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Abstract In this paper, we analyze the effect of particular refactorings
on class coupling for different aggregate releases of four object-oriented
Open Source (OS) Java software systems: Azureus, Jtopen, Jedit and
Tomcat, as representative of general Java OS systems. Specifically, the
“add parameter” to a method and “remove parameter” from a method
refactorings, as defined according to Fowler, may influence class coupling
changing fan-in and fan-out of classes they are applied to. We investi-
gate, both qualitatively and quantitatively, using a statistical approach,
the global effect of the application of such refactorings, providing best
fitting statistical distributions able to describe the changes in fan-in and
fan-out couplings. Results show a net tendency of developers to apply
such refactorings to classes with relatively high fan-in and fan-out and a
persistence of the same statistical distribution for fan-in and fan-out before
and after refactoring. Finally, we provide a detailed analysis of the best
fitting parameters and of their changes when refactoring occurs, which
may be useful for estimating the effect of refactoring on coupling before it
is applied. Since refactoring requires time and effort, these estimates may
help in determining costs and benefits.

Keywords Refactoring, Coupling, Metric distribution, Fan-in, Fan-out

1 INTRODUCTION

According to Fowler [3] refactoring is defined as a change made to the internal structure
of software to make it easier to understand and cheaper to modify without changing
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its observable behavior. One area of research that the refactoring community has yet
to tackle is the effect that certain refactorings have on crucial system features such
as coupling, when applied repeatedly over time [4, 3]. Practitioners are interested in
the effect of refactoring from a practical point of view (i.e., how refactoring influences
effectively the coupling) and cumulatively (i.e., how refactoring performed over years
of software development may change the coupling). The authors know of no study
that has looked at the longitudinal effect of refactorings from a coupling perspective.
In OO systems, refactoring may reduce maintenance effort rendering interfaces less
coupled and thus easier to handle and use. In this context, refactorings such as add
parameter and remove parameter play a key role since they heavily determine how
objects send messages to each other.

Fowler describes how parameter-based refactorings change the software “qualita-
tively”, overlooking how they change software “quantitatively” [3]. As an example,
when we apply remove parameter to the signature of a method (i.e., when a parameter
is no longer used by the method body), we can potentially reduce its coupling. However,
it is rare to see only one type of refactoring applied to a class. A more likely scenario
is that when remove parameter is performed, an add parameter refactoring is applied
at the same time. Any effect of the first refactoring is thus limited by the application
of the second.

We believe refactoring helps to improve software design, but without knowing what
impact refactoring has during software evolution, it is difficult to balance costs and
benefits of performing such tasks. We face this challenge by focusing our analysis
on the relationship between parameter-based refactorings and coupling. We measure
coupling through fan-in and fan-out — the earliest software metrics used for such
measure [5]. Fan-out is defined as the number of other classes referenced by a class;
fan-in is defined as the number of other classes that reference a class. Parameter-based
refactorings have “direct” impact on class fan-out and a side effect on class fan-in.
This work investigates the “direct” and “indirect” effects of these refactorings, adding
a contribution in understanding possible hidden effects. We chose fan-in and fan-out
metrics in preference to Chidamber and Kemerer’s Coupling Between Objects (CBO)
[6] metric because CBO measures coupling irrespective of its direction and provides a
rough-grained detail of incoming and outgoing coupling, respectively.

We use the Complementary Cumulative Distribution Function (CCDF) to char-
acterize the statistical distributions of fan-in and fan-out metrics in refactored and
non-refactored classes. We compute the parameters of the best-fit functions of such
metrics and use them to infer statistical properties of refactored classes. Our primary
goal is to understand how (parameter based) refactoring changes fan-in and fan-out
coupling (RQ2, RQ4). The achievement of such a task requires prior analysis of fan-in
and fan-out distributions of refactored and non-refactored classes. To understand if
and how Add Parameter (AP) and Remove Parameter (RP) refactorings affect the
class coupling distribution, one must know in advance how the class distribution is in
general. For this reason, we provide a discussion related to distribution characteristics
taking into account refactored classes, classes that have not been refactored and
both (RQ1,RQ3). Comparing these sets makes it easier to pursue our main goal and
highlight developer habits in performing such refactorings.

Analysis was driven by the following 4 research questions:

• RQ1- Are there analytical distribution functions able to describe fan-in in
refactored and non-refactored classes? Are there differences among refactored
and non-refactored classes?
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• RQ2- Based on the results of RQ1, does refactoring change fan-in coupling
overall?
• RQ3- Are there analytical distribution functions able to describe fan-out in

refactored and non-refactored class? Are there differences among refactored and
non-refactored classes?
• RQ4- Based on the results of RQ3, does refactoring change fan-out coupling

overall?

The four research questions were developed using the GQM approach of Basili
et al., [2], with a goal of investigating the impact of parameter based refactoring
on coupling as systems evolve. These questions are embedded in RQ1-RQ4 and
the metrics are fan-in and fan-out. The focus is to evaluate how software metrics
change when parameter-based refactoring is performed with respect to their evolution
where such refactorings are not performed. The viewpoints are those of a researcher,
of a development team leader and of a manager. The first is more aware of the
practical impact of these refactorings on coupling of real software systems; likewise,
the second can take leverage of this knowledge deciding on parameter based refactoring
maintenance, according to the relevance of their benefits. The latter, knowing fan-in
and fan-out distributions for all system classes, can help with better estimation of
rework costs due to refactored classes. The environment of this paper regards four
OO systems: Tomcat, Jedit, Jtopen, Azureus.

Results from our analysis showed that in refactored classes and non-refactored
classes fan-in and fan-out had different distributions, since they possess different best
fitting parameters. We reveal that fan-in and fan-out metrics are distributed according
to a power-law and lognormal distributions, respectively. This is also true in refactored
classes, to a high degree of accuracy, and this shows a consistent trend across all
releases delivered, for all systems analyzed. Most interestingly and counter to what
one might expect, the data pointed to a tendency for developers to prefer refactoring
classes with a relatively high fan-in and fan-out. The study thus characterizes classes
targeted for these refactorings and how their coupling changes.

The remainder of the paper is organized as follows. Section 2 reports relevant
related work. Section 3 summarizes background concepts on the used statistical
distributions. Section 4 describes how we collected the data. Section 5 presents the
results and Section 6 their interpretation. Section 7 discusses threats to the validity of
the study. Finally, in Section 8 we present the conclusions.

2 RELATED WORK

Refactoring, introduced by Opdyke in his PhD. thesis [14], was investigated by Fowler
[3] who proposed 72 refactorings in his seminal text and from which we draw on herein.
Refactoring identification can been addressed from two different prospectives. On the
one hand, it can be studied where the refectoring needs to be performed. Antoniol
et al. used time series to predict refactorings [26] and Bodhuin et al. used a GA-led
tool for suggesting refactorings [28]. Zhao and Hayes [15] used metrics to predict and
prioritise classes that most needed refactoring. On the other hand, it can be studied
where refactorings of software modules have already been done. Demeyer et al. [11]
used change metrics as a basis for finding refactorings; whereas Biegel et al. [27]
adopted different similarity measures to detect refactorings.

Our study identifies where refactorings have already been applied. For this task,
we used Ref-Finder [1] which, differently from the others studies, uses a template-
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based refactoring reconstruction approach. This tool, being open-source, is useful for
replicating research studies. The parameter based refactorings embodied in the tool
were used for our analysis. The goal of many studies is the identification of similarities
among refactored software modules. Zhao and Hayes [15] suggested that manual
refactoring selection by Java programmers overlooked the difficult, more complex
refactorings in favour of easier, smaller refactorings. Advani et al., [16] showed the
same feature to be true where refactoring data across multiple releases of open-source
were mined. Research showed the majority of refactorings were simpler refactorings
and not complex structural refactorings. Counsell et al., [19] also investigated the
most commonly used and least commonly used refactorings and the inter-dependencies
of those refactorings; refactorings used rarely were those with many inter-dependencies
(i.e., some refactorings made extensive use of other ’sub-refactorings’). Commonly
applied refactorings were those with fewer inter-dependencies.

This paper tackles this research area characterizing refactored classes by means
of fan-in and fan-out metrics. Mubarak et al. [13] investigated fan-in and fan-out
from an open-source evolutionary perspective, but did not explore refactoring per
se. The study found a range of explanations for why the fan-in and fan-out differed
between classes over time, most noticeably through the existence of key classes. Pre-
vious research [12] by the same authors showed that the fan-in and fan-out metrics
tended to be relatively small for classes removed from a system. In other words,
classes with either high fan-in and/or fan-out may be difficult to move around or
be removed from a system. Our paper complements the previous finding, investi-
gating the relationship between class fan-in/fan-out and its propensity to be refactored.

This paper is an extension of the research reported in [32], where a single project
is analysed. In this work we generalise the results by adding 3 more projects to
the dataset: Azureus, Jedit and Jtopen. In this way we reduce threats to external
validity. This work also extends the research in [31][33]. In fact, in this paper we
provide not only an analysis of metric desctibution but also compute the best fitting
parameters in each case. This allows us to support our conclusions with more robust
analytical results. We have evaluated the R2 between metric distributions and typical
distributions used to represent software metrics. This contributes to the refactoring
research field which lacks, as far as we know, a deep and quantitative analysis in such
matters.

3 BACKGROUND

3.1 Statistical distributions

Foreseeing future values of software metrics is a crucial step in scheduling maintenance
activities of software products. In this context, the analysis of analytical statistical
distributions behind the empirical data plays a key role, providing theoretical models
for explaining experimental data. Moreover, studying fan-in and fan-out distributions
might help in the identification of a generative model describing such distributions1;

1The distribution analysis according to Mullen [34] suggests a model able to reproduce the
lognormal distribution of software failures. Mullen was driven by two observations: (1) a lognormal
distribution arises when the value of a variable is determined by the multiplication of many random
factors, (2) previous work in literature points out that failure rates are determined by a multiplicative
process.
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this can provide estimates about the effort required during maintenance of classes [24].
To describe the statistical behavior of a distribution with respect to a metric, one can
compute its empirical Probability Distribution Function (PDF). However, much more
information is contained in the Cumulative Distribution Function (CDF) (Eq. 1) and
in the Complementary Cumulative Distribution Function (CCDF) (Eq. 2). In fact,
they preserve all the information contained in the original data, while the empirical
PDF needs a binning of the independent variable for building a histogram, cumulating
different points into a single bin and losing the information carried by each single
point. Defined by p(x) the PDF, by P (x) the CDF, and by G(x) the CCDF, we have
[7]:

P (x) = p(X ≤ x) =

∫ x

−∞
p(x′)dx′ (1)

G(x) = p(X ≥ x) =

∫ ∞
x

p(x′)dx′ (2)

with

G(x) = 1− P (x) (3)

The CCDF represents the probability that the metric, X, is greater than or equal
to a given value x. The CCDF is also preferable for a major improvement of the
quality of fit in the tail of distribution, reducing the statistical fluctuations related
to the reduced number of points into the bins in the tail. Further detailed discussion
may be found in [7].

Many software metrics show a “fat-tail” distribution, namely that a small part
of the population takes over a large proportion of the measured resource. In other
words, even if there are many classes with a small value of the metric, there are
also other classes with a non-negligible probability of metric values several orders
of magnitude higher than the average. For this reason, statistics like average and
standard deviation cannot properly characterize fat-distributions [7]. Such fat-tails
can usually be well represented by a power-law relationship, which, when plotted in a
log-log scale, appears as a straight line. It is often convenient to use log-log plots in
order to exploit such fat tail behaviour and we adhere to this practice in this work.

3.1.1 Power Law

The power-law distribution is expressed by the formula:

p(x) ' x−α (4)

where α is a scaling parameter, or simply the power-law coefficient. This distribution
is simply characterized using only the parameter α, besides a normalization factor.
When plotted in a log-log plot, the power-law function is easy to spot because of the
perfect straight line (with slope α). This statistical distribution is ubiquitous and is
found in many different fields [29] [18].

Being the function divergent in the origin for α ≥ 1, it is not possible to report
real data in its entire range of values. In addition, real data generally has a lower
cut-off, indicated as x0, above which the power-law holds. This value represents a
second parameter used to achieve better fittings and may be useful to indicate if the
data are power-law distributed from the beginning, or if a fat tail exists at the end
of the distribution (which may be different from a true power-law in the remaining
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range). This situation may occur for lognormally distributed data. The algorithm
we use for best fitting the empirical data with a power-law distribution estimates the
lower cut-off x0 and the power-law exponent α, according to the goodness-of-fit based
method described in [8] and also provides the Kolmogorov-Smirnov goodness-of-fit
statistic D. The closer D is to zero, the better the fit.

3.1.2 Log Normal

The lognormal distribution is expressed by the formula:

p(x) =
1√

2πσx
e−

(ln(x)−µ)2

2σ2 (5)

It is characterized by a “quasi-power-law behaviour” with a final cut-off. Real data
cannot have values that tend to infinity and thus represents a good distribution to
fit power-law distributed data with a finite-size effect. Different from a power-law, a
lognormal distribution does not diverge for small values of the variable and may also
fit well the bulk of the distribution. The best fitting for the lognormal distribution
computes the coefficient of determination R2: the closer R2 is to 1, the better the fit.

4 EXPERIMENT SETUP and METHODOLOGY

4.1 DataSet

This paper analyzes four Java open-source projects: Azureus2, Jedit3, Jtopen4 and
Tomcat5. Azureus is a P2P file sharing client using the bittorrent protocol; Jedit, as
its name suggests, is a programmer’s text editor; Jtopen is the open source version of
the IBM Toolbox for Java. Finally, Tomcat is an open source software implementation
of the Java Servlet and JavaServer Pages technologies.
Relevant statistics related to these systems are reported in Table 1. Generally, there
are potentially thousands of classes which belong to each release Ri and a subsequent
release Ri+1. Only a limited number of parameter based refactorings are undertaken
between releases. For example, in Azureus 4.4 - 4.5 there are 7270 classes; among
them: 51 have had an add parameter refactoring, 27 have had a remove parameter
refactoring. Moreover, in the data that Ref-Finder extracted, a class can have more
than one refactoring applied to it. The four Java projects were chosen because they
have been actively developed and have several years of development, comprise several
releases and because their source code is freely-available from the web.

In general, the software development of OO systems and the scheduling of new
version releases may change from system to system, from one platform to another.
Some software projects are strongly and rigidly organized, with fixed time delivery
of new versions and with a fixed number of sub-versions between the delivery of two
versions, with main and patching releases. This is the case with Eclipse or Ubuntu
Linux6. Some other projects belonging to our dataset are by nature less regular, and

2http://sourceforge.net/projects/azureus/
3http://sourceforge.net/projects/jedit/
4http://sourceforge.net/projects/jt400/
5http://archive.apache.org/dist/tomcat/
6 Eclipse has a main release each year with two patching releases in between. Likewise, Ubuntu

has a main release each year, whereas only one patching release in between.
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a clear classification in main and patching releases is not feasible. Generally, if Ri+1

is a patching for Ri, the number of refactored classes may be very small. In such a
case, a statistical analysis is meaningless. The best alternative is to analyze changes
among two very distant releases, let’s say Ri and Ri+n, with n large, which presumably
includes more refactorings. In this case, the number of classes refactored by an AP or
RP may be much larger. For the four systems analyzed, we were faced with similar
situations for various systems. For example, we collected the data for 58 different
releases of Jtopen, where we had up to ten sub-releases among two main releases. This
led us to take only the “main” releases for each project, namely releases labeled with
two digits, characterizing relevant steps of process development. In this way, we were
able to report only those two releases presenting enough refactored classes, thereby
enabling us to perform the statistical analysis.

Table 1 – Projects statistics

Project
Release

# class ∈ Ri
⋂
Ri+1

# class with # class with
Ri → Ri+1 add parameter remove parameter

Azureus

4.0 - 4.1 6526 49 38
4.1 - 4.2 6892 0 20
4.2 - 4.3 6447 120 79
4.4 - 4.5 7270 51 27

Jedit

3.2 - 4.0 493 35 28
4.0 - 4.1 586 43 26
4.1 - 4.2 634 77 70
4.2 - 4.3 600 100 92

Jtopen

3.0 - 4.0 1702 24 15
4.0 - 5.0 1871 77 57
5.0 - 6.0 1936 38 14
6.0 - 7.0 1963 45 29

Tomcat
6.0 - 6.0.29 1146 46 38
6.0.29 - 7.0 1111 161 151

4.2 Ref-Finder

Ref-Finder is a tool able to extract up to sixty-three different refactorings — belonging
to Fowler’s catalog of seventy-two [3] — occurring between two releases. Let us denote
by Ri the software release before refactoring and by Ri+1 the release obtained after
refactoring. The tool Ref-Finder provides the name of the classes refactored belonging
to Ri and to Ri+1. We focused our attention on two refactorings: add parameter
and remove parameter, because they are directly able to influence fan-in and fan-out
metrics. Ref-Finder was developed by Prete et al. [1] using a template-based refac-
toring reconstruction approach. The tool’s ability to identify refactorings depends
on a threshold σ — bounded between a 0 - 1 interval — which defines the similarity
level between two source code according to a particular algorithm. Results reported
in this paper use σ=0.85; however, we have also used σ=1 obtaining the same results
for refactorings analyzed.
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5 RESULTS

In this section, we analyze the figures obtained by plotting the experimental CCDF,
together with the analytical CCDF obtained by the best fitting procedures. In order
to answer our research questions we need to partition the data in different sets. We
denote by Ri the software release before refactoring and by Ri+1 the release obtained
after refactoring. In general, when a class is refactored, it is present in both releases,
but its fan-in and fan-out change. We need to compare the six sets to understand the
effect of refactoring on class coupling. To do this, in our figures we report fan-in and
fan-out CCDF’s for all these six sets of classes, as well as the best fitting analytical
distributions.

For the sake of clarity, we denote these six sets by the following acronyms:

• Ai : All the classes belonging to the release Ri;

• Ai+1: All the classes belonging to the release Ri+1;

• REFi: The sets of classes refactored by AP, RP with fan in or fan out computed
in Ri;

• REFi+1: The sets of classes refactored by AP, RP with fan in or fan out
computed in Ri+1;

• REFi: The sets of classes not refactored by AP, RP with fan in or fan out
computed in Ri;

• REFi+1: The sets of classes not refactored by AP, RP with fan in or fan out
computed in Ri+1;

In all figures, black symbols represent fan-in or fan-out of classes after refactoring
and white symbols before refactoring. Circles represent data for refactored classes
(black circles provide the fan-in or fan-out distribution after refactoring, white circles
before refactoring). Squares represent data for non-refactored classes, and diamonds
represent data for all a system’s classes. Thus, according to the acronyms introduced
we have:

• white diamonds: Ai;

• black diamonds: Ai+1;

• white circle: REFi;

• black circle: REFi+1;

• white squares: REFi;

• black squares: REFi+1;

Finally, the best fitting curves are black dashed lines. Among the various empirical
CCDF’s there are many overlaps, which may render it difficult to distinguish among
the different curves. Such overlaps are unavoidable and an interesting feature of the
results. In fact, the overlaps in the figures indicate that different data sets possess the
same CCDF, or witness the persistence of statistical distributions after release change.
We chose to use the power-law and the lognormal statistical distribution functions for
best fitting of the empirical data,since they have already been demonstrated to be the
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best candidate for fitting the empirical data for fan-in and fan-out distributions in OO
software systems [23], [24], [25]. Due to finite size effects, sometimes a true power-law
distribution may not appear as a straight line in a log-log plot for large values of the
independent variable as well as for small values, as it should be for an ideal, infinite size
sample. On the contrary, when a variable is lognormally distributed, a combination
of finite size effects and parameter values may provide an almost linear shape in a
defined range of a log-log plot. Thus using a power-law for best fitting purposes may
provide a very good fitting even for a true lognormal distribution. Conversely, due to
the finite size effects, a lognormal can provide a very good best fit for a true power-law
distribution. Due to these possibilities, we decided to apply both kinds of best fitting
functions for fan-in and fan-out data. Our best fitting results, reported in Tables 2 and
3, confirm that fan-in is well modelled by a power-law distribution, while a lognormal
distribution is applicable for fan-out, for all the six sets analyzed. Thus, in the figures
we report only the power-law best fitting CCDF’s for fan-in and the lognormal best
fitting CCDF’s for fan-out.

Figures 1-8 display the empirical fan-in and fan-out distributions for Azureus
together with the best fitting curves, reproduce the typical situation for all the systems
analyzed. Such figures show the results for a single refactoring: from Azureus 4.0
- 4.1 (Figure 1), for Azureus 4.1 - 4.2 (Figure 2), for Azureus 4.2 - 4.3 (Figure 3),
for Azureus 4.4 - 4.5 (Figure 4) for the fanin CCDF. In the same way Figures 1-8
show the result of a single refactoring for fanout distribution CCDF. The CCDF for
refactored classes (sets REFi+1 and REFi) display a vertical shift with respect to the
CCDF of all system’s classes, while the CCDF for not refactored (sets REFi+1 and
REFi) classes almost completely overlap the latter (Ai,i+1). This second point is due
to the fact that, on average, the refactored classes are a small fraction of the total, so
the set of non-refactored classes (according to AP and RP refactorings) practically
coincides with the set of all system’s classes. This occurs regardless of evaluating fan-in
distributions before or after refactoring and the same holds for fan-out distributions.
This vertical shift is an experimental result, and indicates that developers tend to
refactor classes with higher fan-in or fan-out on average, as will be discussed in the
next section.

Figures 1 to 4 suggest that power-law distributions hold for fan-in for the sets
Ai,i+1 and REFi,i+1. Furthermore, they show that the same power-law holds for the
sets of refactored classes before and after refactoring. Similar considerations may
be applied to fan-out empirical distributions. Figures 5 to 8 suggest that lognormal
distribution functions may be used for sets Ai,i+1 and REFi,i+1. Furthermore, they
show that the same lognormal holds for the sets of refactored classes before and after
refactoring. The considerations above are supported by the results obtained by the
best fitting procedures.

Consider first the results obtained for fan-in using the power-law distribution for
best fitting, reported in Tab. 2. Apart from a few cases, the goodness of fit parameters
indicate that the power-law distribution can be a good model for the fan-in statistical
distribution of refactored classes, both before and after refactoring. This property, to
authors knowledge, has never been reported in literature. In fact, even if the power
law has been demonstrated to be a good model for fan-in distributions of the entire
system [25] [9], this has never been found for sets REFi and REFi+1.

Consider next the results obtained for fan-out using the lognormal distributions,
reported in Table 3. Apart from a very few cases, the lognormal distribution fits
very well the fan-out curves for refactored classes, both before and after refactoring.
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Table 2 – Power-law fitting statistics for the fan-in of the four systems. In the releases
column, AR and BR stand for “after refactoring” and “before refactoring” respectively.
The parameters α, x0, and D have been computed on the refactored classes (R), on
the not-refactored classes (NR) and on all the system classes (all).

Releases αR x0R DR αNR x0NR DNR αall x0all Dall

JTOpen
3.0-4.0 AR 2.185 3 0.099 1.872 3 0.041 1.878 3 0.039
3.0-4.0 BR 3.450 4 0.073 1.875 3 0.042 1.887 3 0.043
4.0-5.0 AR 1.644 2 0.091 1.902 3 0.041 1.890 3 0.039
4.0-5.0 BR 1.870 7 0.087 1.891 3 0.039 1.878 3 0.039
5.0-6.0 AR 1.877 4 0.075 1.904 3 0.037 1.897 3 0.036
5.0-6.0 BR 1.910 4 0.098 1.901 3 0.036 1.894 3 0.039
6.0-7.0 AR 1.785 3 0.069 1.898 3 0.039 1.893 3 0.038
6.0-7.0 BR 1.830 3 0.080 1.897 3 0.037 1.894 3 0.036

JEdit
3.2-4.0 AR 1.830 2 0.120 2.135 4 0.040 2.060 4 0.042
3.2-4.0 BR 1.660 4 0.123 2.162 8 0.048 2.065 7 0.051
4.0-4.1 AR 1.798 3 0.072 2.227 4 0.035 2.101 4 0.029
4.0-4.1 BR 1.810 18 0.075 2.122 7 0.054 2.060 7 0.042
4.1-4.2 AR 1.973 4 0.055 2.402 4 0.051 2.093 4 0.052
4.1-4.2 BR 1.970 16 0.066 2.220 6 0.045 2.119 6 0.034
4.2-4.3 AR 1.868 4 0.075 2.078 9 0.043 1.961 4 0.045
4.2-4.3 BR 2.110 7 0.046 2.323 10 0.061 2.086 9 0.050

Azureus
4.0-4.1 AR 2.017 4 0.091 2.226 11 0.023 2.226 11 0.026
4.0-4.1 BR 2.03 4 0.109 2.218 10 0.021 2.219 10 0.024
4.1-4.2 AR 1.673 2 0.133 2.196 10 0.026 2.229 12 0.027
4.1-4.2 BR 2.6 13 0.105 2.225 11 0.025 2.226 11 0.026
4.2-4.3 AR 1.933 4 0.042 2.227 10 0.024 2.244 11 0.026
4.2-4.3 BR 1.8 3 0.069 2.22 10 0.023 2.2 11 0.027
4.4-4.5 AR 2.099 7 0.075 2.218 12 0.020 2.22 12 0.020
4.4-4.5 BR 2.22 9 0.111 2.226 12 0.023 2.226 12 0.026

Tomcat
6.0-6.029 AR 2.150 2 0.090 2.670 14 0.041 2.710 14 0.040
6.0-6.029 BR 2.160 2 0.081 2.680 14 0.036 2.670 12 0.029
6.029-70 AR 1.720 2 0.083 2.060 3 0.049 2.020 3 0.050
6.029-70 BR 1.600 1 0.067 2.890 14 0.045 2.670 14 0.048
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Table 3 – Lognormal fitting statistics for fan-out of the four systems analyzed. In the
releases column, AR and BR stand for “after refactoring” and “before refactoring”
respectively. The parameters R2, µ, and σ have been computed on the refactored
classes (R), on the not-refactored classes (NR) and on all the system classes (all).

Releases R2
R µR σR R2

NR µNR σNR R2
all µall σall

JTOpen
3.0-4.0 AR 0.966 2.146 0.727 0.984 1.327 0.968 0.984 1.340 0.970
3.0-4.0 BR 0.949 2.008 0.617 0.984 1.309 0.958 0.985 1.322 0.958
4.0-5.0 AR 0.979 1.828 0.791 0.984 1.324 0.977 0.984 1.347 0.975
4.0-5.0 BR 0.978 1.749 0.821 0.984 1.320 0.972 0.984 1.339 0.970
5.0-6.0 AR 0.940 1.857 1.323 0.984 1.336 0.963 0.985 1.348 0.975
5.0-6.0 BR 0.936 1.837 1.349 0.984 1.334 0.962 0.985 1.345 0.974
6.0-7.0 AR 0.983 2.272 0.916 0.984 1.338 0.968 0.985 1.362 0.978
6.0-7.0 BR 0.983 2.248 0.856 0.984 1.324 0.967 0.985 1.349 0.975

JEdit
3.2-4.0 AR 0.952 1.646 0.893 0.972 0.920 0.787 0.979 0.990 0.825
3.2-4.0 BR 0.950 1.603 0.924 0.972 0.934 0.791 0.978 1.000 0.828
4.0-4.1 AR 0.983 1.958 0.708 0.969 0.807 0.734 0.979 1.002 0.847
4.0-4.1 BR 0.972 1.850 0.772 0.964 0.783 0.695 0.979 0.990 0.825
4.1-4.2 AR 0.977 1.610 1.109 0.972 0.918 0.808 0.977 0.976 0.857
4.1-4.2 BR 0.973 1.586 1.038 0.975 0.946 0.807 0.979 1.002 0.847
4.2-4.3 AR 0.980 1.678 0.938 0.973 0.899 0.811 0.977 0.966 0.849
4.2-4.3 BR 0.979 1.650 0.968 0.972 0.908 0.816 0.977 0.976 0.857

Azureus
4.0-4.1 AR 0.977 2.309 1.228 0.983 1.086 0.981 0.983 1.098 0.991
4.0-4.1 BR 0.975 2.342 1.247 0.983 1.086 0.977 0.983 1.099 0.988
4.1-4.2 AR 0.899 2.368 1.421 0.983 1.085 0.983 0.983 1.089 0.987
4.1-4.2 BR 0.871 2.457 1.388 0.983 1.092 0.985 0.983 1.096 0.990
4.2-4.3 AR 0.989 2.291 1.095 0.981 1.032 0.959 0.981 1.061 0.980
4.2-4.3 BR 0.989 2.311 1.038 0.982 1.062 0.970 0.983 1.091 0.989
4.4-4.5 AR 0.975 2.154 1.351 0.981 1.047 0.975 0.981 1.058 0.986
4.4-4.5 BR 0.964 2.203 1.350 0.981 1.050 0.974 0.981 1.061 0.9

Tomcat
6.0-6.029 AR 0.920 1.975 1.012 0.980 1.117 0.951 0.980 1.156 0.970
6.0-6.029 BR 0.927 1.901 1.059 0.982 1.139 0.964 0.982 1.176 0.982
6.029-70 AR 0.977 1.610 1.046 0.982 1.103 0.921 0.984 1.178 0.957
6.029-70 BR 0.976 1.575 1.017 0.977 1.075 0.941 0.980 1.154 0.970
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Once again, this result has not been reported in the literature, since the ability of a
lognormal to model fan-out empirical distributions has been investigated only for the
entire system.

6 DISCUSSION

In this section, we discuss in detail the results presented, their possible consequences
and provide the answers to the original research questions. The analysis of empirical
and best fitting CCDF’s shows that the curves for sets REFi and REFi+1 display
a general vertical shift with respect to the other sets and are also above the others.
Namely, fan-in and fan-out for refactored classes are, on average, larger than those of
non-refactored classes, both before and after being refactored. This property appears
applicable to all sets by the examination of the empirical CCDF’s. In fact, for each
fixed value x̄ in the horizontal axes of the plots, the higher the corresponding Y , the
higher is the percentage of classes with fan-in/fan-out larger than x̄. This property is
confirmed by the parameters obtained through the best fitting analysis.

In the case of fan-in best fitting, the power-law best fitting exponent α (αR in
Table 2) is generally smaller than the corresponding power-law best fitting exponents
for non-refactored classes and for the Ai set (αNR and αall in Table 2). This is in
agreement with Figures 1-4, where the CCDF’s for the sets REFi and REFi+1 are
above the others and indicate that average values of fan-in for refactored classes, before
and after refactoring, are larger than in the other sets.

In the case of fan-out best fitting, the log-normal best fitting parameter µ for
refactored classes, both before and after refactoring (µR in Table 3), is generally larger
than the corresponding parameters for the sets of non-refactored classes and and for
the Ai set (µNR and µall in Tab. 3). In the log-normal distribution function, the mean

and median statistics are eµ+
σ2

2 and eµ, respectively. Thus, our best fitting analysis
confirms that the sets REFi and REFi+1 have, on average, larger values for fan-out.

The vertical shift is an experimental result and from a refactoring point of view
provides a clear indication about the way developers work when applying AP and RP
refactorings to a system’s classes: they tend to select classes with higher fan-in or
fan-out values on average. This indicates that AP and RP activities are not applied to
classes at random and that some other criteria must be at play. In fact, if the choice
was random, namely if the classes for applying AP and RP refactorings were extracted
with a uniform random probability, the statistical distribution would not change and
would not display any vertical shift, especially before refactoring.

We now concentrate on fan-in. The empirical results and the best fitting analysis
provide another interesting result. They suggest that the same statistical distribution
functions may be used for modelling refactored classes, with a different set of parameters
and that the distribution function remains approximately the same after refactoring.

It is already known in the literature [23], that fan-in is power-law distributed
across all system’s classes. Our studies confirm power-law distributions for fan-in of
all system’s classes and for the overlapping set of non-refactored classes; they also
suggest that the same distribution can still hold for the set of refactored classes, both
before and after refactoring, indicating a persistence of such a distribution in the set
of classes. This is not a trivial result, since the effect (and maybe the original purpose)
of applying AP and RP refactoring is exactly to change the fan-in of the relevant class,
breaking an existing coupling with a linked class or introducing a new coupling with
another class.
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There is no guarantee that the same distribution must hold for refactored classes
alone; namely, there is no indication that for the same model to be applicable to the
subset of refactored classes. In principle, developers can choose ad hoc to refactor a
particular subset of classes so that the fan-in distribution for such a subset is not a
power-law; trivially, one can just choose classes with exactly the same fan-in, obtaining
a flat distribution. Examining the best fitting parameters values, the same power-law
is able to model fan-in distribution before and after refactoring, since the parameter
values do not change for such sets. In particular, the power-law exponent α provides
the same slope in the log-log plot for both sets and the lower cut-off x0 indicates that,
for both distributions, the power-law behaviour starts from the same point, usually at
the very beginning of the distribution (for almost the entire range of fan-in values).
In contrast, the slope α changes with respect to the non-refactored classes and to
the entire system’s classes. In particular, whenever the fit is good, the value of α
decreases for refactored classes. This indicates that the straight line in the log-log plot
has a smaller slope (α appears with a minus sign in the power-law function 4). Thus,
the best fitting parameters confirm the tendency of developers to select classes with
relatively high fan-in for refactoring, since the smaller the module of the power-law
exponent, the more the power-law is vertically shifted, especially in the tail of the
distribution.

The overlap of fan-in distributions before and after refactoring indicates a re-
organization or a redistribution of fan-in across the classes of the refactored set in
a way which preserves the same overall statistical distribution, while fan-in of each
single class eventually changes. The situation appears similar for fan-out empirical
results, with the log-normal distribution function in place of the power-law. Previous
work has shown that the best fitting analytical distribution functions for fan-out of
the overall software system are lognormal [24] [25]. Our results suggest that lognormal
distribution functions may also be used to model refactored classes, but with different
values of the best fitting parameters. The refactored classes possess the same empirical
distribution for fan-out before and after refactoring, indicating a persistence of such a
distribution, even if fan-out of each single class has been changed by the application
of AP and RP refactorings; this eventually causes each class to change the group of
classes it is coupled to. Additionally, a re-organization or redistribution of fan-out
across the classes occurs in such a way that the same overall statistical distribution is
preserved, while fan-out of each single class eventually changes.

We previously stated for fan-in that the vertical shift indicates that classes to be
refactored are not randomly chosen among all a system’s classes. This is also confirmed
for the fan-out data. As a consequence, developers apply AP and RP activities in such
a way that the lognormal fan-out distribution is still preserved in the limit of our best
fitting confidence. Furthermore, as already discussed, such a lognormal distribution
remains the same for the distributions before and after refactoring, confirmed by
comparing the best fitting parameters values for each couple of sets. This means that,
even if removing parameters to methods or adding parameters to methods changes the
class coupling, fan-out preserves the same statistical distribution, irrespective of how
single class coupling is modified. On the contrary, comparing the same best fitting
parameters with those obtained for the distributions of non-refactored classes and
of all the system’s classes, they show a net increment of the mean parameter (µ),
confirming the tendency of developers to refactor classes with a relatively high fan-out.
The projects we have analyzed do not provide enough information related to how, when
and why refactoring is performed. The tool we used to extract refactorings, Ref-Finder,
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is able only to identify and classify AP and RP refactorings occurring between different
releases. So we can only speculate about the reasons why AP and RP refactorings are
not able to change coupling significantly. We believe there were non-refactoring-driven
releases during the evolution of our projects. For this reason, between two release Ri
and Ri+1 there are refactoring driven activities and significant maintenance activities;
the influence of the latter on refactored classes might reduce the refactoring benefits
on software coupling. Finally, we have to consider that refactoring does not strictly
require a reduction of software coupling. Thus, AP and RP refactorings can achieve
other improvements on software which do not change coupling.

On the basis of these results we can now answer the research questions.

• RQ1- Are there analytical distribution functions able to describe fan-in in
refactored and non-refactored classes? Are there differences among refactored
and non-refactored classes?
We found that fan-in empirical distributions are in general well modelled by a
power-law for both refactored and not-refactored classes. In general, best fitting
provides better results for non-refactored classes, but this has to be ascribed to
the differences in the populations of the two sets, given that refactored classes are
only a small part of the total classes and the fact that a power-law fit improves
when the set is larger. Furthermore, we found significant differences in the values
of the best fitting parameters, indicating that developers focus their attention
on refactoring classes with relatively high fan-in.
• RQ2- Does refactoring change fan-in coupling overall?

The best fitting parameters show a negligible change in their values in almost
all the analyzed cases when computed before or after refactoring. This indicates
that the two types of refactorings analyzed have an overall null effect on the
fan-in class coupling, even if each single class eventually changes the classes
it is coupled to. This result should take into account all those cases in which
refactoring is planned with the single purpose of reducing coupling to decrease
maintenance effort as well as for other reasons.
• RQ3- Are there analytical distribution functions able to describe fan-out in

refactored and non-refactored class? Are there differences among refactored and
non-refactored classes? Again, the same considerations just described apply for
the fan-in case. The empirical distributions of fan-out are well modelled by a
lognormal distribution, for both refactored and non-refactored classes. In this
case, the best fitting quality presents no appreciable differences among the two
types, since the R2 coefficient of determination is less sensitive to differences
in the two populations. Here again there are differences in the best fitting
parameters values showing that the classes selected for refactoring have relatively
high fan-out.
• RQ4- Does refactoring change fan-out coupling overall?

The empirical CCDF’s and the parameter values show that no appreciable
changes occur in the distribution of fan-out before and after refactoring. So the
two types of refactorings analyzed have an overall null effect on fan-out class
coupling, even if each single class eventually changes the classes it is coupled
to. Once again, this must be taken into account when refactoring is planned
explictly to reduce coupling.
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7 THREATS TO VALIDITY

Threats to internal validity concern confounding factors which could influence the
values of fan-in and fan-out without being related to refactoring. In fact, fan-in and
fan-out metrics can be influenced by different maintenances activities, such as feature
introduction, enhancement request and bug fixing. A key threat to the internal validity
of the study presented is therefore whether significant changes were made to classes
(which changed the fan-in or fan-out values) which are not related to parameter-based
refactorings identified in this study. Put another way, there is the possibility that
other maintenance activity on classes also altered the fan-in and fan-out values - but
were not included in our analysis. Refactored and non-refactored classes, as we have
defined them, might have undergone significant modification that changed the fan-in
and fan-out. In defence of this threat, while it is possible of course for coupling to be
introduced into, and removed from a class in many ways, we observed a considerable
proportion of the addition and removal of coupling to arise through changes that either
added a parameter or removed a parameter [31]. Moreover, it is also possible that
these refactorings would be the only maintenance activities performed upon many
refactored classes and, equally, that many changes made to classes (and not covered by
our refactorings) do not influence fan-in and fan-out anyway. In addition, our study
takes into account four projects, across different releases, with several hundreds and
sometimes thousands of classes. Thus, the “noise” effect which might be given by other
maintenance operations, albeit present, should not invalidate our conclusions. In fact,
our analysis takes into account the possibility that an add parameter would nullify a
remove parameter refactoring (and vice versa) thereby cancelling the expected change
in the distributions before and after refactoring.

Threats to external validity concern the degree to which we can draw general
conclusions from our results. Refactoring operations (i.e., why refactoring is done)
depends to a large degree on a potentially large number of relevant variables such as
developer experience, the amount of time that a developer has to carry out refactoring
and the extent to which classes are problematic. Our case study is composed of
open-source systems written in Java and represents a small sample of software systems.
Even if we focused our analysis on general findings, largely ignoring any comments
dealing with specific cases, it would be useful to analyze more systems - especially
if developed in industry environments - to confirm or reject our findings. We have
considered only parameter-based refactorings, but we need to consider the possibility
that there are many other types of refactoring that a developer might apply to their
code which influence the value of fan-in and fan-out. For this reason, it would be useful
to explore more refactorings in the same spirit as we have herein. Threats to construct
validity focus on how many refactorings are accurately detected and how correct the
identified refactorings are; this depends largely on the reliability of Ref-Finder [1]. The
authors went to great lengths through sampling and checks to ensure that the output
of the Ref-Finder tool was as expected and we are confident that the data extracted
using the tool is an accurate representation of the systems.

8 CONCLUSION AND FUTURE WORK

This paper investigated the relationship between parameter-based refactorings and
fan-in, fan-out metrics using multiple releases of four Java open-source systems. Using
the tool Ref-Finder, we identified the add parameter and remove parameter refactorings
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performed between a release Ri and its subsequent release Ri+1. Our results indicate
that refactored and non-refactored classes have different statistical distributions for
fan-in and fan-out metrics, in the sense that while the statistical distribution best
fitting functions are the same, the best fitting parameters differ systematically, causing
a vertical shift in the CCDF’s of the metrics for refactored classes. Average fan-in and
fan-out values are always larger for refactored classes. In other words values of fan-in
and fan-out are larger in refactored classes with respect to non-refactored classes. This
was a surprising result from the analysis. We might expect developers to prefer the
“safer” option of modifying classes where the impact of making a change is less likely
to cause side-effects, i.e. by refactoring classes with a high fan-out and low-fan-in; this
is based on the caveat that modifying classes with a high fan-in could impact many
classes if functionality that they depend on is touched in any way. That said, it is not
always a choice that the developer has. A refactoring might be an urgent response to
a problematic piece of code.

Our results also show that fan-in in refactored and non-refactored class can be
modelled by a power-law, whereas fan-out is modelled by a lognormal distribution.
Parameter-based refactorings do not exhibit any impact on fan-in and fan-out values
of software system; their evolution does not influence the “shape” of such distributions.
We conjecture that add parameter and remove parameter interactions, have only
a negligible net effect. If reduced coupling is an aim of refactoring, then careful
consideration should be given to which refactorings are chosen and how they might
influence the overall values of fan-in and fan-out. The empirical study of refactoring
presented suggest that we should evaluate both how refactoring modifies the software
“qualitatively”, and how it influences software “quantitatively”.
Generally, it is assumed that any increase in coupling is generally conceived as a
bad thing. However, we need to be mindful of the possibility that different forms of
coupling might have different effects on the maintainability of a system. Relatively
large amounts of one form of coupling might be preferable to small amounts of another
form. Refactoring might introduce a harmful form of coupling while eliminating a less
damaging type. Of course, this hypothesis would be if we know a priori which types
of coupling are harmful and which are not.
In future work, we intend to investigate more refactorings not listed in this paper (and
not necessarily those in the seventy-two proposed by Fowler) but yet able to influence
fan-in and fan-out. We intend to explore the influence and effect that the possible
confounding factors, such as regular non-refactoring maintenance activity, might have
on the results presented; this will address the possibility that coupling could be affected
by other non-add/non-remove parameter activities. Finally, while fan-in and fan-out
give a finer-grained profile of coupling than many existing coupling metrics, it would
be useful to explore the composition of fan-in and fan-out to determine the exact
influence on distributions of the different coupling forms.
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