader has to infer the constraint from the conditions (for example,
that the checks for non-negativeness express the visibility constraint.)

¢ All modifications that may invalidate the constraints have to be intercepted —
if the advice is insufficient or not executed at the correct times, the constraints
may be violated through parts of the execution.

e There are multiple possible solutions to the constraints, but which one should be
selected is not explicit in the code. (For example, a rectangle with area 200 instead
of 100 would also satisfy the minimum area constraint.) Without a declarative
specification, it is nontrivial to decide whether this code will find the optimal
solution. In the presence of competing soft constraints, i.e., multiobjective
optimizations, finding a solution becomes even harder (as discussed in Section 3.)

2.1 Constraint Solver Libraries

To address the aforementioned problems, another approach is to use a library that
provides one or more constraint solvers that allow us to express our constraints
explicitly. There is a huge range of libraries that can be called directly from the
imperative code. One way of classifying them is by the type domain of the constraints
(for example, real numbers or finite domains or arbitrary objects); whether their solver
can solve constraints in a general way or just select from a given set of functions (e.g.,
given ¢ = a + b, can it solve for any of a, b, or ¢, or several variables simultaneously; or
can it only find a value for ¢ given a and b); and whether the solver supports particular
features, such as incremental solving.

Journal of Object Technology, vol. 13, no. 4, 2014

http://dx.doi.org/10.5381/jot.2014.13.4.a1

6 - Tim Felgentreff, Alan Borning, Robert Hirschfeld

A few solvers of particular interest for the programming language community
are Z3 [DMBO08], a state-of-the-art SMT solver from Microsoft Research designed
for theorem proving (e.g., for program verification), and kodkod [TJ07] for con-
straints over finite domains. Solvers for use in interactive graphics systems include
Cassowary [BBS01], an incremental solver for linear equality and inequality con-
straints that supports soft constraints as well as hard ones, the Auckland Layout
Editor [LWO08], which includes support for a GUI builder using constraints, and earlier
work on DeltaBlue [FBM89], which supports multi-way local propagation constraints
and soft constraints. There is also a range of commercial solvers and applications,
such as the CPLEX optimizer for mathematical programming [ILO93].

For example, the following code rewrites the previous solution that relied on state
changing operations and branches, to use the Z3 library to solve our constraints (lines 6
and 9). Additional code is required to copy state between the solver and the rectangle
object.
class RectAspect < Aspect

def ensure_ constraints(method, rect, status, *args)

ctx = Z3::Context.new

ctx « Z3::Variable.new("origin_x", rect. origin . x)

ctx « Z3::Variable.new("origin_y", rect. origin.y)

ctx « Z3::Constraint.new("origin_x >= 0 && origin_y >= 0")

ctx « Z3::Variable.new("extent_ x", rect.extent.x)

ctx « Z3::Variable.new("extent_y", rect.extent.y)

ctx « Z3::Constraint.new("extent_x * extent_y >= 100")

ctx. solve

rect . extent. x = ctx["extent_ x"]

rect. extent.y = ctx["extent_y"]

end
end

; RectAspect.new.wrap(Rectangle, :postAdvice, "extent=")
7 RectAspect.new.wrap(Rectangle, :postAdvice, "origin=")

Using a solver allows programmers to express constraints about the system in
terms of a solver-specific type domain (e.g., reals, booleans, uninterpreted function
symbols) the solver understands. If the problem is expressible in a type domain for
which a solver is available (as the above code is) the constraints can be written clearly.

2.2 Domain-specific Languages for Constraints

For specialized application domains, constraints are sometimes available via separate
DSLs. For user interface layouts, DSLs describe relations between visible objects that
can be automatically maintained by the runtime. Examples are css [LB97], the
Mac OS X [Sad13] layout specification language (which uses Cassowary to solve the
constraints), and the Python GUI framework Enaml [Ent14]. These allow programmers
to express relations such as distances between objects or parent/child alignments.
These constraints are automatically re-satisfied by the runtime when imperative code
changes the user interface.
The following is an example of an Enaml specification for our problem:
enameldef Main(Window):
Container:
constraints = |
the rectangle area is called contents in enamel
contents__top >= 0, contents__left >= 0,

(contents_ bottom — contents_top) *
(contents_ right — contents_ left) >= 100

Journal of Object Technology, vol. 13, no. 4, 2014

http://dx.doi.org/10.5381/jot.2014.13.4.a1

Specifying and Solving Constraints on Object Behavior - 7

DsLs allow programmers to use constraints in specific application domains without
having to write boilerplate code for triggering constraint solving. They have found
widespread adoption and renewed interest recently, in particular through the Mac OS
X layout system.

2.3 Dataflow Constraints and FRP

Some languages have built-in support for data flow, which allows programmers to
express unidirectional constraints between objects and their parts. Examples of
such systems are Scratch [RMMHT09], LivelyKernel/Webwerkstatt [LKI*12], and
KScript [OLFK13].

The following uses LivelyKernel connections to observe changes to origin and
extent in a Rectangle rect. On each change, the transformation function is executed
with the current and the previous value and returns the new value for the field.
connect(rect, "origin", rect, "origin",

function(origin, prevOrigin) {
if (! this.isVisible ()) return prevOrigin;

else return origin;

b

connect(rect, "extent", rect, "extent",
function(extent, prevExtent) {
if (this.area() < 100) return prevExtent;
else return extent;

)

Although these systems are not constraint solvers, programmers can use constraint
solvers (in the hook function passed to connect) to calculate new values and some
systems, like KScript, already integrate a constraint solver to use in the connection.
These approaches provide one answer to the question of when to trigger constraint
solving.

2.4 Integrating Constraints with a Programming Language

Another approach to supporting constraints — and the one adopted in the work
reported here — is to integrate constraint support with a general purpose programming
language. Again, there is a substantial body of prior work in this area.

One of the earliest examples for this approach is the Constraint Logic Pro-
gramming scheme [JL87], which evolved from logic programming. One instance,
CLP(R) [JMSY92], provides constraints over real numbers in Prolog. These languages
are in the logic programming family, and in their standard form have no notion
of state or state change. Another language of this kind is Concurrent Constraint
Programming [SR93].

Such languages have significant advantages, such as a clean semantics, but they
sacrifice the familiar capabilities and programming style of the more mainstream
object-oriented paradigm. Our goal here is to support an object-oriented, imperative
programming style that integrates constraints syntactically and semantically.

With these goals, BABELSBERG follows the work by Freeman-Benson, Lopez,
and Borning on crp [FBB92b, LFBB94a, LFBB94b, LFBB94c] and the Kaleidoscope
language. Systems related to Kaleidoscope include Siri [Hor92], Turtle [GHO04], and
SouL [DGJ04]. These languages provide constraints with syntactic integration into an
object-oriented language and allow expressing constraints on all object-oriented values
in their language. However, they require separate abstractions and method definitions
for the declarative and imperative paradigm.

Journal of Object Technology, vol. 13, no. 4, 2014

http://dx.doi.org/10.5381/jot.2014.13.4.a1

8 - Tim Felgentreff, Alan Borning, Robert Hirschfeld

BackTalk [RP97] and Ilog Solver [Pug94, IBM14] are other systems that aim to
integrate a rich set of constraint solvers with imperative languages, but without full
syntactic integration or re-using of object-oriented method definitions. Rather, they
provide a library for unified access to a wide range of solvers to be able to express
various constraints, and methods to combine these solvers with boolean operators
or propagation. More recently, Kaplan [KKS12] syntactically integrated constraints
with Scala, but again, does not allow programmers to re-use object-oriented method
definitions to express constraints, and requires objects to be wrapped as logical variables
to use them in constraints. All three systems allow the programmer to enumerate
possible solutions to constraints, a goal CIP languages and the work presented here do
not share.

There is also a body of work that uses constraints in other ways in general-purpose
programming languages. For example, in Plan B, Samimi, Aung, and Millstein
[SAM10] use specifications as “reliable alternatives” to implementations, so that if
an assertion fails, the system can use the specification as input to a constraint solver
and continue execution. Similarly, Demsky and Rinard [DRO06] use constraint solvers
to correct a faulty program state automatically and continue running. (Thus, by
replacing assertions with constraints, undesirable program states can be corrected by
the runtime.)

Constraint Imperative Programming in Kaleidoscope

Because the current work shares many of its motivations with Kaleidoscope, it also
shares important design aspects that were developed over the iterations of the Kalei-
doscope language. At the same time, it embodies some significant improvements over
that earlier work, in particular, by providing a simpler semantic model that uses
ordinary methods and messages, rather than requiring a separate concept of constraint
constructors.

Abstractions Kaleidoscope supported Smalltalk-like classes and instances, and in
addition, integrated constraints with the language itself. This integration included
built-in constraints over primitive objects (such as floats) and constraints over user-
defined objects, which were provided by constraint constructors. For example, the
+ constraint for Points could be defined using a constraint constructor a+b=c that
expanded into constraints on the x and y instance variables of the three points a, b,
and c. Separately, the language also provided object-oriented (00) methods. Both
constraint constructors and 00 methods were selected using multi-method semantics.
This accommodated, for example, the case of a constraint constructor call a+b=c in
which b and ¢ were known and a was unknown.
Our rectangle example can be expressed using Kaleidoscope as follows:
class Rectangle
constructor area = (n: Integer)

always: extent.x * extent.y = n
end

constructor visible?
always: origin.x >= 0
always: origin.y >= 0
end
end

> rect = Rectangle.new
; always: rect.area = 100

always: rect.visible?

Journal of Object Technology, vol. 13, no. 4, 2014

http://dx.doi.org/10.5381/jot.2014.13.4.a1

Specifying and Solving Constraints on Object Behavior - 9

With cip as in Kaleidoscope, programmers can express constraints over ordinary
objects if the required constraint constructors are added to their classes in addition to
ordinary methods.

In contrast to Kaleidoscope, BABELSBERG provides a simpler semantic model.
BABELSBERG uses the object-oriented model with ordinary methods using OO mes-
sage dispatch, rather than special constraint constructors and multi-methods. The
implementation includes an integration with a state of the art virtual machine and
JIT, so that in the absence of constraints, the performance of a program written in the
host language is only modestly impacted.

Mutable State This work’s treatment of mutable state and time in BABELSBERG is
very similar to the later incarnations of Kaleidoscope. The first version of Kaleidoscope,
Kaleidoscope’90 [FBB92a), used a refinement model, in which variables held a stream of
values, related to each other by constraints. Variables typically had a low-priority stay
constraint so that they retained their value over time, e.g., z; = 2;—1?. (The question
mark is a read-only annotation: the constraint solver wasn’t allowed to change the past
to satisfy constraints on the present.) There were facilities to access both the current
and previous states of a variable. Object identity was only an implementation issue in
Kaleidoscope’90, and not semantically significant. Later versions of the language (e.g.,
Kaleidoscope’93) [LFBB94a, LFBB94b] switched to a perturbation model, in which
destructive assignment can change the state of objects (perhaps making previously
satisfied constraints unsatisfied), and the system perturbs or adjusts values to reach a
new state that best satisfies the constraints. Instead of streams of values, a variable
in Kaleidoscope’93 referred to a single object, as in a more conventional language.
Kaleidoscope’93 also made object identity a part of the language semantics, including
support for identity constraints as well as equality constraints.

3 Hard and Soft Constraints

As noted in the introduction, in some application domains, it is important to support
soft as well as hard constraints, that is, constraints that should be satisfied if possible
and constraints that must be satisfied. In BABELSBERG we use the semantics for hard
and soft constraints presented in reference [BFBW92], which we briefly review here.

Informally, we consider collections of constraints, each labeled with a priority. There
is a distinguished priority required, which denotes constraints that must be satisfied in
any solution. There are an arbitrary number of other priorities for soft constraints. The
priorities are totally ordered, with higher-priority constraints satisfied in preference
to lower-priority ones. While both the theory and the constraint solvers that we use
can accommodate an arbitrary number of priorities, in practice programmers tend to
employ only a small number of priorities in stylized ways [BBS01]. In the examples in
this section, we will use the priorities required, high, medium, and low.

For example, consider the following constraints over the reals:

required x+y =10

high =38
low =0
low y=0

Journal of Object Technology, vol. 13, no. 4, 2014

http://dx.doi.org/10.5381/jot.2014.13.4.a1

10 - Tim Felgentreff, Alan Borning, Robert Hirschfeld

There is a single solution that best satisfies the constraints, namely {z — 8,y +— 2},
since this satisfies both the required and high-priority constraints (and no other solution
does so0).

Soft constraints can have an associated error function that returns 0 iff the
constraint is satisfied. A simple error function just returns 0 if the constraint is
satisfied, and 1 if it is not; but for reals, we often use a metric function whose value
increases smoothly the further the variable’s value is from the desired one. For example,
the metric error for a constraint @ = y is simply |z — y|, while the error for x < y
is x — y if x is greater than y, and otherwise 0. For example, consider the following
constraints:

required 10 <z <20
high 15 <z

low z=5

Using a metric error function, the solution is {z — 15}, since this completely
satisfies the required and high-priority constraints, and minimizes the error for the
low-priority one.

We might have two constraints with the same priority that cannot be satisfied
simultaneously:

required x4y =10
medium z =0
medium y =0

Reference [BFBW92] describes a number of different comparators for specifying the
desired solution. Two comparators of particular interest here are locally-predicate-better
and weighted-sum-better. Locally-predicate-better finds a Pareto-optimal solution, that
is, a solution such that any other solution would cause a currently-satisfied constraint
with priority p to be unsatisfied, and further, that no higher-priority constraints would
become satisfied. Weighted-sum-better finds solutions that minimize the weighted
sum of the errors for the highest-priority constraints; if there are multiple solutions
considering just the required and highest-priority constraints, we consider the next
highest priority, and so on. In the above example, there are two locally-predicate-better
solutions, {z +— 0,y +— 10} and {z — 10,y — 0}. If the weights on the two medium-
priority constraints are the same, there are an infinite number of weighted-sum-better
solutions, namely all z € [0,10],y € [0,10] such that z + y = 10. However, if we
make the weight on say the x = 0 slightly higher, we get a single solution, namely
{z — 0,y — 10}.

In BABELSBERG, we are interested in solvers that find a solution to a collection
of constraints, so if there are multiple solutions, the solver is permitted to select
one arbitrarily. (This is in contrast to logic programming and constraint logic pro-
gramming languages, which give access to multiple or all solutions, perhaps found by
backtracking.)

Formally, a constraint is a relation over some domain D. The domain D determines
the constraint predicate symbols IIp of the language, so that a constraint is an
expression of the form p(ty,...,¢,) where p is an n-ary symbol in IIp and each ¢; is a
term.

A labeled constraint is a constraint labeled with a priority, written pc, where p is
a priority and c is a constraint. For clarity in writing labeled constraints, we give
symbolic names to the different priorities. We then map each of these names onto the

Journal of Object Technology, vol. 13, no. 4, 2014

http://dx.doi.org/10.5381/jot.2014.13.4.a1

Specifying and Solving Constraints on Object Behavior - 11

integers 0...n, where n is the number of non-required priorities. Priority 0, with the
symbolic name required, is always reserved for required constraints.

A constraint system is a multiset H of labeled constraints. Let Hy denote the
required constraints in H, with their labels removed. In the same way, we define the
sets Hy, Hy, ..., H, for levels 1,2,...,n. We also define H;, = 0 for k > n.

A solution to a set of labeled constraints H is a valuation for the free variables
in H, i.e., a function that maps the free variables in H to elements in the domain D.
We wish to define the set S of all solutions to H. Clearly, each valuation in S must
be such that, after it is applied, all the required constraints hold. In addition, we
desire each valuation in S to be such that it satisfies the non-required constraints
as well as possible, respecting their relative strengths. To formalize this desire, we
first define the set Sy of valuations such that all the Hy constraints hold. Then, using
So, we define the desired set S by eliminating all potential valuations that are worse
than some other potential valuation using the comparator predicate better. (In the
definition, cf denotes the boolean result of applying the valuation € to ¢, and we say
that “cf holds” if ¢ = true. Note that this is a specification of S, not an algorithm
for computing it!)

So = {0]|Vee€ Hy ch holds}
S = {0|60¢€SyAYoeSybetter(o,0,H)}

We now define the locally-predicate-better and weighted-sum-better comparators.
As also noted above, we use an error function e(c) that returns a non-negative real
number indicating how nearly constraint c is satisfied for a valuation #. This function
must have the property that e(cf) = 0 if and only if ¢f holds. For any domain D, we
can use the trivial error function that returns 0 if the constraint is satisfied and 1 if it
is not. A comparator that uses this error function is a predicate comparator. For a
domain that is a metric space, we can use its metric in computing the error instead of
the trivial error function. Such a comparator is a metric comparator.

The first of the comparators, locally-better, considers each constraint in H individ-
ually to find Pareto-optimal solutions.

Definition. A valuation @ is locally-better than another valuation o if, for each of
the constraints through some level k — 1, the error after applying 6 is equal to that
after applying o, and at level k the error is strictly less for at least one constraint and
less than or equal for all the rest.

locally-better(0, 0, H) =
Jk > 0 such that
Viel...k—1Vpe H; e(pd) = e(po)
A Jg € Hi e(q9) < e(go)
A Vr € Hy e(rf) <e(ro)

Locally-predicate-better is then locally-better using the trivial error function that
returns 0 if the constraint is satisfied and 1 if it is not.

Next, we define a schema, globally-better for global comparators. The schema is
parameterized by a function g that combines the errors of all the constraints H; at a
given level.

Journal of Object Technology, vol. 13, no. 4, 2014

http://dx.doi.org/10.5381/jot.2014.13.4.a1

12 - Tim Felgentreff, Alan Borning, Robert Hirschfeld

Definition. A valuation 6 is globally-better than another valuation o if, for each
level through some level £ — 1, the combined errors of the constraints after applying 6
is equal to that after applying o, and at level k it is strictly less.

globally-better(0,0, H, g) =
Jk > 0 such that
A g(0,Hy) < g(o, Hy)
Using globally-better, we now define weighted-sum-better by selecting a particular

combining function g. The weight for constraint p is denoted by w,. Each weight is a
positive real number.

weighted-sum-better(0,0, H) = globally-better(0, o, H, g)
where g(7,H;) = Z wpe(pr)
pEH;

Different constraint solvers find solutions for different comparators. In our work to
date, the two solvers we use that accommodate soft constraints are DeltaBlue, which
finds locally-predicate-better solutions, and Cassowary, which finds weighted-sum-
better solutions. (When there are infinitely many solutions, as in the above example
with the two medium constraints = 0 and y = 0, Cassowary has the additional
property that it finds solutions that “tilt” toward one constraint or the other, so that
it would find either the solution z = 0, y = 10 or else x = 10, y = 0 — but not for
example x = 3.6 and y = 6.4, even though that is also a weighted-sum-better solution.)

In BABELSBERG, the comparator to be used is thus named by the choice of
constraint solver.

3.1 Read-only Annotations

A variable in a particular constraint (either hard or soft) can be annotated as read-only.
Intuitively, when choosing the best solutions to a constraint hierarchy, constraints
should not be allowed to affect the choice of values for their read-only variables, i.e.,
information can flow out of the read-only variables, but not into them. (Alternatively
we can say that constraints are only allowed to affect the choice of values for their
unannotated variables.) For example, consider the following constraints:

required x?7+5=1y
medium y = 20
low =0

The solution is {z — 0,y — 5} — the read-only annotation on the z in the required
constraint prevents the solver from satisfying the y = 20 constraint instead of the
x = 0 one.

A one-way constraint, as used in many solvers and systems, including the ubiquitous
spreadsheet, can be represented by annotating all but one of the constrained variables
as read-only, as in the following example:

required z?7+4+y? ==z

Journal of Object Technology, vol. 13, no. 4, 2014

http://dx.doi.org/10.5381/jot.2014.13.4.a1

Specifying and Solving Constraints on Object Behavior - 13

Reference [BFBW92| presents a formal, declarative specification of read-only
annotations, adapted from formalizations of read-only annotations in committed-
choice logic languages [Mah87], but the above intuitive description is sufficient for the
current purpose.

3.2 Support for State Change and Incrementality

When used in interactive graphical applications, as well as in other systems involving
change over time, it is important to provide the constraint equivalent of “frame axioms”
that specify that parts retain their old values as the system changes; without such
constraints, we would often get counter-intuitive behavior, such as a constrained
figure collapsing to a point. Stay constraints provide such a mechanism. As far as
the theory of hard and soft constraints is concerned, a stay constraint is simply an
equality constraint v = ¢ for variable v and constant ¢, typically with a low priority.
Operationally, ¢ will be the value of v at the previous time step.

To support incrementality, we also introduce the notion of an edit constraint.
Formally, this again is simply an equality constraint v = ¢ for variable v and constant
c. Operationally, it is used to model changing an input value, for example in response
to the cursor position (where in this case v and ¢ would both hold points: v would
be a point in a diagram being moved, and ¢ would be the cursor position). Edit
constraints typically have a high (but not required) priority — the system will attempt
to accommodate the edit action, but may be prevented from doing so, for example if
a figure would leave the allowed display rectangle as a result of attempting to move it
too far.

Both DeltaBlue and Cassowary treat stay and edit constraints specially, allowing
very fast incremental re-satisfaction of a collection of constraints as new edit values
stream into the system (and the weak stay constraints provide basic stability). Edit
constraints prepare the internal data structures of the solver for fast resolving when
specific variables change. For DeltaBlue, this involves pre-calculating the execution
plan from the edit variables. For Cassowary, the Simplex tableau is set up so that it
can be efficiently re-optimized given new values for the edit variables.

4 Object Constraint Programming

BABELSBERG is an object constraint programming (OCP) language — the term object
constraint programming is chosen to emphasize the integration with widespread object-
oriented programming ideas, in particular methods, messages, and object encapsulation.
This is in contrast to earlier work on cipP, which emphasized separate, parallel concepts
to specify and select behavior for constraints, rather than re-using the object-oriented
behavior definitions. Similarly, systems such as Kaplan, BackTalk, and Ilog Solver
expect the objects used in constraints to be special constraint-aware ones, rather than
ordinary objects.

Our goals for BABELSBERG include a syntax that is compatible with the base
language. In our initial prototype, BABELSBERG/R, the base language is Ruby, and
the extensions are almost all semantic extensions, with only one minor (and completely
optional) syntactic extension. This extension provides a more convenient syntax
for writing read-only constraints. A subsequent implementation of BABELSBERG in
JavaScript — BABELSBERG/JS — uses no syntactic extensions [FBHT14b].

Journal of Object Technology, vol. 13, no. 4, 2014

http://dx.doi.org/10.5381/jot.2014.13.4.a1

14 - Tim Felgentreff, Alan Borning, Robert Hirschfeld

The semantic model is also an extension of Ruby’s, and supports all of the existing
Ruby constructs such as classes, instances, methods, message sends, and blocks
(closures). There are two semantic changes to support constraint creation and solving.

The first semantic addition is the inclusion of the always primitive — described in
Section 4.1 — that receives a closure, and creates a constraint from it. The constraint
is, that the last expression in the closure should return true. The closure can reference
objects, invoke methods on them, express assertions about their identity, type, or
protocol, and use assignments and control structures. However, some restrictions
apply, and are described in Section 4.1.1.

The second semantic addition is the provision of constrained variables — described
in Section 4.2 — whose values are defined by a constraint solver. Constrained variables
can be changed by the solver to satisfy constraints when the system is perturbed, and
assignments to them trigger resolving with the new value. Assignments may also fail,
if that would make the constraint system unsatisfiable.

In this paper we provide an English-language description of the semantics of our
constraints and the language changes. A formal operational semantics is in preparation,
with a recent technical report [FMB14] presenting the step-by-step development of
an operational semantics for a series of versions of Babelsberg, starting with a very
simple language Babelsberg/Reals (in which the only datatypes are real numbers
along with booleans for the constraint expressions) and through Babelsberg/Objects
(a true object-oriented language, with mutable objects, classes, methods, messages,
and inheritance, but without all the features and idiosyncrasies of Ruby or another
practical, widely-used language).

4.1 Constraints as a Language Primitive

Our first semantic extension to the basic object oriented language is the addition of a
new primitive, always. This primitive takes a closure argument: if the last expression
in the closure evaluates to true the constraint is satisfied. (Usually, there would only
be one expression.) The always primitive evaluates the closure using a modified
interpreter, which collects all objects that contribute to the evaluation and creates
a representation of the operations between them. This representation can then be
passed to a solver to satisfy the constraint. (The syntax for always is the same as for
a normal method call that accepts a closure argument.)

As a first example, consider the following class TemperatureConverter in
BABELSBERG/R, which maintains the appropriate relation between instance vari-
ables holding Centigrade and Fahrenheit values.
class TemperatureConverter

attr__accessor :centigrade, :fahrenheit
def initialize
@Qcentigrade = @fahrenheit = 0.0
always { centigrade * 1.8 == fahrenheit — 32.0 }

constraint added and solver triggered during ‘always’
end

s end

A constraint constructed through always is activated immediately. The primitive
also returns a Constraint object that provides the interface to enable, disable, and
inspect the constraint. We assign floating-point numbers to the two fields, so that
BABELSBERG /R, uses a solver for floats based on their run-time type. However, we
didn’t need to give them values that satisfy the constraints — one or both are changed
to keep the constraint satisfied.

Journal of Object Technology, vol. 13, no. 4, 2014

http://dx.doi.org/10.5381/jot.2014.13.4.a1

Specifying and Solving Constraints on Object Behavior - 15

If we make a new instance of TemperatureConverter and change either the
Centigrade or Fahrenheit temperature, the other value will be changed as well to keep
the constraint satisfied:

t = TemperatureConverter.new
t.centigrade = 100.0 # triggers solver, which changes t.fahrenheit to 212.0

In this example, the constraints are on the results of sending the messages
centigrade and fahrenheit. These methods are just accessors for the corresponding
fields. However, constraints can also include methods that perform other computations.
For example, the rectangle from page 4 makes available its area as a computed property
via the area method. Whether it is on screen is computed by the visible? predicate.
In BABELSBERG/R, we can use these existing Ruby methods in specifying constraints
on a rectangle:

rect = Rectangle.new
always { rect.area >= 100 }

; always { rect.visible? }

The first constraint says that the result returned from calling the area method
should always be greater than or equal to 100, and if, for example, another part of the
program assigns to the height of the rectangle, if necessary the width will be adjusted
automatically to keep the constraint satisfied. The always primitive discovers that
the x and y values of the extent object are multiplied to get the result of the area,
and that this result should be greater or equal to 100. This relation is passed as a
constraint to a float solver.

Similarly, if a negative location is assigned to the origin, it will be moved back to
keep the rectangle visible.!

By placing the constraint on the result of sending messages rather than on fields,
the system also respects object encapsulation. The values returned from the message
sends in the rectangle example are both primitive types (float and boolean), but
they can also be arbitrary objects. For example, we could add a constraint on the
rectangle’s center (a computed rather than a stored value, and a point rather than a
primitive type):

always { rect.center == Point.new(100,100) }

4.1.1 Restrictions on Constraints

When the programmer uses a method in BABELSBERG in a constraint, the underlying
implementation generates a corresponding set of (generally simpler) constraints that
can in turn be handed to an appropriate solver. Different language constructs in the
methods can give rise to different sets of constraints, which may be more or less difficult
for the solver. For example, disjunctions in the method give rise to disjunctions in
the constraints sent to the solver, and of the currently provided solvers, only Z3 can
accommodate these.

There are however three important restrictions on constraints that apply to all
solvers.

First, evaluating the expression that defines the constraint should return a boolean
— the constraint is that the expression evaluates to true.

IThere are multiple possible locations that satisfy the rect.visible? constraint; here the system
will move the origin as little as possible from the assigned location but so that the constraint is
satisfied. The same holds for the area constraint. This behavior is a result of soft “stay” constraints.
These are left implicit in this example, but can also be stated explicitly if desired. See Section 3.

Journal of Object Technology, vol. 13, no. 4, 2014

http://dx.doi.org/10.5381/jot.2014.13.4.a1

16 - Tim Felgentreff, Alan Borning, Robert Hirschfeld

Second, the constraint expression should either be free of side effects, or if there
are side effects, they should be benign, e.g., caching. Also, repeatedly evaluating
the constraint expression should return the same thing. (For example, an expression
whose value depended on which of two processes happened to complete first wouldn’t
qualify.) This restriction is needed to provide the correct semantics for constraints.

Third, variables used in methods that will be called in a constraint must be used
in a static single assignment (SsA) fashion. As an example of why this restriction is
needed, consider the following method:
def bad__method(x)

sum = X

sum = sum-+2
sum

5 end

Suppose we try to satisfy the constraint 10==bad_method(a). The system would
then construct a constraint sum==x for the first line in the method, and sum==sum+2
for the second. This is unsatisfiable, so an exception would be raised by the solver.

This last restriction can be removed if methods in which variables are multiply
assigned are split into code blocks that are each in sSSA form. Multiple assignments
to the same variable are then rewritten as assignments to distinct variables (e.g., z,
x4+1, ...), which are connected via equality constraints. The above code, for example,
can be split into two blocks (line 2 and lines 3-4), with the resulting constraints
being sum_1==x and sum_2==sum_1+2. Currently, this rewriting must be done by
hand by the programmer; in the future we plan to add an extension to do this code
transformation automatically.

4.1.2 Constraints and Control Structures

Expressions to create constraints are simply statements in the host language, and so can
appear in conditionals, loops, recursive methods, and so forth. Constraints themselves
can also include iterations and conditionals. For example, here is a definition of the sum
method for arrays that creates a set of addition constraints relating the array elements
and their sum, using partial sums as intermediate variables.? Similar constructs can
be used in representing more complicated structures.

class Array

def sum
inject (0) { |partial sum, x| partial sum + x }

end
end

We ship a simple local propagation solver for constraints on float arrays. Constraints
on the elements interact correctly with other constraints on the sum and values. For
example, the programmer can use the solver to find a value for one element, given the
sum and values for the others:

a = [0.0, 0.0, 0.0]

always { a[0] == 10 }
3 always { a[2] == 20 }
always { a.sum == 60 }

This gives the solution a[1] = 30. We also have constraints on the length of an
array, and the array as a whole. For example, for arrays a and b:

2The sum method uses inject (known also as reduce or fold) instead of, for example, a call to
each that repeatedly assigns to a local variable, so that we satisfy BABELSBERG’s single assignment
rule.

Journal of Object Technology, vol. 13, no. 4, 2014

http://dx.doi.org/10.5381/jot.2014.13.4.a1

Specifying and Solving Constraints on Object Behavior - 17

1 always { a.length == 10 }
> always { a == b } # == is content equality for Ruby arrays

4.1.3 Constraints on Identity, Type, or Protocol

We can also write constraints on properties of objects such as their identity, class, and
the messages that they respond to. For example:

-

always { x is? y } # an identity constraint

examples of constraints on the class or message protocol of an object:
always { a.class == Point }

always { a.kind_ of?(Point) }

always { a.instance_ of?(Point) }

¢ always { a.respond_ to?(:theta) }

w v

Identity constraints, in our current implementation, are supported with a built-in
local propagation solver. They are useful for defining data structures (for example
a circular linked list) or when modeling aspects of the real world [LFBB94a]. For
example, it is clearly different if two train tickets are valid for the same or an equal
train.

For a.class and a.instance_of?, if a is already bound, the constraint is just a
test; if it is unbound, then the constraint could be satisfied by creating a new instance
of the appropriate class, binding it to a, and calling the allocate method of the
appropriate class. Finally, a.kind_of? and a.respond_to? are only available as tests.
(One could imagine satisfying a.kind_of? by backtracking through the possible classes
of which a is an instance, but this seems complicated and without a clear use case.
The situation for a.respond_to? is similar.)

Note that a benefit of this design is that type declarations or their equivalent are
just constraints.

4.1.4 Soft Constraints

As noted in Section 3, soft constraints are useful, for example, in interactive graphical
applications. Although not generally required for CIP languages, most support soft
constraints. As an example, a soft constraint a + b = ¢, with priority high, would be
written in BABELSBERG /R as

always(priority: :high) {a+b==c}

In BABELSBERG, whether soft constraints can be accommodated and how soft
constraints are traded off are considered properties of the solver. Solvers that cannot
accommodate constraint priorities should throw an exception when passed a priority.
Some solvers provide means of simulating soft constraints, for example, Z3 can produce
“unsatisfiable cores”, which is a list of constraints that cannot be simultaneously true.
Soft constraints in the list can be disabled to try again without them. However, this
provides two priorities (required and not), and is slower, because the solver has to
solve at least twice3.

In our current implementation, we provide a mapping of the symbolic priorities low,
medium, high, and required, for the Cassowary and DeltaBlue solvers. (Our initial
experience with BABELSBERG /R, and considerable prior experience with Cassowary
and DeltaBlue, imply that only a small number of priorities are needed, and tend to
be used in stylized ways [BBS01].)

3 An upcoming version of Z3 will support soft constraints with arbitrary priorities and optimization
directly.

Journal of Object Technology, vol. 13, no. 4, 2014

http://dx.doi.org/10.5381/jot.2014.13.4.a1

18 - Tim Felgentreff, Alan Borning, Robert Hirschfeld

4.2 Constrained Variables

Our other semantic extension concerns the way assignment is handled in the object
constraint programming language. In an OCP program, variables that are used in
constraints become constrained variables. Each variable is determined by at most one
solver, and the variable value is stored in a solver specific data structure. Reading
such variables returns solver determined values and assigning to such variables triggers
the solver and may raise an exception, if the assignment would violate a required
constraint.

The always primitive executes its closure argument using a modified interpreter
that tracks which objects contribute to the constraint. Each variable that is accessed in
the execution of the closure is converted into a constrained variable. Then, depending
on the run-time type of the variable, the interpreter checks which of the available
solvers can solve constraints over this type, e.g., Cassowary for floats. If a suitable
solver is available, the variable is replaced with a solver-specific object that represents
this variable in the solvers’ data structures. This solver object replaces the actual
value of the variable.

A solver object should respond to the subset of the interface of the associated 00
value that its solver can solve. For example, Cassowary can solve linear constraints
over float values, so the Cassowary variables returned for floats respond to the methods
+, =, %, and /, but not sin or **. If a programmer tries to assert a constraint using
those latter methods, an exception will be raised.

Constrained variables for which no solver exists are used as constants in the
execution of the constraint expression. When these variables change, the constraint
expression has to be recalculated entirely.

Assignments to variables in constraints assert equality constraints. This supports
constructing new objects in the predicate that connect values, but this also means
that all code blocks encountered during constraint construction must be in single
assignment form (Section 4.1.1).

4.2.1 Reading and Writing Constrained Variables

When constrained variables that were replaced with solver objects are read, their
actual value is retrieved from the solver — it is up to the solver to convert the internal
representation into a representation suitable for the 00 language (e.g., converting
reals into floats). Variables that were used in constraints, but not replaced with solver
objects, are read normally.

Assigning to a constrained variable also distinguishes these two cases. If the
variable was replaced with a solver object, instead of storing the supplied value directly,
a required equality constraint between the variable and the new value is temporarily
added to the solver and the solver is invoked. If the solver can satisfy the constraints
(including the new equality), the assignment succeeded; if not, an exception is raised.
Afterward, the equality constraint is removed.

In the second case, the variable is used in a constraint, but no solver is available to
determine its value (e.g., a string that was used in a constraint when no string solver
was available). The value of such variables is treated as constant in the constraint. If
the variable is assigned, all constraints it participated in are disabled, and their closures
are re-executed to create new constraints. This, too, may lead to a situation where
some solvers cannot satisfy their constraints. In that case, the old constraints are re-
enabled, the assignment is undone, and an exception is raised. Undoing the assignment

Journal of Object Technology, vol. 13, no. 4, 2014

http://dx.doi.org/10.5381/jot.2014.13.4.a1

Specifying and Solving Constraints on Object Behavior - 19

is necessary to ensure that no inconsistent system state arises — an assignment either
works or fails completely.

4.2.2 Stay Constraints

In imperative languages, programmers expect their variables to retain their values,
unless some assignment operation changes them. Section 3.2 describes how constraints
interact with state change. For example, in interactive graphical applications, when
moving one part of a constrained figure, the user generally expects other parts to
remain where they are unless there is some reason for them to change to satisfy the
constraints. A desire that something remain the same if possible is represented as
a stay constraint, which may have an associated priority. For example, this stay
constraint says that we prefer that x keep its value, if possible, when satisfying other
constraints:

always { x.stay(:low) }

For those solvers that support soft constraints, BABELSBERG automatically adds a
lowest-priority stay constraint to every constrained variable so that it keeps its old
value if possible when satisfying the other constraints. This also directs the solver to
find a solution that is close to the prior value, if a variable does have to change.

4.2.3 Read-only Variables

Some variables should not be modified by the solver (for example, in an interactive
application, dragged objects should follow the mouse, not vice-versa). To express this,
BABELSBERG includes support for read-only variables as described in Section 3. In
BABELSBERG /R, variables are marked as read-only by sending the question mark
method (?) to them in a constraint expression. Ruby does not normally allow the
question mark as a method name — instead, BABELSBERG /R extends Ruby’s syntax
to support this. (Having a special syntax for this is purely a convenience rather than
being an essential aspect of BABELSBERG/R, and the JavaScript implementation of
BABELSBERG [FBH'14b] uses a global function ro instead.)

Read-only variables are useful, for example, for parameterized constraints so the
solver knows not to change the parameter to satisfy the constraint:
class Rectangle

def fix_size (desiredsize)
always { self.area == desiredsize.? }

end
end

Without the annotation, a solver might change the local variable desiredsize
rather than the receiver.

4.2.4 Incremental Resatisfaction

Some applications involve repeatedly re-satisfying the same set of constraints with
differing input values. A common case is an interactive graphical application with
a constrained figure, where we move some part of the figure with the mouse. For
such applications, it is important to re-solve the constraints efficiently. Section 3.2
introduced edit constraints, which prepare the internal state of a solver for rapid
re-satisfaction. In BABELSBERG /R, edit constraints must be used explicitly with a
particular solver. An edit method is provided as part of the Cassowary library, another
is included with DeltaBlue. These methods use the meta-level application programming

Journal of Object Technology, vol. 13, no. 4, 2014

http://dx.doi.org/10.5381/jot.2014.13.4.a1

20 - Tim Felgentreff, Alan Borning, Robert Hirschfeld

interface (API) of the Constraint class to query which variables participate in a
constraint, create edit constraints for them, and feed new values into the resulting edit
variables. Other libraries with support for incremental resolving can provide similar
methods. Users thus can take advantage of incremental solvers when available to
re-satisfy constraints very quickly.

The provided edit method takes a variable to be edited, a stream (an object that
responds to next) that provides the new values, and optionally a priority. (The priority
defaults to the highest non-required one.) The solver then repeatedly re-solves the
constraints given the new values for edit variables. If the edit constraint is required,
the system raises an exception if the constraints cannot be satisfied with the new edit
value. Finally, when the stream is empty, it removes the edit constraint and returns.
Note that this works if the stream is being fed from another process that provides
new values only when available — the process that has the edit constraint should just
block until one is available.

For example, suppose we make an instance of TemperatureConverter. Then we
can give 100 new values to centigrade, and have fahrenheit change correspondingly
each time (this is useful, for example, if we combine this with a graphical slider that a
user can drag to input new values):

converter = TemperatureConverter.new
enumerator = (0..99).each

3 edit (enumerator) {converter.centigrade}

The stream need not contain only primitive types — a common case in interactive
graphics is a stream of new point values for a location of something being moved. The
implementation of edit constraints is discussed in Section 5.3.

4.3 Solving Constraints

Given a set of constraints, we need to find a solution to them. BABELSBERG provides
an architecture that supports multiple constraint solvers, that makes it straightforward
to add new solvers, and that doesn’t privilege the solvers provided with the basic
implementation. (They are simply the solvers that are in the initial library.) In the
current implementation of BABELSBERG /R, the available solvers are Cassowary, Z3, a
solver for float and integer arrays, and DeltaBlue.

Currently, programmers must explicitly indicate which solvers are available in a
given program, just as they choose other libraries appropriate for the application.
Solvers register themselves for specific types, and are then chosen eagerly based on
the run-time type of the variables that occur in a constraint. Only one solver can be
registered for a particular type.

In cases where different solvers can handle the same types (for example, both Z3
and Cassowary handle constraints on floats in BABELSBERG/R), the programmer has
to decide which solver to use by activating only the desired one. The simplest way to
do this is to only include the desired library. There is also the option to provide the
solver as an additional argument to always. In some cases, this choice may simply be
a matter of preference, however, other restrictions apply. For example, since Cassowary
cannot solve nonlinear equations, the developer should select Z3 instead:

always(solver: Z3::Instance) { a *x 2.0 < 16 }

Journal of Object Technology, vol. 13, no. 4, 2014

http://dx.doi.org/10.5381/jot.2014.13.4.a1

-

Specifying and Solving Constraints on Object Behavior - 21

Developers must be aware that solvers may represent types differently internally. For
example, Z3 works on reals, but its C API represent results as double-precision floating
point numbers, so rounding errors may occur.

For opaque data structures (such as an SDL?* window), the solver cannot set
properties directly, but has to use the API instead. In that case, a local propagation
solver like DeltaBlue must be used and, besides a predicate, a list of setter expressions
must be provided. The following constraint will make a rectangle fill the SDL window,
or the window will be shrunk to fit the rectangle.
always(solver: DeltaBlue::Solver:: Instance,

priority : :high,
predicate: {window.extent == rectangle.extent}) {[

window.extent <—> { window.set_ video_ mode(rectangle.extent) },
rectangle. extent <—> { rectangle.extent = window.get_ video_mode }

13

Additional arguments to always are passed to and interpreted by the solver. In
this case, the predicate and priority arguments are passed to DeltaBlue and not
interpreted by BABELSBERG. In the constraint closure, the list of setters is provided
by connecting the target variable and the setter expression using the <-> syntax.

Developers might write constraints that are too difficult to solve, or for which no
solver exists. In that case, the constraint expression is simply evaluated as a test that
is checked by the runtime whenever a variable changes that may change the result
of the test. If the test fails, an exception is raised explaining that no solver for the
constraint was available.

We are currently working on adding support for cooperating constraint solvers, so
that several solvers can work together to find a solution to constraints that connect
variables from different domains [Bor12].

4.4 Constraint Duration and Activation

Constraints have durations during which they are active. The always duration declares
that its constraint becomes active when the always statement is evaluated and remains
active indefinitely after that, unless explicitly deactivated.

As mentioned in Section 4.1, the always primitive returns a Constraint object
that provides meta-level access to control constraint activation, allowing it to be
subsequently deactivated and reactivated. BABELSBERG provides two additional
methods that provide more structured control of constraint durations. The once
method activates a constraint, satisfies, and then retracts it. This is useful to initialize
a system state to satisfy a constraint. The assert-during construct takes a closure
and activates a constraint for the duration of the evaluation of the closure.

A related issue is when constraint satisfaction is invoked. BABELSBERG’s default
behavior is that constraints are immediately satisfied or re-satisfied whenever there is a
change to one of the constrained variables. Sometimes this is not the desired behavior,
for example, when there is a sequence of assignments that change the state of an
object, with the object being in a temporarily inconsistent state in the midst of the
assignments. To handle this, BABELSBERG includes a construct to allow a sequence of
assignments to be made, with solving invoked only after all the assignments have been
made. Ruby provides multi-assignments to store values into multiple variables in a
single statement, and this is used in BABELSBERG /R to implement this construct. If
multiple variables that have constraints on them are assigned using multi-assignment,

“http://libsdl.org/

Journal of Object Technology, vol. 13, no. 4, 2014

http://libsdl.org/
http://dx.doi.org/10.5381/jot.2014.13.4.a1

22 - Tim Felgentreff, Alan Borning, Robert Hirschfeld

all values are assigned before the solver is triggered. If any constraints cannot be
satisfied, all assignments are immediately undone, again, to ensure that assignments
either succeed or fail entirely.

5 Implementation

The Ruby virtual machine (VM) we use as a basis for BABELSBERG /R is Topaz [GF14],
an experimental VM built using the PyPy/RPython toolchain [RP06]. While Topaz
is a Ruby interpreter, the RPython toolchain provides it with a fast JIT compiler
and garbage collector. We have extended the interpreter, and inherit the JIT and
garbage collector from RPython. In this section, we first provide an overview of the
key features of the implementation before plunging into the details.

The Topaz Ruby vM is written in a restricted, object-oriented subset of Python
called RPython. Topaz executes Ruby by compiling Ruby source code into bytecodes
and interpreting the bytecodes. The interpreter is written in an object oriented fashion,
with each bytecode implemented as a method of the class Interpreter. Topaz also
represents Ruby language constructs such as references and scopes as instances of
RPython classes. As an example, local variables are represented by Cell objects,
which provide methods to access and update the variable’s value. In BABELSBERG/R,
we leverage the object-oriented design of Topaz to implement OCP.

The changes we made to the Topaz VM are two-fold. First, we modified the
interpreter to support a constraint construction mode (cf. Section 5.2) and a primitive
to enter this mode. Second, we extended the cells to support constrained variables
(cf. Section 5.1) by allowing the same name to refer to multiple objects, one an object-
oriented value and the other a solver object. (Note that this use of the same name to
refer to multiple objects is a feature of the implementation only — it is not visible to
the programmer.)

5.1 Constrained Variables

Ruby provides five types of variables: locals, instance variables, class variables, globals,
and constants. (While constants should be assigned only once, this is simply a
convention in Ruby, and is not checked by the interpreter.) Of these variable types,
we allow three as constrained variables: locals, instance variables, and class variables.

Ordinary variables are converted automatically to constrained variables if they
are used in a constraint expression. A constraint expression is passed to the always
primitive as an ordinary block closure. All locals referenced in the expression are
stored as cell objects, which in BABELSBERG/R have an additional field to store
solver objects. Instance and class variables in Topaz are stored in maps [CUL89]. For
BABELSBERG /R, we have extended these to store solver objects as well as ordinary
objects, so that once the JIT has warmed up, read access to solver objects is no slower
than access to ordinary objects.

Converting ordinary variables into constrained variables has an impact on garbage
collection. Solver objects usually have more references pointing to them than ordinary
objects — besides their scope and owner (in the case of instance or class variables),
solver objects are also referenced from one or more constraints. Because solver objects
can also be implemented in the host language, this means that they may only be
garbage collected if no more active constraints refer to them.

Journal of Object Technology, vol. 13, no. 4, 2014

http://dx.doi.org/10.5381/jot.2014.13.4.a1

Specifying and Solving Constraints on Object Behavior - 23

5.2 Execution Contexts

To implement the different execution modes — imperative execution, and constraint con-
struction — we extended the default interpreter, and added ConstraintInterpreter
as a subclass. The ConstraintInterpreter changes how locals, instance variables,
and class variables are accessed.

5.2.1 Imperative Execution

This is the normal execution mode, as implemented in the Topaz interpreter. We have
extended the STORE and LOAD bytecode methods with an additional check whether a
variable refers just to an ordinary object or to a solver object as well. In the latter
case, instead of reading or changing the value of the variable, the solver object for the
variable receives the messages value or suggest_value, respectively. As long as all
constraints are satisfied, this difference is not visible to the programmer. However,
while direct, destructive assignment to a normal variable in imperative programs
always succeeds, suggest_value triggers one or more solvers. If any solver fails to
satisfy its constraints using the new value, an exception is raised. This exception is
propagated by the vM, and should either be handled by the programmer or allowed to
halt execution of the program. If an assignment fails in this way, the variable retains
its original value.

As described in Section 4.4, in BABELSBERG/R, if multiple variables that have
constraints on them are assigned using multi-assignment, all values are assigned before
a solver is triggered, and all assignments are undone if an exception is raised during
solving. This way, if the exception is caught, the program is not in violation of any
constraints.

5.2.2 Constraint Construction

The initializer for constraint objects — usually called through always — activates an
execution context for constraint construction. In this mode, variable values are replaced
with their associated solver objects in LOAD instructions. These solver objects are
created by sending for_constraint to the current variable value. This method should
return an object that responds to value and suggest_value. The value method
extracts the value from a solver’s internal representation, while suggest_value sends
the candidate value to a solver and requests that it re-satisfy the constraints. For
values that do not respond to for_constraint, a generic solver object is returned
that removes and recalculates all constraints in which it occurs whenever its value
changes.

STORE instructions in this mode create equality constraints. This is necessary to
support constructing new objects in the predicates that connect values (for example, a
2d point with x and y values that were constructed in the constraint.) However, this
also means that all code blocks encountered during constraint construction must be in
single assignment form (cf. Section 4.1.1).

To support solvers written in the host language, the vM needs a way to distinguish
code that should be executed in this mode from code that should not. To support this,
solvers written in the host language should be subclasses of ConstraintObject. This
class serves as a marker to leave constraint execution mode when we enter solver code.

Constraint Solving This mode is simply a flag that is active whenever code runs in

the dynamic extent of a method of a ConstraintObject. It prevents nested sends of
suggest_value from causing recursive calls to the solver. This is necessary to support

Journal of Object Technology, vol. 13, no. 4, 2014

http://dx.doi.org/10.5381/jot.2014.13.4.a1

24 - Tim Felgentreff, Alan Borning, Robert Hirschfeld

:Rectangle

origin [bool visible? | corner
int area

Object-oriented view

always(:strong) { rectangle.area >= 100 }

Figure 1 — Objects are connected through instance variables. When a constraint is con-
structed, their parts become connected through constraints.

solvers written in Ruby, but implies that solvers themselves cannot use constraints in
their implementation.?

Constraint Construction Example

To illustrate how our implementation supports the combination of objects and con-
straints, consider the rectangle example in BABELSBERG from Section 4. The code
asserts that the area of the rectangle rect should always be greater than or equal to
100. The assertion is expressed by sending the area method to rect, and then sending
the >= method to the result. The only variable named explicitly in the constraint is
rect, but there are other variables that play a role in it.

In constraint construction mode, the rect variable is replaced with a generic solver
object, since the class Rectangle does not implement the method for_constraint.
This placeholder delegates the message area to the rectangle. During the execution of
the area method, the points are replaced with generic solver objects, and their x and
y values (floats) are replaced with specific solver objects (for example Z3 variables,
cf. Figure 1). In this mode, the messages to the float values return symbolic expressions
rather than calculating the current area of the rectangle. The expression representing
the area of the rectangle is then sent the message >= with 100 as its argument and
returns an inequality constraint.

The constraint construction is complete when the block passed to always returns.
The values and relations among them produced by this symbolic execution are gathered
into a Constraint object containing specific solver objects and generic solver objects.

5If we wanted to support other cooperating paradigms in addition to constraint-oriented program-
ming, we would generalize this technique to support additional execution contexts.

Journal of Object Technology, vol. 13, no. 4, 2014

http://dx.doi.org/10.5381/jot.2014.13.4.a1

Specifying and Solving Constraints on Object Behavior - 25

Specific solver objects are objects that are connected in a way that the solver can
reason about (e.g., floats connected via equalities or inequalities or arithmetic relations,
or booleans connected via boolean operations). Generic solver objects are all other
objects that contribute to the constraint but about which the solver cannot reason
directly.

The constraint solvers operate on specific solver objects directly to solve the
constraint. Changes made by the solver to these objects show up in the 00 view on
the next access to the variables from imperative code, at which point their values
are copied to their 00 counterparts. Assignments to any variable encountered during
the constraint construction will trigger the solver to re-satisfy the constraint (and
potentially raise an error if the assignment is inconsistent with the constraint).

Generic solver objects invalidate the constraint if their 0O value changes through
imperative assignment. This invalidation retracts all solver objects created during
constraint construction and re-executes the block to create new solver objects and
constraints. This means that the block may be re-executed multiple times during the
run-time of the program. (This is one reason why any side-effects in constraints should
be benign, as noted in Section 4.1.1.)

5.3 Implementing Edit Constraints

Edit constraints are used to support incremental constraint satisfaction, and are
important for achieving good performance in interactive applications. The edit
method provided as part of BABELSBERG/R’s Cassowary library adds edit constraints
and repeatedly updates them with values from a stream.

Cassowary as shipped in the BABELSBERG /R standard library allows the variables
and stream to hold user-defined objects as well as primitive types. The library uses the
API of the Constraint class to access the constraint values associated with variable
names, creates edit constraints for them, and feeds the stream into the resulting edit
variables.

To use Cassowary as the solver, we need edit variables that are Floats (e.g., the x
and y values of a midpoint), but we also want to do this in an object-oriented way that
respects encapsulation. To support this, the client passes an array of method names
for the return values that should be updated in the edit constraint (e.g., x and y for a
point — those values may be calculated or direct accessors.) Cassowary creates new
edit variables, and adds an equality constraint to the return values of the methods.
Thus, the internal storage layout of the class is not visible to the programmer from
outside the object, because the equality constraint is simply asserted on the results of
message sends using the always primitive.

In the following example, the mouse locations or the mouse point might store their
x and y values directly, or might be points represented using polar coordinates. In
either case, the edit constraints apply to the return values of their respective x and y
methods:

edit (stream: mouse.locations.each, accessors: [:x, :y]) { mouse_point }

In a DeltaBlue-specific edit method, the edit constraints returned could be simpler,
since DeltaBlue local propagation methods can apply to user-defined objects such as
points, not just to floats. The point would be simply updated rather than dealing with
its x and y coordinates separately, and the data flow plan would update the objects
constrained to be equal to the point that represents the mouse location.

Journal of Object Technology, vol. 13, no. 4, 2014

http://dx.doi.org/10.5381/jot.2014.13.4.a1

0 N

1

26 - Tim Felgentreff, Alan Borning, Robert Hirschfeld

5.4 Adding New Solvers

During constraint construction, the vM sends the for_constraint message to each
variable value encountered during the execution. User code can add solvers to the
system by dynamically adding a for_constraint method to those classes for which
the solver is applicable, making use of Ruby’s open classes. This method takes the
name under which the variable is accessed as an argument, and should return an
object that implements a subset of the interfaces that the solver can reason about, as
well as the methods value and suggest_value (as described in cf. Section 5.2.)

The Cassowary solver extends the Float class:

def for__constraint(name)
v = Cassowary::Variable.new(name: name, value: self)
Cassowary::SimplexSolver.instance.add__stay(v)

v
end

This method creates a new variable, adds a low-priority stay so the solver attempts
to keep the value stable, and returns the constraint object. The vM then sends
messages to this object instead of the Float object in the context of the constraint
execution.

In the case of immutable objects (such as floats and integers), the vM directly
returns the variable value determined by the solver. However, for mutable objects,
solver libraries can provide the method assign_constraint_value to update the
ordinary object. BABELSBERG/R provides a solver over numeric arrays, which uses
assign_constraint_value to update the array contents. In the for_constraint
method for arrays, it returns a NumericArrayConstraintVariable if all elements in
the array are instances of a subclass of Numeric.
class Array

def for__constraint(name)
if self.all ? { |e| e.is_a? Numeric }
return NumericArrayConstraintVariable.new(self)

end
end

def assign_ constraint_ value(val)
self . replace(val)
end
end

This illustrates how the solvers provided by BABELSBERG /R are simply constraint
solver libraries that extend core classes. The NumericArrayConstraintVariable, for
example, allows element access, provides the Ruby collection API (each, map, inject,
...), the sum method (which calculates the sum of elements) and the message length,
to solve constraints over the length of arrays.

Below is an example that asserts constraints on TWP-encoded® short strings
(represented as an array of bytes). TWP short strings are at most 110 bytes, with the
first byte giving the length of the string plus a tag. Line 3 constrains this particular
string to contain only capital letters (the A Ruby syntax gives the byte value of a
character).
twp_str =]
always { twp_str.length == twp_str[0] + 17 }

always { twp_str.length <= 109 }
always { twp_str.each {|byte| byte >= 7A && byte <= 7Z} }

Shttp://www.dcl.hpi.uni-potsdam.de/teaching/mds/twp3.txt

Journal of Object Technology, vol. 13, no. 4, 2014

http://www.dcl.hpi.uni-potsdam.de/teaching/mds/twp3.txt
http://dx.doi.org/10.5381/jot.2014.13.4.a1

Specifying and Solving Constraints on Object Behavior - 27

6 Evaluation

We evaluate BABELSBERG and BABELSBERG /R first with respect to performance, and
second with respect to how well the language supports desirable semantic properties
for an object constraint language.

6.1 Performance Evaluation

There are four questions we are interested in regarding performance: a) how does con-
straint solving performance compare with imperative code for satisfying constraints, b)
how does BABELSBERG /R performance compare with other constraint-based languages,
c¢) how is performance of pure object-oriented code affected by our extensions to the
vM, and d) how does a practical application perform if refactored to use constraints.

Constraint Solving To answer the first question, we used an example from Kaleido-
scope’93 [LFBB94c| and adapted it to BABELSBERG /R (cf. Figure 2). In this example,
the user drags the upper end of the mercury in a thermometer using the mouse.
However, the mercury cannot go outside the bounds of the thermometer, even if the
user tries to drag it out. Additionally, a gray and white rectangle on the screen should
be updated to reflect the new mercury position, and a displayed number should reflect
the integer value of the mercury top. Refactoring the imperative version for BABELS-
BERG makes it more general, so the comparison is biased towards the imperative code.
However, this example demonstrates the performance impact if an imperative program
is refactored with the goal to make it more readable, not more general.

Note that the object-constraint version may be written in two ways: one that is
more like the imperative version and assigns new mouse locations in a loop; and a
more constraint-oriented version that declares mouse.location_y as an edit variable
that triggers incrementally re-satisfying the constraints. The latter is expected to be
much faster, as Cassowary can just re-optimize a previously optimal solution.

Table 1 shows that the naive object-constraint version is usually many hundreds
of times slower than the purely imperative solution. That is because the imperative
version is executing mostly machine code after a few thousand iterations, but the

Iterations . times do |[i| always { temperature == mercury.height }
mouse.location_y =i always { white.top == thermometer.top }
old = mercury.top always { white.bottom == mercury.top }
mercury.top = mouse.location_y always { gray.top == mercury.top }
if mercury.top > thermometer.top always { gray.bottom == mercury.bottom }
mercury.top = thermometer.top always { display.number == temperature }
end always(:high) { mercury.top == mouse.location_y }
temperature = mercury.height always { mercury.top <= thermometer.top }
if old < mercury.top always { mercury.bottom == thermometer.bottom }
moves upwards (draws over the white) always { thermometer.bottom == 0
gray.top = mercury.top always { thermometer.top == 200 }
else
moves downwards (draws over the gray) Iterations .times do |i|
white.bottom = mercury.top mouse.location_y =i
end end
display. number = temperature
7 end # edit(Iterations. times) { mouse.location_y }
(2) Imperative version (b) Object-constraint version

Figure 2 — Interactive thermometer example from [LFBB94c]

Journal of Object Technology, vol. 13, no. 4, 2014

http://dx.doi.org/10.5381/jot.2014.13.4.a1

28 - Tim Felgentreff, Alan Borning, Robert Hirschfeld

Iterations ‘ Imperative Constraints Edit Constraints
100 | 1(00.241) 36.1(03.14) 6.24(c0.828)
10,000 | 1(00.14) 629(06.91) 7.72(00.526)
1,000,000 | 1(c0.12) 45137(c458) 52.5(02.24)

Table 1 — Thermometer benchmark (normalized against imperative version)

>
1.2 50 T
8 1
Q.
N
£y 08
=
S o
2 06
0T
F8 04
ag -
£
g 0.2
0
%, y, ‘?/7,}))
72 %, %
) % e
% %, 2
2, 2% e%
Turtle m— %,

Kaplan ===
Babelsberg/R
Prolog

Figure 3 — cip benchmarks

constraint version has many more loops which the JIT is struggling to optimize. Using
edit constraints, repeated solving of constraints is much faster. Keep in mind that
these results use a solver that is also written in pure Ruby, which is by itself orders of
magnitude slower than a C++ based version.

Performance Across Different Languages Unfortunately, good benchmarks to
measure the intended usage of languages that integrate constraints with imperative
programming are difficult to find. Papers for such languages that evaluate performance
use classical constraint solving problems. For our comparison, we selected three such
problems: the Send-More-Money cryptarithmetic problem [Dud24], a layout example
from the Turtle distribution (without preferential constraints), and the Animals”
puzzle. We ran these benchmarks on Turtle, Kaplan, and BABELSBERG/R, as examples
of cIp languages; as well as on SWI-Prolog’s CLP library, to compare the performance
of constraint-imperative with constraint-logic programming.

Each benchmark was run in a loop to allow the JIT in Kaplan and BABELSBERG/R
to warm up, and the executions were repeated 10 times.

Figure 3 shows that the Cip languages are comparable in performance, but Prolog
with a constraint satisfaction library is a better choice for these problems when no
imperative features are used. Both BABELSBERG/R and Kaplan use Z3 in these
benchmarks. The difference in performance between them may be due to the overhead
of creating the constraints, but we have also found Z3 performance to sometimes vary
wildly between releases. Because Kaplan ships an older, modified version of the Z3

7Spent $100 to buy 100 pets. You must buy at least 1 of each pet. Dogs cost $25, cats $1, and
mice $0.25.

Journal of Object Technology, vol. 13, no. 4, 2014

http://dx.doi.org/10.5381/jot.2014.13.4.a1

Specifying and Solving Constraints on Object Behavior - 29

2.4 525 53.97 333 >10

Execution time
(normalized against unmodified VM)

o
(o2}
T T T T

Figure 4 — Metatracing vM benchmarks

library than BABELSBERG /R requires, we have not been able to compare them using
the same version of Z3.

Performance of Pure Object-oriented Code For imperative code performance,
we ran a number of tests from the metatracing vMs experiment [BT13] against the
unmodified Topaz Ruby vM and the JRuby VM.

For purely imperative code, BABELSBERG/R is consistently less than 1.5 times
slower in these benchmarks than the unmodified vM (Figure 4). The only benchmark
for which BABELSBERG /R is significantly worse than Topaz is Binarytrees. Binarytrees
is a strongly recursive benchmark, at which Topaz’ (and thus BABELSBERG/R’s JIT)
is bad at optimizing (which is why JRuby does better for this benchmark). The
overhead in BABELSBERG/R is due to an additional test each time a variable is
accessed, to check whether this variable participates in a constraint. An annotation in
the vM [BCFT11] allows the JIT to remove this test when there are no constraints on
variables in the loop. The JIT consequently removes the check if it is not needed, so
all the overhead we are seeing in these results is in code that has not been compiled
by the JiT. Binarytrees is especially bad here, because very little code is compiled by
the JIT for this benchmark.

Considering that JRuby and Topaz are, for these benchmarks, currently the fastest
Ruby vMs, we consider BABELSBERG/R to be very performant for purely imperative
code.

Application Example We have written a simple video streaming application. This
application reads a folder with bitmaps and streams raw video to a video player. The
quality with which the video is streamed depends on a number of variables:

User Preference Users may decide not to overload their systems and explicitly
choose a lower quality. This should be an upper bound for the quality of the
streaming.

Encoding Time The program has only 1/25 second to encode a frame. If it takes
longer, the quality should be automatically reduced to ensure smooth playback.

System Load The overall system load of the encoding system should be less than
80%, to retain sufficient resources for other tasks.

Journal of Object Technology, vol. 13, no. 4, 2014

http://dx.doi.org/10.5381/jot.2014.13.4.a1

16

30 - Tim Felgentreff, Alan Borning, Robert Hirschfeld

Quality Bounds Whatever users choose as preferred quality, the quality cannot be
below 0 or above 100%.

In the imperative version of the application, these constraints were explicitly
checked and re-satisfied after each frame. The object-constraint solution uses custom
solvers for File contents and method execution time. Both versions could stream video
at the highest quality setting to up to 8 clients on an Intel i5 2.4 GHz CPU. Both
reduced the quality afterwards. Because most of the time was spent encoding and
streaming video, both versions performed equivalently well. Most code was shared
between the versions, only the code to adjust the quality was replaced with constraints.

Both versions spent on average 43.9 ms encoding each frame and sending it to
the client. Also for both versions, 0.064 ms were spent fetching the current load
and reading the preference file. The imperative version spent an additional 0.461 ms
adjusting the quality after each frame, whereas the object-constraint version used
2.23 ms for that. In relation to the frame encoding time, the impact of constraint
solving was small, and the imperative code managed to encode and play 22.5 frames
per second on average versus 21.6 fps for the object-constraint code.

VM Hooks for Customizing Constraint Construction This benchmark also
demonstrates how the for_constraint and assign_constraint_value VM hook
methods are useful not only for solvers, but also when programmers want to provide a
particular interpretation of certain application domain objects in their constraints. We
used this express constraints on the contents of a preference file and the last execution
time of the frame encoding method in our constraints.

The effort to allow Cassowary to work with file content and method execution
time was small. The following class definition was enough for us to be able to use the
execution time of a method in a constraint:
class MethodTimer

def initialize (klass, symbol)

time = 0
@constrained__time = Constraint.new { time }

old__method = klass.instance_ method(symbol)

klass . define__method(symbol) do |*args, &block|
start = Time.now
res = old__method.bind(self).call(xargs, &block)
time = Time.now — start
res

end

end

def for__constraint(name)
@Q@constrained__time. ¢
end
end

A MethodTimer is instantiated with a class and the name of a method. It wraps
this method to record its execution time. When used in a constraint, a read-only
constraint object is returned that is connected with the time local variable. Because it

is read-only, the assign_constraint_value method is omitted. For the configuration
file object, the assign_constraint_value method is as follows:

Journal of Object Technology, vol. 13, no. 4, 2014

http://dx.doi.org/10.5381/jot.2014.13.4.a1

Specifying and Solving Constraints on Object Behavior - 31

def assign__constraint__value(float)
if float != Q@content.to_f
raise "cannot assign to read—only file" unless @Qwritable
@file . truncate(0)
@file . rewind
@file . write(float)
end
end

This illustrates that our vM hooks for constraint construction provide a limited
local propagation mechanism to interpret complex objects in the type domain of a
particular solver.

6.2 Comparison with other approaches

BABELSBERG has a number of properties that we regard as desirable for an object-
constraint programming language. Table 2 shows these properties and compares OCP
to related approaches presented in Section 2. As a continuation of CIP, OCP shares
most properties with languages like Kaleidoscope and Turtle.

Unified Language Constructs Programs in BABELSBERG appear as ordinary 0O
programs if no constraints are used, but can be easily adapted to use constraints where
it makes sense. Programmers re-use the object-oriented method definitions to specify
constraints, thus respecting object encapsulation. Furthermore, techniques such as
inheritance and dynamic typing operate correctly with constraints.

In contrast, library and DSL based approaches separate constraints from imperative
code through a different syntax and semantics. For example, in languages such as
Kaplan or Ilog Solver, developers must explicitly wrap objects in classes meant for
use in constraints. Functional reactive programming (FRP) and CIP languages use
propagation hooks and constraint constructors respectively to support constraints
(propagation hooks are the functions that compute new values for connected variables,
while constraint constructors are Kaleidoscope’s mechanism for converting constraints
on user-defined objects into primitive constraints for a solver.)

Automatic Solving Using libraries for constraint satisfaction allows programmers
to write code that (intentionally or unintentionally) circumvents previously asserted
constraints. Approaches that integrate constraints at a language level do not allow
such circumvention, and attempt to re-satisfy constraints whenever they are violated
during program execution.

Linguistic Symbiosis D’Hondt et al. [DGJ04] argue that linguistic symbiosis be-
tween different programming paradigms is required to support the evolution of programs

Libraries | DSL | Dataflow/FRP | CIP | OCP
Unified Language Constructs X
Automatic Solving X X X X
Linguistic Symbiosis X X X
Extensible Solvers X (x) (x) X
Suitably Expressive Constraints X X X X
Performant Pure-00 code X X X X

Table 2 — Comparison of OCP with related work

Journal of Object Technology, vol. 13, no. 4, 2014

http://dx.doi.org/10.5381/jot.2014.13.4.a1

32 - Tim Felgentreff, Alan Borning, Robert Hirschfeld

from the object-oriented paradigm to a constraint-oriented solution and vice versa.
DSL and library based approaches do not support such incremental refactoring between
paradigms as well as approaches in which constraints are written in the host language.

Extensible Solvers Libraries provide the most flexibility for choosing different
solvers depending on programmer needs. FRP languages can, to some extent, be
combined with solver libraries to achieve a comparable flexibility. CIP languages
also provide a more controlled way for developers to use different solvers by writing
constraint constructors that reformulate constraints using a different solver.

In BABELSBERG, all solvers use the same interface to communicate with the vM so
developers can add new solvers and replace existing ones to support new type domains,
or to use solvers that give better results or performance for a particular problem.

Suitably Expressive Constraints To take advantage of the constraint paradigm,
the language should allow a rich set of constraints to be written and solved. Multi-
directional constraints are important for some applications, while others additionally
require solvers that can accommodate simultaneous equations and inequalities. (For
example, to simulate a Wheatstone bridge requires solving simultaneous equations,
while the video streaming example needs inequalities as well as equalities, and both
hard and soft constraints.) On the other hand, given an overly powerful but slow
solver, it becomes all too easy to write constraints that take a very long time indeed
to solve or that are intractable. We believe that BABELSBERG strikes an appropriate
balance here, by providing an expressive set of constraints with the solvers in the
initial library, and by allowing more powerful solvers to be added if desired. However,
much more experience is needed to test whether in fact this is an appropriate balance,
and to adjust it as needed; and as noted in Section 7, an important direction will be
adding better support for debugging, explanation, and benchmarking.

Performant Pure OO Code Kaleidoscope provided a declarative semantics for
assignment, type declaration, and subclassing. However, this declarative semantics was
also used if no actual constraints are in the program. Our implementation approach in
BABELSBERG/R uses different execution contexts for constraint construction/solving
and imperative code. Combined with a state of the art JIT, this gives performance for
pure 00 code that is generally comparable to that of a standard 00 VM.

7 Conclusion and Future Work

We have presented BABELSBERG, an object constraint language that extends an object-
oriented language to support constraints, along with an implementation as an extension
to Ruby using a state of the art virtual machine. In contrast to other approaches,
BABELSBERG unifies the constructs for encapsulation and abstraction for both the
declarative constraint parts of the language and the traditional imperative parts by
using only object-oriented method definitions for both declarative and imperative code.
Our implementation is integrated with an existing object-oriented virtual machine,
and provides a standard imperative evaluation mode, a constraint evaluation mode
that accumulates constraints to send to the solver as expressions are evaluated, and a
constraint solver mode.

This work is recent and there are a number of directions for future research. One is
to exercise the system on a wider variety of programs, and also to work on improving

Journal of Object Technology, vol. 13, no. 4, 2014

http://dx.doi.org/10.5381/jot.2014.13.4.a1

Specifying and Solving Constraints on Object Behavior - 33

the performance of the constraint evaluation and satisfaction. Another direction is to
add additional solvers to the library that support constraints on other primitive storage
types such as arrays, strings, and hashes, and to implement a design for cooperating
solvers. The multi-assignment semantics described in Section 4.4 provides a clean and
simple way to control when constraint satisfaction is invoked, but experience with
writing programs in BABELSBERG /R is needed to decide whether this construct is
sufficiently expressive. Yet another direction is to introduce a “meta-solver” that can
automatically select one or more applicable solvers for a given set of constraints.

Another important focus will be adding better support for debugging, explanation,
and benchmarking. (If the constraint solver is unable to satisfy the constraints, why is
this? Or if the solver produces an unexpected answer, how was this answer arrived at,
and are there other possible answers? If the solver is slow, why, and are there ways to
make it faster? Is there a more appropriate solver available?)

Our initial implementation extends Ruby, but the ideas are applicable to other
dynamic object-oriented languages, and a second implementation in JavaScript is now
available [FBH" 14b)].

References

[BBSO1] Greg J Badros, Alan Borning, and Peter J Stuckey. The Cassowary
linear arithmetic constraint solving algorithm. ACM Transactions on
Computer-Human Interaction (TOCHI), 8(4):267-306, December 2001.
doi:10.1145/504704.504705.

[BCF+11] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, Michael
Leuschel, Samuele Pedroni, and Armin Rigo. Runtime feedback in
a meta-tracing JIT for efficient dynamic languages. In Proceedings of
the 6th Workshop on Implementation, Compilation, Optimization of
Object-Oriented Languages, Programs and Systems (ICOOOLPS’11).
ACM, ACM, July 2011. doi:10.1145/2069172.2069181.

[BFBW92] Alan Borning, Bjorn Freeman-Benson, and Molly Wilson. Constraint
hierarchies. Lisp and Symbolic Computation, 5(3):223-270, September
1992. doi:10.1007/BF01807506.

[Bor12] Alan Borning. Architectures for cooperating constraint solvers. Tech-
nical Report M-2012-003, Viewpoints Research Institute, May 2012.
URL: http://www.vpri.org/pdf/m2012003_coopsolv.pdf.

[BT13] Carl Friedrich Bolz and Laurence Tratt. The impact of meta-tracing
on VM design and implementation. Science of Computer Programming,
February 2013. doi:10.1016/j.scico0.2013.02.001.

[CUL89] Craig Chambers, David Ungar, and Elgin Lee. An efficient implemen-
tation of SELF a dynamically-typed object-oriented language based
on prototypes. In Conference proceedings on Object-oriented program-
ming systems, languages and applications (OOPSLA’89), pages 49-70.
ACM, September 1989. doi:10.1145/74877.74884.

[DGJ04] Maja D’Hondt, Kris Gybels, and Viviane Jonckers. Seamless integra-
tion of rule-based knowledge and object-oriented functionality with
linguistic symbiosis. In Proceedings of the 2004 ACM Symposium on
Applied Computing (SAC’04), pages 1328-1335. ACM, March 2004.
doi:10.1145/967900.968168.

Journal of Object Technology, vol. 13, no. 4, 2014

http://dx.doi.org/10.1145/504704.504705
http://dx.doi.org/10.1145/2069172.2069181
http://dx.doi.org/10.1007/BF01807506
http://www.vpri.org/pdf/m2012003_coopsolv.pdf
http://dx.doi.org/10.1016/j.scico.2013.02.001
http://dx.doi.org/10.1145/74877.74884
http://dx.doi.org/10.1145/967900.968168
http://dx.doi.org/10.5381/jot.2014.13.4.a1

34 - Tim Felgentreff, Alan Borning, Robert Hirschfeld

[DMBOS]

[DRO6]

[Dud24]
[Ent14]

[FBBY92a]

[FBB92b)]

[FBH14a)

[FBH 14b)

[FBMSY]

[FMOS]

[FMB14]

[GF14]

[GHO4]

Leonardo De Moura and Nikolaj Bjgrner. Z3: An efficient SMT
solver. In Proceedings of the 14th International Conference on
Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS’08), pages 337-340. Springer, March 2008. doi:
10.1007/978-3-540-78800-3_24.

B. Demsky and M.C. Rinard. Goal-directed reasoning for specification-
based data structure repair. IEEE Transactions on Software Engineer-
ing, 32(12):931-951, December 2006. doi:10.1109/TSE.2006.122.

Henry Dudeney. Send more money. Strand Magazine, 214:68-97, 1924.

Enthought Inc. Enaml 0.6.3 documentation, February 2014. URL:
http://docs.enthought.com/enaml/.

Bjorn Freeman-Benson and Alan Borning. The design and imple-
mentation of Kaleidoscope’90, a constraint imperative programming
language. In Proceedings of the IEEE Computer Society 1992 Inter-
national Conference on Computer Languages, pages 174-180. IEEE,
April 1992. doi:10.1109/ICCL.1992.185480.

Bjorn Freeman-Benson and Alan Borning. Integrating constraints
with an object-oriented language. In Proceedings of the 1992 European
Conference on Object-Oriented Programming (ECOOP’92), pages
268-286. Springer, June 1992. doi:10.1007/BFb0053042.

Tim Felgentreff, Alan Borning, and Robert Hirschfeld. Babelsberg;:
Specifying and solving constraints on object behavior. Technical
Report 81, Hasso Plattner Institute, University of Potsdam, Potsdam,
Germany, May 2014. Also published as TR-~2013-001, Viewpoints
Research Institute, Los Angeles, CA.

Tim Felgentreff, Alan Borning, Robert Hirschfeld, Jens Lincke,
Yoshiki Ohshima, Bert Freudenberg, and Robert Krahn. Babels-
berg/JS: A browser-based implementation of an object constraint
language. In Proceedings of the 2014 European Conference on
Object-Oriented Programming. Springer, July 2014. doi:10.1007/
978-3-662-44202-9_17.

Bjorn Freeman-Benson and John Maloney. The DeltaBlue algo-
rithm: An incremental constraint hierarchy solver. In Proceed-

ings of the 8th Annual IEEE Phoenix Conference on Computers
and Communications, pages 538-542. IEEE, March 1989. doi:

10.1109/PCCC.1989.37442.

David Flanagan and Yukihiro Matsumoto. The Ruby Programming
Language. O’Reilly, January 2008.

Tim Felgentreff, Todd Millstein, and Alan Borning. Developing a
formal semantics for Babelsberg: A step-by-step approach. Techni-
cal Report TR2014002, Viewpoints Research Institute, Los Angeles,
California, July 2014.

Alex Gaynor and Tim Felgentreff. Topaz Ruby, February 2014. URL:
http://www.topazruby.com/.

Martin Grabmiiller and Petra Hofstedt. Turtle: A constraint im-
perative programming language. In Research and Development

Journal of Object Technology, vol. 13, no. 4, 2014

http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1109/TSE.2006.122
http://docs.enthought.com/enaml/
http://dx.doi.org/10.1109/ICCL.1992.185480
http://dx.doi.org/10.1007/BFb0053042
http://dx.doi.org/10.1007/978-3-662-44202-9_17
http://dx.doi.org/10.1007/978-3-662-44202-9_17
http://dx.doi.org/10.1109/PCCC.1989.37442
http://dx.doi.org/10.1109/PCCC.1989.37442
http://www.topazruby.com/
http://dx.doi.org/10.5381/jot.2014.13.4.a1

[Hor92]

[HS96]

[IBM14]
[ILO93]

[JL87]

[TMSY92]

[KKS12]

[KLM*97]

[LB97]

[LFBB94a]

[LFBBY4b)]

[LFBB94c]

Specifying and Solving Constraints on Object Behavior - 35

in Intelligent Systems XX, pages 185-198. Springer, 2004. doi:
10.1007/978-0-85729-412-8_14.

Bruce Horn. Constraint patterns as a basis for object-oriented
constraint programming. In Proceedings of the 1992 ACM Con-
ference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA’92), pages 218-233. ACM, October 1992.
doi:10.1145/141936.141955.

Scott Hudson and Ian Smith. Ultra-lightweight constraints. In Pro-
ceedings of the 1996 ACM Symposium on User Interface Software
and Technology (UIST’96), pages 147-155. ACM, November 1996.
doi:10.1145/237091.237112.

IBM. ILOG CPLEX Optimization Studio, June 2014. URL: http:
//www.ibm.com/software/info/ilog.

ILOG, Incline Village. Using the CPLEX callable library and CPLEX
mized integer library, 1993.

Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. In
Proceedings of the 14th ACM Principles of Programming Languages
Conference (POPL’87), pages 111-119. ACM, January 1987. doi:
10.1145/41625.41635.

Joxan Jaffar, Spiro Michaylov, Peter Stuckey, and Roland Yap. The
CLP(R) language and system. ACM Transactions on Programming
Languages and Systems (TOPLAS), 14(3):339-395, July 1992.

Ali Sinan Koksal, Viktor Kuncak, and Philippe Suter. Constraints as
control. In Proceedings of the 39th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages (POPL’12), pages
151-164. ACM, January 2012. doi:10.1145/2103621.2103675.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented
programming. In Proceedings of the 1997 European Conference on
Object-Oriented Programming (ECOOP’97), pages 220-242. Springer,
June 1997. doi:10.1007/BFb0053381.

Héakon Wium Lie and Bert Bos. Cascading style sheets: Designing for
the Web. Addison Wesley Longman, 1997.

Gus Lopez, Bjorn Freeman-Benson, and Alan Borning. Constraints
and object identity. In Proceedings of the 1994 European Conference on
Object-Oriented Programming (ECOOP’94), pages 260-279. Springer,
July 1994. doi:10.1007/BFb0052187.

Gus Lopez, Bjorn Freeman-Benson, and Alan Borning. Implementing
constraint imperative programming languages: The Kaleidoscope’93
virtual machine. In Proceedings of the 1994 ACM Conference on
Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA’94), pages 259-271. ACM, October 1994. doi:10.1145/
191081.191118.

Gus Lopez, Bjorn Freeman-Benson, and Alan Borning. Kaleidoscope:
A constraint imperative programming language. In Constraint Pro-
gramming, volume 131, pages 313—-329. Springer-Verlag, 1994. NATO

Journal of Object Technology, vol. 13, no. 4, 2014

http://dx.doi.org/10.1007/978-0-85729-412-8_14
http://dx.doi.org/10.1007/978-0-85729-412-8_14
http://dx.doi.org/10.1145/141936.141955
http://dx.doi.org/10.1145/237091.237112
http://www.ibm.com/software/info/ilog
http://www.ibm.com/software/info/ilog
http://dx.doi.org/10.1145/41625.41635
http://dx.doi.org/10.1145/41625.41635
http://dx.doi.org/10.1145/2103621.2103675
http://dx.doi.org/10.1007/BFb0053381
http://dx.doi.org/10.1007/BFb0052187
http://dx.doi.org/10.1145/191081.191118
http://dx.doi.org/10.1145/191081.191118
http://dx.doi.org/10.5381/jot.2014.13.4.a1

36 - Tim Felgentreff, Alan Borning, Robert Hirschfeld

[LKI*12]

[LWOS]

[Mahs?7]

[MGD*90]

[OLFK13]

[Pug94]

[RCNO5)

[RMMH*+09]

[RP97]

[RPOG]

Advanced Science Institute Series, Series F: Computer and System
Sciences. doi:10.1007/978-3-642-85983-0_12.

Jens Lincke, Robert Krahn, Dan Ingalls, Marko Roder, and Robert
Hirschfeld. The Lively PartsBin—a cloud-based repository for collab-
orative development of active web content. In 2012 45th Hawaii In-
ternational Conference on System Science (HICSS’12), pages 693-701.
IEEE, January 2012. doi:10.1109/HICSS.2012.42.

Christof Lutteroth and Gerald Weber. End-user GUI customiza-
tion. In Proceedings of the 9th ACM SIGCHI New Zealand Chap-
ter’s International Conference on Human-Computer Interaction:
Design Centered HCI (CHINZ’08), pages 1-8. ACM, July 2008.
doi:10.1145/1496976.1496977.

Michael J. Maher. Logic semantics for a class of committed-choice
programs. In Proceedings of the 4th International Conference on Logic
Programming (ICLP), pages 858-876, May 1987.

Brad A. Myers, Dario A. Giuse, Roger B. Dannenberg, Brad Van-
der Zanden, David S. Kosbie, Ed Pervin, Andrew Mickish, and
Philippe Marchal. Garnet: Comprehensive support for graphical,
highly-interactive user interfaces. Computer, 23(11):71-85, November
1990. doi:10.1109/2.60882.

Yoshiki Ohshima, Aran Lunzer, Bert Freudenberg, and Ted Kaehler.
KScript and KSWorld: A time-aware and mostly declarative language
and interactive GUI framework. In Proceedings of the 2018 ACM Inter-
national Symposium on New Ideas, New Paradigms, and Reflections
on Programming & Software, Onward! '13, pages 117-134, New York,
2013. ACM. doi:10.1145/2509578.2509590.

Jean-Frangois Puget. A C++ implementation of CLP. Technical report,
ILOG, 1994. doi:10.1.1.15.9273.

Martin Rinard, Cristian Cadar, and Huu Hai Nguyen. Exploring

the acceptability envelope. In Companion to the 20th Annual ACM
SIGPLAN Conference on Object-oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA’05), pages 21-30. ACM, October
2005. doi:10.1145/1094855.1094866.

Mitchel Resnick, John Maloney, Andrés Monroy-Hernandez, Natalie
Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosen-
baum, Jay Silver, Brian Silverman, et al. Scratch: programming for
all. Communications of the ACM, 52(11):60-67, November 2009.
doi:10.1145/1592761.1592779.

Pierre Roy and Frangois Pachet. Reifying constraint satisfaction in
Smalltalk. Journal of Object-Oriented Programming, 10(4):43-51,
August 1997.

Armin Rigo and Samuele Pedroni. PyPy’s approach to virtual machine
construction. In Companion to the 21st ACM SIGPLAN symposium
on Object-oriented programming systems, languages, and applications
(OOPSLA’06), pages 944-953. ACM, October 2006. doi:10.1145/
1176617.1176753.

Journal of Object Technology, vol. 13, no. 4, 2014

http://dx.doi.org/10.1007/978-3-642-85983-0_12
http://dx.doi.org/10.1109/HICSS.2012.42
http://dx.doi.org/10.1145/1496976.1496977
http://dx.doi.org/10.1109/2.60882
http://dx.doi.org/10.1145/2509578.2509590
http://dx.doi.org/10.1.1.15.9273
http://dx.doi.org/10.1145/1094855.1094866
http://dx.doi.org/10.1145/1592761.1592779
http://dx.doi.org/10.1145/1176617.1176753
http://dx.doi.org/10.1145/1176617.1176753
http://dx.doi.org/10.5381/jot.2014.13.4.a1

[Sad13]

[SAM10]

[SR93]

[TJ07]

Specifying and Solving Constraints on Object Behavior - 37

Frica Sadun. ¢OS Auto Layout Demystified. Addison-Wesley, October
2013.

Hesam Samimi, Ei Darli Aung, and Todd Millstein. Falling back on
executable specifications. In ECOOP 2010 — Object-Oriented Pro-

gramming, volume 6183 of Lecture Notes in Computer Science, pages
552-576. Springer, June 2010. doi:10.1007/978-3-642-14107-2_26.

Vijay A. Saraswat and Martin Rinard. Concurrent constraint program-
ming. In Proceedings of the 17th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages (POPL’90), pages 232-245.
ACM, December 1993. doi:10.1145/96709.96733.

Emina Torlak and Daniel Jackson. Kodkod: A relational model finder.
In Tools and Algorithms for the Construction and Analysis of Systems,
volume 4424, pages 632—647. Springer, April 2007. doi:10.1007/
978-3-540-71209-1_49.

Journal of Object Technology, vol. 13, no. 4, 2014

http://dx.doi.org/10.1007/978-3-642-14107-2_26
http://dx.doi.org/10.1145/96709.96733
http://dx.doi.org/10.1007/978-3-540-71209-1_49
http://dx.doi.org/10.1007/978-3-540-71209-1_49
http://dx.doi.org/10.5381/jot.2014.13.4.a1

38 - Tim Felgentreff, Alan Borning, Robert Hirschfeld

About the authors

Tim Felgentreff is a PhD student at the Hasso-Plattner- Insti-
tute, University of Potsdam. His research interests are in pro-
gramming languages and virtual machine design. Contact him at
tim.felgentreff@hpi.uni-potsdam.de. See also http://www.
hpi.uni-potsdam.de/hirschfeld/people/felgentreff.

Alan Borning is a faculty member in the Department of Com-
puter Science & Engineering at the University of Washington, at
the rank of Professor since 1993, and an Associate at Viewpoints
Research Institute. His research interests are in human-computer
interaction and designing for human values, and in object-oriented
and constraint based programming languages. He received a BA in
mathematics from Reed College in 1971, and a PhD in computer sci-
ence from Stanford University in 1979. Awards include a Fulbright
Senior Scholar Award for lecturing and research in Australia, and
being named a Fellow of the Association for Computing Machinery
in 2001. Contact him at borning@cs.washington.edu.

Robert Hirschfeld is a Professor of Computer Science at the
Hasso-Plattner-Institute at the University of Potsdam. There
he founded and leads the Software Architecture Group which
is concerned with fundamental elements and structures of soft-
ware, methods, and tools for improving the comprehension and
design of complex and interesting systems. He received a Ph.D. in
Computer Science from the Technical University of Ilmenau, Ger-
many. Contact him at hirschfeld®@hpi.uni-potsdam.de. See
also http://www.swa.hpi.uni-potsdam.de/.

Acknowledgments We would like to thank all of the members of the Software
Architecture Group at Hasso Plattner Institute and of Viewpoints Research Institute
for comments and suggestions on the work, in particular Bastian Steinert at HPI,
and Yoshiki Ohshima and Hesam Samimi at VPRI. Alan Borning’s visit to HPI was
funded in part by Viewpoints Research Institute and the Communications Design
Group at SAP Labs.

Journal of Object Technology, vol. 13, no. 4, 2014

mailto:tim.felgentreff@hpi.uni-potsdam.de
http://www.hpi.uni-potsdam.de/hirschfeld/people/felgentreff
http://www.hpi.uni-potsdam.de/hirschfeld/people/felgentreff
mailto:borning@cs.washington.edu
mailto:hirschfeld@hpi. uni-potsdam.de
http://www.swa.hpi.uni-potsdam.de/
http://dx.doi.org/10.5381/jot.2014.13.4.a1

	Introduction
	Related Work
	Constraint Solver Libraries
	Domain-specific Languages for Constraints
	Dataflow Constraints and FRP
	Integrating Constraints with a Programming Language

	Hard and Soft Constraints
	Read-only Annotations
	Support for State Change and Incrementality

	Object Constraint Programming
	Constraints as a Language Primitive
	Restrictions on Constraints
	Constraints and Control Structures
	Constraints on Identity, Type, or Protocol
	Soft Constraints

	Constrained Variables
	Reading and Writing Constrained Variables
	Stay Constraints
	Read-only Variables
	Incremental Resatisfaction

	Solving Constraints
	Constraint Duration and Activation

	Implementation
	Constrained Variables
	Execution Contexts
	Imperative Execution
	Constraint Construction

	Implementing Edit Constraints
	Adding New Solvers

	Evaluation
	Performance Evaluation
	Comparison with other approaches

	Conclusion and Future Work
	Bibliography
	About the authors

