
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets,

Online at http://www.jot.fm.

The Reaction of Open-Source Projects
to New Language Features:

An Empirical Study of C# Generics
Donghoon Kima Emerson Murphy-Hilla Chris Parninb

Christian Birdc Ronald Garciad

a. North Carolina State University, Raleigh, USA
http://www.csc.ncsu.edu/

b. Georgia Institute of Technology, Atlanta, USA
http://www.cc.gatech.edu/

c. Microsoft Research, Redmond, USA
http://research.microsoft.com/en-us/

d. University of British Columbia, Vancouver, Canada
https://www.cs.ubc.ca/

Abstract
Language designers introduce new language features in programming

languages because those features are claimed to be beneficial. In this pa-
per, we investigate claims made about the generics language feature, and
compare how those claims stack up in C# versus Java. Through an em-
pirical study of the generics feature in open-source projects, we found that
(1) although they have the same claimed benefits in different programming
languages, generics are more readily used in C# than in Java and that
the benefits of generics are manifested more clearly in C# programs, and
(2) programmers rarely use the var keyword with generics, except when
using very long generic expressions, suggesting that programmers prefer
readability over succinct syntax, as long as the syntax does not become
overly verbose.

Many of these observed differences may be attributed to subtle differ-
ences in implementation and are consistent with the notion that crafting
the user experience of a programming language feature can impact how
the feature is adopted and embraced by developers.

Keywords empirical study, generics, C#, static analysis

Donghoon Kim, Emerson Murphy-Hill, Chris Parnin, Christian Bird, Ronald Garcia. The Reaction of
Open-Source Projects to New Language Features: An Empirical Study of C# Generics. In Journal of
Object Technology, vol. 12, no. 4, 2013, pages 1:1–26. doi:10.5381/jot.2013.12.4.a1

2 · Donghoon Kim et al.

1 Introduction
Joanne is a hypothetical programming language designer at Goosoft. Her group has
developed a special programming language used for smart phone applications. Two
years after the language is released to the public, Joanne proposes to introduce a new
feature to her programming language, a feature that she claims will make programs
more concise and reduce errors. Similar language features have been introduced in
other programming languages. In those languages, the feature has been designed in
different ways and have had varying degrees of success. Thus, Joanne faces a problem;
how can she design her language feature to increase its probability of success? What
can she learn from past language features that can help improve future ones? What
do we know about how developers use language features, anyway? This paper is a
step towards helping Joanne, and language designers like her, answer such questions.

Joanne’s story is an example of how programming language designers evolve exist-
ing programming languages. They do this is by incorporating new language features
that could potentially resolve existing difficulties, reduce programming effort, and
increase developers’ productivity.

One such language feature is generics. As we outline in Section 3, experts claim
that generics have three main benefits: it supports software reusability, it helps de-
velopers find errors earlier, and it avoids the need for explicit type casting [BOSW98].
These claimed benefits have led language designers to integrate generics into several
different programming languages [RJ05]. After Clu and Ada introduced the generics
feature in the 1970’s and 1980’s respectively [LSAS77, ada86], other programming
languages such as C++, Java, and C# incorporated generics as well. Consequently,
one might expect that developers would embrace generics and reap all the benefits
that generics have to offer.

But to the programmer, all the academic quibbles on design implementation, and
theory meld into a single user experience of using the new feature. Programmers must
not only contend with learning and applying the new feature but also deal with the
complexities of backward capability, migration, and politics of using the feature in
production code. Can programmers really trust and realize all benefits claimed by
researchers and language designers? Will it be worth it?

Research suggests that this expectation may not be realized for some languages
such as Ada and Java. In Ada, Frankel [Fra93] found that developers did not use
generics as designed. Although Ada generics were designed to allow developers to
write reusable software, most developers did not use Ada generics for reusable software
at all. Instead, developers opted to create reusable software by other means. More
recently, in a study of 40 open source Java projects, we showed that generics in Java
have been only narrowly used despite their many claimed benefits [PBMH12]. These
results bring about questions concerning the broader usage of generics in practice.
How are generics used in software projects written in other programming languages?
Are they used in the same amounts and in the same ways, or different amounts and in
different ways? What are the factors that influence the differences and similarities?

We perform an empirical study of C# generics to answer the above questions.
For some parts of our study, we replicate our previous empirical study of generics
in 20 established1 Java projects [PBMH12], and then compare the usage of generics

1In the previous paper [PBMH12], we examined both recent and established projects; the dif-
ference is that established projects were started before generics were introduced into the language.
In the present paper, we examine established C# projects, and compare our results to only the 20
established projects from the previous Java study.

Journal of Object Technology, vol. 12, no. 4, 2013

An Empirical Study of Language Features · 3

between C# and Java. We initially expected that the usage of generics in the two
languages would be similar because of the many similarities between C# and Java.

We make the following contributions in this paper:

• Investigation of the claimed benefits of C# generics: we determine how
the claimed benefits of C# generics manifest in real open-source projects. Our
results suggest that generics help remove casts, reduce duplication, and improve
performance in real programs.

• Comparison of generics’ use in C# and Java: we analyze open source
Java and C# projects to determine whether differences exist in generics usage.
As in Java, C# developers appear not to migrate much existing code to use
generics, but unlike Java, C# generics are typically championed by more than
one developer in a project.

• Exploration of the cause of different usage: we explore some of the causes
of the different usage of generics between C# and Java. Our results suggest
that implementation choice makes a difference in a language feature’s success,
and that developers appear to prefer readability over concision.

• Investigation of the interaction of generics and implicit typing: we com-
pare how often developers use generics in conjunction with C#’s var type. Our
results suggest that developers typically do not use the two language features
together, and instead typically declare generic types expicitly.

The paper is organized as follows: we introduce C# generics in more detail in
Section 2 and related work in Section 3; we then formulate six research questions
in Section 4; we describe data characterization of 20 open source C# projects in
Section 4.4; we investigate how C# generics are used in those projects and compare
the results with our previous Java generics results in Section 5; and finally, we discuss
why the usage of C# generics is different from that of Java generics in Section 6.

2 Background
In this section, we compare C# with Java to explain why we selected C# for this
study. We then explain generic terminology. We also describe how generics are used
in C#, and explain how C# generics differs from Java generics.

2.1 Comparison between C# and Java
In this paper, we selected the C# programming language to compare with Java gener-
ics because the two languages have several similarities, but also important differences.

C# and Java are similar from a developer’s point of view, so a meaningful compar-
ison between the two is possible. Both C# and Java are class-based, object-oriented
languages with garbage-collected runtimes and both have Object at the top of their
inheritance and subtyping hierarchies. Both languages base their design of generics
around f-bounded polymorphism [CCH+89]. Both languages have very similar syn-
tax; the syntax at the statement and expression level is almost identical, but there
are some minor differences in how generic classes and interfaces are declared. Both
languages introduced generics around the same time: Java in 2004 as part of J2SE
5.0 and C# in 2005 as part of .NET 2.0.

Journal of Object Technology, vol. 12, no. 4, 2013

4 · Donghoon Kim et al.

Like Java, C# is widely used. According to the TIOBE Programming Community
Index [TIO00], an indicator of the popularity of programming languages, as of Febru-
ary 2012, Java is about twice as popular as C#. However, TIOBE remarks that C#
is arguably the only serious candidate to compete with Java because the popularity
of C# is growing whereas the popularity of Java is decreasing.

C# and Java take different approaches to the design of generics. Java generics are
designed to allow for backward compatibility, so that Java byte code generated from
source code that uses generics can work with older versions of Java that do not have
generics support. In contrast, C# generics do not allow for backward compatibility.
Another difference is that in C# generics are designed specially to improve perfor-
mance when value types are used as generic arguments so that these value types do
not have to be converted into objects [KS01]. In contrast, Java has no such special
case for value types and requires that value types are converted into and from objects
when using generics, incurring additional runtime overhead. These design differences
may make a substantial difference in how developers use generics.

2.2 General Terminology in Generics
C# developers can define and use a generic class as in the following example:

1 public class MyStack<T>{
2 T[] store;
3 public void Push(T x){ ... }
4 public T Pop(){ ... }
5 public void MyMethod<X>(X x){ ... }
6 }
7 MyStack<int> intStack = new MyStack<int>();

Throughout this paper, we use the following terms:

• A generic type: a class or interface declared with one or more type parameters
using angle brackets. An example is MyStack<T> on line # 1.

• A generic method: a method declared with one or more type parameters
using angle brackets. An example is MyMethod<T> on line # 5.

• A generic type parameter: a type variable defined in angle brackets. An
example is T in MyStack<T> on line # 1.

• A generic type argument: a type that substitutes for a generic type param-
eter. An example is int of MyStack<int> on line # 7. The int substitutes for
T in MyStack<T> on line # 1.

• A parameterized type: an instantiation of a generic type with generic type
arguments. MyStack<int> is an example of a parameterized type on line # 7.

2.3 Generic Uses in C#
In this paper part of our analysis is concerned with both how people declare generic
types and how people use generic types. In this section, we describe the various ways
generic types can be used.

A common example of where generics are useful is in declaring variables that
are collections. Before C# generics, System.Collection was the default namespace

Journal of Object Technology, vol. 12, no. 4, 2013

An Empirical Study of Language Features · 5

from which collections were imported. When generics were introduced in 2005 as
part of .NET 2.0, in a design decision aimed at encouraging adoption of generics,
the default collection namespace became System.Collections.Generic. This new
namespace included a whole new set of generic collections. Many types in the old
collection namespace, such as ArrayList, did not have any corresponding generic
types in the new namespace. Instead, new generic collections, such as List<T> were
introduced. This decision effectively made developers have to explicitly include the
old namespace if they wanted to continue to use the older ArrayList, to override the
default choice of a List<T>. Further, this might have made migration easier as there
was no name collision between the generic and non-generic collection namespaces.
However, some types, such as the Queue class, belong to both the System.Collection
and the System.Collections.Generic namespaces.

In our previous paper [PBMH12], we investigated how often generic types in Java
were used as a raw type. A raw type is a generic type that is used without type
arguments [IPW01]. For instance, if MyStack<T> were written in Java, a programmer
could use it in a raw way like so: MyStack s;. In Java, a generic type can be used as
either a parameterized type or as a raw type. Using raw types is more succinct than
using generics, but the programmer sacrifices the compile-time type safety checks that
come with generics.

In this paper, we are interested in how often raw types are used in C#, but C#
generics can only be used as parameterized types. This is an important implementa-
tion difference between C# generics and Java generics. A “raw type” in this study
means a collection that is used from System.Collection for which there is an equiv-
alent type in System.Collections.Generic. Examples of such collections include
Queue, and SortedList.

3 Related Work
Several prior researchers and practitioners have claimed that generics are beneficial.
In C++, Austern [Aus99] claimed that using templates can prevent code duplication
by allowing a class with different data types. In Java, Bracha [Gen04] claimed that
they considered type-safety as a primary design goal of generics. Garcia [GJLS03]
claimed that Java generics provide a type-safe design. Bloch [Blo08] claimed that
generics support finding errors at compile-time, not at run-time and eliminate type-
casts. In C#, Lowy [Juv11] claimed generics let developers reuse code, and Skeet
[Ske10] claimed that generics have benefits such as compile-time type safety and per-
formance improvements. Several researchers have claimed that C# generics improve
performance [GJLS03, Jon11, Juv11, KS01]. Based on these claims, we formulated
research questions to analyze how such claimed benefits are manifested in practice.

Some existing papers have shown empirically that some of these benefits are man-
ifested in several languages. Basit et al. [BRJ05] showed that the generics feature
prevents code duplication in practice with class libraries in C++ and Java. In this
paper, we extend this result to C#. Laurentiu et al. [DW05] showed the performance
results of generics using a benchmark that they implemented, where they compared
generics and specialized code in several programming languages (e.g. C++, Java, C#,
and Aldor). They found that using generics is not as efficient as specialized code. In
contrast, in this paper we estimate performance improvements based on generics in
real open source projects, rather than a benchmark. This builds on our previous work
where we investigated how the generics feature is used in Java projects [PBMH12].

Journal of Object Technology, vol. 12, no. 4, 2013

6 · Donghoon Kim et al.

As we mentioned in the introduction, Frankel [Fra93] found that generics were not
widely used in Ada. Later, the principal designer of Ada suggested that, if he could,
he would eliminate parameterized types, because they were “less useful than originally
thought” [RSB05]. In this paper, we empirically investigate the usage of generics in
a number of dimensions for the C# language.

4 Study Approach
In this section, we explain the approach in this study. Section 4.1 introduces our
research questions. Section 4.2 introduces the characteristics of 20 projects collected
for this study. Section 4.3 introduces the framework and the procedures we used for
analyzing those projects.

4.1 Research Questions
In this section, we describe 6 research questions, of which four are from the research
questions we used in our Java generics study2 and two new research questions are
introduced to analyze specific characteristics of C# generics.

As we mentioned in related work, experts claim that generics reduce the need for
typecasting, which in turn reduces runtime errors [Blo08, BOSW98, Ske10]. While
we would like to determine directly whether runtime errors are really reduced in
open source projects, we found very few bug reports where InvalidCastExceptions are
reported.3 We suspect that this is because developers find and fix InvalidCastExcep-
tions before releasing their software. Instead of measuring whether runtime errors are
actually reduced when generics are used, we measure whether type casts are reduced:

Research Question 1 (RQ1) - Will the number of type casts in a code-
base be reduced when generics are introduced?

In our previous study our empirical results showed that generics reduce casts in Java
(RQ1) [PBMH12]. We expect similar results in C# in this study.

Other experts have claimed that generics reduce duplication [Aus99] because gener-
ics reduce the need to redefine similar classes. For example, supposed we used our
MyStack class from Section 2.2 as follows:

MyStack<int> intStack = new MyStack<int>();
MyStack<string> strStack = new MyStack<string>();

Without generics, a developer would normally create two stack classes, such as:

class IntMyStack{
public void Push(int x){ ... }
public int Pop(){ ... }

}
class StringMyStack{

public void Push(string x){ ... }
public string Pop(){ ... }

}
2We reformatted two hypotheses in the previous paper [PBMH12] into research questions in the

present paper, because several readers found the mix of research questions and hypotheses confusing.
3For example, see http://bugzilla.xamarin.com/buglist.cgi?quicksearch=InvalidCastException

Journal of Object Technology, vol. 12, no. 4, 2013

An Empirical Study of Language Features · 7

Thus, each developer-defined generic class can prevent the code duplication, but only
if it is parameterized with more than one argument. We formulate this research
question as:

Research Question 2 (RQ2) - Does the introduction of developer-
defined generic types reduce code duplication?

Our previous study with Java shows that generics can prevent code duplication (RQ2)
[PBMH12], and we expect similar results with C# in this study.

Once a team decides to use a compiler that supports generics, the team may make
a collective decision to use generics, or individuals may take the initiative on their
own. Thus:

Research Question 3 (RQ3) - Will project members broadly use gener-
ics after introduction into the project?

Previously we observed that Java generics are usually introduced by one or two con-
tributors who champion their use and that broad adoption by the project community
is uncommon [PBMH12].

Not only can software developers use generics in new code, but they can also
migrate old code that was developed before generics. Thus:

Research Question 4 (RQ4) - Will there be large-scale efforts to convert
old code using raw types to use generics?

Previously we found that most Java projects did not show a large scale conversion of
raw to parameterized types [PBMH12]. In C#, we expect that the rate of migration
is lower than in Java because some non-generic collections in old namespace do not
have generic counterparts in the new namespace.

Another claimed benefit of C# generics is a performance improvement [Juv11].
Without generics, if a value type is placed into a collection of objects, that value type
must be converted to an object (boxing) and converted from an object when removed
from the collection (unboxing). Such collections thus incur processing overhead when
boxing and unboxing. However, C# generics do not require boxing and unboxing for
value types because the actual values, not objects, are held in generic types that are
parameterized with a value type. Thus:

Research Question 5 (RQ5) - Does the use of C# generics improve
performance in a program?

Previous work suggests that C# generics do improve performance, at least in bench-
marks [KS01]. However, it is currently unknown whether performance is improved
in the wild because previous work has not explored how often developers use value
types with generic collections in real C# programs. We initially expected that such
use is common.

A language feature that was introduced after generics, yet may work synergistically
with them, is the var keyword, which supports implicit typing of local variables.
Introduced in C# 3.0 in November 2007, the var keyword offers succinct syntax to
declare generic types compared with explicitly typed generics. For example, using
explicit typing, we would declare the following local variables like so:

Journal of Object Technology, vol. 12, no. 4, 2013

8 · Donghoon Kim et al.

Dictionary<string,int> data
= new Dictionary<string,int>();

List<List<int>> list
= new List<List<int>>();

The var keyword can reduce the repetitive typing in these examples like so:

var data = new Dictionary<string,int>();
var list = new List<List<int>>();

There is no performance difference between explicit generic type declarations and
implicit ones because the var keyword instructs the compiler to infer the exact type
from the right side of the initialization statement at compile-time. Moreover, the
IntelliSense feature, also known as auto-complete, in Visual Studio is aware of the
exact type of a var-typed local variable, and can assist the developer equally well
in both implicitly and explicitly typed versions of the code. This leads to our final
research question:

Research Question 6 (RQ6) - Do C# developers choose implicit generic
type declarations more often than explicit ones?

However, it is not clear whether the benefits of the var keyword are outweighed by
the readability drawbacks [var10]. Specifically, one might argue that readability is
decreased because the type represents a compiler-checkable specification that docu-
ments the developer’s intent; with the var keyword, that intent becomes obscured.
Indeed, this research question is a specific form of the more general question, “are
developers willing to write specifications?” Our initial suspicion was that developers
will generally prefer to use the succinct syntax of the var keyword.

4.2 Projects Studied
We analyzed 20 open source projects to examine the research questions we introduced
in the previous section. We selected C# projects in the same way we selected projects
for our previous study in Java [PBMH12], that is, we used Ohloh.net’s listing of the
“most used” open-source projects, then chose projects based on several criteria:

1. Each project should have more than 10,000 lines of C# code.

2. Each project should begin before C# 2.0 was released in November 2005 so that
we can observe how existing C# projects incorporate the new language feature.

3. Each project should have a complete version history because we want to trace
the history of the project from its start.

Table 1 displays the name of each project, whether the project is an application,
primarily intended for an end-user, or a library, primarily intended for a developer,
and how many lines of code and the number lines of C# code in the project as mea-
sured by ohloh.net on the date we copied the project for analysis. A table providing
more details about each project is provided in the Appendix4 of this paper. Overall,
regarding the 20 projects, we observe that:

4http://www4.ncsu.edu/~dkim2/research/csharp_generics_appendix.pdf

Journal of Object Technology, vol. 12, no. 4, 2013

An Empirical Study of Language Features · 9

Project Name Type LOC
AnkhSVN (ankhsvn) application 85,736
Banshee (banshee) application 130,440
Beagle (beagle) application 174,611
Boo Programming Language (boo) library 89,816
Castle (Castle) library 235,487
CruiseControl.NET (ccnet) application 175,042
Cuyahoga (cuyahoga) library 27,894
F-Spot (f-spot) application 90,862
Jayrock (jayrock) library 52,031
Apache log4net (log4net) library 45,979
Lucene.Net (lucene.net) library 154,984
MediaPortal (mediaportal) library 592,214
Mono (mono) library 3,125,097
MonoDevelop (monodevelop) application 164,710
Gendarme (mono-tools) application 71,168
Worldwind C# (nasa-exp) library 417,803
NHibernate (nhibernate) library 292,379
Smuxi-IRC Client (smuxi) application 39,532
Tomboy (tomboy) application 35,419
Zedgraph (zedgraph) application 21,520

Table 1 – The 20 C# projects under investigation.

• The total number of lines of code in 20 C# projects (6,022,724 lines) was much
smaller than that of 20 established Java projects (548,982,841 lines) that we
analyzed previously [PBMH12]. We speculate that our C# projects were smaller
than our Java projects both because the Java projects tended to be older and
more mature.

• The first parameterized type in most of projects appeared within one or two
years of the official release of generics. The mono project was the first, intro-
ducing its first parameterized type in April 2004, while the lucene.net project
was the last, introducing its first parameterized type in June 2008.

• The log4net project never used parameterized types, because although log4net
was built on several frameworks, including .NET Framework 2.0, it appears that
log4net does not use many features, such as generics, which are not supported
in .NET 1.0 for backward compatibility [log07].

• That there did not appear to be a significant relationship between type of project
and number of generics, by a two-tailed t-test. That is, libraries did not appear
to use generics more or less than applications.

Although we analyzed all of these projects, throughout this paper, for the sake of
brevity we focus our discussion on the top three projects based on the total number
of parameterized types and raw types. We discuss the other 17 projects when these
three projects are not adequately representative. The top three C# projects are as
follows:

• mono - An implementation of the C# platform and .net designed to allow de-
velopers to easily create cross platform applications. This is the largest project,
the oldest, and has the largest number of developers among the 20 projects.

Journal of Object Technology, vol. 12, no. 4, 2013

10 · Donghoon Kim et al.

• nhibernate - An object-relational mapping framework for .NET software projects.
It has the 2nd largest total number of parameterized types and raw types, al-
though it is the 4th largest project and has 10th largest number of developers.

• mediaportal - A media center application for listening, recording, and orga-
nizing music, movies, radio, and TV. It has the 3rd largest total number of
parameterized types and raw types, is the 2nd largest project, and has the 2nd
largest number of developers.

4.3 Procedure
We reused our existing Java program analysis framework, written in Java and Python
[PBMH12]. However, we modified the framework to enable it to analyze C# code by
implementing a C# program extractor that extracts the information we needed to
answer our research questions, such as the number of type casts, raw types, parameter-
ized types, var type declarations. In order to implement the C# program extractor,
we used NRefactory, a parser library for C# [nre13]. Our framework analyzes the
code as follows: download the full history of each project from a remote development
repository using Git or Subversion to a local machine; check out every version of ev-
ery file from a project’s repository, store the different file revisions in an intermediate
format, and transfer this information to a database; extract generics information from
each file revision and populate the database server with this information; and finally
analyze the data in the database in respect to each research question.

4.4 Data Characterization
4.4.1 Project Adoption

To get an overview of adoption of the generics feature in C# projects, we investigate
the usage of C# generics in the 20 selected projects. We measured the number of
both parameterized types and raw types to observe how generics are adopted.

Figure 1 shows the total usage of raw types and parameterized types with the
percentage of each type—the ratio of raw types to parameterized types—in a project
on the date of the last commit that we analyzed. In C# projects, 11 projects have
more parameterized types than raw types while 8 projects used more raw types than
parameterized types, and only one project, log4net, did not use generics at all. In
Java projects [PBMH12], 8 out of 20 established projects used more parameterized
types than raw types, and 5 projects did not use generics at all. To determine whether
the adoption rate of generics between the two groups (20 C# projects and 20 Java
projects) is different, we used the t-test to compare the ratio of raw types to param-
eterized types, using a two-tailed distribution assuming unequal variance. From the
result of the t-test (p > .05), we can conclude that there is no significant difference
between the C# projects’ use of generics and that of Java projects. In the 19 projects
using generics, we found that by the latest point in development, developers used more
collections that existed solely in the System.Collections.Generic namespace than
collections that had implementations that existed in both System.Collections and
System.Collections.Generic. In other words, developers tended to use collections
that only had generic versions.

Journal of Object Technology, vol. 12, no. 4, 2013

An Empirical Study of Language Features · 11

Figure 1 – Total usage of raw and parameterized types. 11 projects (above the mono
project) have more parameterized types (blue, right) than raw types (red, left).

Type Count
ISet<string>* 55
List<string>* 36
List<int>* 21
IList<Student> 19
IList<string> 17
IDictionary<string,string> 16
ISet<T>* 15
IDictionary<string,TypedValue> 15
List<T>* 14
IList<Person> 14
IDictionary<string,Player> 14
IList<Parent> 13
List<Boolean>* 12
List<Object>* 11
List<TypedValue>* 10
List<IType>* 10
Dictionary<string,string>* 10
IDictionary<TKey,TValue> 9
IEnumerator<string> 8
IEnumerable<Column> 8

Table 2 – Number of parameterizations of different generics in nhibernate.

4.4.2 Common Parameterized Types and Arguments

We next analyzed which parameterized types were used and what the common argu-
ments were to those types. Table 2 shows the top 20 parameterized types with distinct
type arguments in the nhibernate project. These 20 generic types cover about 43% of
generics in the project. ISet<String> is the most used (23.1%) combination, while
List is the most commonly used (37.7%) type.

Journal of Object Technology, vol. 12, no. 4, 2013

12 · Donghoon Kim et al.

As was the general trend in all projects, in nhibernate we found that the percentage
of collections used that were only available generically (64.2%) is higher than that
collections that are available in both generic and non-generic versions (35.8%). An
asterisk (*) next to a type name in Table 2 denotes the collections that are only
available generically.

While the usage of patterns of different generics vary from one project to the
next, the List-family of types is the most used overall in the projects we studied.
Similarly, in open-source Java projects we found that List-family types were the
most popular [PBMH12].

We also investigated which type arguments were used. The int type is the most
common argument in mono (36.0%) while string is the most common and in nhiber-
nate (53.9%) and mediaportal (39.9%). Overall, the string type is used widely in all
projects, similar to our findings for Java [PBMH12].

5 Investigating C# generics
We next answer our six research questions (Section 4.1). Although we focus our
discussion on C# generics, we also relate these results to Java generics [PBMH12].

5.1 RQ1: Do generics reduce casts?
To answer RQ1, we analyzed our data to determine whether an increase in generics
coincides with a decrease in casts.

We first did this by analyzing plots that compare the number of generics against
the number of casts. Figure 2 shows four lines: two dotted lines which represent
the raw numbers of casts, and two solid lines which represent normalized values of
casts and generics. The top two lines (in red) depict casts, while the bottom two
represent generics (in blue). As in previous work [PBMH12], normalized values are
calculated by finding the number of casts and generics and dividing that number by
Halstead’s program length. Halstead’s program length is the sum of the total number
of operators and operands in a program [Hal77]. To determine the number of operators
and operands in the program we analyzed, we obtain the abstract syntax tree of each
C# file. Then, each abstract syntax tree node is classified as either an operator, if it is
defined as such in the C# language specification [C#12], or an operand otherwise. We
used a Halstead metric rather than a lines of code metric, because Halstead’s program
length is a measure of program size that abstracts away code formatting, whitespace,
and comments, allowing us to more fairly compare projects that use different coding
styles. Normalizing allows us to compare cast and generic usage across each project’s
lifetime as each project grows. We have multiplied the normalized values by constants
so that trends are more apparent in Figure 2. Because the absolute y-axis values are
not themselves meaningful, we leave the y-axis unlabeled.

Looking at Figure 2, we observe the following:

• The normalized value of casts tends to decrease consistently over time after a
period of initial fluctuation. In some cases there are fluctuations in the middle of
the graphs. For example, the nhiberate project has a big jump of the normalized
value of casts in the middle of 2009 due to unusually high usage of casts and the
mediaportal project has a small jump in the middle of 2006. However, the overall
decrease in casts does not appear to be directly related to generics, since the

Journal of Object Technology, vol. 12, no. 4, 2013

An Empirical Study of Language Features · 13

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

0

mono

Casts−Normalized

Generics−Normalized

of Casts

of Generics

2004 2005 2006 2007 2008 2009 2010 2011

0

nhibernate

2005 2006 2007 2008 2009 2010 2011

0

mediaportal

Figure 2 – Casts and parameterized types over time

normalized value of casts tended to decrease over time for all projects, regardless
of whether or when generics were introduced.

• The normalized value of generics tends to increase over time. Nine projects
show the number of generics increases monotonically, while the other projects
show the number of generics increases steadily with occasional, small drops in
the number of generics.

In addition to these general trends, several specific trends suggest that some re-
lationship between generics and casts exists in several projects. For example, the
nhibernate project shows that the normalized value of generics spikes from mid of
2007 to mid of 2008 while the normalized value of casts sharply decreases. We found
such inverse relationships in several other projects as well, including cuyahoga be-
tween December 2007 and January 2008, ccnet between March 2009 and April 2009,
and mono in the middle of 2004. A total of 8 out of 19 projects which used generics
show this sharp inverse relationship at some point in their histories. At least for these
projects, this implies that an increase in generics leads to a decrease in casts. However,
evidence exists for the opposite case, with 4 projects showing both casts and generics
increased concurrently at some point.

Besides visual inspection of the data, we assessed the strength of the relationship
between generics and casts using Spearman’s rank correlation coefficient [MWL10].
For example, if Spearman’s coefficient is a negative value, then an increase in generics
is correlated with a decrease in casts (an inverse correlation). Otherwise, it is a direct
correlation. Based on our research question, we may expect that most projects exhibit
an inverse correlation.

Journal of Object Technology, vol. 12, no. 4, 2013

14 · Donghoon Kim et al.

Relationship Projects Value

direct

strong [0.7,1) zedgraph 0.82

mild [0.4,0.7)
beagle 0.69
Castle 0.57
nasa-exp 0.44

weak
smuxi 0.18

inverse

tomboy -0.10
lucene.net -0.32

mild (-0.7,-0.4]

ccnet -0.48
mono -0.56
mono-tools -0.58
jayrock -0.65
ankhsvn -0.68

strong (-1,-0.7]

cuyahoga -0.78
nhibernate -0.79
mediaportal -0.86
boo -0.80
f-spot -0.87
banshee -0.87
monodevelop -0.89

Table 3 – The Spearman’s rank correlation coefficient (at right) for each project.

Table 3 shows Spearman’s rank correlation coefficient for each project. We note
that 6 of the projects show a strong inverse relationship and 5 projects show a mild
inverse relationship. On the other hand, 2 projects show a strong direct relationship
and 3 projects show a mild direct relationship. In short, 12 (63.1%) out of 19 projects
indicate an inverse relationship between the use of casts and the use of generics. Seven
out of the 8 projects that showed the sharp inverse relationship by our visual inspec-
tion also show an inverse Spearman correlation. Of those 7 projects, the relationship
was strong for both nhibernate and cuyahoga.

Overall, our results suggest that generics reduce casts in C#. This conclusion
about C# generics is the same as our findings for Java [PBMH12]. Similar to Java,
data from a small number of projects suggests that more generics sometimes coincides
with more casts; further research is necessary to reconcile our research question with
these outliers.

5.2 RQ2: Do generics prevent code duplication?
To determine whether generics prevent code duplication (RQ2), we analyzed the 20
projects in two different ways. First, we determined how many unique type arguments
are used for each generic type. Second, we estimated how many lines of code were
saved by using generics.

We first measure how many unique type arguments are used for each generic type
defined in a project. There are 283 different generic types defined by developers at
the latest point of development in all projects combined. The type that facilitated the
most reuse was IEquatable in mono, which was parameterized with 30 different type
arguments. However, most generic types were instantiated only once; 155 generic
types (54.7%) are parameterized with only one type argument. This number is much
higher than in Java, where the percentage of generic types parameterized with only
one type argument was 38% [PBMH12].

We next estimated how many lines of code were saved by using generics. To
answer RQ2, we count how many different type arguments of each generic type is
instantiated by a developer. We then take the number of unique parameterizations
(P) of each developer-defined generic type and count the lines of code (LOC) of each
generic type at latest point of development. We use the same formula that we used

Journal of Object Technology, vol. 12, no. 4, 2013

An Empirical Study of Language Features · 15

for Java [PBMH12] to estimate the total lines of duplicated code (D):

D = LOC * (P-1)

For example, suppose that there is a generic class defined by a developer called
MyStack<T> that is 100 lines long, and that it is instantiated with 3 different ar-
guments in various places in the program: MyStack<int>, MyStack<string>, and
MyStack<double>. Using the above formula, the total lines of duplicated code is 200.
Note that this is a rough estimate of duplication; realistically, a developer that does
not use generics may be able to remove duplication by creating a common superclass
or extracting utility methods.

We estimated the number of lines of code in all generic types by calculating the
mean lines of code for the top 20 developer-defined generic types, ordered by the
number of unique type instantiations (the mean is 674 lines). We did this estimation
because our framework did not automatically calculate the number of lines of code
for all developer-defined generic types. Next, across all 20 projects, we found that
generic types have a total of 633 distinct parameterized types instantiated from 275
generic types. This indicates that 358 class and interface duplicates were avoided.

Using our formula, we estimate that 241,292 lines of duplicated code would be
avoided, which is 4.0% of the total number of lines of code in all 20 C# projects. This
percentage of C# code duplication prevention is much higher than the percentage of
Java code duplication prevention (0.02%) [PBMH12]. One reason is that the mean
LOC of C# generic types (674 lines) were about twice that of Java generic types (378
lines). Another reason is that the mono project tended to make unusually heavy use of
large generic types, and skewed the result somewhat. If we exclude the mono project
from the estimation of the code duplication, we estimate that 24,198 lines (0.8%) of
duplicated code would be prevented. Interestingly, this percentage is still more than
an order of magnitude higher than the Java percentage (0.02%), even though the
mean LOC (109 lines) of the C# generic types defined by developers is now three
times smaller than that of Java.

Overall, our results suggest that C# generics reduce duplication. Although
the total amount of duplication prevented is small relative to the size of the projects,
more duplication is prevented in C# projects than in Java projects.

5.3 RQ3: Are generics used widely by developers?
Recall that C# generics are used by most projects in Section 4.4.1. Specifically, only
one project never used generics at all, and 11 projects have higher usage of parame-
terized types than that of raw types. But how do different developers use generics?
To evaluate RQ3, we first examined commits that create or modify generics (param-
eterized types, generic type declarations, or generics method declarations) and those
that create and modify raw types. We term these commits “associated” with generics
or raw types, respectively. In total, 663 developers made 109,714 commits to the
projects. Of those developers, 219 used generics (34.3%), 332 developers used raw
types (52.0%), and 182 developers used both generics and raw types (28.2%). For
each developer, the average number of commits that introduced or modified parame-
terized types is 40 commits and the average associated with raw types is 29 commits.
The total number of commits associated with parameterized types is 8,782; the total
number associated with raw types is 9,527. The data suggests that a smaller num-
ber of developers use parameterized types more frequently than the larger number of
developers use raw types.

Journal of Object Technology, vol. 12, no. 4, 2013

16 · Donghoon Kim et al.

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

−100

−50

0

50

100

150

200

250

300

350

Ty
pe

 In
tr

od
uc

tio
ns

/R
em

ov
al

s

mono

Generic
Raw

2004 2005 2006 2007 2008 2009 2010 2011
−100

0

100

200

300

400

500

Ty
pe

 In
tr

od
uc

tio
ns

/R
em

ov
al

s

nhibernate

2005 2006 2007 2008 2009 2010 2011

0

50

100

150

200

250

300

350

Ty
pe

 In
tr

od
uc

tio
ns

/R
em

ov
al

s

mediaportal

Figure 3 – Individual developers’ introduction and removal of parameterized types

Figure 3 shows the introduction and removal of both raw and parameterized types
by the most active developers per project. By “most active”, we mean up to 5 devel-
opers who made the most commits and, as a group, committed more than 50% of
the total commits. A dashed line represents the number of parameterized types while
a solid line represents the number of raw types. An upward sloping line represents
the introduction of parameterized types, while a downward sloping line represents
removals. Pairs of lines with the same color denote the same developer. As was the
case with Java projects, we observe that one or two developers show higher usage of
generics in the projects as shown in Figure 3. This pattern was observed in the other
C# projects such as ankhsvn, banshee, ccnet, f-spot, jayrock, and smuxi.

Based on this visual inspection, it appears that some developers dominate generics
usage. To determine if there is a developer who uses generics significantly more on
average than other developers, we conducted Fisher’s exact test [DWC04] (applying
Benjamini-Hochberg procedure for p-value correction to control the false discovery
rate [BH95]) for the top five developers, ordered by the number of parameterized
types that developer contributed. We excluded 9 projects that had fewer than 3
developers and one project that did not use generics. We used the ratio of raw types
to parameterized types at the latest point of development for each developer for the
table values in Fisher’s exact test. In this test, we compared the ratio from the the
developer who contributed the most parameterized types against the ratio from the

Journal of Object Technology, vol. 12, no. 4, 2013

An Empirical Study of Language Features · 17

other four developers. If all p-values are smaller than .05 for each developer, the top
developer uses generics significantly more than the other developers.

The result was that there was no developer that used generics more than the oth-
ers to a statistically significant degree (p > .05) in the following 10 projects: nhiber-
nate, mono, monodevelop, mediaportal, ankhsvn, banshee, f-spot, mb-unit, mono-tools,
tomboy. This means that, for these projects, although one developer may have used
generics more than the others, that person did not do so to a level enough to “stand
out” and other developers used parameterized types about as much as the top devel-
oper used them.

Overall, our results indicate that C# generics are used by a small pool of
C# developers. Unlike Java generics, where a single developer in a project tended
to use parameterized types significantly more than the other developers, in these C#
projects, several developers per project made significant use of parameterized types.

5.4 RQ4: Are there large-scale conversions from raw types to generics?
Despite the benefits that generics may have, developers may not convert old code
using raw types to use generics. On one hand, using generics may expose and correct
dormant InvalidCastExceptions and help reduce duplication in existing code. On the
other, developers may not migrate old code because they do not want to risk changing
old code that already works. To evaluate whether developers perform such migrations
(RQ4), we examined how many raw types are converted to parameterized types.

We begin with a visual inspection of the data. Figure 4 shows the number of
raw types and parameterized types over time for three projects. The mono project
shows a small conversion around January 2010, and then a leveling off of raw types
and a steady increase in the number of generics. Similarly, the nhibernate project
shows a conversion from December 2007 to June 2008, with a similar leveling off
of raw types and a steady increase in generics. The mediaportal project shows a
large scale conversion effort in January 2009, where more than 250 raw types are
converted to parameterized types. Unlike the other two projects, all of the raw types
from System.Collections were converted into their equivalent generic types from
System.Collections.Generic.

We next estimate the number of conversions in each project. In each revision, if
the number and type of parameterized types added to a method in the project equals
the number and corresponding type of raw types removed in the same method, we
count each raw types removed as a conversion. In mono, 1,938 raw types are added,
but only 120 (6.2%) were converted. In nhibernate 235 of 1,072 (21.9%) are converted
and in mediaportal 324 of 885 (38.9%) are converted. Although the tomboy shows
the highest conversion rate (72.4%), the project only had 29 raw types in total. In
total, 6 projects show more than 10% conversion, 6 projects have between 0% and
10% conversion, and 7 projects have no conversion at all. Across all projects, about
14% of raw types were converted. In comparison, in Java that number was about
8%, although the difference between Java and C# was not statistically significant
(Mann-Whiteney U-test, p>.05).

Overall, our reesults suggest that most projects do not perform significant
generic migrations in old code, although we do observe a few large-scale efforts
in some projects. This finding is consistent with our findings for Java [PBMH12].

Journal of Object Technology, vol. 12, no. 4, 2013

18 · Donghoon Kim et al.

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
0

200

400

600

800

1000

1200

1400

1600

N
um

be
r o

f T
yp

e
U

se
s

mono

Raw Types

Parameterized Types

2004 2005 2006 2007 2008 2009 2010 2011

0

100

200

300

400

500

600

700

800

900

1000

N
um

be
r o

f T
yp

e
U

se
s

nhibernate

Raw Types

Parameterized Types

2005 2006 2007 2008 2009 2010 2011
0

200

400

600

800

1000

N
um

be
r o

f T
yp

e
U

se
s

mediaportal

Raw Types

Parameterized Types

Figure 4 – The number of raw types and parameterized types over time.

5.5 RQ5: Do generics improve performance?
As we explained in Section 4.1, generics may improve the overall performance of a
project because when value types are used as generic type arguments, values do not
have to be converted to and from objects. To estimate whether performance could
actually be improved in open-source C# projects (RQ5), we analyzed how many value
types are used as generic type arguments in a project.

Figure 5 shows the percentage of value types used in parameterized types over
time for three projects. In total, 17 out of 19 projects that used generics also used
value types as generic type arguments. Of those 17, value types were used in 35.9%
of parameterized types. After the project introduces generics, over time the overall
usage of value types in each project remains more or less constant above 30% for
most projects. According to the performance comparisons performed by Kennedy
and Syme [KS01], use of value types with generics can provide a significant speedup
compared to object conversion. For example, they showed that when int and double
were used as generic type arguments in a small benchmark, they were able to achieve
a speedup of 4.5 times and 5 times, respectively, compared to a similar benchmark
without generics. This indicates that the performance of C# projects doubles while
executing generic code that includes 30% value types in parameterized types, which
are 4.5 times faster than reference types. Overall, our results suggest that C#’s

Journal of Object Technology, vol. 12, no. 4, 2013

An Empirical Study of Language Features · 19

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 (%

)

mono

2004 2005 2006 2007 2008 2009 2010 2011
0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 (%

)

nhibernate

2005 2006 2007 2008 2009 2010 2011
0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 (%

)

mediaportal

Figure 5 – The percentage of value types used in parameterized types over time.

implementation of generics improve performance.

5.6 RQ6: Do developers prefer implicit generic type declarations?
As explained in Section 4.1, programmers can declare local variables with the var
keyword instead of using explicitly typed generics. This may encourage the use of
generics because redundancy can be reduced. At the same time, however, using the
var keyword may reduce readability. Our research question (RQ6) is whether devel-
opers prefer to reduce redundancy by using the var keyword with generics. To answer
this research question, we analyzed the projects looking for two different but equiva-
lent programming statements, generic assignments that use var and assignments that
do not use var:

var list = new List<String>();
List<String> list = new List<String>();

For simplicity, we limited our analysis to assignments where the variable is declared
on the left hand side of the expression and the right hand side of the expression is a
call to a constructor with one or more generic type arguments. We then examined
how many var types are used over time by each developer in each project.

Journal of Object Technology, vol. 12, no. 4, 2013

20 · Donghoon Kim et al.

2005 2006 2007 2008 2009 2010 2011
0

100

200

300

400

500

600

700

800

900

1000

N
um

be
r o

f T
yp

e
U

se
s

mono

explicit

post−var explicit

implicit

2007 2008 2009 2010 2011

0

100

200

300

400

500

600

700

800

900

N
um

be
r o

f T
yp

e
U

se
s

nhibermate

explicit

post−var explicit

implicit

2006 2007 2008 2009 2010 2011
0

100

200

300

400

500

600

700

800

900

1000

N
um

be
r o

f T
yp

e
U

se
s

mediaportal

explicit

post−var explicit

implicit

Figure 6 – The usage of implicit and explicit generic declarations over time.

Figure 6 shows the numbers of explicit types and implicit types over time. In the
figure, explicit denotes parameterized types defined explicitly and implicit denotes
parameterized types defined with var types. However, directly comparing these two is
not a fair comparison, since implicit local variable typing was not available when these
projects began. Therefore, in Figure 6, post-var explicit denotes that the number
of explicit parameterized type declarations which are added after first introducing the
var type in a project. Intuitively, post-var explicit represents a community choice
not to use implicit typing. Looking at the figures, the number of post-var explicits
are always larger than that of implicit. In fact, only 4 out of 19 projects use the var
type with local parameterized type variables. The percentage of var types for each of
mono, nhibernate, and mediaportal after their first use of var are 25.7%, 22.1%, and
3.3%, respectively. We also found that after using var for the first time, only 1 out
of 30 developers continued to use var as their preferred way to declare generic local
variables.

Although developers did not appear to use var very often, we were curious as to
whether concision was important to developers at all. We postulated that if concision
is important, developers would be more likely to use var when creating a Dictionary
than when creating a List because declaring a Dictionary with generics is more
verbose. We indeed found that this postulate is true: only 21% of Lists were declared
with var while 49% of Dictionaries were.

Journal of Object Technology, vol. 12, no. 4, 2013

An Empirical Study of Language Features · 21

Overall, the data and our analysis suggest that (1) the usage of implicit generics
declaration is relatively low, (2) a small number of developers use var, and (3) de-
velopers prefer implicit generic declarations for succinct syntax. Based on the first
two points, we conclude that our results suggest that developers do not prefer
implicit type declarations when using generics. Although the number of im-
plicit generic declarations is increasing steadily, the var type is not used widely by
C# developers.

5.7 Threats to Validity
Our results have several limitations. First, our analysis of RQ1 is coarse-grained in
that it looks at general cast and generic trends across whole codebases. With more
sophisticated analysis, we may be able to identify individual casts that were removed
due to using generics and compare that with other contexts for removal. Second, our
analysis of RQ2 only applies to code duplication internal to a project. One factor that
is not accounted for is that some generic library classes may be intended for client
use. In those cases, we may be underestimating the amount of code duplication that
is reduced. Third, our analysis of RQ4 is that our heuristic for identifying conversions
from raw types to generics may have counted some changes as migrations when they
were not and vice versa. However, we evaluated this heuristic in previous work and
found that it was in fact quite precise [PBMH12]. Fourth, our analysis of RQ5 stems
from our static analysis of performance. There may be other conditions that mask or
dwarf the performance gains from value types during execution of the program. In the
future, a dynamic analysis of these programs using their own unit tests would allow us
to more accurately measure what performance gain developers can expect from using
generics with value types. Fifth, because we examine var use in only a limited form
for RQ6, there may be other dynamics we are not capturing. For example, developers
may be less likely to use implicit declarations for storing the return value of a method
call. In future work, a deeper semantic analysis could more closely examine these
factors. Sixth, we included the Mono and MonoDevelop because they fit our criteria
for project selection, yet because the developers of these projects are necessarily very
familiar with C# language features, these two projects are likely not representative of
the average C# project. Seventh, as we noted earlier, the projects we studied in C#
were substantially smaller than the Java projects. This may have some counfounding
effects when we compare Java to C# generics for the projects we studied. Finally,
the research questions in this paper were formulated and answered using quantitative
research methods, meaning that we could observe trends, but only hypothesize why
those trends exist. To confirm why those trends exist, we must use more qualitative
research methods, such as interviews with the programmers who created the code.

6 Discussion

6.1 Design Choice Matters
In our study, we observed that generics were somewhat, though not statistically sig-
nificantly, more widely used in C# than in Java (Section 4.4.1), and also that generics
allowed more duplication to be eliminated in C# programs than in Java programs
(Section 5). At least in the sense of adoption and duplication elimination, why was
the introduction of generics in C# more successful than in Java?

Journal of Object Technology, vol. 12, no. 4, 2013

22 · Donghoon Kim et al.

One reason for the difference appears to be the way the language feature was
introduced into the two languages. In Java, language designers allowed existing classes
do be “generified” without forcing developers of those classes to use parameterized
types, but instead gently encouraging them to do so with compiler warnings. At the
same time, standard Java library maintainers took advantage of this and generified
their collections library, presumably with the hope that the Java compiler’s warnings
would encourage end developers to adopt generics. In contrast, C# took a different
approach. While C# library designers offered generic versions of existing collections,
they also offered a new set of generic collections. This essentially offered an additional
incentive to use generics—if a developer wanted to use the new collections, they must
learn to use generics.

Our results suggest that this C# incentive-based approach paid off based on the
higher adoption rates and higher duplication-elimination, compared with Java. As
evidence, as shown in Section 4.4.2, most generic types used in C# projects belong
to the System.Collections.Generic namespace, types that must be used as param-
eterized types. This suggests that the newly introduced collections were valuable
enough that developers were willing to use them, even if that meant they had to learn
a new language feature. As a result, C# projects gain the benefits of generics from
developers’ pains—“No pain, No gain.”

On the other hand, our results suggest that generics in C# may have been a victim
of their own success. Specifically, the rate of end-developer-defined generic types used
with only one type argument was substantially higher than in Java; we found about
half of these types were parameterized with only one type argument (Section 5.2).
One explanation could be that these types were used largely in library code, that is,
external developers were expected to parameterize these types with a variety of type
arguments, even if the library’s own code did not. Another explanation is simply over-
generalization: developers anticipated a class would be useful with a wider variety of
type arguments than it actually was. From our own experience as developers, it is
easy to fall into the trap of being so enamored with the power of a language feature
that you use it in places where it would do something “cool,” even if it is not very
useful.

6.2 Readability Over Concision
Before the study, we expected that developers would frequently use the var type to
avoid repetition. Indeed, our finding about using var more commonly with the two-
type argument Dictionary<TKey,TValue> than with the one-type argument List<T>
suggests that readability is a factor. However, we were surprised that, overall, devel-
opers rarely used var, even after they learned how to use it. We speculate that part
of the reason has to do with whether the code was meant to be read by others. If
the code being written is closed source, is experimental, or is worked on by only one
developer, then the use of var may be a more acceptable practice. In the projects
we studied, which were open-source, mature, and multi-developer, the use of var
may not have been seen as a collaboration-friendly programming construct. We plan
on investigating the factors that lead to var use in future work by contacting C#
developers directly.

Journal of Object Technology, vol. 12, no. 4, 2013

An Empirical Study of Language Features · 23

6.3 Implications
Our results have implications for language design and in fact have already begun
to inform language designers. As an example, TouchDevelop5, a language designed
to enable easy development for mobile devices on mobile devices, currently has no
support for generics. After we discussed our empirical results with the langauge’s
designers, they chose not to add support for generics in an upcoming release. They
concluded that adding generics would bring too much complexity for little gain and
most functionality could be provided with special collection libraries based on our
findings (1) that collections of strings (e.g. sets, lists, dictionaries) account for a large
majority of generics use and (2) that developers use standard generic classes much
more than they create them.

7 Conclusion
Throughout the empirical study of C# generics, we investigated the claimed benefits
from language designers whether the benefits hold in the real open-source projects.
We compared the results of C# generics with those of Java generics. The results
suggest that the percentage of C# developers using generics is larger than that of Java
developers using generics. Specifically, we showed that several benefits of the generics
feature are manifested more clearly in C# than in Java. Based on these results and
those for Ada and Java generics, we have found that developers may not always reap
the benefits of language features in different implementations. While our results are
interesting, there remain several limitations to our approach, and further research is
necessary to validate whether our findings apply more broadly. Nonetheless, we hope
that our experimental results can assist language designers in making evidence-based
decisions when introducing language features, which in turn will amplify the benefits
of those features in practice.

A Appendix
In this Appendix, we show extended figures for all projects.

5http://www.touchdevelop.com

Journal of Object Technology, vol. 12, no. 4, 2013

24 · Donghoon Kim et al.

References
[ada86] Jean D. Ichbiah, John G.P. Barnes, Robert J. Firth, and Mike Woodger,

Rationale for the Design of the Ada Programming Language, 1986.
[Aus99] Matthew H. Austern. Generic Programming and the STL: Using and

Extending the C++ Standard Template Library. Addison-Wesley, 1999.
[BH95] Y Benjamini and Y Hochberg. Controlling the false discovery rate: a

practical and powerful approach to multiple hypothesis testing. Journal
of the Royal Statistical Society. Series B (Methodological), 57(1):289–
300, 1995.

[Blo08] Joshua Bloch. Effective Java. Prentice-Hall, 2008.
[BOSW98] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler.

Making the future safe for the past: Adding genericity to the java pro-
gramming language. In Conference on Object-Oriented Programming,
Languages and Systems, (OOPSLA), 1998.

[BRJ05] Hamid Abdul Basit, Damith C. Rajapakse, and Stan Jarzabek. An em-
pirical study on limits of clone unification using generics. In Proceedings
of the Conference on Software Engineering and Knowledge Engineering
(SEKE), 2005.

[C#12] C# operators, 2012. http://msdn.microsoft.com/en-us/library/6a71f45d.aspx.
[CCH+89] Peter Canning, William Cook, Walter Hill, Walter Olthoff, and

John C. Mitchell. F-bounded polymorphism for object-oriented
programming. In Proceedings of the Conference on Functional
programming languages and computer architecture (FPCA), 1989.
doi:http://doi.acm.org/10.1145/99370.99392.

[DW05] Laurentiu Dragan and Stephen M. Watt. Performance analysis of
generics in scientific computing. In Symposium on Symbolic and
Numeric Algorithms for Scientific Computing (SYNASC), 2005.
doi:10.1109/SYNASC.2005.56.

[DWC04] Shirley Dowdy, Stanley Weardon, and Daniel Chilko. Statistics for Re-
search, Third Edition. Wiley-interscience, 2004.

[Fra93] Michael Frankel. Enabling reuse with ada generics. In
Proceedings of the Washington Ada symposium on Ada: Ada’s
role in software engineering (WADAS), pages 17–30, 1993.
doi:http://doi.acm.org/10.1145/260096.260201.

[Gen04] Gilad Bracha, Generics in the Java Programming Language., 2004.
http://java.sun.com/j2se/1.5/ pdf/generics-tutorial.pdf.

[GJLS03] Ronald Garcia, Jaakko Jarvi, Andrew Lumsdaine, and Jeremy G. and
Siek. A comparative study of language support for generic pro-
gramming. In Proceedings of the Conference on Object-oriented
programing, systems, languages, and applications (OOPSLA), 2003.
doi:10.1145/949305.949317.

[Hal77] Maurice H. Halstead. Elements of Software Science. Operating and
programming systems. Elsevier, 1977.

Journal of Object Technology, vol. 12, no. 4, 2013

An Empirical Study of Language Features · 25

[IPW01] A. Igarashi, B.C. Pierce, and P. Wadler. A recipe for raw types. In
Proceedings of Workshop on Foundations of Object-Oriented Languages
(FOOL), 2001.

[Jon11] Jonathan Pryor, Comparing Java and C# Generics, 2011.
http://www.jprl.com/Blog/archive/development
/2007/Aug-31.html.

[Juv11] Juval Lowy, An Introduction to C# Generics., 2011.
http://msdn.microsoft.com/en-us/library/
ms379564%28v=vs.80%29.aspx.

[KS01] Andrew Kennedy and Don Syme. Design and implementation of gener-
ics for the .Net common language runtime. In Programming Language
Design and Implementation (PLDI), 2001.

[log07] Logging Services, 2007. http://logging.apache.org.
[LSAS77] Barbara Liskov, Alan Snyder, Russell Atkinson, and Craig Schaffert.

Abstraction mechanisms in Clu. Commun. ACM, 20(8):564–576, August
1977. doi:10.1145/359763.359789.

[MWL10] Jerome Myers, Arnold Well, and Robert Frederick Lorch. Research De-
sign and Statistical Analysis, Third Edition. Routledge Academic, 2010.

[nre13] NRefactory, A parser library for C# and VB, 2013.
http://wiki.sharpdevelop.net/NRefactory.ashx.

[PBMH12] Chris Parnin, Christian Bird, and Emerson Murphy-Hill. Adop-
tion and use of java generics. Empirical Software Engineering, 2012.
doi:10.1007/s10664-012-9236-6.

[RJ05] Gabriel Dos Reis and Jaakko Jarvi. What is generic programming? In
Library-Centric Software Design LCSD, 2005.

[RSB05] Barbara G. Ryder, Mary Lou Soffa, and Margaret Burnett. The im-
pact of software engineering research on modern programming lan-
guages. ACM Trans. Softw. Eng. Methodol., 14:431–477, October 2005.
doi:http://doi.acm.org/10.1145/1101815.1101818.

[Ske10] Jon Skeet. C# in Depth, 2nd edition. Manning Publications, 2010.
[TIO00] TIOBE Programming Community Index, October

2000. http://www.tiobe.com/index.php/content/
paperinfo/tpci/index.html.

[var10] Implicitly Typed Local Variables (C# Programming Guide), 2010.
http://msdn.microsoft.com/en-us/library/ bb384061.aspx.

About the authors

Donghoon Kim is a PhD student in the Department of Com-
puter Science at North Carolina State University, USA. His re-
search is at the intersection of Software Engineering and Program-
ming Languages. Previous, he had worked at Samsung Electron-
ics, Korea (Republic of) after receiving his Master of Science De-
gree at Auburn University, USA. Contact him at dkim2@ncsu.edu,
or visit http://www4.ncsu.edu/~dkim2/.

Journal of Object Technology, vol. 12, no. 4, 2013

26 · Donghoon Kim et al.

Emerson Murphy-Hill is an assistant professor in the Depart-
ment of Computer Science at North Carolina State University. His
research interests include human-computer interaction and soft-
ware tools. He holds a Ph.D. in Computer Science from Portland
State University. Contact him at emerson@csc.ncsu.edu, or visit
http://www.csc.ncsu.edu/faculty/emerson.

Chris Parnin is a PhD student at the Georgia Insti-
tute of Technology. His research interests includes psy-
chology of programming and empirical software engineer-
ing. Contact him at chris.parnin@gatech.edu, or visit
http://cc.gatech.edu/~vector.

Christian Bird is a researcher in the empirical software engi-
neering group at Microsoft Research. He is primarily interested
in the relationship between software design, social dynamics, and
processes in large development projects. Christian received his
Ph.D. from U.C. Davis under Prem Devanbu and was a Na-
tional Merit Scholar at BYU, where he received his B.S. in com-
puter science. Contact him at cbird@microsoft.com, or visit
http://www.cabird.com/.

Ronald Garcia is an assistant professor in the Department of
Computer Science at University of British Columbia, Canada.
His research interests include programming language seman-
tics, design, and implementation, including language support
for library-centric and modular software development, generic
and generative programming, and domain specific languages
and libraries. Contact him at rxg@cs.ubc.ca, or visit
http://www.cs.ubc.ca/~rxg/.

Acknowledgments Thanks to Titus Barik, Xi Ge, Brittany Johnson, Da Young
Lee, Jun Bum Lim, Yoonki Song, and Shundan Xiao, all of whom provided valuable
feedback.

Journal of Object Technology, vol. 12, no. 4, 2013

An Empirical Study of Language Features · 27

2004 2005 2006 2007 2008 2009 2010 2011
0

200

400

600

800

1000

1200

1400

1600

Date

ankhsvn

Casts−Normalized
Generics−Normalized
of Casts
of Generics

2006 2007 2008 2009 2010 2011

0

500

1000

1500

2000

2500

Date

banshee

Casts−Normalized
Generics−Normalized
of Casts
of Generics

2005 2006 2007 2008 2009 2010 2011

0

500

1000

1500

2000

Date

beagle

Casts−Normalized
Generics−Normalized
of Casts
of Generics

2005 2006 2007 2008 2009 2010 2011 2012
0

500

1000

1500

2000

2500

3000

Date

boo

Casts−Normalized
Generics−Normalized
of Casts
of Generics

2005 2006 2007 2008 2009 2010 2011
0

1000

2000

3000

4000

5000

Date

Castle

Casts−Normalized
Generics−Normalized
of Casts
of Generics

2004 2005 2006 2007 2008 2009 2010 2011
0

1000

2000

3000

4000

5000

Date

ccnet

Casts−Normalized
Generics−Normalized
of Casts
of Generics

2005 2006 2007 2008 2009 2010

0

100

200

300

400

500

600

700

Date

cuyahoga

Casts−Normalized
Generics−Normalized
of Casts
of Generics

2004 2005 2006 2007 2008 2009 2010 2011
0

500

1000

1500

2000

Date

f−spot

Casts−Normalized
Generics−Normalized
of Casts
of Generics

2006 2007 2008 2009 2010 2011

0

100

200

300

400

500

600

700

800

900

Date

jayrock

Casts−Normalized
Generics−Normalized
of Casts
of Generics

2005 2006 2007 2008 2009 2010

0

100

200

300

400

500

600

Date

log4net

Casts−Normalized
Generics−Normalized
of Casts
of Generics

2006 2007 2008 2009 2010 2011

0

1000

2000

3000

4000

5000

6000

7000

Date

lucene.net

Casts−Normalized
Generics−Normalized
of Casts
of Generics

2005 2006 2007 2008 2009 2010 2011

0

2000

4000

6000

8000

10000

12000

14000

16000

Date

mediaportal

Casts−Normalized
Generics−Normalized
of Casts
of Generics

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
0

0.5

1

1.5

2

2.5

x 104

Date

mono

Casts−Normalized
Generics−Normalized
of Casts
of Generics

2006 2007 2008 2009 2010 2011

0

100

200

300

400

500

600

Date

mono−tools

Casts−Normalized
Generics−Normalized
of Casts
of Generics

2006 2007 2008 2009 2010 2011
0

2000

4000

6000

8000

10000

Date

monodevelop

Casts−Normalized
Generics−Normalized
of Casts
of Generics

2005 2006 2007 2008 2009 2010
0

1000

2000

3000

4000

5000

Date

nasa−exp

Casts−Normalized
Generics−Normalized
of Casts
of Generics

2004 2005 2006 2007 2008 2009 2010 2011

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Date

nhibernate

Casts−Normalized
Generics−Normalized
of Casts
of Generics

2006 2007 2008 2009 2010 2011

0

200

400

600

800

1000

Date

smuxi

Casts−Normalized
Generics−Normalized
of Casts
of Generics

2005 2006 2007 2008 2009 2010 2011

0

100

200

300

400

500

600

700

Date

tomboy

Casts−Normalized
Generics−Normalized
of Casts
of Generics

2005 2006 2007 2008
0

500

1000

1500

2000

2500

3000

Date

zedgraph

Casts−Normalized
Generics−Normalized
of Casts
of Generics

Figure 7 – RQ1 - Cast and parameterized types for all projects (extended Figure 2)
Journal of Object Technology, vol. 12, no. 4, 2013

28 · Donghoon Kim et al.

2006 2007 2008 2009 2010 2011

0

20

40

60

80

100

120

140

160

180

200

Date

Ty
pe

 In
tro

du
ct

io
ns

/R
em

ov
al

s

ankhsvn

Generic
Raw

2006 2007 2008 2009 2010 2011

0

20

40

60

80

100

120

Date

Ty
pe

 In
tro

du
ct

io
ns

/R
em

ov
al

s

banshee

Generic
Raw

2005 2006 2007 2008 2009 2010 2011

0

10

20

30

40

50

60

70

Date

Ty
pe

 In
tro

du
ct

io
ns

/R
em

ov
al

s

beagle

Generic
Raw

2005 2006 2007 2008 2009 2010 2011 2012
−10

0

10

20

30

40

50

60

70

80

90

100

Date

Ty
pe

 In
tro

du
ct

io
ns

/R
em

ov
al

s

boo

Generic
Raw

2005 2006 2007 2008 2009 2010 2011

0

50

100

150

Date

Ty
pe

 In
tro

du
ct

io
ns

/R
em

ov
al

s

Castle

Generic
Raw

2004 2005 2006 2007 2008 2009 2010 2011

0

20

40

60

80

100

120

140

160

Date

Ty
pe

 In
tro

du
ct

io
ns

/R
em

ov
al

s

ccnet

Generic
Raw

2005 2006 2007 2008 2009 2010

0

10

20

30

40

50

60

70

80

Date

Ty
pe

 In
tro

du
ct

io
ns

/R
em

ov
al

s

cuyahoga

Generic
Raw

2004 2005 2006 2007 2008 2009 2010 2011
−5

0

5

10

15

20

25

30

35

40

Date

Ty
pe

 In
tro

du
ct

io
ns

/R
em

ov
al

s

f−spot

Generic
Raw

2007 2008 2009 2010 2011

0

10

20

30

40

50

60

70

80

Date

Ty
pe

 In
tro

du
ct

io
ns

/R
em

ov
al

s

jayrock

Generic
Raw

2005 2006 2007 2008 2009 2010

0

10

20

30

40

50

60

70

Date

Ty
pe

 In
tro

du
ct

io
ns

/R
em

ov
al

s

log4net

Generic
Raw

2007 2008 2009 2010 2011
−20

0

20

40

60

80

100

120

Date

Ty
pe

 In
tro

du
ct

io
ns

/R
em

ov
al

s

lucene.net

Generic
Raw

2005 2006 2007 2008 2009 2010 2011

0

50

100

150

200

250

300

350

Date

Ty
pe

 In
tro

du
ct

io
ns

/R
em

ov
al

s

mediaportal

Generic
Raw

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

−100

−50

0

50

100

150

200

250

300

350

Date

Ty
pe

 In
tro

du
ct

io
ns

/R
em

ov
al

s

mono

Generic
Raw

2006 2007 2008 2009 2010 2011
−5

0

5

10

15

20

25

30

35

40

45

50

Date

Ty
pe

 In
tro

du
ct

io
ns

/R
em

ov
al

s

mono−tools

Generic
Raw

2006 2007 2008 2009 2010 2011

0

50

100

150

200

250

300

350

400

Date

Ty
pe

 In
tro

du
ct

io
ns

/R
em

ov
al

s

monodevelop

Generic
Raw

2005 2006 2007 2008 2009 2010
−5

0

5

10

15

20

25

30

Date

Ty
pe

 In
tro

du
ct

io
ns

/R
em

ov
al

s

nasa−exp

Generic
Raw

2004 2005 2006 2007 2008 2009 2010 2011
−100

0

100

200

300

400

500

Date

Ty
pe

 In
tro

du
ct

io
ns

/R
em

ov
al

s

nhibernate

Generic
Raw

2006 2007 2008 2009 2010 2011

0

10

20

30

40

50

60

70

80

90

Date

Ty
pe

 In
tro

du
ct

io
ns

/R
em

ov
al

s

smuxi

Generic
Raw

2005 2006 2007 2008 2009 2010 2011
−15

−10

−5

0

5

10

15

20

25

30

Date

Ty
pe

 In
tro

du
ct

io
ns

/R
em

ov
al

s

tomboy

Generic
Raw

2005 2006 2007 2008

0

20

40

60

80

100

120

140

160

Date

Ty
pe

 In
tro

du
ct

io
ns

/R
em

ov
al

s

zedgraph

Generic
Raw

Figure 8 – RQ3 - Individual developers’ introduction and removal of parameterized types
for all projects (extended Figure 3)

Journal of Object Technology, vol. 12, no. 4, 2013

An Empirical Study of Language Features · 29

2006 2007 2008 2009 2010 2011

0

50

100

150

200

250

300

350

Date

N
um

be
r o

f T
yp

e
U

se
s

Types usage in ankhsvn

Raw Types
Parameterized Types

2006 2007 2008 2009 2010 2011

0

50

100

150

200

250

Date

N
um

be
r o

f T
yp

e
U

se
s

Types usage in banshee

Raw Types
Parameterized Types

2005 2006 2007 2008 2009 2010 2011

0

50

100

150

200

250

Date

N
um

be
r o

f T
yp

e
U

se
s

Types usage in Castle

Raw Types
Parameterized Types

2005 2006 2007 2008 2009 2010 2011 2012

0

20

40

60

80

100

Date

N
um

be
r o

f T
yp

e
U

se
s

Types usage in boo

Raw
Parameterized

2005 2006 2007 2008 2009 2010 2011

0

50

100

150

200

250

Date

N
um

be
r o

f T
yp

e
U

se
s

Types usage in Castle

Raw Types
Parameterized Types

2004 2005 2006 2007 2008 2009 2010 2011

0

50

100

150

200

Date

N
um

be
r o

f T
yp

e
U

se
s

Types usage in ccnet

Raw Types
Parameterized Types

2005 2006 2007 2008 2009 2010

0

10

20

30

40

50

60

70

80

90

100

110

Date

N
um

be
r o

f T
yp

e
U

se
s

Types usage in cuyahoga

Raw Types
Parameterized Types

2005 2006 2007 2008 2009 2010

0

10

20

30

40

50

60

70

80

90

Date

N
um

be
r o

f T
yp

e
U

se
s

Types usage in log4net

Raw Types
Parameterized Types

2007 2008 2009 2010 2011

0

10

20

30

40

50

60

70

80

90

Date

N
um

be
r o

f T
yp

e
U

se
s

Types usage in jayrock

Raw Types
Parameterized Types

2005 2006 2007 2008 2009 2010

0

10

20

30

40

50

60

70

80

90

Date

N
um

be
r o

f T
yp

e
U

se
s

Types usage in log4net

Raw Types
Parameterized Types

2008 2009 2010 2011

0

50

100

150

200

250

Date

N
um

be
r o

f T
yp

e
U

se
s

Types usage in lucene.net

Raw Types
Parameterized Types

2005 2006 2007 2008 2009 2010 2011
0

200

400

600

800

1000

Date

N
um

be
r o

f T
yp

e
U

se
s

Types usage in mediaportal

Raw Types
Parameterized Types

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

0

200

400

600

800

1000

1200

1400

1600

Date

N
um

be
r o

f T
yp

e
U

se
s

Types usage in mono

Raw Types
Parameterized Types

2006 2007 2008 2009 2010 2011
−20

0

20

40

60

80

100

120

140

160

Date

N
um

be
r o

f T
yp

e
U

se
s

Types usage in mono−tools

Raw Types
Parameterized Types

2006 2007 2008 2009 2010 2011

0

100

200

300

400

500

600

700

800

Date

N
um

be
r o

f T
yp

e
U

se
s

Types usage in monodevelop

Raw Types
Parameterized Types

2005 2006 2007 2008 2009 2010

0

20

40

60

80

100

120

Date

N
um

be
r o

f T
yp

e
U

se
s

Types usage in nasa−exp

Raw Types
Parameterized Types

2004 2005 2006 2007 2008 2009 2010 2011

0

100

200

300

400

500

600

700

800

900

1000

Date

N
um

be
r o

f T
yp

e
U

se
s

Types usage in nhibernate

Raw Types
Parameterized Types

2006 2007 2008 2009 2010 2011

0

10

20

30

40

50

60

70

80

Date

N
um

be
r o

f T
yp

e
U

se
s

Types usage in smuxi

Raw Types
Parameterized Types

2005 2006 2007 2008 2009 2010 2011

0

10

20

30

40

50

60

70

80

90

Date

N
um

be
r o

f T
yp

e
U

se
s

Types usage in tomboy

Raw
Parameterized

2005 2006 2007 2008

0

10

20

30

40

50

60

Date

N
um

be
r o

f T
yp

e
U

se
s

Types usage in zedgraph

Raw Types
Parameterized Types

Figure 9 – RQ4 - The number of raw types and parameterized types for all projects (ex-
tended Figure 4)

Journal of Object Technology, vol. 12, no. 4, 2013

30 · Donghoon Kim et al.

2004 2005 2006 2007 2008 2009 2010 2011
0

10

20

30

40

50

60

70

80

90

100

Date

P
er

ce
nt

ag
e

(%
)

Percentage of value types in ankhsvn

value types

2006 2007 2008 2009 2010 2011
0

10

20

30

40

50

60

70

80

90

100

Date

P
er

ce
nt

ag
e

(%
)

Percentage of value types in banshee

value types

2005 2006 2007 2008 2009 2010 2011
0

10

20

30

40

50

60

70

80

90

100

Date

P
er

ce
nt

ag
e

(%
)

Percentage of value types in beagle

value types

2005 2006 2007 2008 2009 2010 2011 2012
0

10

20

30

40

50

60

70

80

90

100

Date

P
er

ce
nt

ag
e

(%
)

Percentage of value types in boo

value types

2005 2006 2007 2008 2009 2010 2011
0

10

20

30

40

50

60

70

80

90

100

Date

P
er

ce
nt

ag
e

(%
)

Percentage of value types in Castle

value types

2004 2005 2006 2007 2008 2009 2010 2011
0

10

20

30

40

50

60

70

80

90

100

Date

P
er

ce
nt

ag
e

(%
)

Percentage of value types in ccnet

value types

2005 2006 2007 2008 2009 2010
0

10

20

30

40

50

60

70

80

90

100

Date

P
er

ce
nt

ag
e

(%
)

Percentage of value types in cuyahoga

value types

2004 2005 2006 2007 2008 2009 2010 2011
0

10

20

30

40

50

60

70

80

90

100

Date

P
er

ce
nt

ag
e

(%
)

Percentage of value types in f−spot

value types

2007 2008 2009 2010 2011
0

10

20

30

40

50

60

70

80

90

100

Date

P
er

ce
nt

ag
e

(%
)

Percentage of value types in jayrock

value types

2005 2006 2007 2008 2009 2010
0

10

20

30

40

50

60

70

80

90

100

Date

P
er

ce
nt

ag
e

(%
)

Percentage of value types in log4net

value types

2007 2008 2009 2010 2011
0

10

20

30

40

50

60

70

80

90

100

Date

P
er

ce
nt

ag
e

(%
)

Percentage of value types in lucene.net

value types

2005 2006 2007 2008 2009 2010 2011
0

10

20

30

40

50

60

70

80

90

100

Date

P
er

ce
nt

ag
e

(%
)

Percentage of value types in mediaportal

value types

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
0

10

20

30

40

50

60

70

80

90

100

Date

P
er

ce
nt

ag
e

(%
)

Percentage of value types in mono

value types

2006 2007 2008 2009 2010 2011
0

10

20

30

40

50

60

70

80

90

100

Date

P
er

ce
nt

ag
e

(%
)

Percentage of value types in mono−tools

value types

2006 2007 2008 2009 2010 2011
0

10

20

30

40

50

60

70

80

90

100

Date

P
er

ce
nt

ag
e

(%
)

Percentage of value types in monodevelop

value types

2005 2006 2007 2008 2009 2010
0

10

20

30

40

50

60

70

80

90

100

Date

P
er

ce
nt

ag
e

(%
)

Percentage of value types in nasa−exp

value types

2004 2005 2006 2007 2008 2009 2010 2011
0

10

20

30

40

50

60

70

80

90

100

Date

P
er

ce
nt

ag
e

(%
)

Percentage of value types in nhibernate

value types

2006 2007 2008 2009 2010 2011
0

10

20

30

40

50

60

70

80

90

100

Date

P
er

ce
nt

ag
e

(%
)

Percentage of value types in smuxi

value types

2005 2006 2007 2008 2009 2010 2011
0

10

20

30

40

50

60

70

80

90

100

Date

P
er

ce
nt

ag
e

(%
)

Percentage of value types in tomboy

value types

2005 2006 2007 2008
0

10

20

30

40

50

60

70

80

90

100

Date

P
er

ce
nt

ag
e

(%
)

Percentage of value types in zedgraph

value types

Figure 10 – RQ5 - The percentage of value types used in parameterized types for all
projects (extended Figure 5)

Journal of Object Technology, vol. 12, no. 4, 2013

