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Abstract Harnessing metamodels to engineer application domains is at the
core of Model-Driven Engineering. A large number of artifacts pursuing a com-
mon scope are defined starting from metamodels which represent the nucleus
of an ecosystem. Analogously to any software artifact, metamodels are equally
prone to evolution. However, changing a metamodel might affect the compo-
nents of the ecosystem. In fact, when a metamodel undergoes modifications,
the related artifacts might require to be consistently adapted in order to recovery
their validity. This is an intrinsically difficult process. It requires different tech-
niques for each specific kind of artifact and can easily lead to inconsistencies
and irremediable information erosion, if based on spontaneous and individual
skills. This paper discusses the problem of identifying, predicting and evaluat-
ing the significance of the metamodel change impact over the existing artifacts.
The approach is agnostic of the adaptation technique and formalizes the whole
ecosystem and the relatedness of the involved artifacts in terms of megamod-
els. This allows developers i) to establish relationships between the metamodel
and its related artifacts, and ii) to automatically identify those elements within
the various artifacts affected by the metamodel changes. The approach can be
considered as preparatory to any systematic adaptation process.

Keywords Model driven engineering, coupled-evolution, metamodeling

1 Introduction

In recent years, Model-Driven Engineering [Sch06] (MDE) has taken a leading role in ad-
vancing a new paradigm shift in software development. Domain metamodels are at the core
of this discipline, as most of the constituent artifacts and components are based on them,
including models and transformations. However, the entities which are defined upon domain
metamodels are numerous and include also syntax-directed and diagrammatic editors, model
differencing and analysis tools, just to mention a few (see Figure 3).

Analogously to any other software artifact, domain metamodels are living entities too.
Indeed, they are subject to evolutionary pressures as soon as new insights about the domain
emerge and require to be consistently reflected in the metamodel formalization [Fav03]. Con-
sequently, new requirements may need to be accommodated in the metamodel and existing
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ones may require to be refined, or even amended. Unfortunately, whenever a metamodel
undergoes modifications, all the related artifacts must be accordingly adapted in order to re-
main valid. Naturally, the modeler and the implementors can always adapt the models, the
transformations and any other related tool by inspecting the artifacts, detecting the necessary
refactorings, and finally applying them with manual operations. However, carrying on this
activity without specialized tools and techniques presents intrinsic difficulties. The intricacy
of metamodel changes on one hand, but also the size and diversity of the artifacts on the
other hand, can rapidly affect the accuracy and precision of the adaptation [BF99]. In fact, if
the adaptation is based on spontaneous and individual skills and pursued without any auto-
mated support, it can easily give place to inconsistencies and lead to irremediable information
erosion [Wac07].

In this paper, we discuss the problem of identifying, predicting and evaluating the sig-
nificance of the domain metamodel change impact over the existing artifacts. Documenting
and formalizing the relatedness of all the involved entities is preparatory to any systematic
adaptation process. To this end, we propose an approach that is agnostic of the adaptation
technique and permits i) to establish relationships between the domain metamodel1 and its
related artifacts, and ii) to automatically identify those elements within the various artifacts
affected by the metamodel changes. The approach focusses on the exploration and definition
of the various relationships that may exist between the involved modeling artifacts and the
modeling language. The approach contributes in several ways:

– the interdependencies not always are explicit and easily observable, thus document-
ing them in a rigorous way can provide an adaptation developer with information and
insight normally obscured by the intricacy of the modeling structures or even by the
code;

– it eases the assessment of the impact significance of metamodel changes by generat-
ing from the above specification documents which detect and highlight the affected
modeling elements.

In essence, harnessing the opportunity of using formal documentation and automated support
for the detection and analysis of the adaptation requirements is crucial for reducing the num-
ber of false positives. The approach is based on megamodeling, a promising technique for
representing and managing relationships that may exist between a set of modeling artifacts,
for this reason this technique has been employed to represent the relations between artifacts
and domain metamodel; therefore, it is a fundamental building block for possible approaches
to automatically derive either the corrupted or involved model elements after a change in the
domain metamodel occurred.

Structure The paper is organized as follows. In Section 2 motivation and exemplars of
coupled evolution scenarios are illustrated and the steps involved in coupled evolution are
identified. In Section 3 we discuss how the identified relations in Section 2 can be formalized
in order to automate the identification of impacted elements. Then, Section 4 presents how
conformance has been formalized in the context of our approach. Section 5 describes how we
exploit megamodeling for managing the coupled evolution of modeling artifacts. A scenario
in which we apply our approach and its usefulness in practice are provided in Section 6.
Finally, Section 7 discusses related work, and Section 8 provides conclusions and future
work directions.

1In this work we will use the term domain metamodel wherever we refer to the metamodel describing the prob-
lem domain; the terms metamodel, domain model, and modeling language can be seen as synonyms of domain
metamodel.
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2 Modeling Artifacts Live in Ecosystems

In MDE domain metamodels are core ingredients which rarely exist in isolation, i.e., a
domain metamodel can be considered – together with the modeling artifacts that depend
on it – as part of an ecosystem, i.e., a set of inter-related entities which are used together for
a common objective2. With reference to Figure 1, changing a metamodel triggers a ripple

Figure 1 – Generic modeling artifacts ecosystem

effect which might affect the validity of the artifacts according to the dependencies existing
among them. In the sequel of the section, we analyze the nature of such dependencies in
order to better understand the consequences of the metamodel evolution over the related ar-
tifacts [vAvdBE10]. In order to analyze these interdependencies we consider the classical
workflow for using the domain metamodel which consists of the following stages:

1. Domain Metamodel Development. Domain experts and developers work together to
iteratively create an initial version of the domain metamodel. The process alternates
between domain metamodel changes and some form of validation until the domain
metamodel accuracy, expressiveness, and coverage are satisfactory [CDRKP12].

2. Domain Metamodel Usage. Models are instantiated according to the metamodel defi-
nition. At this stage, the domain metamodel is more quiescent and is eventually subject
to only minor changes. However, relevant changes are still possible and may be even-
tually recorded to be later analyzed in the next step.

3. Domain Metamodel Evolution/Maintenance. Once a significant number of relevant
changes have been collected, the designer must assess the impact significance of the
requested changes and eventually proceed with a metamodel refactoring.

The last step is the most critical as it can invalidate the ecosystem. Hence, our approach
advocates the necessity of assessing the significance of the metamodel refactorings in order
to evaluate the effort for restoring the ecosystem consistency. Designing the right adaptation
for each kind of artifact is a difficult task and is traditionally not univocal [DRIP11]. Thus, a
rigorous discipline is essential because if this problem is inaccurately handled, can increas-
ingly render the domain metamodel resilient to variations. A typical example is provided by
the GMF editors which respond to domain metamodel changes with difficulty, making the
metamodel locked in [DRLP10]. Fundamentally, the adaptation process can be considered as
a three-steps process:

2A more complete definition of software ecosystem says that it consists of the set of software solutions that en-
able, support and automate the activities and transactions by the actors in the associated social or business ecosystem
and the organizations that provide these solution [Bos09].
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1. Relations definition. The correspondences between the domain metamodel and the
artifacts are identified. Intuitively, those relations can be considered as dependencies
between artifacts, and they play a role similar to that of tracing information between
source and target models of a model-to-model transformation.

2. Change impact detection. The relations defined in the previous step are considered to
assess the metamodel change impact on the related artifacts.

3. Adaptation. The information in the previous step are used to devise proper adaptation
actions on the (possibly corrupted) artifacts. This step can employ different adaptation
procedure, depending on the types of artifacts to be adapted.

Figure 2 – Generic adaptation activities

In current practices these steps are traditionally not distinguished, so that the impact assess-
ment and the adaptation semantics are blurred. The focus of this work is on the first and
second steps described in Figure 2, with the main requirement of being agnostic of the spe-
cific solutions that can be applied in the third step.

Dependencies emerge at different stages during the domain metamodel life-cycle, and
with different degrees of causality depending on the nature of the considered artifact. For
instance, by referring to Figure 3, there may be a model transformation (endogenous, in this
specific case) that takes as input a model m1 and produces a model m2, both conforming to
the domain metamodel; also a graphical or textual tool to describe models or other kinds of
artifacts may be utilized, and all of them are strictly related to the domain metamodel.

Figure 3 – Overview of the artifacts relation with the domain metamodel

Being more precise, metamodels may evolve in different ways: some changes may be ad-
ditive and independent from the other elements, thus requiring no or little co-changes. How-
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ever, in other cases metamodel manipulations introduce incompatibilities and inconsistencies
which can not be always easily (and automatically) resolved. According to our experience
and to the literature (e.g., [Béz05, CDEP08, REM+10, MEMC10, Ecl]), at least the following
relations are involved in the metamodel co-evolution problem:

• conformsTo: it holds between a model and a metamodel, it can be considered similar
to a typing relation. A model conforms to a metamodel, when the metamodel spec-
ifies every concept used in the model definition, and the models uses the metamodel
concepts according to the rules specified by the metamodel [Béz05];

• domainConformsTo: it is the relation between the definition of a transformation and the
metamodels it operates on [MEMC10]. For instance, a sample domain conformance
constraint might state that the source elements of every transformation rule must cor-
respond to a metaclass in the source metamodel [REM+10] and same for target meta-
model elements;

• dependsOn: it is a generic and likely the most complex relation, since it occurs between
a metamodel and modeling artifacts, which do not have a direct and a well-established
dependence with the metamodel elements. For instance, in case of EMFText [EMF]
syntax specification, it does not refer directly to the elements specified in the meta-
model, even though some form of consistency has to be maintained in order to not
obtain EMFText editors with errors at runtime.

Clearly, the conformance and the domain conformance relation are contained in the depen-
dence relation. To illustrate the relations described above, in the remaining of this section
we will consider some cases about the evolution of a simple Petri net metamodel from the
version shown in Figure 4 to the evolved version in Figure 5.

Figure 4 – PetriNet Initial metamodel version

In the evolved version of the metamodel the metaclasses Arc, PlaceToTransition, and
TransitionToPlace have been added, and other changes have been executed like the merg-
ing of the references places and transitions into the new elements, and the renaming of the
metaclass Net as PetriNet. Due to these relations described above, such modifications can
affect those existing artifacts that are coupled with the Petri net metamodel, as discussed in
the following sections.

2.1 Metamodel/model Co-evolution

The conformance relation conformsTo establishes the typing – and consequently the validity –
of a model with respect to a metamodel. It can be considered analogous to the typing relation
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Figure 5 – PetriNet evolved metamodel version

between an object and its class. Changes in the metamodel might compromise the validity of
the existing models in several ways depending on such a relation and their validity must be
re-established according to the conformance relation. In this scenario, metamodel changes
can be classified according to their corrupting effects [Wac07]:

• non-breaking changes: changes which do not break the conformance of models to the
corresponding metamodel;

• breaking and resolvable changes: changes which break the conformance of models
even though they can be automatically co-adapted;

• breaking and unresolvable changes: changes which break the conformance of models
which can not automatically co-evolved and user intervention is required.

Figure 6 – PetriNet model affected by the simple metamodel evolution
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For instance, Figure 6 shows a simple model conforming to the initial version of the
PetriNet metamodel in Figure 4, whose validity is compromised by the changes performed
on the metamodel to obtain the final version in Figure 5. In fact, the conformance relation is
broken because of the modeling elements highlighted in Figure 6 with dotted lines. In partic-
ular, the element net1 has to be adapted since the metaclass Net no longer exists. Moreover,
the places and transitions references have to be changed since they have been merged into
the new elements reference. Finally, the references src and dst have been replaced by some
added class references.

2.2 Metamodel/transformation Co-evolution

Domain metamodel changes can compromise model transformations as well. In particular,
inconsistencies arise when elements in the considered transformation no longer satisfy the do-
main conformance relation mentioned above. For instance, when a concept is removed from
a domain metamodel, existing transformations that use the removed concept are no longer do-
main conformant. The inconsistencies with the domain metamodel are manifested at compile
time and countermeasures must be adopted. In this respect, in the case of metamodel/trans-
formation co-evolution, metamodel manipulations can be classified3 as follows [LBNK10]:

• fully automated: changes that affect existing transformations which can be automati-
cally migrated without user intervention;

• partially automated: changes are modifications that affect existing transformations
which can be adapted automatically even though some manual fine-tuning is required
to complete the adaptation;

• fully semantic: changes are those modifications which affect transformations which
cannot be automatically migrated, and the user has to completely define the adaptation.

To better comprehend such a classification, let us consider the ATL [JABK08] transformation
shown in Listing 1. It is an excerpt of one of the transformations available in the ATL Zoo4.
The transformation is designed to generate PNML5 models starting from Petri net models.
Also such a transformation is affected by the domain metamodel changes in Figure 4. For
instance, in lines 4,9,16, there are references to the Net element, which does not exist in
the new version of the domain metamodel. Moreover, in line 21 the references places and
transitions are used, even though they have been merged into the new reference elements.
Finally, the use of the references src and dst in lines 40 and 50 must be adapted. Indeed the
transformation, when executed, gives errors at runtime and the developer has to find and fix
the inconsistencies.

Listing 1 – Fragment of the PetriNet2PNML ATL transformation
1module PetriNet2PNML;
2create OUT : PNML from IN : PetriNetMM0;
3...
4helper context PetriNetMM0!Net def: totPlace() : String =
5 self.places->select(e |
6 e.oclIsTypeOf(PetriNetMM0!Place)
7 ).size().toString();
8
9helper context PetriNetMM0!Net def: totTransition() : String =

3For the sake of simplicity, those changes in the domain metamodel which do not affect the existing transforma-
tions are not considered in the present discussion.

4www.eclipse.org/m2m/atl/atlTransformations/
5PetriNet Markup Language
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10 self.transitions->select(e |
11 e.oclIsTypeOf(PetriNetMM0!Transition)
12 ).size().toString();
13...
14rule Net {
15 from
16 s : PetriNetMM0!Net
17 to
18 t : PNML!NetElement (
19 name <- name,
20 document <- thisModule.document,
21 contents <- s.places.union(s.transitions),
22 type <- type-uri,
23 id <- s.name
24 ),
25 ...
26 label : PNML!Label (
27 text <- s.name+’ tot places:’+s.totPlace()+’ and tot transitions:’+s.totTransition()
28 ),
29 ...
30 do {
31 thisModule.document.nets <- t;
32 }
33}
34rule Place {
35 from
36 s : PetriNetMM0!Place
37 to
38 t : PNML!Place (
39 name <- name,
40 id <- s.name + ’-src:’ + s.src.size().toString() + ’-dst:’ + s.dst.size().toString()
41 ),
42 ...
43}
44rule Transitions {
45 from
46 s : PetriNetMM0!Transition
47 to
48 t : PNML!Transition (
49 name <- name,
50 id <- s.name + ’-dst:’ + s.dst.size().toString()
51 ),
52 ...
53}

2.3 Metamodel/Concrete Syntax Specification Co-evolution

The concrete syntax of a modeling language is usually given by linking the abstract syntax
given in a metamodel with a (textual or diagrammatic) vocabulary. Thus, changes within a
domain metamodel can also affect to different extents the concrete syntax specification by
turning for instance existing mappings into dangling references. An example of notation for
specifying the concrete syntax (and its related mappings) is EMFText [EMF]. For example,
by referring to Figure 7, EMFText allows the user to define a textual syntax specification for
Petri net models.

Starting from an EMFText specification, a number of supporting tools can be generated,
like a parser (text-to-model) and pretty-printer (model-to-text) for domain models sentences,
and a dedicated modeling environment for the domain metamodel, analogously to what hap-
pens with meta-environments for language development (e.g., see [Kli93]).
In particular, the EMFText engine allows the user to build model-to-text and text-to-model

transformations to serialize models and to parse sentences of the considered DSML, respec-
tively. These operations, called injection and extraction, are bidirectional and can be executed
by means of model-to-code transformations. For each structural element defined in the do-
main metamodel, its corresponding syntactical constructs are defined in EMFText.
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Figure 7 – A simple Petri net textual model using EMFText concrete syntax specification

EMFText syntax specifications are expressed as a set of rules written by following a
grammar-like style. Clearly, changes in the domain metamodel can affect an existing EMF-
Text syntax specification. Thus, similarly to what holds for ATL transformations (see Sec-
tion 2.2), a dependsOn relation exists between the domain metamodel and its corresponding
concrete syntax specifications. Moreover, in order to precisely estimate what is the impact of
a domain metamodel evolution, each part of the syntax specification impacted by the changes
in the domain metamodel must be identified. For example, Figure 8 shows a fragment of the
EMFText syntax specification for Petri nets, impacted by the domain metamodel evolution.
Highlighted elements are the syntax errors after changes within the domain metamodel have
been performed. For instance, the Net metaclass has been renamed to PetriNet, making the
rule Net no longer valid, as depicted in the error tooltip.

3 Formalizing Metamodel/artifacts Co-evolution Relation-
ships

As explained in Section 2, the intent of our approach is to provide an approach methodology
that can be useful to predict and make decision on the refactoring impact of the domain meta-
model on its related artifacts. The approach can be used as a specification and a guideline
for adaptation processes. Below we will explain how the formalization of the relations help
to automate and to better document the impact of domain metamodel changes on its related
artifacts. The relations between the domain metamodel and its related modeling artifacts are
of different nature; however, despite their different role within the modeling artifacts ecosys-
tem, they share a common structure. In this section we present a mechanism to formalize
the common structure of those relationships. In the remainder of this section we apply the
proposed mechanism to define the domainConformsTo relation in Section 3.1, in Section 3.2
we formalize the dependsOn relation, and in Section 4 we present the formalization of the
conformsTo relation.

The common structure of those relations implies that they can be uniformly formalized as
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Figure 8 – A EMFText concrete syntax specification impacted by the evolution of the Petri net meta-
model

a set of links, where each type of link has a different meaning depending on the nature of the
involved relation. Regardless of the adaptation process for managing the modeling artifacts
evolution, it is important to precisely define how the various relations among the involved
modeling artifacts can be formalized.

In this section we will show that by formalising those relations, we provide support for
a new level of automation and for the development of adaptation techniques in a more con-
trolled environment. Indeed, our formalisation allows developers to automatically derive the
dependencies between the domain metamodel and its related modeling artifacts, decreasing
the risks that may exist when manual checks are performed (like assuming erroneous depen-
dencies between the artifacts, having false positives when considering the impacted modeling
elements, and so on).

In Figure 9 we show a general overview of the formalization of the relations between
a generic artifact A and the domain metamodel MM. An Artifact A conforms to its Artifact
Metamodel MMA, and it has some kind of relation with the Domain Metamodel MM; for
example a EMFText syntax specification is connected to the domain metamodel by means
of its rules and conforms to the EMFText metamodel. Each kind of artifact must conform
to a formal specification of the concepts that it can express. An artifact must respect some
constraints and can use only concepts expressed in its metamodel: we call that metamodel
Artifact Metamodel MMA, where A is the artifact and the relation holding between them is
the well-known conformance relation. The relation between the artifact A and the domain
metamodel MM, called Dependency, can be represented as a set of links. Each link connects
elements within the domain metamodel (like metaclasses, properties, etc.) with specific el-
ements in the modeling artifact. These links represent the dependencies which can be used
to assess the impact that some change within the domain metamodel may have on elements
within the linked modeling artifact. Under this perspective, elements not connected at this
stage represent independence between the domain metamodel and its related artifact; that is,
they represent those elements within the domain metamodel whose evolution will not directly
impact any element within the artifact being considered.
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In this work the links between any modeling artifact within the software ecosystem are
contained into special models (e.g., wmrelation and wmdependency in Figure 9) called weav-
ing models [Béz05]. A weaving model can be seen as a means for setting fine-grained rela-
tionships between models and executing operations on them6.

For example, in the ecosystem we may have a weaving model between a model trans-
formation T and its source metamodel MM containing a link between each transformation
rule in T and its corresponding input metaclass defined in MM ; those links can then be used
(i) to establish fine-grained dependency relationships between T and MM , and (ii) to iden-
tify which transformation rules need to be reconsidered if some metaclass in MM has been
changed.

Figure 9 – General overview of the relation definition

In this work, we homogeneously represent the dependency between a domain metamodel
MM and its related artifacts (A in Figure 9) as a weaving model (wmdependency in Figure 9).
Representing those links(dependency links) as a weaving model between A and MM offers
a number of advantages; more specifically, it helps in keeping MM and A loosely coupled,
avoiding to have a large metamodel for capturing all the modeling concepts and their relation-
ships. Also, adhering to the “everything is a model” principle [Béz05], those weaving models
can be automatically generated by means of model transformation techniques. Indeed, in our
approach the links in wmdependency are not defined manually (which may be a very risky
and error-prone activity), they are automatically generated. This generation step is automatic
only if the relations between the types of the element of A and the types of elements of MM
are known a priori and then formalized. In our approach, we represent this information as
an additional weaving model called wmrelation. Such a weaving model is composed of a set
of bidirectional links between the concepts in MMA and the types of the concepts in MM
which may be linked to A, that is the metametamodel that MM conforms to. In our approach
we use Ecore as metametamodel7. In doing so, we manage to represent the relations between

6For the sake of clarity, we do not show those links in Figure 9, however the interested reader can refer to
Sections 3.1, 3.2 and 4.2, in which they will be extensively used and described.

7The Eclipse Modeling Framework (EMF) includes a meta model (Ecore) for describing models and runtime
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MM and A in a generic way, independently from the various forms that A may have. This
opens for the possibility to automatically generate wmdependency by means of the generic
model transformation Rel2Dep. This transformation takes as input wmrelation, the artifact
A and the domain metamodel MM, and produces as output wmdependency according to the
links defined in wmrelation.

This aspect of our approach is also related to the genericity of the used weaving models.
More specifically:

• wmrelation is generic since it is defined between the metamodel MMA specifying the
type of a set of artifacts and the Ecore metametamodel. Fundamentally, in the context
of a single specific type of artifact (e.g., ATL model transformations), this weaving
model will always be the same, independently of how many artifacts of type MMA

exist within the ecosystem.

• wmdependency is defined between each artifact A and the domain metamodel MM .
Clearly, this weaving model is not generic since it depends on the specific artifact be-
ing considered. In this paper our Rel2Dep transformation is needed to alleviate this
issue; indeed, Rel2Dep allows modellers to automatically obtain wmdependency weav-
ing models by starting from the information defined by the generic wmrelation weaving
model.

Summarising, the wmdependency weaving model between A and MM represents the de-
pendencies that identify all meta-elements in MM that are connected to elements in A; then
a refactoring on a meta-element in MM may induce a change propagation on the connected
element in A. In next sections we will show the application of our approach by defining the
generic relations for ATL and EMFText.

When considering typical modeling artifacts such as model transformations, concrete syn-
tax specifications, templates for code generation, a recurrent treat is that they are defined in
terms of metamodeling elements. For example, input and output patterns of rule in a model
transformation are specified as a metaclass with some condition on its elements, a template
in a concrete syntax specification specify which pieces of text must be generated for all in-
stances of a given metaclass, etc. This means that for typical modeling artifacts and engines,
there is a natural connection between MM and their constructs, however this is not the case
when we consider the conformance relation between the domain metamodel and the terminal
models conforming to it. Thus, special attention must be paid to deal with the conformance
relation; in Section 4 we will describe this specific aspect of our approach.

3.1 Relating ATL Transformations to the Domain Metamodel

As anticipated in Section 2, in this work we call domainConformsTo the relation between the
domain metamodel and an ATL model transformation. Figure 10 shows how the domainCon-
formsTo relation can be formalized by instantiating the generic mechanism described in the
previous section.

As represented in Figure 10, the generic artifact A has been instantiated with an ATL
transformation T and the Artifact Metamodel MMA has been instantiated with the ATL
metamodel. The weaving model WMrelation between the ATL metamodel and Ecore speci-
fies which meta-elements in ATL are connected to other meta-elements in Ecore; for example
the OclModelElement concept in ATL is connected with the EClass concept in Ecore through

support for the models including change notification, persistence support with default XMI serialization, and a very
efficient reflective API for manipulating EMF objects generically.
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Figure 10 – Relating ATL transformations to the domain metamodel

the name of both of them, and so on. At this point, the wmdependency weaving model con-
taining the dependencies between the transformation T and the domain metamodel MM can
be automatically generated. This is done by executing our generic Rel2Dep model transfor-
mation that takes as input wmrelation, T, and MM and produces the wmdependency weaving
model containing the dependencies between T and MM. For example, the OclModelElement
with the property name “Net” is connected to the metaclass (which is an instance of EClass
in Ecore) in the PetriNet metamodel with the name “Net”. This dependency link specifies
that changing the name of the Net metaclass in the PetriNet metamodel implies to propagate
such a change to each OclModelElement linked to it.

3.2 Relating Concrete Syntax Specifications to the Domain Meta-
model

Similarly to what has been done for ATL transformations, in this section we show how our
approach can be used for defining the relation between EMFText and the Ecore metamodel
by creating another WMrelation weaving model. Again, the WMrelation weaving model,
together with a EMFText syntax specification and the domain metamodel MM will be the
input of the Rel2Dep transformation. The result of this transformation is the WMdependency

weaving model linking the specific EMFText syntax specification to the domain metamodel
MM. Figure 11 shows that the generic artifact A has been instantiated with a EMFText syn-
tax specification S for the Petri net metamodel and the Artifact Metamodel MMA has been
instantiated with a metamodel containing the definition of the constructs of EMFText.

In this case, the links between the domain metamodel and the EMFText meta-elements
are done by name (e.g.Package, Rule, children, are meta-elements of the EMFText meta-
model connected to the domain metamodel), therefore the relationship between them can be
formalized by considering pairs of matching names. For example we identified a link be-
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Figure 11 – Relating EMFText specifications to the domain metamodel

tween the EClass concept in Ecore and the concept of Rule in EMFText by passing through
their metaclass property. Similarly to what happened for ATL transformations, changing the
name of a metaclass in MM induces the corruption of the syntax specification; in particular,
each Rule linked to the changed EClass must be changed.

4 Managing the Conformance

As anticipated in Section 3, the conformsTo relation must be considered differently from the
other relations. Indeed, conformance is more strict because, differently from the other rela-
tions for typical modeling artifacts in which there is a natural connection between the domain
metamodel MM and their constructs, it is a cross-level relation in the metamodeling stack.
In addition, if we consider Figure 12, each considered artifact (i.e., T, S, A in the figure)
depends on the domain metamodel MM; that is, if the domain metamodel MM undergoes
some change, those artifacts may be impacted by the changes and may need to be adapted
accordingly. Also, it should be noted that each modeling artifact conforms to its correspond-
ing metamodel (i.e., MMATL, MMEMFText, and MMA in the figure), which we assume
it does not change during the development process. On the contrary, if we consider model
instances (i.e., m in the figure), the dependency relationship between them and the domain
metamodel is the conformsTo relation itself. Naturally, each model instance m conforms to the
domain metamodel itself, which actually is the subject of the evolution (that is, it can change
during the development process). So, the main difference between the conformsTo relation
and all the other relations is that when we consider any modeling artifact in the ecosystem,
the metamodel of the element that is impacted by a change in MM is fixed, whereas when we
consider instances of the domain metamodel, their metamodel is exactly the element that has
changed.
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Conformance is implemented in the EMF8 architecture and is analogous to the “Class/in-
stance” relationship in Java programs.

Figure 12 – Relation between Ecore and tool metamodels

As represented in Figure 12, the conformsTo relation we are considering in this part of
our work is the one between the domain metamodel MM and the terminal models conforming
to it (m in figure). When linking the other artifacts to the domain metamodel (e.g., the trans-
formation T with MM in figure), we manage to define their relationship as a weaving model
between the metamodel of the involved artifact (MMatl in figure) and the Ecore metameta-
model. However, we cannot directly apply this mechanism when considering the relation be-
tween MM and the terminal models conforming to it. This is because the domain metamodel
is (i) subject to evolution and (ii) variable for each domain being considered; thus, we cannot
assume that the domain metamodel MM is fixed. Basically, a possible solution for this issue
is to define a mechanism for representing terminal models in a metamodel-independent man-
ner. In next sections we show how to represent model instances in a metamodel-independent
representation, and then we present how we exploit this mechanism for explicitly defining
the conformsTo relation.

4.1 A metamodel-independent Models Representation

In order to represent model instances independently from the metamodel they conform to, we
need a generic metamodel for specifying model instances; we call it GMM. Even though for
different purposes, this technique has been used also in other approaches in MDE research.
For example, in [vdBPV11] a domain-specific (meta)metamodel has been introduced as well;
however, the metamodel presented in [vdBPV11] contains concepts for describing both mod-
els and metamodels, whereas our GMM metamodel contains only concepts for describing
model instances. This is a consequence of the different purposes of the two approaches: the
metamodel presented in [vdBPV11] is used for simplifying the representation of model dif-
ferences in a generic manner, whereas our GMM metamodel has been designed to have a
generic representation of a model, independently from the metamodel it conforms to. Also,
our approach is in line with the approach defined in [Ros11], where a metamodel indepen-
dent syntax for models has been defined for automatic consistency checking. It is important
to note that our GMM metamodel is different from a metametamodel because:

8http://www.eclipse.org/modeling/emf/
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• a metametamodel is a model that is its own reference model (i.e., it conforms to it-
self) [JB06]; instead, our GMM metamodel conforms to the Ecore metametamodel
only (which is different from the GMM metamodel itself);

• our GMM metamodel exists at the M2 level of the metamodeling stack, whereas metameta-
models exist at the M3 level. More specifically, metametamodels play the role of ref-
erence models for metamodels, whereas our GMM metamodel is the reference model
for terminal models only.

Figure 13 – General models representation

Figure 13 shows how an instance of the GMM metamodel (m’ in the figure) relates to its
corresponding instances of the domain metamodel MM (m in the figure). Fundamentally, m’
contains the same entities of the m model; they differ in the metamodel they conform to: m
conforms to the domain metamodel (which may be different for each domain under consid-
eration), whereas m’ conforms to the generic GMM metamodel (which is unique, regardless
of the domain under consideration).

Since GMM is unique, we can provide a generic higher-order transformation9 MM2GMM
Generator that takes as input a domain metamodel MM and produces a model-to-model
transformation MM2GMM. The MM2GMM transformation allows developers to automati-
cally obtain a generic model instance m’ starting from a standard model m. The MM2GMM
transformation creates also an auxiliary weaving model containing tracing information be-
tween model elements in m and the obtained model elements in m’; this tracing information
will be useful while performing change impact analysis because they allow us to identify
which elements in m correspond to specific elements in m’.

It is important to note that the MM2GMM transformation is not generic since it actually
depends on the domain metamodel MM. Indeed, if we consider MM2GMM as a function, it
can be defined as follows:

9An higher-order transformation is a special kind of model transformation taking other transformations as input
or producing other transformations as output.
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Figure 14 – Generic metamodel for model instances

MM2GMM : MM → GMM xMMtrace

where MM is the domain metamodel, GMM is our generic metamodel for model instances,
and MMtrace is the metamodel of the tracing weaving model. Clearly, MM2GMM de-
pends on the specific domain metamodel MM under consideration. It is also important to
note that the higher-order transformation MM2GMMGenerator is generic, and always appli-
cable independently from the considered domain metamodel MM. This allows us to reach
genericity by automatically generating the MM2GMM transformation by means of the
MM2GMMGenerator higher-order transformation. Intuitively, if we consider MM2GMM
Generator as a function, it can be defined as follows:

MM2GMMGenerator: Ecore→MMT

where Ecore is the unique metametamodel and MMT is the metamodel of a model transfor-
mation language (e.g., the metamodel of ATL). In this case, there is no dependency between
MM2GMMGenerator and either the domain metamodel MM or any model conforming
to it.

Figure 14 shows a fragment of GMM. It is composed of a root Model concept, that con-
tains a set of Objects representing instances of some metaclass defined in a metamodel; each
Object can contain zero or more Features. A Feature can be either an Attribute or a Refer-
ence, depending on whether the type of the feature is primitive or an object. More specifically,
strings, integers or booleans are primitive types, whereas objects are instances of some meta-
class of the metamodel. All the elements within a model conforming to GM can have an
associated identifier, it is defined by means of the name property in NamedElement. As an
example of a possible instance of GMM, in Figure 15 we show the metamodel-independent
version of the example model represented in Figure 6. This model contains the same infor-
mation of the Petri net model in Figure 6: a net1 object containing four objects p1,p2,p3,t1
in relation between them. For the sake of brevity, we do not go into further details about the
shown Petri net model.

It is important to note that generic model instances defined by using GMM are not di-
rectly linked to their corresponding metamodel (that in our case is the domain metamodel
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Figure 15 – PetriNet model representation with GMM

MM). This is exactly what we want to achieve in this context: model and metamodels are
not directly coupled and they do not depend on each other. This allows us to treat model in-
stances in the same way as we treat all the other modeling artifacts depending on the domain
metamodel.

4.2 Relating Models to their Metamodel

By using the generic metamodel described in Section 4.1, we can explicitly define the confor-
mance relation between a model instance in GMM and the domain metamodel MM through
our wmrelation and wmdependency weaving models (see Section 3). This allows us to treat
instances of the domain metamodel MM in the same way as we treat all the other modeling
artifacts. More specifically, in Figure 9 we represented the overview of how we treat the
relation between a generic modeling artifact with respect to the domain metamodel MM; in
this context m is a model instance, generally represented in XMI (i.e., the standard XML
Metadata Interchange). A model m conforms to the domain metamodel MM.

Figure 16 shows how we represent the ”conformsTo” relation by means of the weaving
models described in Section 3. The wmrelation weaving model is defined between the Ecore
metamodel and the generic GMM metamodel. The weaving links contained in wmrelation

formalize the conformance relationship independently from the domain metamodel MM .
Figure 17 shows how we defined such a relationship in wmrelation. In this case, the weaving
links in wmrelation represent a refinement of the ”conformsTo” relation between Ecore and
GMM . For example, a weaving link between EClass in Ecore and Object in GMM establish
that each object in an instance of GMM is an instance of some metaclass in a metamodel
conforming to Ecore. Similarly, weaving links exist also between EReference in Ecore and
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Figure 16 – General overview of the relation definition

Reference in GMM and between EAttribute in Ecore and Attribute in GMM.

In the same way as ATL and EMFText are managed in Section 3, the WMrelation weav-
ing model, together with an instance of GMM and the domain metamodel MM will be the
input of the Rel2Dep transformation. The result of this transformation is the WMdependency

weaving model linking the specific model instance of GMM to the domain metamodel MM.
In this context, WMdependency contains the information on impact analysis; for example,
WMdependency specifies that a change in the MetaClass “Net” in MM will impact each Ob-
ject of type “Net” in m’. The tracing information stored in the previously generated wmtrace

weaving model (see Section 4.1) will identify all the affected elements in the original model
m conforming to the domain metamodel MM.

5 Megamodeling for Managing Co-evolution

Megamodeling is a promising technique for representing and managing relationships that
may exist between a set of modeling artifacts. It has been introduced for the first time in
2004 and it actually opens to interesting new possibilities for exploiting standard model-
driven techniques also in complex situations in which large sets of interrelated models must
co-exist. In the remainder of this section, Section 5.1 provides a general overview on what
megamodeling is, Section 5.2 motivates why megamodeling plays a fundamental role in our
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Figure 17 – ConformsTo relation weaving model

approach and the added values it provides, and Section 5.3 describes how we manage the
co-evolution of interrelated modeling artifacts by means of megamodeling techniques.

5.1 What is a Megamodel?

Megamodeling [BJV04] has been proposed with the aim of supporting modeling in the large,
i.e. dealing with models, metamodels, and their properties and relations. Intuitively, a meg-
amodel is a model of which at least some elements represent and/or refer to models or meta-
models. While a metamodel specifies properties and rules governing models construction, a
megamodel specifies properties and rules governing Model Driven Engineering (MDE) ar-
tifacts construction, and among them, models and metamodels. Megamodeling operations
support the management of large libraries of artifacts that, as introduced before, could also
be models and metamodels. Megamodeling offers the possibility to specify relationships
between models (and metamodels) and to navigate among them.

As a concrete implementation of megamodeling, we refer to the AMMA platform10, as
presented in [BJRV04]. More specifically, a dedicated component of the AMMA platform is
in charge of managing megamodels, it is called AM3 [ABBJ06].

Figure 18 shows a fragment of the AM3 megamodeling conceptual framework, as pre-
sented in [ABBJ06]. In the following of this paper we refer to a metamodel of a megamodel
as metamegamodel. The main types of models are: (i) Terminal Models, which represent
the real system and conform to some metamodels, (ii) MetaModels, which define domain-
specific concepts and conform to metametamodels, (iii) MetaMetamodels, which provide
generic concepts for metamodels specification and conform to themselves.

Figure 18 shows different kinds of terminal models: (i) Transformation Models, which
are used to define transformations between models, (ii) Weaving Models, which are used
to define relationships among models, and (iii) MegaModels, which are used to support the
megamodeling process.

Megamodeling allows also to specify (typed) relationships between the modeling arti-
facts contained into a megamodel. Figure 19 shows another fragment of the megamodeling

10http://www.sciences.univ-nantes.fr/lina/atl/AMMAROOT
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Figure 18 – AM3 Megamodeling Conceptual Framework: basic elements

conceptual framework representing the artifacts relationships. They represent the generic re-
lationships that may exist between the various entities within the megamodel. An Entity is
the root metaclass of the generic metamegamodel, and represents any possible concept that
may exist within a megamodel. A relationship may be either bidirectional (Relationship in
Figure 19) or directed (DirectedRelationship in Figure 19), i.e., if it distinguishes or not be-
tween the elements it links.

Figure 19 – AM3 Megamodeling Conceptual Framework: relationships

In many cases it is important to express relationships between modeling artifacts at two
different levels of abstraction: between models and between model elements within the mod-
els. To support these two levels, both model-level relationships and model element-level
relationships must be defined. Thus, AM3 introduces a special kind of relationship to rep-
resent model-level relationships, it is called ModelWeaving and it is refined into a weaving
model (WeavingModel in Figure 20) that represents model element-level relationships. Please
refer to [JVB+10] for more information on this aspect of the AM3 megamodeling conceptual
framework.

In AM3, a megamodel records all available resources and acts as an MDE repository.
From a practical point of view, AM3 manages megamodel elements (for example model
transformations, tools, UML models, metamodels) and provides a user interface to manip-
ulate them. This user interface is generic since it does not depend either on the models,
metamodels or other artifacts within the megamodel. AM3 is extensible, and thus it al-
lows developers to extend the base metamegamodel by providing new concepts in a separate
metamegamodel.

Under this perspective, co-evolution related concepts can be defined as an extension of the
base metamegamodel; in doing so, it is possible to navigate modeling artifacts and establish
(typed) relationships among them by reusing the AM3 extensible platform. This is essentially
what we will present in Section 5.3.
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5.2 Why Megamodeling for Managing Co-evolution?

Megamodeling offers the possibility to handle models (and metamodels) as first-class entities,
to specify relationships between them and to navigate among them. This is fundamental in
our approach since all the involved modeling artifacts have different relationships defined
among them and towards the domain metamodel.

Firstly, it is important to note that a megamodel is a model itself, and thus it conforms
to a specific metamodel (our metamegamodel for managing the co-evolution of modeling
artifacts is presented in next section). This aspect of megamodeling is in line with the clas-
sical everything-is-a-model MDE principle and it opens for new interesting possibilities for
managing the co-evolution of modeling artifacts. Intuitively, a megamodel can be seen as
a model representing a complete map of the ecosystem of modeling artifacts under consid-
eration. Thus, it can be manipulated as a standard model: defining OCL rules, predicating
on it and checking specific properties (as we do for example in Section 5.4), defining model
transformations taking it as input and producing some other model, or defining model trans-
formations which may refactor the megamodel in some way, etc.

Furthermore, by keeping track of all the heterogeneous modeling artifacts within a meg-
amodel, we treat all of them as models (each of them conforming to their corresponding
metamodel). This results in an homogeneous infrastructure which enables the management
of complex artifacts; indeed, that complexity is defined and encoded into their metamodels,
thus enabling programmatic management of (even complex) models.

As introduced in the previous section, megamodeling offers the possibility to specify
relationships between models (and metamodels) and to navigate among them. This is fun-
damental for the co-evolution approach we are proposing since it allows us (i) to seamlessly
identify the possible dependencies that exist between modeling artifacts, and (ii) to consider
those dependencies in order to assess the impact of a change triggered in a specific artifact.
Moreover, in our approach we define those relationships as weaving models (i.e., wmrelation

and wmdependency in Section 3). As a consequence, in our approach we can basically define
relationships between modeling artifacts and the domain metamodel at two different levels
on granularity: on one hand the megamodel represents all the modeling artifacts involved
in a given context as well as their various relationships with the domain metamodel; on the
other hand, weaving models are used to represent finer-grained relationships between the
various elements contained in the involved models. Summarizing, using megamodels and
weaving models in combination gives a good level of flexibility to our approach. Indeed
the megamodel allows modellers to check which modeling artifacts depend on the domain
metamodel, where weaving models allow to “zoom” into the considered models and to check
which elements within the models are dependent to which elements within the domain meta-
model.

5.3 Megamodeling for Managing Co-evolution

In this section we provide a new extension to the AM3 base megamodel that is specifically
focused on the management of the co-evolution of modeling artifacts. By combining model
weaving and megamodeling, we aim to provide a generic infrastructure for managing the co-
evolution of modeling artifacts and for developing new adaptation techniques that can build
on our infrastructure.

A fundamental step for building our generic approach is the creation of a generic meta-
model encompassing the concepts for representing the various relationships defined in Sec-
tions 3 and 4; we call this metamodel GMM4EVO, it stands for Global Model Management
for managing co-EVOlution. Megamodels conforming to GMM4EVO have other models as
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Figure 20 – Extract of the metamegamodel extension for co-evolution

first class entities, such as terminal models, their metamodels, models for representing model
transformations, graphical representations, and so on; the weaving models and weaving meta-
models defined in the previous sections of this paper are also part of the megamodel.

Figure 20 presents an excerpt of GMM4EVO. GMM4EVO is defined as an extension of
the generic meta-megamodel provided by AM3. The resulting metamodel can be considered
as composed of three main parts:

1. AM3 megamodel elements: they represent all the elementary elements in MDE, that
is, terminal models, metamodels, model transformations, weaving models, etc. They
have already been described in Section 5.1.

2. AM3 relationship elements: they represent the generic relationships that may exist
between the various modeling artifacts within the megamodel. They have already been
described in Section 5.1.

3. Extension for co-evolution: this part of the metamegamodel represents our extension
for managing the co-evolution of modeling artifacts in a generic manner. According
to what said in the previous point, we define relationships at both the modeling level
and the model-elements level. More specifically, our extension is composed of four
metaclasses:

• CoevolutionRelation: specialization of the ModelWeaving metaclass that is used
to link the metamodel of a specific kind of artifact to a metametamodel.

• CoevolutionRelationModel: it is an extension of WeavingModel and represents a
refinement of a coevolution relationship. Within the megamodel, instances of this
metaclass are weaving models that define correspondences between elements of
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the metamodel of a specific kind of artifact (e.g., the metamodel of ATL) and the
elements of a metametamodel. As described in Section 3, these correspondences
can be used to automatically generate the correspondences between instances of
the linked metamodel (e.g., a specific model transformation written in ATL) and
the domain metamodel itself.

• CoevolutionDependency: it is a specialization of the ModelWeaving metaclass
and it represents a link at the modeling level between the metamodel of an in-
volved artifact and the domain metamodel.

• CoevolutionDependencyModel: this concept extends WeavingModel and it is a
refinement of a CoevolutionDependency. An instance of this metaclass is a weav-
ing model containing the various correspondences between an involved modeling
artifact (e.g., a model transformation) and the domain metamodel. Those weav-
ing models can be considered as the building blocks for assessing the impact that
a change in the domain metamodel can have on the other woven metamodels.

Developing a dedicated metamegamodel for managing the co-evolution of modeling ar-
tifacts allows us to (i) represent modeling artifacts at all levels of abstraction (i.e., model-
ing, metamodeling, and metametamodeling levels) in a homogeneous manner, (ii) define the
various relationships and correspondences between all the involved modeling artifacts in a
generic and natural way, and (iii) build an infrastructure for developing future engines that
may manage and navigate the megamodel firstly for assessing the impact of a change within
the involved modeling artifacts and secondly for (automatically) adapting the involved mod-
eling artifacts in response to the occurred changes.

Section 6 discusses a complete scenario in which a megamodel conforming to GMM4EVO
is defined for managing the co-evolution of the domain metamodel and an ATL model trans-
formation.

5.4 Change Impact Analysis

In their seminal book, Bohner and Arnold defined change impact analysis as ”identifying
the potential consequences of a change, or estimating what needs to be modified to accom-
plish a change” [Arn96]. In the context of our work, change impact analysis can be consid-
ered as the activity of detecting which modeling artifacts within a megamodel conforming to
GMM4EVO are impacted by a change made in the central domain metamodel.

Since our megamodel provides a detailed map of the relations between all the involved
modeling artifacts, identifying all the modeling elements impacted by a change in the domain
metamodel is a straightforward activity. Listing 2 presents an OCL constraint that runs on the
megamodel and identifies all the impacted modeling elements. The main part of the listing is
the impactedElements ATL helper (line 1 in the listing). It is defined for a Metamodel in the
megamodel which represents the domain metamodel MM, and takes as input a set of modeling
elements (changedElements in the listing) which have been previously changed during
the metamodel evolution. The output of the impactedElements helper is the set of model
elements which may be impacted by the changes made in the domain metamodel. From an
high-level point of view, the logic of the impactedElements helper is to return all the model
elements in the megamodel that are connected by means of some dependency weaving link
to at least one element in the changedElements set.

Listing 2 – OCL rule for change impact detection
1helper context AM3!Metamodel def : impactedElements(changedElements : Sequence(ECORE!

EObject)) : Set(ECORE!EObject) =
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2 self.getLinkedCoevolutionModels()
3 ->collect(e | e.links->select(e2 | changedElements.contains(e2.source))
4 ->collect(e3 | e3.target.getReferredElement()))
5 .flatten().asSet();
6
7helper context AM3!Metamodel def : getLinkedCoevolutionModels() : Sequence(AM3!

CoevolutionDependencyModel) =
8 AM3!CoevolutionDependency.allInstancesFrom(’MEGAMODEL’)->select(e | e.linkedElements.

contains(self))
9 ->collect(e | e.model);

In line 2 of Listing 2 the megamodel is navigated in order to get all dependency weaving
models which are connected to the domain metamodel (i.e., self in the listing); this is done
by means of the auxiliary helper called getLinkedCoevolutionModels(). Then, in line 3 we
collect all the weaving links within the identified weaving models which have an element
in changedElements as source; at this point, in line 4 we consider all the target elements
of those weaving links: they represent the model elements impacted by the changes in the
domain metamodel. The flatten() and asSet() operations in line 5 of the listing are used to
create a single sequence starting from the nested sequences obtained so far, and to merge
possible duplicated elements within the flattened sequence, respectively.

The OCL constraint described in Listing 2 is implemented as an ATL helper since the
the proposed approach is based on the AMMA platform (ATL is part of it as well) and ATL
provides a stable and intuitive implementation of the OCL language; further on, ATL queries
can be launched either programmatically or via Ant scripts11. This results in a homogeneous
framework to orchestrate, manage and configure such queries within the megamodel. The
result of this kind of queries can be either stored in an external file, serialized into a specific
model or simply printed to the Eclipse console.

Obviously, change impact detection does not come alone: once the impacted elements
have been identified, a series of adaptation processes must be performed in order to re-
establish a certain consistency of all the modeling artifacts with respect to the evolved domain
metamodel. Under this perspective, the focus of this work is on the detection of the elements
that may be impacted by the evolution of the domain metamodel; the proposed approach
is complementary to the used adaptation techniques, and thus the study of the adaptation
techniques that may be applied are out of the scope of this work.

6 Example

In this section we describe an example in which our approach is applied on the Petri net
scenario described throughout the paper. For the sake of clarity, in this example we focus
exclusively on the management of a specific modeling artifact: the Petrinet2PNML model
transformation. Being generic, our approach can be applied to manage other kinds of model-
ing artifacts in the same way as we will show in the remainder of this section.

The process we will follow in this example scenario can be summarized as follows:

1. populate the megamodel with the Petri net domain metamodel and the ATL metamodel;

2. define the wmrelation weaving model linking the Ecore meamodel with the ATL meta-
model;

3. include the Petrinet2PNML ATL transformation;
11http://ant.apache.org
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4. automatically generate the wmdependency weaving model by means of the generic
Rel2Dep higher-order transformation; it will contain tracing information between the
Petri net domain metamodel and its dependent Petrinet2PNML transformation.

Figure 21 – Example of scenario and weaving models to represent relations

In the remainder of this section we will describe more in detail each step of the above
listed scenario and we will apply the mechanism described in Section 3.1. Figure 21 shows
the various modeling artifacts involved in this scenario. More specifically, at the beginning
the megamodel is populated with the Petri net domain metamodel and the ATL metamodel,
together with other auxiliary modeling artifacts like the Ecore metametamodel, etc. The
upper-left part of the figure contains a fragment of the Ecore metametamodel (for the sake of
simplicity, we show only the metaclasses that are relevant for our example). The PetriNetMM
metamodel contains a simplified version of all the concepts related to a Petri net; according to
this metamodel, a Petri net is composed of a net containing both places and transitions which
connect places. The PetriNetMM metamodel conforms to the Ecore metametamodel.

As next step, we link together the Ecore metametamodel and the ATL metamodel (i.e., a
metamodel representing all the concepts that can make up an ATL model transformation); in
particular, the link is realized as a weaving model (wmrelationATL in the figure) containing
a set of weaving links that specify which elements in the Ecore metametamodel correspond
to other elements in the ATL metamodel. For example, if a metaclass (that is, an EClass) in
the Ecore metamodel is changed, this change must be reflected on the OclModelElement12

12OclModelElement is a meta-element of the ATL metamodel, that identify the terminal element of a matching
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meta-element with the same name of the EClass. In our megamodel, wmrelationATL is an
instance of the CoevolutionRelationshipModel metaclass described in Section 5.3.

Once the wmrelationATL weaving model has been defined, we can consider include the
Petrinet2PNML transformation into the megamodel. The Petrinet2PNML transformation is
taken from the ATL Zoo13 and it is designed to generate PNML14 models starting from Petri
net models.

At this point, the generic Rel2Dep model transformation of our approach can be executed
by taking as input the wmrelationATL weaving model, the PetriNetMM metamodel, and the
PetriNet2PNML transformation. The output of this transformation is the wmdependencyATL

weaving model which contains the dependencies between the PetriNetMM metamodel, and
the PetriNet2PNML transformation. The wmdependencyATL weaving model allows mod-
ellers to keep track of the various dependencies that exist between the Petrinet2PNML trans-
formation and the PetriNetMM metamodel, which is in this case the domain of the model
transformation. In our megamodel, wmdependencyATL is an instance of the CoevolutionDe-
pendencyModel metaclass described in Section 5.3.

By considering the wmdependencyATL weaving model, we can navigate its weaving links
in order to assess the impact that a change in the PetrinetMM metamodel can have on the
Petrinet2PNML transformation. Going down to the lower part of the figure, we can see that
the wmdependencyATL weaving model contains three different weaving links. More in de-
tails, the Net metaclass in the PetriNetMM metamodel is connected to the OclModelElement
with the name Net in the Petrinet2PNML transformation; the same reasoning applies to the
dependencies between the Place and Transition metaclasses and the OclModelElements with
the name Place and Transition, respectively.

In conclusion, in this section we explained a basic usage scenario of the proposed ap-
proach with the main aim of showing the mechanisms underlying our approach from a prac-
tical point of view. In this section we did not focus on the graphical user interface (i.e., the
GUI) exposed by our approach since currently we are reusing the default GUI of the tech-
nologies we use, such as AM3, AMW, ATL and EMF. The interested reader can refer to
[BJB08], [DBJ+05] and [JABK08] to check out some screenshots of their related tools; im-
proving the GUI of our approach is out of the scope of this work, we are evaluating to work
on this direction as future improvement of the proposed approach.

It is important to note that these mechanisms are generic since they do not depend neither
on the PetriNetMM domain metamodel nor on the involved artifacts that depend on it (i.e.,
the Petrinet2PNML transformation). Furthermore, these mechanisms can be applied many
times in more complex setups, in which the co-evolution of different kinds of modeling arti-
facts can be managed by simply navigating the various weaving links that exist between the
involved modeling artifacts within the megamodel. In this context, the objectives of having
a megamodel are that of (i) keeping organized the various modeling artifacts, (ii) supporting
the definition and navigation of the relationships between all the modeling artifacts, and (iii)
providing an infrastructure for managing the co-evolution of the domain metamodel and its
dependent modeling artifacts.

7 Related Work

The techniques proposed in this paper are related to the research on co-evolution in model-
driven engineering [Fav03, REM+10]. Much of this work is concerned with co-transforming

rule(in input or output), e.g. PetriNet!Net
13www.eclipse.org/m2m/atl/atlTransformations/
14PetriNet Markup Language
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artifacts in reply to metamodel changes [Wac07, RKPP10, HBJ09, CDEP08, SSN+09, RKPP10,
LBNK10, DRLP10]. Also [DRIP11] discusses about metamodel refactorings and artifacts
co-evolution introducing ingredients to deal with migration. All of this approaches are based
on single artifact type and they propose approach to adapt without alert the developer after
metamodel changes. Some changes may be avoided if the impact on the artifacts is too heavy
or may create unexpected inconsistencies. For this reason we think that can be very powerful
to estimate the impact on artifact before to apply any approach to adapt it.

Using these techniques applied to models/metamodel co-evolution, we need a metamodel-
independent representation for models; in this context we use a similar approach to the one
defined in [Ros11]. Our approach differs in some details; for example the author defines the
Slots, that are used to represent values in the model, and the feature attribute indicates the
metafeature that the Slot intends to instantiate. Also in [EMM+12] the authors propose an
independent syntax to manage models, but for a different purpose (i.e., the automatic transla-
tion of EMF models into ASP code).

The authors in [RT01] propose a change impact analysis for Object-Oriented programs.
This work provides feedback on the semantic impact of a set of program changes. This
analysis is used to determine the existing test programs affected by a set of changes. Using
the example of Java classes and existing test cases, adding a method to an existing class may
affect the virtual method calls throughout an existing test case. The authors identified also a
catalogue of atomic changes. Identifying the changes in Java classes that may be responsible
for test failure, these changes could be incorporated safely. There is a similarity between Java
classes/test cases and metamodel/artifacts. In our approach the relation between artifact and
domain metamodel has to be generically defined in order to identify the dependencies existing
between them, whereas in [RT01] the relation is exclusively tailored to the Java language.

The authors in [vAvdBS12] propose a very promising approach for traceability visual-
ization of model transformations. The proposed tool is called TraceVis and it provides a
very powerful visualization mechanism for connected models. The authors propose the im-
pact analysis as a possible future application of TraceVis, and in particular of the impact of
changes in the source metamodel of a model transformation. This work confirms the impor-
tant open issue in change impact analysis in the context of metamodel evolution. There is
also some related work using megamodeling techniques, testifying that megamodeling can
be successfully used in contexts in which models need to be navigated, composed, managed
and represented in different ways. The work presented in [FBV+09] applies megamodel-
ing techniques to the model driven performance engineering process. In this work the core
metamegamodel has been extended with three concepts: annotation model, trace model, and
transformation chains. In our paper the situation is more complex since our approach must
be totally generic since it cannot focus on a specific domain only and since we deal with
cross-layer artifacts like the weaving models linking metamodels and metametamodels. Other
works on megamodeling have been developed, like the one in [MJB09] that proposes an ap-
proach to automatically build a usable cartography of existing software platforms by merging
generated metadata with user-specified metadata; in this work the authors propose a solu-
tion based on a combination of megamodeling, model transformation and model injection.
Even if our work shares some technological aspects with the one proposed in [MJB09] (i.e.,
megamodeling, model transformations for automation, etc.), the scope and objectives of the
two works clearly differ since our proposal is generic, whereas they focus on a solution for a
specific problem.
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8 Conclusions and Future Work

This paper presented an approach to better understand the impact significance of the changes
operated on a domain metamodel. This is considered useful for several reasons, in particular

– to realize formal documentation to be conveyed to implementors in charge of realizing
the needed adaptation; and

– to estimate how diffused through the various artifacts is the impact and substantiate the
efforts necessary to re-establish the validity of the compromised components.

Many approaches have been already proposed to deal with the problem of metamodel co-
evolution. Each of them purported proper techniques and tools able to manage the adaptation
of a specific class of modeling artifacts. Re-establishing the validity of artifacts which have
been compromised by changes in the domain metamodel can be seen as a three-steps process
(see Figure 2), whose first two steps are preparatory to the last one – the design and realization
of the adaptation tools. In current practices, these steps are usually blurred and end-up mixing
the impact assessment and the adaptation semantics in an intricate way. This endangers the
overall consistency and can eventually lead to a more pronounced information erosion. Thus,
being able to formalize the relatedness of the involved artifacts provides anyhow the designers
with insights and information otherwise very difficult to elicit.

In this paper we identified the typical relations between a domain metamodel and its re-
lated modeling artifacts, and represented them with a megamodel. Megamodels have been
proven to be useful in describing those infrastructures where different kind of artifacts are
involved and connected together by means of mechanisms, such as model transformation
and/or model weaving. Thus, a general architecture is proposed to automatically define the
relation, called Dependency, between modeling artifact and domain metamodel. Dependen-
cies can be derived using the characterization of the Relation between the meta-metamodel
and the artifact metamodel. This permits to highlight those dependencies which have been
affected by the domain metamodel evolution and to have an overall overview of the change
propagation. A suitable megamodel describes the whole ecosystem and weaving models for-
malizes the relationships between the artifacts and the domain metamodel. The technique
is general and, as aforementioned, provides tools independently from the chosen adaptation
approach.

Future works are related to the possibility to investigate how to increase the degree of
automation in the adaptation by using the outcome of the process presented here, i.e., how
to use the megamodels or a fragment of them to improve the kind of adaptations which can
be done in an automated way. The automation will always be partial but can be enhanced
by using the knowledge encoded in the weaving models of the megamodel. On a different
perspective, we are interested in investigating how to parametrize current modeling platforms
in order to give the modeller the possibility to have user-defined relationships, specifically the
conformance relation. This could be useful in defining a model-driven development process
which could take advantage of the flexibility of having ad-hoc typing constraints depending
on the stage of the development process. Finally, as anticipated in Section 6, we are evaluating
to work on enhancing the graphical user interface exposed by our approach; for example, a
possible solution could be to build on and adapt the visualization tool for traceability links
presented in [vAvdBS12].
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