JOURNAL OF OBJECT TECHNOLOGY

Published by AITO — Association Internationale pour les Technologies Objets, © JOT 2011
Online at http://www. jot.fm.

Towards a Principle-based
Classification of Structural Design
Smells

S G Ganesh® Tushar Sharma® Girish Suryanarayana®

a. Siemens Corporate Research & Technologies, #84, Keonics Electronic
City, Hosur Road, Bangalore - 560 100, India.

Abstract Fred Brooks in his book “The Mythical Man Month” describes
how the inherent properties of software (i.e. complexity, conformity, change-
ability, and invisibility) make its design an “essential” difficulty. Good
design practices are fundamental requisites to address this difficulty. One
such good practice is that a software designer should be aware of and
address “design smells” that can manifest as a result of his design decisions.
However, our study of the vast literature on object-oriented design smells
reveals the lack of an effective organization of smells that could better
guide a designer in understanding and addressing potential issues in his
design. In order to address this gap, we have adopted a novel approach to
classify and catalog a number of recurring structural design smells based on
how they violate key object oriented (OO) design principles. To evaluate
the usefulness of our design smell catalog, we first asked Siemens CT DC
AA architects to use it to identify design smells in their projects, and later
elicited feedback from them about their experience. The feedback received
indicates that these architects found the catalog to be very useful. In this
paper, we present our catalog, classification, and naming scheme for design
smells and also highlight several interesting observations and insights that
result from our work.

Keywords Design smells, design principles, object oriented design, design
smell classification, design smell template

1 Introduction

Design smells are often introduced unintentionally by practitioners during software
development. For instance, a software designer may adopt well-known established
practices during initial design; however, the emergent design may indicate certain
structural deficiencies or smells that have inadvertently cropped up during the process.
Similarly, software developers who are tasked with maintaining a piece of software (i.e.

S G Ganesh, Tushar Sharma, Girish Suryanarayana. Towards a Principle-based Classification of
Structural Design Smells. In Journal of Object Technology, vol. 12, no. 2, 2013, pages 1:1-29.
doi:10.5381/jot.2013.12.2.al

http://www.jot.fm/copyright.html
http://www.jot.fm
http://dx.doi.org/10.5381/jot.2013.12.2.a1
http://dx.doi.org/10.5381/jot.2013.12.2.a1

2 . Ganesh et al.

develop new features or fix bugs in a short time period) may unknowingly introduce
smells in the design. It is important in both cases to be aware of and address the smells
so as to reduce the technical debt [Cun92] and maintain a high structural quality of
the software.

The importance of smells and the role they play in the practice of software
development is clearly reflected in the large amount of literature that exists on design
smells. However, a study of this literature reveals a few shortcomings. First, a single
yet reasonably comprehensive catalog of recurring design smells is missing. Such a
catalog can serve as a quick reference for designers so that they can recognize, avoid,
and even address potential problems in their design. Second, very little work has been
done on classifying these smells. Further, the few classification schemes that exist for
categorizing smells lack consistency and are not very useful with respect to providing
guidance to designers. Providing a consistent classification scheme aids practitioners
to get a coherent view of design smells. Further, we believe that a classification scheme
will be more useful when it provides high-level hints on understanding the cause of the
smell as well as what needs to be done to fix the smell. Third, a consistent and simple
naming scheme for design smells is missing in the literature. Following a consistent
and simple naming scheme for design smells is useful since it can provide a common
vocabulary for discussing design smells.

This paper describes our efforts towards addressing these shortcomings. Towards
the first shortcoming, we have embarked on creating a collection of documented design
smells. However, given the large number of documented smells and their varying ambit,
we realized early on the need to scope our efforts in order to provide a focused catalog
meaningful for practitioners. We have, therefore, in this paper, limited our catalog to
structure-related smells that are found at the micro-architectural level. Currently, our
catalog only includes smells that have been documented in literature.

Towards the second shortcoming, we have attempted to categorize design smells
using a novel classification scheme. Our analysis of smells has shown that the cause
of all the smells in our catalog can be traced to the violation of fundamental design
principles. In other words, there is an association between a principle and a smell. Our
classification scheme, therefore, categorizes design smells in our catalog using violations
of these design principles as the basis. We believe that since our classification scheme
explicitly links the cause of a smell to a principle, it will better guide a designer in
addressing that smell.

Towards addressing the third shortcoming, we have leveraged our principle-based
classification scheme to create a new naming scheme for smells. This scheme assigns
a name to a smell that captures both the main design principle that was violated
along with a characterization of how that smell violates the main design principle.
This naming scheme has two main benefits. First, since the name of a smell explicitly
indicates the fundamental design principle that was violated, it provides a hint to the
designer about what was possibly done wrong during the design process and therefore
what must be done to address the issue. Second, it serves as an excellent basis to
aggregate similar smells with varying names under one unifying umbrella.

To evaluate the usefulness of our design smells catalog, classification, and naming
scheme, as a first step, we asked 12 Siemens CT DC AA architects to use our catalog
to identify design smells in their projects. The feedback from this initial evaluation
from practitioners clearly shows that the design smells catalog has helped them to
broaden their knowledge of design smells, better understand causes of design smells,
and serve as a quick reference guide in their daily work.

Journal of Object Technology, vol. 12, no. 2, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a1

Classification of Structural Design Smells - 3

In summary, the main contributions of our paper (supported by initial evaluation
in industry context) are:

e A catalog consisting of 31 design smells with references to 210 related design
smells in the literature. To the best of our knowledge, this is the most compre-
hensive catalog available in literature on structural design smells so far.

e A classification scheme where design smells are classified as violation of one of the
four fundamental OO design principles (principles of abstraction, encapsulation,
modularity, and hierarchy).

e A concise and simple naming scheme for design smells.

The rest of the paper is organized as follows. Section 2 describes the motivation
and background of our work. Section 3 introduces our novel classification scheme
for design smells. Section 4 describes the template that we have used to document
smells in our catalog. Section 5 presents our catalog based on our principle-based
classification. Section 6 briefs the results of the initial evaluation of our design smells
work. Section 7 summarizes the observations and insights that have resulted from our
categorization work and Section 8 lists some of the ways we plan to extend our work
in the future.

2 Motivation and Background

Before we delve into the shortcomings of available literature on smells, it is useful to
discuss the various connotations of the word “smell”. The word smell in the context
of software design has been defined differently by different people. Some well-known
definitions of smells are as follows:

o “We suggest that, like any living creature, system designs are subject to diseases,
which are design smells (code smells and anti-patterns). Design smells are
conjectured in the literature to impact the quality and life of systems.” [HKGH10]

e “Smells are certain structures in the code that suggest (sometimes they scream
for) the possibility of refactoring.” [Fow99]

e “Code and design smells are poor solutions to recurring implementation and
design problems.” [MGDM10]

e “Design smells are the odors of rotting software.” [Mar03]

Based on the above definitions, it can be seen that while some treat a smell as a
problem itself, others consider a smell to be only indicative of a deeper problem. One
of the primary objectives of our classification and catalog is to create a framework
to categorize all documented smells and to organize similar smells under a single
canopy. Hence, our catalog embraces all these above definitions and often groups
together smells that may fit different definitions but still relate to a similar violation
of a fundamental design principle.

Even before we begin a discussion on the limitations of existing works on design
smells, it is insightful to first reflect on the varying terminologies that have been
used to indicate design smells. A non-exhaustive list of such terms (by looking
from different levels of abstraction and incorporating different perspectives) cited

Journal of Object Technology, vol. 12, no. 2, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a1

4 . Ganesh et al.

in literature includes: “bad smells” [Fow99], “violation of design heuristics” [Rie96],
“design principle violations” [Mar02], “design smells” [MGDM10], “indicators of design
problems” [Eic03], “(design) problem symptoms” [PJ99], “design pattern defects”
[MGDM10], “design flaws” [TMO05], “design disharmonies” [LMO06], “danger signals”
[Mey00], “change smells” [RFGO05], “problem patterns” [SSMO06], “structural anomalies”
[TMO5], “structural anomalies and problems” [TMO05], “architectural smells” [LRO6],
and “anti-patterns” [BMBT98].

Given the fact that so many terms have been used to denote design smells, it is not
surprising to find that a similar large body of (possibly overlapping) knowledge exists
for smells in the literature. However, these suffer from the three main shortcomings,
which we discuss next.

2.1 Lack of Well-Organized Catalogs

Many attempts have been made to collect and present design smells; however, in most
cases there is no clear separation of design smells at different levels of abstractions.
There exist catalogs that document design smells that pertain to the overall architecture
of the system together with problems that relate to the implementation level. An
example is the catalog of 52 “problem patterns” offered by Frank et al. [SSMO06]. It
covers a wide range of problem patterns:

e architectural level problem patterns such as “god package” and “cyclical depen-
dency between packages”

e micro-architectural patterns such as “knows of derived” and “polymorphism
placebo”

e implementation level problems such as “improper name length” and “variables
having constant value”

An architectural issue clearly has different concerns and targets a different audience
from that of an implementation issue. Therefore, the lack of scope-based organization
limits the usefulness of such catalogs. Further, several known catalogs of design smells,
for example, catalog of design rules by Garzas et al. [Gar07], bad smells by Fowler
[Fow99], problem patterns by Frank et al. [SSMO06] fail to provide a coherent structure
around which these problems can be organized. This tends to limit the usefulness of
these catalogs as a reference guide for designers and developers.

2.2 Lack of Consistent and Useful Classification Schemes

Providing a consistent classification scheme aids practitioners to get a coherent view
of design smells. Further, we believe that a classification scheme will be more useful
when it provides high-level hints on understanding the cause of the smell as well as
what needs to be done to fix the smell. In this section, we briefly outline existing
smell catalogs that present an organization of smells around a classification scheme
and discuss their shortcomings.

e The inFusion tool [InF12] classifies “design flaws” based on the following “design-
properties”: size and complexity, encapsulation, coupling, cohesion, and hierarchy.
Choinzon and Ueda [CU06] classified design defects into ten categories. Both
of these categorizations suffer from inconsistent classification schemes: The

Journal of Object Technology, vol. 12, no. 2, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a1

Classification of Structural Design Smells - 5

categories are a mix of principles (such as “encapsulation”), language features
(such as “inheritance”), and measures (such as “size” and “complexity”).

e Mantyla [MVLO03]| classified Fowler’s code smells [Fow99] as “encapsulators”,
“bloaters”, “couplers”, “O0 abusers”, “change preventers”, “dispensables”, and
“others”. This classification scheme has numerous shortcomings: it lacks maturity
(since even in the small set of Fowler’s 22 smells, two of them are classified in
the “others” category) and inconsistent (for instance, the term “encapsulators”
does not have a negative connotation unlike other categories such as “bloaters”

and “couplers”).

e Wake [Wak03] extended Fowler’s list of code smells [Fow99], and categorized
them at a high level as smells within classes and smells between classes. He
further classified smells into categories such as “library classes”, “data”, “names”,
and “accommodating change”. The second level categories are inconsistent and
do not provide a collective coherent meaning.

e Moha et al. [MGDMI0] classified problems into intra-class and inter-class
problems at the top level. At the next level, Moha’s classification categorized
problems as structural, lexical, and measurable. The second level categorization
is based on the techniques used to detect the smells, namely static analysis,
natural language processing, and metrics. While this categorization is consistent
from the perspective of how to detect these smells, they are not very useful to
understand the cause of the smell or for ways to address them.

2.3 Lack of Common Consistent Vocabulary

During our extensive literature survey, we did not come across any attempt at creating
a uniform naming scheme for design smells. Creating a consistent and simple naming
scheme for design smells is useful since it can provide a common and easy to use
vocabulary for discussing design smells. We believe that such a naming scheme is
especially important given the fact that hundreds of design smells are documented in
literature (see Section 5).

3 Principle-based Classification Scheme for Smells

As described in the previous section, most existing catalogs of design smells lack a
consistent and useful organization of problems. In order to address this, we have
attempted a novel classification scheme for smells. In this section, we first describe
the scope of our work followed by our proposed classification scheme.

3.1 Limiting Scope to Structural Micro-architectural Smells

Bad smells can be classified into architectural, design (i.e. micro-architectural), and
implementation level smells based on the granularity of abstraction. These smells can
also be characterized as creational, structural, and behavioral in nature. In this paper,
we limit our discussion to design-level structural smells (highlighted with e symbol
in Table 1). Henceforth, we use the concise term “design smell” to mean “micro-
architectural-level structural smells” in this paper. It should be noted that the design
smells cataloged in this paper have not been invented by us; we believe that just like

Journal of Object Technology, vol. 12, no. 2, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a1

6 - Ganesh et al.

Characterization
Creational | Structural | Behavioral
Granularity Archlte'ct ural
Design °
Implementation

Table 1 — Scope of smells presented in this text

design patterns [GHIJV95], design smells are also “an aggressive disregard of originality”
[MRB97]. The cataloged smells are strictly those that have been documented earlier
in the literature.

3.2 C(lassification Based on Violation of Design Principles

Our reflection on the problems with existing classification schemes for design smells
revealed the need for a more practical and useful classification scheme. Specifically,
we identified the following objectives for our classification scheme:

e It should enable a hierarchical, uniform, and technical categorization of smells.
e The names of the smells itself should indicate the affected design principles:

— to enable an intuitive understanding of the smell.

— to guide the adoption of suitable measures to address the smell.

3.2.1 First Level of Classification

Towards addressing these objectives, we realized that a classification approach grounded
on fundamental design principles (relevant to object orientation) would be more helpful
to practitioners. If a practitioner could easily trace the cause of smells to violated
design principles, it would better guide him in addressing that smell.

There are many related works in the area of software design that explicitly refer
to identifying violation of design principles. For example, Langelier et al. [LSP05]
discusses how an expert can estimate whether a portion of the code violates the well-
known principle of “low coupling and high cohesion” using their visualization framework.
However, we haven’t come across any comprehensive approach for classification of
design smells based on violation of fundamental design principles as the basis.

To create such a classification model, we studied a number of well-known principles,
guidelines, and approaches for software design documented in literature. From the
available works, we found the “object model” (which is a conceptual framework of
object orientation) proposed by Booch et al. [BMET07] to be most suitable for our
needs. The four major elements of the object model are:

Abstraction: “An abstraction denotes the essential characteristics of an object that
distinguish it from all other kinds of objects and thus provide crisply defined
conceptual boundaries, relative to the perspective of the viewer.”

Encapsulation: “Encapsulation is the process of compartmentalizing the elements
of an abstraction that constitute its structure and behavior; encapsulation serves
to separate the contractual interface of an abstraction and its implementation.”

Journal of Object Technology, vol. 12, no. 2, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a1

Classification of Structural Design Smells - 7

Modularity: “Modularity is the property of a system that has been decomposed into
a set of cohesive and loosely coupled modules.”

Hierarchy: “Hierarchy is a ranking or ordering of abstractions.”

We chose these four principles as the basis for our classification scheme for the
following reasons:

W 7w

e These major principles “abstraction”, “encapsulation”, “modularity”, and “hier-
archy” are well-known and fundamental design principles. Thus, a classification
based on these principles would be familiar and easy to remember for practition-
ers.

e All design smells in our catalog could be traced to violations of the four principles.

e A concise classification (with only four highest-level entities) provides the advan-
tage that it is easier to remember than a classification that has a lengthy list of
high-level categories.

e Each principle is a single term and can be prefixed by a suitable qualifying
adjective to name a design smell. The resulting term (i.e. adjective + principle)
thus can denote violation of a principle, and guide refactoring to address that
smell.

It should be noted that Booch et al’s definition of modularity refers to the term
“module” which is typically used in the context of high-level (or architectural) design.
However, since our discussion in this paper is limited to micro-architectural smells, we
have used the principle of “modularity” strictly in the context of class-level abstractions
(and their relationship with other abstractions at the same level of granularity).

We observed that most design smells in our catalog can be traced to the violation
of one of the four design principles and it was easy to classify these smells under
that principle. We also observed that some smells can be caused due to the violation
of more than one design principle. This is because these design principles are not
mutually exclusive. For usability reasons, in our catalog, a smell is classified under and
named by the principle which is violated most by the smell. For instance, the “envious
abstraction” smell, as defined by our catalog, arises when members of an abstraction
are more interested in other abstractions leading to increased coupling. Thus, both
the principles of abstraction and modularity are violated. However, since this smell
arises primarily due to wrong assignment of responsibilities across abstractions, it
mainly affects abstraction and is therefore categorized under “abstraction”.

3.2.2 Second Level of Classification

After we cataloged a set of documented smells under a particular principle, we
proceeded with creating a second-level classification. For this, we carefully studied the
set of smells categorized under that principle and identified how a particular smell or
its variant primarily manifests. Next, we grouped similar primary manifestations under
the canopy of a single smell. For instance, consider the specific set of smells under
hierarchy that manifest in the form of classes having a number of concrete methods
which are not overridden by subtypes. These smells indicate an aberration in the
application of inheritance in order to achieve implementation reuse. Thus, this set of
smells was classified under “convenience hierarchy” (see Section 5.4.5). Additionally, a
constraint for the second-level classification was to maintain a fine-grained granularity

Journal of Object Technology, vol. 12, no. 2, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a1

8 - Ganesh et al.

for the categories. This was essential in order to keep the classification simple and
allow a separate discussion for each smell, including the most basic ones. Figure 2
provides an overview of our proposed classification scheme.

3.3 Concise and Uniform Naming Scheme

We have leveraged our classification scheme to attempt a new naming scheme for
structural design smells. The name for each design smell consists of two words: an
adjective (the first word) that qualifies the name of the violated design principle (the
second word). This results in concise names for design smells which aids easy recall.
It also allows the cause of a smell to be traced back to a violated design principle thus
guiding designers in adopting a suitable solution to address those smells.

4 Documentation of Cataloged Smells

In order to properly document the smells in our catalog so that they can be useful
to practitioners, we have created a detailed template that captures their important
characteristics. Table 2 shows the elements of the template. In this section, we present
one of the smells in our catalog that has been documented using this template to
illustrate the usefulness of this detailed smell template. Due to space constraints,
we present these smells in a condensed format in Section 5. We are currently in the
process of publishing the detailed catalog as a book.

4.1 An Example: Cyclic Hierarchy
Name: Cyclic hierarchy.

Short description: This design smell arises when a supertype directly or indirectly
refers to one of its subtypes, forming a cycle in the hierarchy [Ber04, BNL05, Gar07,
Rie96, DMTS10a, WCKD11].

Long description: This smell arises when a supertype refers to any of its subtypes.
Here the term “reference” means: (a) a supertype contains an object of one of its
subtypes (b) a supertype refers to the type name of one of its subtypes (c) a supertype
accesses data members, or calls methods from one of its subtypes. Such a reference
can be either direct or indirect. Since subtype knowledge introduces a cycle in the
inheritance graph annotated with class relationships, this smell is termed as “cyclic
hierarchy”.

Rationale: It is undesirable for a supertype to have knowledge about its subtype(s)
for the following reasons:

e Supertypes and subtypes can be thought of as separating the interface and the
implementation aspects of an abstraction. An interface should specify a contract
and should not know anything about the implementation, and hence a supertype
should not have any knowledge of its subtypes.

e A supertype needs to be agnostic of any of its subtypes; only then, it is possible
to compile it, use it and reuse it independent of its subtypes. With subtype

Journal of Object Technology, vol. 12, no. 2, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a1

Classification of Structural Design Smells - 9

Element

Short description

Name
Short description

Long description

Rationale
Example(s)

Violated princi-
ples

Impacted quality
attributes

Also known as

Variants

Exceptions

Detection strat-

egy
Suggested
toring

refac-

A concise, intuitive name based on our naming scheme de-
scribed in Section 3.3.

A short description of the design smell to explain the smell
concisely.

A detailed description about the design smell to explain the
design smell (with optional discussion on potential causes of
the smell, or its effects on design).

A rationale to justify why the identified issue indicates a bad
smell in design.

One or more illustrative examples preferably from well-known
open source software.

OO design principles (out of the four principles - abstraction,
encapsulation, modularity, and hierarchy) whose violations
can lead to this smell, the specific object oriented enabling
techniques that have been violated, and the justification for
why the design smell is classified under a particular principle.
The design quality attributes (reusability, flexibility, under-
standability, functionality, extendability, and effectiveness
[BD02]) that are negatively impacted because of this smell.
Alternative names documented in literature that are used to
describe the design smell.

Design smells documented in literature that are fundamen-
tally identical to and yet exhibit a slight variation from the
smell. The variation may include a special form, or a more
general form of the design smell.

Contexts or situations where the smell is likely to be not
considered a problem.

High-level hints on how the design smell can be detected
from design or code artifacts.

Generic high-level suggestions and steps to refactor the design
smell.

Table 2 — Design smell template

knowledge, changes to subtypes can potentially affect the supertype, which is

undesirable.

Example(s): The example in Figure 1 shows inheritance relationship between
MutableBigInteger and SignedMutableBigInteger from JDK; these classes were

introduced in Java from version 1.3 and are part of java.math package.

The

private modInverse() method in MutableBigInteger class implements an algo-
rithm that requires the use of signed integer and hence it creates instances of
SignedMutableBigInteger; this instance creation introduces a reference from the
supertype method to the subtype resulting in cyclic hierarchy smell. One potential
refactoring for addressing this smell is to re-implement the modInverse() method
(say, using an alternative algorithm if available) in such a way that it does not require
creating instances of SignedMutableBigInteger.

Journal of Object Technology, vol. 12, no. 2, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a1

10 - Ganesh et al.

MutableBiginteger

SignedMutableBiginteger |

Figure 1 — An example of cyclic hierarchy smell from java.math library

Violated principles:

Abstraction: A forward reference to the subtype likely indicates ineffective abstraction
of the problem domain [Mil99]. Thus the principle of abstraction is violated.

Modularity: Cyclic dependencies create tight coupling and thus violate the principle
of modularity. Specifically, cyclic dependencies indicate the violation of the
Acyclic Dependencies Principle (ADP) [Mar03]. Further, changes to subtype
might require re-compilation of the supertype affecting independent module
compilability [SRKO07].

Hierarchy: Ideally, inheritance should model a generalization/specialization hierarchy
and the hierarchy specializations should have dependencies that are directed
towards generalizations. A forward association from the supertype to subtype vi-
olates Dependency Inversion Principle [Mar03], and this changing of dependency
direction towards specializations violates the principle of hierarchy.

This smell can only manifest in the context of a hierarchy. We, therefore, classify
it under the principle of hierarchy.

Impacted quality attributes:

Flexibility: Changes to or removal of subtypes affect supertype, hence flexibility is
impacted.

Understandability: In order to understand the supertype, one has to understand the
subtype also. This increases the cognitive load, affecting understandability.

Extendability: Adding a new subtype may require changes in supertype, thus impact-
ing extendability of the design.

Also known as: “Knows of derived” [Ciu99, SSM06], “subtype knowledge” [DMTS10b],
“subclass knowledge” [BNLO5], “curious superclasses” [BNLO05], “inheritance/reference
cycles” [SSC96], “base class depends on derived classes” [CWZ00], “forward associa-
tions in a hierarchy” [Mil99].

Variants: “Inheritance loops” [Bin99].

Exceptions: This design smell might be acceptable if it is known that the supertype
and subtype(s) are not going to change in future [SSC96]. Sometimes, to support

Journal of Object Technology, vol. 12, no. 2, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a1

Classification of Structural Design Smells - 11

unanticipated changes, when inheritance is used as registration mechanism or factory
where the client should always refer to the supertype, it is acceptable for supertypes
to refer to their subtypes. Examples (both from [DMTS10a]): Returning instance of
a subtype as the default instance in Singleton pattern and installing global default
factory in case of Abstract Factory pattern.

Detection Strategy: Check if the inheritance graph annotated with class relation-
ships is a Directed Acyclic Graph (DAG).

Suggested refactoring: If the reference from supertype to subtype is accidental
or incidental, refactor the supertype to eliminate such references. If the supertype
requires the services of its subtypes, consider applying State or Strategy patterns
[Gar07].

5 Design Smell Catalog Using Principle-based Classification

This section presents our design smell catalog which has been created by categorizing
an extensive set of documented structural design smells using our principle-based
classification scheme. Our catalog is well-organized and avoids the problem of varying
scope by focusing on structural micro-architectural smells only (see Table 1). It
consists of 31 design smells with references to 210 related design smells, and is by far
the most comprehensive design smells catalog in literature.

However, it should be noted that there are certain smells that are not a part of our
catalog. For instance, we have not included smells that have extremely long names
such as Riel’s heuristics [Rie96] which describe many potential design smells verbosely
in a non-concise fashion. Further, we have captured only those design smells that
consistently reappear in the literature. Finally, we have omitted ill-defined smells
such as “unnamed coupling” [WCKD11] which lack an explicit definition but instead
provide examples to describe the smell.

In this catalog, smells that violate a design principle are grouped together under
that principle (see Figure 2). Smells in our catalog are named using our naming
scheme and described using the template presented in Table 2; however, for the sake
of brevity, we use a condensed version of this longer template here. The description of
the smells in this section refer to “short description” element in the longer template
given in Table 2.

In the following four subsections, we present design smells that violate the principles
of abstraction, encapsulation, modularity, and hierarchy respectively.

5.1 Design Smells Violating the Principle of Abstraction

In this section, we use the term “abstraction” to limit the discussion to class level
abstractions.

5.1.1 Incomplete Abstraction

This smell arises when an abstraction does not support a responsibility completely.
This smell covers two possibilities:

e A responsibility is partially fulfilled by an abstraction, and the rest of it is not
covered elsewhere.

Journal of Object Technology, vol. 12, no. 2, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a1

12 . Ganesh et al.

Folded hierarchy Incomplete abstraction
Missing hierarchy Passive abstraction
Unexploited hierarchy Delegating abstraction
Complex hierarchy Imperative abstraction
Convenience hierarchy Trivial abstraction
Rebellious hierarchy Unutilized abstraction

rOverlooked abstraction

AbStrHCtion

Unnecessary hierarchy lassification of Dense abstraction

Broken hierarchy

Cyclic hierarchy Duplicate abstraction
Polygonal hierarchy Large abstraction
Degraded hierarchy Controlling abstraction

Intimate hierarchy Multifaceted abstraction

Parallel hierarchy Envious abstraction

Weakened modularity (cyclic

X Deficient encapsulation
dependencies form)

Modularity Encapsulation Unrestrained encapsulation

Weakened modularity (central

dependencies form) Violated encapsulation

Figure 2 — A Principle-based Classification of Structural Design Smells

e A responsibility is split among two or more abstractions, resulting in incomplete
abstraction(s).

Also known as: “Half-hearted operations” [SSMO06], “class supports incomplete
behavior” [PJ99).
Variants: “Inconsistent operations” [SSMO06], “solution sprawl” [Ker04].

5.1.2 Passive Abstraction

This smell arises when a class is used as a holder for data, without any methods
operating on it.

Also known as: “Data class” [CU06, Mar02], “record [class]” [GMO05], “C-like
structs” [Blo08], “no-command classes” [Mey00].

Variants: “Data clumps” [Fow99], “Cobol like [classes]” [GMO05], “data container”
[RFGO5].

5.1.3 Delegating Abstraction

This design smell arises when an abstraction exists only for passing messages from
one abstraction to another.

Also known as: “Agent classes” [LP09].

Variants: “Improper use of delegation” [CU06], “middle man” [Fow99], “using
aggregation instead of inheritance” [Mil99].

5.1.4 Imperative Abstraction

This smell arises when an operation is turned into a class abstraction. This smell is
evident when you encounter concrete classes with (a) the class name containing only a
verb (or start with a verb), (b) having only one method with mostly the same name
as the class, (c) the class shares no inheritance relationships.

Journal of Object Technology, vol. 12, no. 2, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a1

Classification of Structural Design Smells - 13

Also known as: “Operation class” [LP09, RBP*91], “method turned into class”
[CU06], “single-routine classes” [Mey00].

5.1.5 Trivial Abstraction

This design smell arises when a class is trivial and does not qualify to be one. This
smell typically manifests itself as an abstraction with few (or no) methods or attributes,
with no clear responsibility that could be assigned to it.

Also known as: “Irrelevant class” [LP09], “lazy class” [KPGAQ9, Fow99], “freeloader”
[ZH11], “small class” [CU06, JR92], “mini-class” [SSMO06], “not complex [class]”
[Khol0].

Variants: “No responsibility” [Bud01].

5.1.6 Unutilized Abstraction

This smell arises when an abstraction is left unused (either not directly used or not
reachable). This smell manifests in two forms:

Unreferenced abstractions: Concrete classes that are not being used by anyone.

Orphan abstractions: Stand-alone interfaces/abstract classes that do not have any
subtypes.

Also known as: “Classes with unused responsibility” [Bud01], “hidden classes”
[BBD'09], “ignored abstraction” [SSMO06], “obsolete classes” [LRO6], “unused classes”
[LROG].

Variants: “Unused or little used items” [Gar07], “unnecessary design abstractions’
[Sta07].

)

5.1.7 Overlooked Abstraction

This smell arises when clients refer to concrete types instead of their abstract base
types. Two variants of this design smell are:

e The referred concrete types do not have relevant abstract base types defined,
and the clients refer to the concrete types.

e The concrete types have abstract base types defined; however clients still refer
to concrete derived types.

Also known as: “Interface bypass” [SSMO06], “short-circuited abstraction” [TMO05].
Variants: “Abstraction without decoupling” [DMTS10b, DMTS10a], “hidden
relative” [SSMO06].

5.1.8 Duplicate Abstraction

This design smell arises when there exist two or more abstractions that are similar
(indicating that they share commonalities that have not been captured and utilized
appropriately in the design). The design smell arises in many forms:

Identical name: The name of the abstractions are same.

Identical public interface: The abstractions have methods with same signature in
its public interface.

Identical implementation: Logically the abstractions have similar implementation.

Journal of Object Technology, vol. 12, no. 2, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a1

14 . Ganesh et al.

Also known as: “Similar signature class” [SSMO06], “split identity” [SSMO6],
“alternative classes with different interfaces” [Fow99], “similar unrelated abstractions”
[SSMO6], “redundant classes” [RBPT91].

Variants: “Duplicate design artifacts” [Sta07], “similar classes” [BNLO5].

5.1.9 Large Abstraction

This design smell arises when an abstraction has a large number of members in its
public interface, its implementation, or both.

Also known as: “God class” [SSM06], “large class” [CU06, Mey00, Fow99,
MGDM10].

Variants: “Higher relation” [CU06], “complex interface” [CU06], “large interface’
[Rie96, CUO06], “fat service with integrated interfaces” [Mar03], “big class” [Kre05],
“blob” [BMB*98].

)

5.1.10 Dense Abstraction

This design smell arises when the abstraction has excessive implementation complexity.
Also known as: “Higher class complexity” [CUO6].
Variants: “Too much responsibility” [Bud01], “module mimic” [MGDM10], “Spaghetti
code” [BMB198].

5.1.11 Controlling Abstraction

This smell arises when an abstraction controls other abstractions in the system.
Also known as: “Brain class” [LMO06], “controller class” [Khol0, MGDM10].
Variant: “Abusive centralization of control” [TMO05].

5.1.12 Multifaceted Abstraction

This design smell arises when an abstraction has more than one responsibility assigned
to it.

Also known as: “Schizophrenic class” [TM05], “divergent change” [Fow99], “un-
connected responsibilities” [Are04], “conceptualization abuse” [TMO05], “mixed abstrac-
tions” [Mey00].

Variants: “Vague classes” [RBP191], “blob” [BMB*198], “abusive conceptual-
ization” [TMO05], “Swiss army knife” [BMB98], “overloaded services class” [Coa91],
“non-related data and behavior” [CUO06], “irrelevant methods” [CU06], “discordant
attributes” [RBPT91].

5.1.13 Envious Abstraction

This design smell arises when methods in an abstraction are more interested in members
of another abstraction (indicating misplacement of members).

Also known as: “Misplaced operations” [DDN02], “method in wrong class’
[CU06], “feature envy” [Fow99].

Variants: “Misplaced control” [TMO05], “message chains” [Fow99).

)

5.2 Design Smells Violating the Principle of Encapsulation

5.2.1 Deficient Encapsulation

This design smell arises when the encapsulation of an abstraction is insufficient. There
are two degrees of deficiencies in encapsulation:

Journal of Object Technology, vol. 12, no. 2, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a1

Classification of Structural Design Smells - 15

Lenient encapsulation: An encapsulation is lenient when the declared accessibility
of one or more members of an abstraction is more permissive than actually
required.

Vulnerable encapsulation: It occurs in the case when implementation details of an
abstraction are exposed (or implementation details are inadequately protected)
making it vulnerable to misuse or corruption of its state.

Also known as: “Public attributes” [Rie96, CU06], “poor encapsulated data”
[CU06], “indecent exposure” [Ker04], “unhidden private method” [CU06], “encapsu-
lation violation” [SSMO06], “exposition of auxiliary method” [CWZ00], “not enough
information hiding” [MGDM10], “class interface supports illegal or inappropriate states”
[PJ99], “class interface supports illegal or dangerous behavior” [PJ99], “unrelated
abstraction” [CU06].

Variants: “Weakening of data hiding” [CUO06], “exposition of the internal structure
of a collection” [CWZ00], “attribute visible to subclasses” [CWZ00].

5.2.2 Unrestrained Encapsulation

This design smell arises when an abstraction depends on the global state (global
variables, data-structures etc.).

Also known as: “Unencapsulated class” [CU06], “class with unparameterized
methods” [CU06].

Variants: “Higher external variables accesses” [CU06].

5.2.3 Violated Encapsulation

This design smell arises when a class-level abstraction directly accesses implementation
details of other abstractions (which should have been ideally made inaccessible).
Also known as: “Violation of encapsulation” [DDN02], “inappropriate intimacy
(general form)” [Fow99], “direct modification” [Bud01].
Variants: “Granting long-distance friendship” [Lak96], “access to foreign data”
(metric) [LMO6], “spaghetti scoping” [Szy92].

5.3 Design Smells Violating the Principle of Modularity
5.3.1 Weakened Modularity (Cyclic Dependencies Form)

This design smell arises when two or more class-level abstractions depend on each
other directly or indirectly (creating a tight coupling among the abstractions).

Also known as: “Cyclic dependency between classes” [SSMO06], “dependency
cycles” [Sta07], “cyclic dependencies” [RWO05], “cycles” [BNLO5], “circular dependen-
cies” [MGDM10], “static cycles in dependency graphs” [LR06], “bidirectional relation”
[CU06], “cyclic class relationships” [Mil99].

Variants: “Group of interdependent objects” [MGDM10].

5.3.2 Weakened Modularity (Central Dependencies Form)

This design smell arises when a class-level abstraction has dependencies with large
number of other class-level abstractions (high afferent and efferent coupling).

Also known as: “Bottlenecks” [RW05], “high collaboration class” [CU06], “class
sends too many messages” [CUO06], “god class” [DDN02, Rie96], “dispersed coupling”
[LMO6).

Journal of Object Technology, vol. 12, no. 2, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a1

16 - Ganesh et al.

Variants: “Class collaborates with too many others” [Gar07], “man-in-the-middle”
[RFGO5], “intensive coupling” [LMO06], “alien spider” [KBT07].

5.4 Design Smells Violating the Principle of Hierarchy
5.4.1 Folded Hierarchy

This design smell arises when there are abstractions which are amenable to more
generalization in a hierarchy. This design smell manifests in two ways:

e When a suitable supertype could be identified from existing abstraction(s), but
is currently missing [Gar07, DDNO02]. Introducing supertype(s) can improve the
hierarchy or result in forming a hierarchy.

e When data, behavior and/or interface is duplicated in abstractions that could
be factored out to a suitable supertype [Rie96].

Also known as: “Orphan sibling method/attribute” [SSMO06], “collapsed method
hierarchy” [TMO05], “repeated functionality” [Are04], “redundant variable declaration”
[CU06], “missing abstract class” [Gar07], “missing levels of abstraction” [Mil99].

Variants: “Coarse hierarchies” [Mil99], “getting away from abstraction” [CUO06],
“generation conflict” [SSMO6].

5.4.2 Missing Hierarchy

This design smell arises when an abstraction uses conditional logic on embedded features
to determine behavior (such “tagging” indicates an unexploited is-a relationship).

Also known as: “Tag class” [Blo08], “missing inheritance” [DDNO02], “collapsed
type hierarchy” [TMO05], “embedded features” [TMO05].

5.4.3 Unexploited Hierarchy

This design smell arises when an abstraction has explicit condition checks instead of
leveraging the polymorphism inherent in the hierarchy [TMO05]. This includes the case
where explicit type checks are performed.

Also known as: “Simulated polymorphism” [SSM06], “improper use of switch
statement” [Fow99], “case analysis” [JF88], “instanceof checks” [EMO02], “self type
checks” [DDN02], “conditionals” [DDNO02], “type queries” [LRO6].

5.4.4 Complex Hierarchy

This design smell arises when the inheritance graph is tangled, or excessively wide,
deep, or skewed [BBM96, Bin99, LROG].

Also known as: “Spaghetti inheritance” [JR92, Bin99], “complicated inheritance
graphs” [JR92], “hierarchy of classes has too many levels” [Gar07], “list-like inheritance
hierarchy” [LRO06], “deep inheritance hierarchies” [Bin99, LR06], “large inheritance
lattice” [BBM96], “huge inheritance/aggregation hierarchies” [Eic03], “monolithic
hierarchies” [Dew02].

Variants: “Cosmic hierarchies” [Dew02].

Journal of Object Technology, vol. 12, no. 2, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a1

Classification of Structural Design Smells - 17

5.4.5 Convenience Hierarchy

This design smell arises when the supertypes provide many concrete methods and
subtypes do not override those concrete methods. This indicates use of inheritance
primarily for code reuse deviating from the widely-accepted norm of using inheritance
to model is-a relationships [Bin99, Sak89).

Also known as: “Abused inheritance” [TMO05], “misuse of inheritance” [DDN02],
“convenience inheritance” [Mey00], “haphazard inheritance” [AM94], “subclasses do
not redefine methods” [LROG].

Variants: “Weird hierarchies” [Bin99], “inheritance for implementation reuse”
[TMO5], “incidental inheritance” [Sak89], “rare overriding” [Khol0].

5.4.6 Rebellious Hierarchy

This design smell arises when a subtype rejects or invalidates the methods supported
from its supertype(s) [Gar07, Rie96]. In this smell, the supertype and subtype(s)
conceptually share is-a relationship, but some methods break this relationship. Two
forms of this design smell are:

Rebellious interface: The subtype does not support the interface of the supertype.

Rebellious implementation: The implementation of the operations in the subtype
violates the contract of the supertype.

Also known as: “Harmful mutation” [HM95], “illoyalty of subclasses” [HM95],
“refused bequest” [Fow99, Wak03], “refused interface” [TMO5], “naughty children”
[Bin99], “worm holes” [Bin99], “gnarly hierarchies” [Bin99], “premature interface
abstraction” [TMO05].

Variants: “Fat interface” [Bin99], “improper use of inheritance” [CU06], “mis-
declared members of base class” [CU06].

5.4.7 Broken Hierarchy

This design smell arises when the supertype and its subtype(s) conceptually do not
share “is-a” relationship (resulting in broken substitutability).

Also known as: “Inappropriate use of inheritance” [Bud01], “subclass is not
true subtype of supertype” [PJ99], ““has” relation with no “is” relation” [Mey00],
“containment by inheritance” [TMO05].

Variants: “Mistaken aggregates” [PJ99], “misapplying is a” [PJ99], “object or
variable turned into a subclass” [CU06], “improper inheritance” [Mil99], “subclass
inheriting inappropriate operations from supertype” [PJ99], “cancelled local behavior
but supertype reuse” [ADGN10], “tradition breaker” [LMO06], “inverted hierarchies”
[PJ99], “inverse abstraction hierarchies” [Mil99].

5.4.8 Cyclic Hierarchy

This design smell arises when a supertype directly or indirectly refers to one of its
subtype, forming a cycle in the hierarchy.

Also known as: “Knows of derived” [Ciu99, SSM06], “subtype knowledge”
[DMTS10b], “subclass knowledge” [BNLO05], “curious superclasses” [BNLO05], “inher-
itance/reference cycles” [SSC96], “base class depends on derived classes” [CWZ00],
“forward associations in a hierarchy” [Mil99].

Variants: “Inheritance loops” [Bin99].

Journal of Object Technology, vol. 12, no. 2, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a1

18 . Ganesh et al.

5.4.9 Polygonal Hierarchy

This design smell arises when a supertype is repeatedly inherited in descendant ab-
straction(s) (forming polygons in the inheritance graph). Also known as: “Rhombus-
like inheritance” [BLS00], “diamond-shaped inheritance” [Str00], “diamond problem”
[TJIV04], “degenerated inheritance” [DMTS10b], “fork-join inheritance” [Sak89], “re-
peated inheritance” [Mey00].

Variants: “Common ancestor dilemma” [TJJV04], “multiple inheritance use’
[Rie96], “poor usage of interfaces” [MGDM10], “inheritance loops” [Bin99].

)

5.4.10 Unnecessary Hierarchy

This design smell arises when a hierarchy has one or more unnecessary abstractions.
This smell includes the case when a supertype has at most one concrete subtype
(indicating that generalization was based on imagination rather than on concrete
specializations that can be generalized).

Also known as: “Extra sub-class” [CU06], “taxomania” [Mey00], “speculative
generality” [Fow99].

Variants: “Inheritance hierarchies without polymorphic assignments” [LRO6],
“lazy base class” [CUO06].

5.4.11 Degraded Hierarchy

This design smell arises when the hierarchy tends to be more concrete towards the root
and more abstract towards the leaves. This smell includes the case where a supertype
is declared concrete and its subtype is declared abstract.
Also known as: “Illegal abstract inheritance” [Ber04], “super class is a concrete
class” [Gar07], “illegal abstract inheritance” [Ber04], “abstract leaf classes” [MDO1].
Variants: “Abstracting concrete methods” [ADGN10], “inflexible root class”
[Mil99], “inverse abstraction hierarchies” [Mil99].

5.4.12 Intimate Hierarchy

This design smell arises when the subtype(s) directly access the state of supertype(s)
[ADGN10]. Also known as: “Inappropriate intimacy (subclass form)” [Wak03,
Fow99], “ancestor direct state access” [ADGN10].

5.4.13 Parallel Hierarchy

This design smell arises when there are two structurally similar (symmetrical) class
hierarchies with same class name prefixes [Fow99].
Also known as: “Parallel inheritance hierarchies” [Fow99, LRO6].

6 Initial Evaluation

In order to evaluate the usefulness of our design smells catalog, classification, and
naming scheme, as an initial step, we created a design smells-centric homework
assignment for an intensive software design training at Siemens CT DC AA [CTD]. All
of the 12 training participants were software architects with an average experience of
10.8 years in the software industry and 2.9 years as an architect. The assignment was
1.5 months in duration and required these architects to use the catalog as a reference
to find and report design smells in their current and past projects.

Journal of Object Technology, vol. 12, no. 2, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a1

Classification of Structural Design Smells - 19

Q. Question [note in square brackets] Responses:
No Mean/Summary
1. Rate your knowledge in design smells before this assignment on 1.9
design smells. [0 - no knowledge; 5 - "expert" level knowledge]
2. Rate your knowledge in design smells after this assignment on 3.7
design smells. [0 - no knowledge; 5 - "expert" level knowledge]
3. How useful was the design smells catalog to understand the kind 4.0
and extent of design problems in your project? [0 - the catalog
was of no use; 5 - the catalog was extremely useful.]
4. Have you come across any design smells you've never seen before Yes - 9;
but was provided in this catalog? [Yes/No] If yes, please list No - 2;
them. No response - 1
5. Did you find any design smells in your project that were not Yes - 3;
covered in this catalog? [Yes / No.] If yes, please list them. No - 6;
No response - 3
6. Rate the extent to which you believe that the smells found in 3.7
your project (during the assignment) actually resulted from a
violation of the corresponding design principles. [0 - none of the
design smells resulted from violation of the corresponding design
principle; 5 - all of the design smells resulted from violation of
the design principle]
7. How useful is the naming scheme in the design smells cata- 3.8
log to understand the cause of design smell? [0 - not at all
understandable; 5- very easy to understand]
8. How intuitive is the naming scheme in the design smells catalog? 3.9
[0 - not at all intuitive; 5 - very intuitive]
9. Would you use the design smell catalog to identify smells in the Yes - 11;
future for your project(s)? [Yes / No| No-1
10. Would you recommend this design smell catalog to be used by Yes - 11;
architects in other projects that you know? [Yes / No.] No-1

Table 3 — Feedback from architects on design smell catalog

Upon the completion of the assignment, we used a questionnaire to elicit feedback
from these architects on their experience with using our design smells catalog. The
questionnaire consisted of 10 rating-based questions, with an option to enter additional
comments. We received responses from all the 12 participants. Table 3 lists the
questions and the quantified responses from the participants.
We now list some noteworthy aspects that emerged from the feedback we received.

On the catalog: The fact that the increase in design smells knowledge is close to
a factor of two (see questions 1 & 2) indicates that our catalog can serve as a
central repository of design smells knowledge for practitioners. In fact, one of
the participants mentioned that the catalog was useful as a quick reference for
identifying smells. This is further supported by the responses to questions 3 and
4. Specifically, the participants found the design smells catalog “very useful” to
understand the kind and extent of design problems in their projects. 75% of the
participants also reported that they became aware of a few new smells.

Journal of Object Technology, vol. 12, no. 2, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a1

20 - Ganesh et al.

In response to question 5, new smells were reported by 3 participants. A careful
analysis of these smells revealed that they were either architectural smells (e.g.
problems with layering) or behavioral smells (e.g. performance related). Since
these smells are outside the scope of our current work (see Table 1), we do not
discuss them in detail here. The response to this question suggests that from a
practitioner’s perspective, the catalog is reasonably comprehensive.

On the principle-based classification scheme: The architects believe that “most
of the smells” (3.7 in the scale of 0 to 5; see question 6) they found in their
projects actually resulted from a violation of the corresponding design principle.
An analysis of the responses with low-rating reveal that the architects instead
considered factors such as time pressures and contextual constraints to lead
to design smells. However, a deeper reflection on this issue reveals that the
aforementioned factors in fact eventually lead to the violation of underlying
design principles that manifest as smells.

One of the respondent mentioned that, “I know about design smells as well
as design principles, but this was the first time I could see violation of these
principles documented as smells.” This lends credence to the usefulness of the
principle-based classification scheme presented in this work.

On the naming scheme: Most of the architects found the naming scheme useful
as well as intuitive (questions 7 & 8). One participant mentioned that he liked
names like “envious abstraction” which helped him to understand the cause of
the design smell.

On the experience of using the catalog: Of the 12 architects, 11 were affirmative
on using the design smell catalog to identify smells in the future in their projects;
further, they were willing to recommend this design smell catalog to be used in
other projects as well (questions 9 and 10). One architect added: “Generally
I use my experience to identify the design smells. But the catalog provided in
the assignment gave me a good reference about the different types of design
smells that can exist such that identifying the design smells becomes much easy.”
Responses to these two questions clearly show the positive light in which this
design smells work has been received by architects in Siemens CT DC AA.

In summary, the overall feedback indicates that all the three aspects of our design
smells work - the catalog, the classification, as well as the naming scheme - has been
received positively by the practitioners. However, our evaluation suffers from two
limitations. First, this is an initial evaluation with feedback received only from 12
participants. Second, focus of the evaluation was limited to our design smells work
and comparing our work against others requires more elaborate evaluation. We plan
to address both these limitations in future with more extensive evaluations.

7 Discussion

In this section, we summarize our efforts and present some interesting observations that
we made while cataloging and classifying design smells. We believe insights resulting
from these observations point towards potential future advances in the area of software
design smells. They also provide motivation for the development of methodology and
tools that can provide better guidance to practitioners during the design process.

Journal of Object Technology, vol. 12, no. 2, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a1

Classification of Structural Design Smells - 21

7.1 Enhancing the catalog with more smells

While collecting and cataloging smells, we noticed that there are smells that are
commonly found in industrial designs but have not yet been well-documented in
literature. A deeper reflection on why some smells have remained undocumented or
not so well-documented seems to indicate that the community has not focused much on
the actual cause of smells itself. We believe that a larger exploration of the smell space
is possible if one were to investigate how the violation of a principle leads to a smell.
However, there is little work done in exploring the bridge between a design principle
and the smell that is caused when the principle is violated. An insight that results
from this is that a systematic consideration of techniques that enable the realization
of design principles is needed in order to properly make the connection between a
principle and a smell. Once these techniques are identified, the possible occurrence of
a smell can be predicted whenever those techniques are not followed.

For instance, consider the criteria of sufficiency, completeness, and primitiveness
which an abstraction should satisfy as per Booch’s proposition [BMET07]. While
smells related to the completeness criteria (referred under Section 5.1.1 “incomplete
abstraction” in our catalog) are well-documented, smells related to the criteria of
sufficiency and primitiveness are not well-documented, as already pointed out above.
Other examples include the techniques of “separation of interface from implementation”
[GHJV95] which can be used for encapsulation and “separate policy from implementa-
tion” [BMR196]. Design smells that occur as a result of not following these techniques
are not well documented in literature. If we were to use these “enabling techniques”
as a means of finding smells, it would be possible to identify or discover new smells.
For instance, if we were to use sufficiency and primitiveness as enabling techniques for
abstraction, we would be able to identify new smells that could be termed “insufficient
abstraction” and “non-primitive abstraction” respectively. We believe this insight
leads to the idea that enabling techniques can play an important role in the future
classification of smell, and even identification of new smells.

It should be pointed out that there are some instances of explicit mapping between
smells and enabling techniques. For example, inFusion tool has a smell named “SAP
breaker” [InF12] which breaks Stable Abstractions Principle (SAP) [Mar03]. However,
using such enabling techniques to bridge a connection between principles and smells
has largely been unexplored.

7.2 Consistency of Names of Principles

While cataloging smells, we found it difficult to name design smells that occur because
of the violation of the principle of “modularity”. This is partly because our naming
scheme needed to adhere to the constraints listed in Section 7.3 and partly because
“modularity” is inherently defined as a property of the entire system (or architecture).
Hence, modularity was more difficult to qualify compared to the other principles.
We have explored some ways that could potentially address the naming issue with
modularity. For instance, one option could be to use the term “modularization” instead
of “modularity”. While this would definitely help ease the task of naming smells under
modularity, on the downside we would be deviating from the standard principles as
named by Booch and which the community has come to accept. Another option
could be to adopt a completely new naming scheme. However, our initial experiments
with other naming schemes have indicated that no scheme is ideal and as mentioned
above, a naming scheme that meets all the constraints listed in Section 7.3 will require

Journal of Object Technology, vol. 12, no. 2, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a1

22 . Ganesh et al.

sustained and ongoing effort.

7.3 Improved Naming Scheme for Smells

Our survey of the existing literature showed that there is a lack of a common consistent
vocabulary for design smells. To address this issue and to specifically also provide a
naming scheme for smells which is meaningful, we introduced a simple and uniform
naming scheme for design smells based on our classification framework. Under our
current naming approach, the name of each design smell is not only short and therefore
easy to remember but also indicates clearly how one of the four design principles has
been violated.

While this naming scheme appears to have served reasonably well for the purpose
of uniform naming of design smells, we believe that realizing an ideal naming scheme
is an ongoing effort. This is mainly because there are several constraints impacting the
naming scheme. In particular, we want a naming scheme that not only helps map smells
to principles (which is why a principle is mentioned in each smell name) but one that
is also be simple and easy to remember (which constrains the number of terms in the
smell name) as well as uniform and consistent (which implies all smells should be named
in a similar fashion). Managing these constraints can result in certain unintuitive
names for smells. For example, just by reading the name “unrestrained encapsulation”
(Section 5.2.2), it is not evident that the smell arises when an abstraction depends
on the global state. Sometimes, the difference between the smells is not evident from
the names itself. For example, it is difficult to distinguish between “missing hierarchy”
(Section 5.4.2) and “unexploited hierarchy” (Section 5.4.3). Based on their names,
both smells indicate a deviation from the principle of hierarchy and the real difference
is evident only after reading the descriptions of these smells.

8 Future Directions

The work we have presented in this paper is our initial attempt at cataloging, classifying,
and naming structural design smells. Based on the observations and insights described
in the previous sections, we envision that our work can be extended in future along
the following dimensions.

e Augment our catalog with smells that have been undocumented in literature.

e Broaden the current classification scheme by including more design principles so
that more smells can be cataloged.

e Introduce enabling techniques into the current classification scheme to enable a
more effective mapping between design principles and smells.

e Explore how smells can be described in a semi-formal or formal notation in order
to address the current ambiguity in interpreting design smells documented in
literature.

e Leverage our experience with structural micro-architectural smells to similarly
collect and categorize architectural smells.

e Expand the smell template to include key information in the description of
smells in our catalog, for example, with detailed refactoring steps that could

Journal of Object Technology, vol. 12, no. 2, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a1

Classification of Structural Design Smells - 23

help address that smell (the design principles only provide high-level refactoring
hints).

e Explore the relationship between the smells (such as how one smell “can cause”,
“typically occur with”, or “lead to” other smell(s)).

e Develop tool support for the automatic detection of our cataloged smells in
real-world software. Tools that analyze software and identify our cataloged
smells would be of immense benefit to practitioners; our survey of literature and
design analysis tools, however, shows that there is a lack of comprehensive tools
that can detect all the design smells in our catalog. Further, such tool support
can also be leveraged to conduct empirical studies to help answer questions such
as which smells are more frequently found in real-world software, which smells
tend to occur together, and how useful is our classification and naming scheme.

e As mentioned earlier (see Section 6), we plan to undertake a comprehensive
evaluation activity to compare the effectiveness and usefulness of our design
smell classification scheme with the other classification schemes.

References

[ADGN10] G. Arévalo, S. Ducasse, S. Gordillo, and O. Nierstrasz. Generating
a catalog of unanticipated schemas in class hierarchies using formal
concept analysis. Inf. Softw. Technol., 52(11):1167-1187, November
2010. URL: http://dx.doi.org/10.1016/j.infsof.2010.05.010,
d0i:10.1016/j.infsof.2010.05.010.

[AM94] J. M. Armstrong and R. J. Mitchell. Uses and abuses of inheritance.
Software Engineering Journal, 9(1):19 —26, jan 1994.

[Are04] G. Arevalo. High-level views in object-oriented systems using formal
concept analysis. PhD Thesis, The University of Bern,, 2004.

[BBDT09] F. Balmas, A. Bergel, S. Denier, S. Ducasse, J. Laval, K. Mordal-
Manet, H. Abdeen, and F. Bellingard. Software metric for java and
c++ practices. Technical report, Squale Project, 2009.

[BBM96] V. R. Basili, L. C. Briand, and W. L. Melo. A validation of object-
oriented design metrics as quality indicators. IEEE Trans. Softw. Eng.,
22(10):751-761, October 1996. URL: http://dx.doi.org/10.1109/32.
544352, doi:10.1109/32.544352.

[BD02] J. Bansiya and C. G. Davis. A hierarchical model for object-oriented
design quality assessment. IEEE Trans. Softw. Eng., 28(1):4-17,
January 2002. URL: http://dx.doi.org/10.1109/32.979986,
doi:10.1109/32.979986.

[Ber04] B. Berenbach. The evaluation of large, complex uml analysis and design
models. In Proceedings of the 26th International Conference on Software
Engineering, ICSE *04, pages 232-241, Washington, DC, USA, 2004.
IEEE Computer Society. URL: http://dl.acm.org/citation.cfm?
1d=998675.999428.

Journal of Object Technology, vol. 12, no. 2, 2013

http://dx.doi.org/10.1016/j.infsof.2010.05.010
http://dx.doi.org/10.1016/j.infsof.2010.05.010
http://dx.doi.org/10.1109/32.544352
http://dx.doi.org/10.1109/32.544352
http://dx.doi.org/10.1109/32.544352
http://dx.doi.org/10.1109/32.979986
http://dx.doi.org/10.1109/32.979986
http://dl.acm.org/citation.cfm?id=998675.999428
http://dl.acm.org/citation.cfm?id=998675.999428
http://dx.doi.org/10.5381/jot.2013.12.2.a1

24 . Ganesh et al.

[Bin99)

[Blo08]
[BLS00]

[BMB+98]

[BME*07]

[BMR*96]

[BNLO5]

[Bud01]

[Ciu99)

[Coa9l]
[CTD]

[CU06]

[Cun92]

[CWZ00]

R. V. Binder. Testing object-oriented systems: models, patterns, and
tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1999.

J. Bloch. Effective Java. Addison-Wesley; 2 edition, 2008.

D. Beyer, C. Lewerentz, and F. Simon. Flattening inheritance struc-
tures — or — Getting the right picture of large OO-systems. Technical
report, Institute of Computer Science, Brandenburgische Technische

Universitdat Cottbus, November 2000.

W. J. Brown, R. C. Malveau, W. H. Brown, H. W. McCormick III, and
T. J. Mowbray. Anti Patterns: Refactoring Software, Architectures, and
Projects in Crisis. John Wiley and Sons, 1998.

G. Booch, R. Maksimchuk, M. Engle, B. Young, J. Conallen, and
K. Houston. Object-oriented analysis and design with applications
(third edition). Addison-Wesley Professional, 2007.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal.
Pattern-oriented Software Architecture: A System of Patterns. John
Wiley & Sons, 1996.

D. Beyer, A. Noack, and C. Lewerentz. Efficient relational calcula-
tion for software analysis. IEEE Trans. Softw. Eng., 31(2):137-149,
February 2005. URL: http://dx.doi.org/10.1109/TSE.2005.23,
doi:10.1109/TSE.2005.23.

T. Budd. An introduction to object-oriented programming. Addison
Wesley; 3 edition, 2001.

O. Ciupke. Automatic detection of design problems in object-oriented
reengineering. In Proceedings of the Technology of Object-Oriented Lan-
guages and Systems, TOOLS ’99, pages 18—, Washington, DC, USA,
1999. IEEE Computer Society. URL: http://dl.acm.org/citation.
cfm?7id=832257.833062.

P. Coad. Ood criteria, part 3. Journal of Object Oriented Programming,
September, 1991.

CT DC AA homepage: www.siemens.co.in/en/about_us/index/
innovations/CTDCIN.htm.

M. Choinzon and Y. Ueda. Detecting defects in object oriented de-
signs using design metrics. In Proceedings of the 2006 conference on
Knowledge-Based Software Engineering: Proceedings of the Seventh
Joint Conference on Knowledge-Based Software Engineering, pages 61—
72, Amsterdam, The Netherlands, The Netherlands, 2006. IOS Press.
URL: http://dl.acm.org/citation.cfm?id=1565098.1565107.

W. Cunningham. The wycash portfolio management system. SIGPLAN
OOPS Mess., 4(2):29-30, December 1992. URL: http://doi.acm.org/
10.1145/157710.157715, doi:10.1145/157710.157715.

A. L. Correa, C. M. L. Werner, and G. Zaverucha. Object oriented
design expertise reuse: An approach based on heuristics, design pat-
terns and anti-patterns. In Proceedings of the 6th International Coner-
ence on Software Reuse: Advances in Software Reusability, ICSR-

Journal of Object Technology, vol. 12, no. 2, 2013

http://dx.doi.org/10.1109/TSE.2005.23
http://dx.doi.org/10.1109/TSE.2005.23
http://dl.acm.org/citation.cfm?id=832257.833062
http://dl.acm.org/citation.cfm?id=832257.833062
www.siemens.co.in/en/about_us/index/innovations/CTDCIN.htm
www.siemens.co.in/en/about_us/index/innovations/CTDCIN.htm
http://dl.acm.org/citation.cfm?id=1565098.1565107
http://doi.acm.org/10.1145/157710.157715
http://doi.acm.org/10.1145/157710.157715
http://dx.doi.org/10.1145/157710.157715
http://dx.doi.org/10.5381/jot.2013.12.2.a1

[DDN02]

[Dew02]

[DMTS10a]

[DMTS10b]

[Eic03]

[EM02]

[Fow99]
[Gar07]

[GHIV95)

[GMO5]

[HKGH10]

Classification of Structural Design Smells - 25

6, pages 336-352, London, UK, UK, 2000. Springer-Verlag. URL:
http://dl.acm.org/citation.cfm?id=645546.656055.

S. Demeyer, S. Ducasse, and O. Nierstrasz. Object-Oriented Reengineer-
ing Patterns. Morgan Kaufmann, 2002.

S. Dewhurst. C++ Gotchas: Avoiding Common Problems in Coding and
Design. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2002.

J. Dietrich, C. McCartin, E. Tempero, and S. M. A. Shah. Barriers to
modularity: an empirical study to assess the potential for modularisa-
tion of java programs. In Proceedings of the 6th international conference
on Quality of Software Architectures: research into Practice - Reality
and Gaps, QoSA’10, pages 135-150, Berlin, Heidelberg, 2010. Springer-
Verlag. URL: http://dx.doi.org/10.1007/978-3-642-13821-8_11,
doi:10.1007/978-3-642-13821-8_11.

J. Dietrich, C. McCartin, E. D. Tempero, and S. M. A. Shah. On the
detection of high-impact refactoring opportunities in programs. CoRR,
abs/1006.1747, 2010.

H. Eichelberger. Nice class diagrams admit good design? In Proceedings
of the 2003 ACM symposium on Software visualization, SoftVis ’03,
pages 159—ff, New York, NY, USA, 2003. ACM. URL: http://doi.acm.
org/10.1145/774833.774857, doi:10.1145/774833.774857.

E. Van Emden and L. Moonen. Java quality assurance by detecting code
smells. In Proceedings of the Ninth Working Conference on Reverse En-
gineering (WCRE’02), WCRE 02, pages 97—, Washington, DC, USA,

2002. IEEE Computer Society. URL: http://dl.acm.org/citation.

cfm?7id=882506.885134.

M. Fowler. Refactoring: improving the design of existing code. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

J. Garzas. Object-Oriented Design Knowledge: Principles, Heuristics,
and Best Practices. IGI Publishing, Hershey, PA, USA, 2007.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1995.

J. Y. Gil and I. Maman. Micro patterns in java code. In Proceedings
of the 20th annual ACM SIGPLAN conference on Object-oriented pro-
gramming, systems, languages, and applications, OOPSLA ’05, pages
97-116, New York, NY, USA, 2005. ACM. URL: http://doi.acm.org/
10.1145/1094811.1094819, doi:10.1145/1094811.1094819.

S. Hassaine, F. Khomh, Y. Gueheneuc, and S. Hamel. Ids: An immune-
inspired approach for the detection of software design smells. In
Proceedings of the 2010 Seventh International Conference on the
Quality of Information and Communications Technology, QUATIC
10, pages 343-348, Washington, DC, USA, 2010. IEEE Computer
Society. URL: http://dx.doi.org/10.1109/QUATIC.2010.61,
doi:10.1109/QUATIC.2010.61.

Journal of Object Technology, vol. 12, no. 2, 2013

http://dl.acm.org/citation.cfm?id=645546.656055
http://dx.doi.org/10.1007/978-3-642-13821-8_11
http://dx.doi.org/10.1007/978-3-642-13821-8_11
http://doi.acm.org/10.1145/774833.774857
http://doi.acm.org/10.1145/774833.774857
http://dx.doi.org/10.1145/774833.774857
http://dl.acm.org/citation.cfm?id=882506.885134
http://dl.acm.org/citation.cfm?id=882506.885134
http://doi.acm.org/10.1145/1094811.1094819
http://doi.acm.org/10.1145/1094811.1094819
http://dx.doi.org/10.1145/1094811.1094819
http://dx.doi.org/10.1109/QUATIC.2010.61
http://dx.doi.org/10.1109/QUATIC.2010.61
http://dx.doi.org/10.5381/jot.2013.12.2.a1

26 - Ganesh et al.

[HM95]

[InF12]
[JFSS]

[TR92]

[KBTO07]

[Ker04]
[Khol0]

[KPGAO9]

[Kre05]

[Lak96]

[LMOG6]

[LPOY]

[LRO6]

[LSP05]

M. Hitz and B. Montazeri. Measuring product attributes of object-
oriented systems. In Proceedings of the 5th European Software Engi-
neering Conference, pages 124-136, London, UK, UK, 1995. Springer-
Verlag. URL: http://dl.acm.org/citation.cfm?id=645385.651487.

Infusion hydrogen: Design flaw detection tool. Available at: http:
//www.intooitus.com/products/infusion, 2012.

R. E. Johnson and B. Foote. Designing reusable classes. Journal of
Object Oriented Programming, 1:22-35, June/July 1988.

P. Johnson and C. Rees. Reusability through fine-grain inheritance.
Softw. Pract. Ezper., 22(12):1049-1068, December 1992. URL:
http://dx.doi.org/10.1002/spe.4380221203, doi:10.1002/spe.
4380221203.

C. Kiefer, A. Bernstein, and J. Tappolet. Mining software repositories
with isparol and a software evolution ontology. In Proceedings of the
Fourth International Workshop on Mining Software Repositories, MSR
07, pages 10—, Washington, DC, USA, 2007. IEEE Computer Society.
URL: http://dx.doi.org/10.1109/MSR.2007 .21, doi:10.1109/MSR.
2007.21.

J. Kerievsky. Refactoring to Patterns. Pearson Higher Education, 2004.

F. Khomh. Patterns and quality of object-oriented software systems.
PhD Thesis, University of Montreal, 2010.

F. Khomh, M. D. Penta, Y. Guehénéuc, and G. Antoniol. An ex-
ploratory study of the impact of antipatterns on software changeability.
Technical report EPM-RT-2009-02, ecole Polytechnique de Montreal,
April 2009.

J. Kreimer. Adaptive detection of design flaws. FElectron. Notes Theor.
Comput. Sci., 141(4):117-136, December 2005. URL: http://dx.doi.
org/10.1016/j.entcs.2005.02.059, doi:10.1016/j.entcs.2005.02.
059.

J. Lakos. Large-scale C++ software design. Addison Wesley Longman
Publishing Co., Inc., Redwood City, CA, USA, 1996.

M. Lanza and R. Marinescu. Object-Oriented Metrics in Practice: Using
Software Metrics to Characterize, Fvaluate, and Improve the Design of
Object-Oriented Systems. Springer, 2006.

M. T. Llano and R. Pooley. Uml specification and correction of object-
oriented anti-patterns. In Proceedings of the 2009 Fourth International
Conference on Software Engineering Advances, ICSEA 09, pages 39—
44, Washington, DC, USA, 2009. IEEE Computer Society. URL: http:
//dx.doi.org/10.1109/ICSEA.2009.15, doi:10.1109/ICSEA.2009.
15.

M. Lippert and S. Roock. Refactoring in Large Software Projects:
Performing Complex Restructurings Successfully. Wiley, 2006.

G. Langelier, H. Sahraoui, and P. Poulin. Visualization-based anal-
ysis of quality for large-scale software systems. In Proceedings of
the 20th IEEE/ACM international Conference on Automated soft-
ware engineering, ASE 05, pages 214-223, New York, NY, USA,

Journal of Object Technology, vol. 12, no. 2, 2013

http://dl.acm.org/citation.cfm?id=645385.651487
http://www.intooitus.com/products/infusion
http://www.intooitus.com/products/infusion
http://dx.doi.org/10.1002/spe.4380221203
http://dx.doi.org/10.1002/spe.4380221203
http://dx.doi.org/10.1002/spe.4380221203
http://dx.doi.org/10.1109/MSR.2007.21
http://dx.doi.org/10.1109/MSR.2007.21
http://dx.doi.org/10.1109/MSR.2007.21
http://dx.doi.org/10.1016/j.entcs.2005.02.059
http://dx.doi.org/10.1016/j.entcs.2005.02.059
http://dx.doi.org/10.1016/j.entcs.2005.02.059
http://dx.doi.org/10.1016/j.entcs.2005.02.059
http://dx.doi.org/10.1109/ICSEA.2009.15
http://dx.doi.org/10.1109/ICSEA.2009.15
http://dx.doi.org/10.1109/ICSEA.2009.15
http://dx.doi.org/10.1109/ICSEA.2009.15
http://dx.doi.org/10.5381/jot.2013.12.2.a1

[Mar02]
[Mar03]

[MDO1]

[Mey00]

[MGDM10]

[Mi199]

[MRB97]

[MVL03]

[PJ99)

[RBP+91]

[RFGO5]

[Rie96]

[RWO5]

Classification of Structural Design Smells - 27

2005. ACM. URL: http://doi.acm.org/10.1145/1101908.1101941,
doi:10.1145/1101908.1101941.

R. Marinescu. Measurement and Quality in Object-Oriented Design,
PhD thesis. Politehnica University of Timisoara, 2002.

R. C. Martin. Agile Software Development, Principles, Patterns, and
Practices. Addison-Wesley, 2003.

T. Mens and S. Demeyer. Future trends in software evolution met-
rics. In Proceedings of the 4th International Workshop on Principles
of Software Evolution, IWPSE ’01, pages 83-86, New York, NY, USA,
2001. ACM. URL: http://doi.acm.org/10.1145/602461.602476,
doi:10.1145/602461.602476.

B. Meyer. Object-Oriented Software Construction. Prentice Hall PTR,
2nd edition, 2000.

N. Moha, Y. Gueheneuc, L. Duchien, and A. Le Meur. Decor: A method
for the specification and detection of code and design smells. IEEE
Trans. Softw. Eng., 36(1):20-36, January 2010. URL: http://dx.doi.
org/10.1109/TSE.2009.50, doi:10.1109/TSE.2009.50.

B. K. Miller. Object-oriented architecture measures. In Proceedings of
the Thirty-second Annual Hawaii International Conference on System
Sciences-Volume 8 - Volume 8, HICSS ’99, pages 8069—, Washington,
DC, USA, 1999. IEEE Computer Society. URL: http://dl.acm.org/
citation.cfm?id=874074.876299.

R. C. Martin, D. Riehle, and F. Buschmann, editors. Pattern languages
of program design 8. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1997.

M. Méntyl4, J. Vanhanen, and C. Lassenius. A taxonomy and an
initial empirical study of bad smells in code. In Proceedings of the
International Conference on Software Maintenance, ICSM ’03, pages
381—, Washington, DC, USA, 2003. IEEE Computer Society. URL:
http://dl.acm.org/citation.cfm?id=942800.943571.

M. Page-Jones. Fundamentals of object-oriented design in UML.
Addison-Wesley Professional; 1 edition, 1999.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.
Object-oriented modeling and design. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1991.

J. Ratzinger, M. Fischer, and H. Gall. Improving evolvability through
refactoring. In Proceedings of the 2005 international workshop on Min-
ing software repositories, MSR 05, pages 1-5, New York, NY, USA,
2005. ACM. URL: http://doi.acm.org/10.1145/1082983.1083155,
doi:10.1145/1082983.1083155.

A. J. Riel. Object-Oriented Design Heuristics. Addison-Wesley Profes-
sional, 1996.

R. Ramler and K. Wolfmaier. Common findings and lessons learned
from software architecture and design analysis. Proc. 11th IEEE Int.
Software Metrics Symposium, September 2005.

Journal of Object Technology, vol. 12, no. 2, 2013

http://doi.acm.org/10.1145/1101908.1101941
http://dx.doi.org/10.1145/1101908.1101941
http://doi.acm.org/10.1145/602461.602476
http://dx.doi.org/10.1145/602461.602476
http://dx.doi.org/10.1109/TSE.2009.50
http://dx.doi.org/10.1109/TSE.2009.50
http://dx.doi.org/10.1109/TSE.2009.50
http://dl.acm.org/citation.cfm?id=874074.876299
http://dl.acm.org/citation.cfm?id=874074.876299
http://dl.acm.org/citation.cfm?id=942800.943571
http://doi.acm.org/10.1145/1082983.1083155
http://dx.doi.org/10.1145/1082983.1083155
http://dx.doi.org/10.5381/jot.2013.12.2.a1

28 - Ganesh et al.

[Saks9)

[SRK07]

[SSC96]

[SSMO6]

[Sta07]

[Str00]

[Szy92]

[TJIVO4]

[TMO5]

[Wak03]

[WCKD11]

[ZH11]

M. Sakkinen. Disciplined Inheritance. ECOOP’89: Proceedings of
the 1989 European Conference on Object-Oriented Programming, pages
39-56, 1989.

S. Sarkar, G. M. Rama, and A. C. Kak. Api-based and information-
theoretic metrics for measuring the quality of software modularization.
IEEE Trans. Softw. Eng., 33(1):14-32, January 2007. URL: http:
//dx.doi.org/10.1109/TSE.2007 .4, doi:10.1109/TSE.2007.4.

M. Sefika, A. Sane, and R. H. Campbell. Monitoring compliance of a
software system with its high-level design models. In Proceedings of the
18th international conference on Software engineering, ICSE ’96, pages
387-396, Washington, DC, USA, 1996. IEEE Computer Society. URL:
http://dl.acm.org/citation.cfm?id=227726.227810.

F. Simon, O. Seng, and T. Mohaupt. Code Quality Management: Tech-
nische Qualitat industrieller Softwaresysteme transparent und vergleich-
bar gemacht. dpunkt-Verlag, 2006.

M. Stal. Software architecture refactoring. Tutorial, in The Inter-
national Conference on Object Oriented Programming, Systems, Lan-
guages and Applications (OOPSLA), 2007.

B. Stroustrup. The C++ Programming Language. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 3rd edition, 2000.

C. A. Szyperski. Import is not inheritance - why we need both: Modules
and classes. In Proceedings of the European Conference on Object-
Oriented Programming, ECOOP ’92, pages 19-32, London, UK, UK,
1992. Springer-Verlag. URL: http://dl.acm.org/citation.cfm?id=
646150.679345.

E. Truyen, W. Joosen, B. N. Jorgensen, and P. Verbaeten. A gener-
alization and solution to the common ancestor dilemma problem in

delegation-based object systems. Proceedings of the 2004 Dynamic

Aspects Workshop, 2004.

A. Trifu and R. Marinescu. Diagnosing design problems in object
oriented systems. In Proceedings of the 12th Working Conference on
Reverse Engineering, WCRE 05, pages 155-164, Washington, DC,
USA, 2005. IEEE Computer Society. URL: http://dx.doi.org/10.
1109/WCRE.2005.15, doi:10.1109/WCRE.2005. 15.

W. C. Wake. Refactoring Workbook. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, 2003.

S. Wong, Y. Cai, M. Kim, and M. Dalton. Detecting software modular-
ity violations. In Proceedings of the 33rd International Conference on

Software Engineering, ICSE 11, pages 411-420, New York, NY, USA,

2011. ACM. URL: http://doi.acm.org/10.1145/1985793.1985850,

doi:10.1145/1985793.1985850.

D. Zaparanuks and M. Hauswirth. The beauty and the beast: sep-
arating design from algorithm. In Proceedings of the 25th European
conference on Object-oriented programming, ECOOP’11, pages 27-51,
Berlin, Heidelberg, 2011. Springer-Verlag. URL: http://dl.acm.org/
citation.cfm?7id=2032497.2032502.

Journal of Object Technology, vol. 12, no. 2, 2013

http://dx.doi.org/10.1109/TSE.2007.4
http://dx.doi.org/10.1109/TSE.2007.4
http://dx.doi.org/10.1109/TSE.2007.4
http://dl.acm.org/citation.cfm?id=227726.227810
http://dl.acm.org/citation.cfm?id=646150.679345
http://dl.acm.org/citation.cfm?id=646150.679345
http://dx.doi.org/10.1109/WCRE.2005.15
http://dx.doi.org/10.1109/WCRE.2005.15
http://dx.doi.org/10.1109/WCRE.2005.15
http://doi.acm.org/10.1145/1985793.1985850
http://dx.doi.org/10.1145/1985793.1985850
http://dl.acm.org/citation.cfm?id=2032497.2032502
http://dl.acm.org/citation.cfm?id=2032497.2032502
http://dx.doi.org/10.5381/jot.2013.12.2.a1

Classification of Structural Design Smells - 29

About the authors

S G Ganesh is a practitioner currently working in the area of
code quality management in Siemens Corporate Research and
Technologies in Bangalore. Prior to Siemens, he worked in HP’s
C++ compiler team for 5 years and was also a member of C++
standardization committee. His areas of interests include OO
design, design patterns, and programming languages. He is a
Software Engineering Certified Instructor (IEEE certification).
Contact him at ganesh.samarthyam@siemens.com.

Tushar Sharma is a researcher and practitioner at Siemens
Corporate Research & Technologies-India for the last five years.
His research interests include OO software design, OO pro-
gramming, refactoring, and design patterns. Contact him at
tushar.sharma@siemens.com.

Girish Suryanarayana works as a researcher and a consultant
architect at Siemens Corporate Research & Technologies India. He
received a PhD in Information and Computer Science from the
University of California, Irvine in 2007. His interests lie primarily
in the area of software architecture. Girish is a IEEE-certified
SECI (Software Engineering Certified Instructor) and regularly
conducts trainings on software architecture and design. Contact
him at girish.suryanarayana@siemens.com.

Acknowledgments We thank Prof. K. V. Dinesha (IIIT, Bangalore) and Christian
Korner (Siemens Corporate Research and Technologies, Munich) for their suggestions
during the early stages of this work.

Journal of Object Technology, vol. 12, no. 2, 2013

mailto:ganesh.samarthyam@siemens.com
mailto:tushar.sharma@siemens.com
mailto:girish.suryanarayana@siemens.com
http://dx.doi.org/10.5381/jot.2013.12.2.a1

	Introduction
	Motivation and Background
	Lack of Well-Organized Catalogs
	Lack of Consistent and Useful Classification Schemes
	Lack of Common Consistent Vocabulary

	Principle-based Classification Scheme for Smells
	Limiting Scope to Structural Micro-architectural Smells
	Classification Based on Violation of Design Principles
	First Level of Classification
	Second Level of Classification

	Concise and Uniform Naming Scheme

	Documentation of Cataloged Smells
	An Example: Cyclic Hierarchy

	Design Smell Catalog Using Principle-based Classification
	Design Smells Violating the Principle of Abstraction
	Incomplete Abstraction
	Passive Abstraction
	Delegating Abstraction
	Imperative Abstraction
	Trivial Abstraction
	Unutilized Abstraction
	Overlooked Abstraction
	Duplicate Abstraction
	Large Abstraction
	Dense Abstraction
	Controlling Abstraction
	Multifaceted Abstraction
	Envious Abstraction

	Design Smells Violating the Principle of Encapsulation
	Deficient Encapsulation
	Unrestrained Encapsulation
	Violated Encapsulation

	Design Smells Violating the Principle of Modularity
	Weakened Modularity (Cyclic Dependencies Form)
	Weakened Modularity (Central Dependencies Form)

	Design Smells Violating the Principle of Hierarchy
	Folded Hierarchy
	Missing Hierarchy
	Unexploited Hierarchy
	Complex Hierarchy
	Convenience Hierarchy
	Rebellious Hierarchy
	Broken Hierarchy
	Cyclic Hierarchy
	Polygonal Hierarchy
	Unnecessary Hierarchy
	Degraded Hierarchy
	Intimate Hierarchy
	Parallel Hierarchy

	Initial Evaluation
	Discussion
	Enhancing the catalog with more smells
	Consistency of Names of Principles
	Improved Naming Scheme for Smells

	Future Directions
	Bibliography
	About the authors

