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Abstract Code smells are structural characteristics of software that may
indicate a code or design problem that makes software hard to evolve and
maintain, and may trigger refactoring of code. Recent research is active in
defining automatic detection tools to help humans in finding smells when
code size becomes unmanageable for manual review. Since the definitions
of code smells are informal and subjective, assessing how effective code
smell detection tools are is both important and hard to achieve. This
paper reviews the current panorama of the tools for automatic code smell
detection. It defines research questions about the consistency of their
responses, their ability to expose the regions of code most affected by
structural decay, and the relevance of their responses with respect to future
software evolution. It gives answers to them by analyzing the output of
four representative code smell detectors applied to six different versions of
GanttProject, an open source system written in Java. The results of these
experiments cast light on what current code smell detection tools are able
to do and what the relevant areas for further improvement are.

Keywords code smells; code smell detection tools; refactoring; software
quality evaluation.

1 Introduction

Nowadays there is an increasing number of software analysis tools available for detecting
bad programming practices, highlighting anomalies, and in general increasing the
awareness of the software engineer about the structural features of the program under
development. As these tools are gaining acceptance in practice, a question arises on
how to assess their effectiveness and select the “best” one. For this aspect we have to
face the common and very difficult problem of tool comparison and validation of the
results.

In this paper we focus our attention on code smells and on automatic tools
developed for their detection. Code smells are structural characteristics of software
that may indicate a code or design problem and can make software hard to evolve and
maintain. The concept was introduced by Fowler [Fow99], who defined 22 different
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kinds of smells. Later, other authors (e.g. Méantylad [MVLO04]) identified more smells,
and new ones can be discovered. Code smells are strictly related to the practice of
refactoring software to enhance its internal quality. As developers detect bad smells in
code, they should evaluate whether their presence hints at some relevant degradation
in the structure of the code, and if positive, decide which refactoring should be applied.
Using a metaphor, smells are like the symptoms of possible diseases, and refactoring
operations may heal the associated diseases and remove their symptoms. Since the
same symptom may be caused by different diseases, or even by no disease at all, human
judgement is indispensable for assessing smells in the context of the project where they
are found. Automatic tools, on the other hand, can play a relevant role in alleviating
the task of finding code smells in large code bases.

Not necessarily all the code smells have to be removed: it depends on the system.
When they have to be removed, it is better to remove them as early as possible. If we
want to remove smells in the code, we have to locate and detect them; tool support
for their detection is particularly useful, since many code smells can go unnoticed
while programmers are working. However, since the concept of code smell is vague and
prone to subjective interpretation, assessing the effectiveness of code smell detection
tools is especially challenging. Different tools may provide different results when they
analyze the same system for many reasons:

e The ambiguity of the smell definitions and hence the possibly different interpre-
tations given by the tools implementors. There are some words and constraints
which are routinely used to define the essence of many smells, such as the words
“few”, “many”, “enough”, “large”, “intimate”, which are obviously ambiguous. In
other cases the definitions are too vague and have to be refined and improved to

enhance the detection tools.

e The different detection techniques used by the tools. They are usually based
on the computation of a particular set of combined metrics, or standard object-
oriented metrics, or metrics defined ad hoc for the smell detection purpose [LMOG].

e The different threshold values used for the metrics, even when the techniques
are analogous or identical. To establish these values different factors have to
be taken into account, such as the system domain and size, organization best
practices, the expertise and the understanding of the software engineers and
the programmers who define these values. Changing thresholds obviously has a
great impact on the number of detected smells, i.e. too many or too few.

In general, the validation of the results of the existing approaches is scarce, done
only on small systems and for few smells [MGDM10, MHB10, MVL04, M&05]. The
validation of the detection results is complex, not only for the reasons cited above, but
for the problems related to the manual validation. The manual validation of the results
of a tool might not be completely correct, even if the manual validators are given
the same criteria used by the tool (e.g. smell definition, detection rule). In fact, the
values of some metrics, like those used for example to measure method complexity, can
change from a manual inspection done by a programmer to the automatic computation
of this metric done by a tool. Moreover, the manual computation can differ from
one programmer to another: it is subjective. However, the results of manual and
automatic detection of smells detected through simple metrics, like counting entities,
tend to have greater accordance.
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This paper is focused on tools rather than on humans and extends previous work
on the experimentation of code smell detection tools [AFMM™11]. It reviews the
current panorama of the tools for automatic code smell detection, and comparatively
analyzes some of them against their usefulness in assisting the main stakeholders of
the software development process when assessing the internal quality of a software
system. We do that by defining a number of research questions about the consistency
of tool responses, the ability of tools to expose the regions of code most affected by
structural decay, and the relevance of tool responses with respect to future software
evolution. We answer these research questions by an experimental analysis of six
different versions of GanttProject,! an open source system written in Java, by means
of four representative code smell detectors. We are not aware of the existence of
previous research in literature with a similar aim and scope. Hence, the results of
these experiments cast light on what current code smell detection tools are able to do
and what the relevant areas for further improvement are. We hope that this work will
be valuable not only to researchers, but also to developers who exploit tools to detect
critical region of code, assess the internal quality of software and focus on refactoring
activities. Reliable tools must yield precise, synthetic and reproducible answers, and
prioritize them on their relevance. The experiments discussed in this paper provide
practitioners with a view on how well current tools for code smell detection satisfy
these requirements.

The paper is organized as follows. Section 2 introduces the smells we focus our
attention on in this paper, and discusses how software metrics and code smells can be
correlated with the purpose of their automatic detection. Section 3 lists all the tools
able to detect some smell we are aware of. Section 4 contains four research questions
on code smell detection tools, and the experimental setup we designed to answer them.
Section 5 exposes the results of our experiments, answers the research question of
Section 4, and discusses the main threats to the validity of these results. Section 6
reviews the current literature. Finally, Section 7 summarizes the research presented in
this paper and outlines our current efforts in extending them.

2 Bad smells: Definitions and their detection

Fowler identifies 22 code smells [Fow99] and associates each of them with the refactoring
transformations that may be applied to improve the structure of code. He defines
code smells informally, maintaining that only human intuition may guide a decision on
whether some refactoring is overdue. Some smells indicate real problems in code (e.g.,
long parameter lists make methods harder to invoke), while other are just possible
symptoms of a problem: e.g. a method has Feature Envy when it uses the features of
a class different from that where it is declared, which may indicate that the method is
misplaced, or that some pattern as Visitor is being applied.

As Zhang et al. [ZHBWO08] suggest, Fowler’s definitions are too informal to im-
plement in a smell detection tool. The ambiguous definitions of smells have a great
impact on their detection. We provide here the definitions [Fow99] of some code smells
on which we focus our attention in this paper.

Thttp://www.ganttproject.biz
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2.1 Smells Definition

Duplicated Code means that the same code structure appears in more than one
place.

Feature Envy means that a method is more interested in other class(es) than the
one where it is currently located. This method is in the wrong place since it is more
tightly coupled to the other class than to the one where it is currently located.

God Class usually called also design flaw, refers to class that tends to centralize
the intelligence of the system. A God Class performs too much work on its own,
delegating only minor details to a set of trivial classes, and using the data from other
classes [LMO6]. This smell is comparable to Fowler’s Large Class smell [Fow99| and is
similar also to Brain Class smell [LMO06] (see Appendix B for the definitions of these
smells).

Large Class means that a class is trying to do too much. These classes have too
many instance variables or methods.

Long Method is a method that is too long, so it is difficult to understand, change,
or extend. The Long Method smell is similar to the Brain Method smell defined by
Lanza et al. [LMO6], which tend to centralize the functionality of a class, in the same
way as a God Class centralizes the functionality of an entire subsystem, or sometimes
even a whole system.

Long Parameter List is a parameter list that is too long and thus difficult to
understand.

2.2  Smells Detection

As we will see in Section 5 the results for the detection of these smells provided by
the tools are very different. This subsection outlines how the smells can be detected
and discusses some of the relevant problems which we have to face for their automatic
detection. Some of the considerations we report here have been described by Méantyla
[M&05]. We outline below how some tools detect the above smells and we remind to
the next section for the descriptions and the references to the tools.

2.2.1 Duplicated Code

Discovering duplicates can be done by measuring the percentage of duplicated code
lines in the system. The problem in the measurement of this smell lies in the different
possible kinds of duplication. Exact duplication is simple to detect, using diff-like
techniques. Other kinds of duplication imply entity renaming or aliasing, so the
detection technique needs to be able to manage the syntax of the programming
language, and needs more computational time to manage all the possible combinations
of candidate renaming. Another issue is that duplicated code is often slightly modified
and mixed with different code.

The detection strategy of iPlasma and inFusion is to detect duplicated code through
a set of metrics about exact code duplication, but considering also the length of the
duplication and the distance between two duplications. Checkstyle detects this smell
simply counting 12 line of consecutive duplicated code in the text of the program; the
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piece of duplicated code can also span multiple methods or classes. PMD considers as
an occurrence of the smell a portion of code that is duplicated at least once and that
is at least composed by 25 tokens.

2.2.2 Feature Envy

The detection of Feature Envy can be achieved by measuring the strength of coupling
that a method has to methods (or data) belonging to foreign classes. There are no
other typical measures exploited for the detection of this smell.

Lanza and Marinescu [LMO06] propose the following metrics for the detection of
Feature Envy smells:

e methods using directly more than a few attributes of other classes, measured by
the ATFD (Access To Foreign Data) metric;

e methods using far more attributes from other classes than their own, measured
by the LAA (Locality of Attribute Accesses) metric;

e the used “foreign” attributes that belong to very few other classes, measured by
the FDP (Foreign Data Providers) metric.

They detect this smell through the following condition:
FDP < FEW A ATFD > FEW A LAA < %,

where for FEW the authors consider the value of 5. Both iPlasma and inFusion adopt
the above rule.

JDeodorant approaches the problem by looking for Move Method refactoring
opportunities [TC09]: It tries to find methods which will use less foreign resources if
moved in another class.

2.2.3 God Class

Lanza and Marinescu [LMO6] propose to detect the God Class smell through the
computation of the following three metrics:

e Weighted Method Count (WMC): the sum of the statistical complexity of all
methods in a class.

e Tight Class Cohesion (TCC): the relative number of methods directly connected
via accesses of attributes.

e Access to Foreign Data (ATFD): the number of external classes from which a
given class accesses attributes, directly or via accessor methods. This last metric
is a new one, defined by the authors for the computation of this smell.

In their approach, a class is a God Class when:
WMC > VERY HIGH A ATFD > FEW A TCC < %,

where for VERY HIGH the authors consider the value of 47, and for FEW the value
of 5. How these values have been fixed is described in their book. Both iPlasma and
inFusion adopt the above rule. JDeodorant [FTCS09] computes God Class as a class
that can be decomposed in other classes, and it reports one (or more) Extract Class
refactoring opportunity. This kind of detection strategy is not directly related to the
size of the class.

Journal of Object Technology, vol. 11, no. 2, 2012


http://dx.doi.org/10.5381/jot.2012.11.2.a5

6 - Francesca Arcelli Fontana et al.

2.2.4 Large Class

Many class size measures have been introduced in the past. The traditional way of
measuring class size is to measure the number of lines of code, i.e. NLOC, or the
number of attributes and methods. Simple size measures such as NLOC can reveal
the size of the class, but they offer no help on whether the class is doing too much or
not. For example GUI classes, as well as other special cases, can make the definition
of Large Class more elusive: e.g. a Large Class which represents a parser cannot be
considered a smell, because it is typically generated code.

PMD and Checkstyle both use NLOC as detection strategy. The former uses a
threshold of 1000 and the second a threshold of 2000. Another measure of class size is
class cohesion, and different metrics can be used.

2.2.5 Long Method

Measuring long methods should be quite easy. However, relying on a too simple size
measure such as NLOC will definitely bring a wrong result, because, for example,
initiation methods can often be quite long. There is no sense in refactoring long
initiation methods, because they usually have very low cyclomatic complexity and
therefore they are very easy to understand and modify. Mantyld [Ma05] suggests using
cyclomatic complexity and Halstead measures, which measure the number of operators
and operands, and can provide necessary information on method complexity. In the
opinion of Méantyl&, the best metric for this smell is a polynomial metric that combines
NLOC, Cyclomatic Complexity, and Halstead metrics.

Tools like Checkstyle and PMD detect Long Method by simply considering NLOC,
but using different thresholds: for PMD the threshold is 100 and for Checkstyle is 150.
JDeodorant uses slicing techniques to determine if a class is eligible for an Extract
Method refactoring [TC11].

2.2.6 Long Parameter List

The detection of a Long Parameter List can be achieved simply by counting the
number of parameters of each method. The consideration of the type of parameters
(i.e. primitives, classes) in combination with this smell can additionally help the
refactoring process, since redundant primitive lists make good candidates for new
classes. The critical point in the detection of a Long Parameter List is the setting of
the threshold value. For example, in PMD the default value of the threshold is 10,
while in Checkstyle it is 7.

3 Tools for the automatic detection of code smells

This section briefly surveys the code smell detection tools we are aware of. Table 1
synthesizes some basic facts for the tools, while Table 2 reports the smells detected by
the tools. Appendix B provides the definitions of the smells in Table 2 not previously
defined.

Some tools, as we will see, have been developed to improve code quality during
software development, other tools to support reengineering and maintenance activities.
Most of the tools are not able to perform refactoring automatically on detected smells
(JDeodorant is the only one which provides refactoring choices), but modern IDEs are
usually capable of performing refactoring automatically, also if they need user guidance.
It would be desirable for smell detector tools to help the user to understand at least
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Table 1 — Code smell detection tools

Tool Version Type Analyzed Refactoring  Link
languages to
code
Checkstyle 5.4.1 2011 Eclipse Java No Yes
Plugin,
Standalone
DEcoORr 1.0 2009 Standalone  Java No No
iPlasma 6.1 2009 Standalone  C++, Java  No No
inFusion 7.2.11 2010 | Standalone  C, C++, No No
Java
JDeodorant  4.0.4 2010 Eclipse Plu- Java Yes Yes
gin
PMD 4.2.5 2009 Eclipse Java No Yes
Plugin,
Standalone
Stench Blos- 1.0.4 2009 Eclipse Plu- Java No Yes
som gin
Legend:

Analyzed languages: languages that the tool is able to analyze;
Refactoring: whether the tool provides automatic refactoring or not;

Link to code: whether the tool provides the location in the code of the detected smells.

the cause of the smells and, as underlined in the guidelines proposed by Murphy-Hill
and Black [MHB10], the tools should also not display smell information in a way that
overloads the programmer, in case of smell proliferation.

Checkstyle Checkstyle? has been developed to help programmers to write Java
code that adheres to a coding standard. It is able to detect the Large Class, Long
Method, Long Parameter List, and Duplicated Code code smells.

DECOR Moha et al. [MGDM10, MGM™10| defined an approach that allows the
specification and automatic detection of code and design smells (also called anti
patterns). They specified six code smells by using a custom language, automatically
generated their detection algorithms using templates, and validated the algorithms in
terms of precision and recall. This approach is implemented in their DECOR platform
for software analysis.? In the following, with the name DECOR we mean the component
developed for code smell detection.

inFusion inFusion? is the current, commercial evolution of iPlasma. inFusion is able
to detect more than 20 design flaws and code smells, like Duplicated Code, classes
that break encapsulation, i.e. Data Class and God Class, methods and classes that
are heavily coupled, or ill-designed class hierarchies.

2http://checkstyle.sourceforge.net/
Shttp://www.ptidej.net/download
4http://www.intooitus.com/inFusion.html
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iPlasma This tool [MMM™05] is an integrated platform for quality assessment of
object-oriented systems that includes support for all the necessary phases of analysis,
from model extraction, up to high-level metrics based analysis.®> iPlasma is able to
detect what the authors define as code disharmonies, classified into identity dishar-
monies, collaboration disharmonies, and classification disharmonies. The detailed
description of these disharmonies can be found in [LMO06]. Several code smells are
considered as disharmonies, e.g., Duplicated Code (named Significant Duplication),
God Class, Feature Envy, and Refused Parent Bequest.

JDeodorant JDeodorant [TC11] is an Eclipse plugin that automatically identifies
the Feature Envy, God Class, Long Method and Switch Statement (in its Type Checking
variant) code smells in Java programs.® The tool assists the user in determining an
appropriate sequence of refactoring applications by determining the possible refactoring
transformations that solve the identified problems, ranking them according to their
impact on the design, presenting them to the developer, and automatically applying
the one selected by the developer.

PMD PMD7 scans Java source code and looks for potential problems or possible
bugs like dead code, empty try/catch/finally /switch statements, unused local variables
or parameters, and duplicated code. PMD is able to detect Large Class, Long Method,
Long Parameter List, and Duplicated Code smells, and allows the user to set the
thresholds values for the exploited metrics.

Stench Blossom Stench Blossom [MHBI10] is a smell detector that provides an
interactive visualization environment designed to give programmers a quick and high-
level overview of the smells in their code, and of their origin. The tool is a plugin for the
Eclipse environment that provides the programmer with three different views, which
progressively offer more information about the smells in the code being visualized.
The feedback is synthetic and visual, and has the shape of a set of petals close to a
code element in the IDE editor. The size of a petal is directly proportional to the
“strength” of the smell of the code element it refers. The only possible procedure to
find code smells is to manually browse the source code, looking for a petal whose size
is big enough to make the user suppose that there is a code smell. The tool is able to
detect 8 smells.

Other tools Other developed tools or methods for code smell detection have been
proposed. CodeVizard [ZA10] is a currently unreleased tool able to detect several
smells, essentially following the detection rules defined in [LMO06]. inCode® is an
Eclipse plugin based on inFusion, that provides detection of design problems as code
is written. Given its similarity with inFusion we have not considered it. Other tools
are: FxCop for .NET, Analyst for Java (commercial), CodeNose (no longer available),
JCosmo [vEMO02| (for Linux), CloneDigger and ConQat (for clone detection).

Shttp://loose.upt.ro/iplasma/index.html
Shttp://http://www.jdeodorant .com/
"http://pmd.sourceforge.net/
8http://pmd.sourceforge.net/
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Table 2 — Code smell support

9

Smell

Checkstyle

DECOR

inFusion

iPlasma

JDeodorant

PMD

Stench Blossom

Brain Class

Brain Method

Data Class

Data Clumps

Dead Code

Duplicated Code
Extensive Coupling
Feature Envy

God Class / Large Class (DECOR)
Instanceof

Intensive Coupling
Large Class

Long Method

Long Parameter List
Message Chains
Refused Parent Bequest
Shotgun Surgery
Speculative Generality
Switch Statements / Type Checking (JDeodorant)
Tradition Breaker
Typecast

X

X X X X X

X

X X X X X X X X

X

X X

X X X X X

X

X

Total

12
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Table 3 — GanttProject size

Version Classes Methods Lines of code
1.4 20 290 3844
1.6 21 366 4542
1.9.1 47 678 8535
1.9.6 62 1302 14126
1.9.10 114 878 20108
1.10.2 295 1869 31794

4 Experimenting with code smell detection tools

The aim of our study is to experiment with different tools for code smells detection
by applying them to different versions of different subject programs. In our experi-
mentation, we decided to use among the tools of Section 3 the following: JDeodorant,
inFusion, PMD and Checkstyle. This choice is due to the fact that these four tools
are available for download, actively developed and maintained, their results are easily
accessible, and we are able to know the detection techniques they use. Moreover,
inFusion is the evolution of iPlasma, while DECOR and Stench Blossom do not pro-
vide accessible and easy way to export their results. All the other tools reported in
Section 3 are either no longer available, or no longer developed, or unable to analyze
Java programs.

We applied these tools to the analysis of the GanttProject, JEdit, JFreeChart,
JRefactory, and Lucene open source Java software systems. In this paper we report
the detailed results for GanttProject, a software for planning and project management
assistance. Appendix A reports the results of the experiments on the other systems
in a more synthetic fashion. To mitigate the possible effects of code maturity on the
number and distribution of smells in code, we applied the tools on six different versions
of GanttProject, spanning a period of time from February 2003 to November 2004
(Table 3 reports the analyzed GanttProject versions and their respective size). The
v1.4 version is the earliest version whose source code is still available for download. We
assume that this version and its immediate successors have a low degree of maturity,
thus a high smell density. The experiments consider the six smells shared by at least
two of the selected tools: Duplicated Code, Feature Envy, God Class, Large Class,
Long Method, Long Parameter List.”

In the following we introduce three research questions about current code smell
detection tools, and explain the structure of the experiments designed to answer each
of them.

Question 1. Do different detection tools for the same code smell agree when applied
to the same subject program?

Our first experiment investigates whether different tools for code smell detection,
based on different algorithms, agree on their results or not. We considered all the smells
analyzed by at least two different tools: Duplicated Code (analyzed by Checkstyle and
JDeodorant), Feature Envy and God Class (analyzed by JDeodorant and inFusion),

9A rough estimate of the effort spent in gathering the experimental results is, on average, one hour
of work for analyzing a single code smell with all the tools on 10000 lines of code. Effort is strongly
dependent on the number of found smell instances and on the type of smell/tool combination.
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Large Class and Long Parameter List (analyzed by Checkstyle and PMD), Long Method
(analyzed by Checkstyle, PMD and JDeodorant). We calculated the kappa statistics
[Coh60, Fle71] of the tools, which is basically an attempt to balance the amount of
accordance between the tools and the amount of accordance due to randomness (tools
returned the same results, but not for the same reason).

Question 2. How relevant are the automatically detected smells to future software
development?

This research question arises from a remark by Fowler [Fow99]: Not every smell
may lead to a corresponding refactoring. Refactoring becomes necessary whenever
the presence of a bad structure in code starts to be an obstacle to further software
evolution and maintenance. Human judgement is necessary to evaluate the relevance
of a code smell in the context of the actual project needs.

Our experiment aims at ranking the tools against an approximated evaluation of
the future relevance of the smell they detect, based on the assumption that a smell is
relevant if it is removed from code in the immediate future after it is introduced. To
this end, we determined the version where a code smell instance, found by a given tool
in a given version of GanttProject, is removed from the code. The exact procedure
was the following. We ran a smell detector on all the six versions of GanttProject we
considered for Question 1. Then, we manually tracked the smell through the evolution
of the code across the version, abstracting away refactoring transformation as, for
example, renaming of classes and methods or their relocation in different packages
and classes. This allowed us to assess whether two smell instances found by a tool in
two different versions of GanttProject should be considered the “same” smell instance.
Finally, we calculated the persistence of each smell instance, i.e., the total number
of versions where the smell instance is present before its removal. As an example, a
smell instance introduced in version 1.9.1 and removed in version 1.9.6 would have
persistence 1, since we did not analyze any version between versions 1.9.1 and 1.9.6.
The smells that are not removed by version 1.10.2 are classified as either not removed
or unassessable, if they have been introduced, respectively, before or at version 1.10.2.
Persistence is our proxy measure for the relevance of a smell instance. Our analysis is
limited to the Duplicated Code and Feature Envy smells because either the higher
granularity (class smells) or the low number of positive occurrences found by the tools
do not allow us to draw significant conclusions for the other smells.

Question 3. Is the presence of smells related to some observable feature of the source
code or of the process?

The change in the number of smells found usually reflects some significant change
in the source code that hinders its degradation. We therefore ask ourselves whether,
assuming that the tools may be imprecise, or may have a poor recall, they still can
be used by managers to observe, on a broader scale, the evolution of software and
assess the general trend of its internal quality. Our experiment will be based on the
information on the density ratio of the smells reported by the tools for each version
of the project, and on the overall history of the project as deduced from a manual
differential analysis of the source code across versions. We will attempt to informally
correlate changes, by manual review, in smell density across versions, and the prevalent
position of smells in the code, with some basic facts on project development that can
be deduced from source code analysis (introduction of new functionalities, refactoring,
etc.).
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Table 4 — Tools’ overall agreement

Version Duplicated  Feature God Large Long Long Pa-
Code Envy Class Class Method rameter

List

1.4 98.28% 95.52% 90.00% 100.00% 90.00% 100.00%
1.6 98.91% 96.72% 85.71% 100.00% 92.35% 100.00%
1.9.1 99.12% 97.05% 89.13% 95.74% 92.77% 99.85%
1.9.6 93.09% 98.08% 88.71% 95.16% 94.09% 99.92%
1.9.10 94.31% 94.87% 86.79% 97.37% 84.28% 99.66%
1.10.2 96.84% 96.74% 86.78% 98.98% 89.83% 99.84%

5 Results

In this section we report the results of the experiments we did to answer the above
questions.

5.1 Tools analysis

We recall the research question which motivated the experimental analysis based on
tools:

Question 1. Do different detection tools for a same code smell agree when applied to
a same subject program?

Table 4 shows the proportion (in percentage) of the overall agreement for all the
smells on every analyzed GanttProject version. The values range from 85% to 100%,
giving an a idea of strong agreement among the tested tools. These values indeed
hide the fact that the data are unbalanced. The large majority of the agreement
among the tools is on false values: Most of the classes (or methods) are classified as
not containing any smell. If we trust the results of the tools, we may consider the
occurrence of a smell in code as a relatively rare event, a result confirmed by manual
analysis.

For each smell and for each version of GanttProject we also report in Table 5 the
kappa statistic. We used Cohen’s kappa [Coh60] for the smells that are recognized by
two tools, and Fleiss’ kappa [Fle71] for those recognized by more than two tools. Zero
or negative values indicate no accordance, values close to 1 indicate good accordance.
The value is accompanied by the 95% confidence interval, which can give an idea of
how much the value of kappa is reliable. Another way of evaluating the confidence
of the statistic is to know the number of comparisons made. We tested every smell
by using the largest sample available: the number of classes for the God Class and
Large Class smells, and the number of methods for all the other smells. To create
the statistics dataset we assigned every smell instance, for each tool, to its class or
method.

The table reports no value in those cases where kappa statistics could not be
calculated from the resulting data. This happens, as an example, when no tool detects
any instance of a smell, as happened for the Large Class code smell in version 1.4.

Overall, the general accordance among the tools is very low, with six cases where
kappa is 0 and four cases where kappa cannot be calculated, where the tools did find
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Table 5 — Tools’ kappa statistic

Version Duplicated 95% Conf. Feature Envy 95% Conlf.
Code Interval Interval

1.4 0.4384  [0.3432, 0.5337] 0.0000  [0.0000, 0.0000]
1.6 0.4959  [0.4074, 0.5843] 0.0000  [0.0000, 0.0000]
1.9.1 0.3972  [0.3371, 0.4572] 0.0883  [0.0574, 0.1193]
1.9.6 0.3088  [0.2696, 0.3481] -0.0015 [-0.0226, 0.0196]
1.9.10 0.0303  [-0.0042, 0.0648] -0.0022  [-0.0213, 0.0168]
1.10.2 0.0000  [0.0000, 0.0000] 0.1350  [0.1083, 0.1617]
Version God Class 95% Conf. Large Class 95% Conf.
Interval Interval

1.4 0.6154  [0.2108, 1.0000] - -
1.6 0.3505  [0.0253, 0.6757] - -
1.9.1 0.4051  [0.1753, 0.6349] 0.0000  [0.0000, 0.0000]
1.9.6 0.4182  [0.2158, 0.6207] 0.0000  [0.0000, 0.0000]
1.9.10 0.4493  [0.2961, 0.6025] 0.5604  [0.3955, 0.7253]
1.10.2 0.2325  [0.1594, 0.3057] 0.5672  [0.4644, 0.6701]
Version Long Method 95% Conf. Long Parameter 95% Conf.
Interval List Interval

1.4 -0.0012 [-0.0676, 0.0653] - -
1.6 0.0705  [0.0114, 0.1297] - -
1.9.1 0.1002  [0.0568, 0.1437] 0.0000  [0.0000, 0.0000]
1.9.6 0.1337  [0.1023, 0.1650] 0.6663  [0.6151, 0.7175]
1.9.10 0.1322  [0.0940, 0.1704] 0.5700  [0.5103, 0.6297]
1.10.2 0.1277  [0.1015, 0.1539] 0.5708  [0.5298, 0.6117]

no instances at all. Whenever the agreement between some tools is higher, it is because
they use similar detection algorithms, as it will be discussed later in this subsection.
In these cases, with the exception of the Long Parameter List, the confidence limit
tends to be wide, lowering the possibility of concluding that there is good accordance
among the tools.

Tables 6-11 contain a more detailed view of the results. We will comment on them
by considering each smell separately.

Duplicated code Table 6 reports the total number of smell instances found by the
Checkstyle and inFusion tools against the size of the analyzed system expressed as
the total number of methods. The number of smell instances is the total number of
methods in the system which have at least one row of duplicated code. If a same block
of code is duplicated in n different methods, all n methods are counted. The resulting
ratio (last two columns) range from 0%, when no duplicates exist in the system, to
100%, when all the methods in the systems contain duplicated code. We notice that
Checkstyle consistently reports a higher number of smells than inFusion. Table 7
compares the detection results by each tool. The first four columns detail how many
methods are classified as affected by the smell respectively by no tool (first column),
by inFusion but not by Checkstyle (second column), by Checkstyle but not by inFusion
(third column) and by both tools (fourth column). As we can see, Checkstyle classifies
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Table 6 — Duplicated code per-tool results

Version Checkstyle inFusion — Size Checkstyle ratio inFusion ratio
1.4 7 2 290 2.41% 0.69%
1.6 6 2 366 1.64% 0.55%
1.9.1 8 2 678 1.18% 0.29%
1.9.6 112 22 1302 8.60% 1.69%
1.9.10 48 4 878 5.47% 0.46%
1.10.2 59 0 1869 3.16% 0.00%

Table 7 — Duplicated code tool comparison

]
2 =
2 g
2 g 5 S
o = ~ o
Version Z @) = aa)] Same Different Size
1.4 283 5 0 2 285 98.28% 5 1.72% 290
1.6 360 4 0 2 362  98.91% 4 1.09% 366
1.9.1 670 6 0 2 672  99.12% 6 0.88% 678
1.9.6 1190 90 0 22 1212 93.09% 90 6.91% | 1302
1.9.10 827 47 3 1 828  94.31% 50 5.69% 878
1.10.2 1810 59 0 0 1810 96.84% 59 3.16% | 1869

as affected by the smell almost all the methods that are also classified positively by
inFusion. This suggests that Checkstyle uses a weaker detection strategy than that of
inFusion. Indeed, the detection technique used in Checkstyle is exact text matching of
at least 12 consecutive text rows. This technique misses variable renaming or code
re-indentation, and reports also sequences of very short methods like getters and setters
when they are written in the same order in two different files. inFusion calculates
clone detection metrics that try to balance the size of consecutive cloned code, and
the number of cloned and different lines in a fragment. Columns from five to eight in
Table 7 give more details on the synthetic data of Table 4, reporting both the number
of methods and the percentage on which the tools agree or disagree, respectively.

Feature envy Tables 8 and 9 are structured in the same way as Tables 6 and 7.
The size of the system is, again, the total number of methods in the system, and the
numbers reported in the columns titled with the name of the tools is the number of
methods which the corresponding tool classifies as affected by Feature Envy. inFusion
is again the most conservative tool, which classifies as affected by the smell only 10
methods of the more than 5000 analyzed. Table 9 shows that the number of positively
classified methods on which the tools agree is almost equal to the number of positively
classified methods on which the tools disagree (6 against 4).

God Class Tables 10 and 11 report the results of the God Class tool detection
experiment. We notice that JDeodorant’s positive answers include all of inFusion’s
positive answers. This yields the third best level of agreement among all the experi-
ments, after Long Parameter List and Large Class. We do not have an explanation of
why this happens, as the two tools are based on entirely different detection strategies:
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Table 8 — Feature envy per-tool results

Version inFusion JDeodorant  Size inFusion ratio = JDeodorant ratio
1.4 0 13 290 0.00% 4.48%
1.6 0 12 366 0.00% 3.28%
1.9.1 1 21 678 0.15% 3.10%
1.9.6 1 24 1302 0.08% 1.84%
1.9.10 1 44 878 0.11% 5.01%
1.10.2 7 64 1869 0.37% 3.42%

Table 9 — Feature envy tool comparison

=

o g

S 3

2 3 8 S
. S = a S . .

Version Z B = /M Same Different Size
1.4 277 0 13 0 277  95.52% 13 4.48% 290
1.6 354 0 12 0 354 96.72% 12 3.28% 366
1.9.1 657 0 20 1 658  97.05% 20 2.95% 678
1.9.6 1277 1 24 0 1277  98.08% 25 1.92% 1302
1.9.10 833 1 44 0 833 94.8™% 45 5.13% 878
1.10.2 1803 2 59 5 1808  96.74% 61 3.26% 1869

JDeodorant performs clustering on class methods and attributes, inFusion calculates
metric for class cohesion, class functional complexity and access to foreign data.

Large class Tables 12 and 13 contain data on the Large Class smell. The size of a
system is measured as the total number of classes in it, with the exclusion of anonymous
inner classes. We did not consider anonymous inner classes to be stand-alone entities
because they typically play the role of reusable code blocks. We considered them as
part of the methods where they are instantiated. The column for the tools report
the number of classes that each tool classifies as affected by the Large Class smell. It
is apparent that all the classes that are positively classified by Checkstyle are also
positively classified by PMD. Indeed, both tools use the number of line of codes as
the metric to decide whether a class is large or not, and PMD uses by default a lower
threshold than Checkstyle to label a class as affected by the smell. This is reflected

Table 10 — God class per-tool results

Version inFusion JDeodorant Size inFusion ratio JDeodorant ratio
1.4 2 4 20 10.00% 20.00%
1.6 1 4 21 4.76% 19.05%
1.9.1 2 7 47 4.26% 14.89%
1.9.6 3 10 62 4.84% 16.13%
1.9.10 7 21 114 6.14% 18.42%
1.10.2 7 46 295 2.37% 15.59%
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Table 11 — God class comparison

.

2 9
Version Z. R= - aa} Same Different Size
14 16 0 2 2 18  90.00% 2 10.00% 20
1.6 17 0 3 1 18 85.71% 3 14.29% 21
1.9.1 40 0 5 2 42 89.36% 5 10.64% 47
1.9.6 52 0 7 3 55 88.71% 7 11.29% 62
1.9.10 93 0 14 7 100 87.72% 14 12.28% 114
1.10.2 249 0 39 7 256  86.78% 39 13.22% 295

Table 12 — Large class per-tool results
Version Checkstyle PMD  Size Checkstyle ratio PMD ratio
14 0 0 20 0.00% 0.00%
1.6 0 0 21 0.00% 0.00%
1.9.1 0 2 47 0.00% 4.26%
1.9.6 0 3 62 0.00% 4.84%
1.9.10 2 5 114 1.75% 4.39%
1.10.2 2 5 295 0.68% 1.69%

by the fact that kappa statistics scores the second best degree of agreement between
tools after Long Parameter List.

Long Method Tables 14 and 15 report the results of the experiment for the Long
Method detectors. This is the only smell which is detected by more than two tools.
Correspondingly, Table 15 reports the number of each of the possible 23 combinations
of tools decisions. JDeodorant is the tool which detects the highest number of smells,
about one order of magnitude more than the other tools. The positive outcomes of
PMD are mostly contained in those of the other tools. JDeodorant and Checkstyle
are the tools that disagree the most on their positive answers. To understand the high
number of positive results produced by JDeodorant, we manually inspected some of
them, and found that JDeodorant includes methods with significantly shorter size than
the other tools. JDeodorant includes in its search for Long Methods all the methods
for which it finds an Extract Method refactoring opportunity, independently on their
actual length [TC11].

Long parameter list Tables 16 and 17 report in details the results of the experiment
on the Long Parameter List code smell. The tools which detect this smell simply
compare the total number of parameters in all methods signatures against a fix
threshold. PMD’s default threshold is higher than Checkstyle’s (10 against 7), thus
Checkstyle classifies positively all the methods that are classified positively by PMD.
This yields the highest agreement among all the detection strategies we analyzed.
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Table 13 — Large class comparison

O
E
2
: T 2 =
3 = = 8
Version Z O [aB an) Same Different Size
1.4 20 0 0 0 20  100.00% 0 0.00% 20
1.6 21 0 0 0 21 100.00% 0 0.00% 21
1.9.1 45 0 2 0 45 95.74% 2 4.26% 47
1.9.6 59 0 3 0 59  95.16% 3 4.84% 62
1.9.10 109 0 3 2 111 97.37% 3 2.63% 114
1.10.2 290 0 3 2 292  98.98% 3 1.02% 295

Table 14 — Long Method per-tool results

Version Checkstyle JDeodorant PMD  Size Checkstyle JDeodorant PMD

ratio ratio ratio
1.4 2 26 2 290 0.69% 8.97% 0.69%
1.6 4 24 3 366 1.09% 6.56% 0.82%
1.9.1 8 43 5 678 1.18% 6.34% 0.74%
1.9.6 11 69 11 1302 0.84% 5.30% 0.84%
1.9.10 12 140 18 878 1.37% 15.95% 2.05%
1.10.2 14 195 18 1869 0.75% 10.43% 0.96%

Table 15 — Long method comparison
Checkstyle X X X X
JDeodorant X X X X
PMD X X X X
Version ‘ ‘ Same Different ‘ Size
1.4 261 2 25 1 0 0 1 0 261  90.00% 29  10.00% 290
1.6 338 2 23 0 0 2 1 0 338 92.35% 28 7.65% 366
1.9.1 628 4 41 0 0 3 1 1 629 92.77% 49 7.23% 678
1.9.6 1224 3 63 0 1 6 4 1 1225  94.09% 7 5.91% 1302
1.9.10 733 2 125 0 0 3 8 7 740  84.28% 138 15.72% 878
1.10.2 1669 2 180 1 0 2 5 10| 1679 89.83% 190 10.17% 1869
Table 16 — Long parameter list per-tool results

Version PMD Checkstyle Size PMD ratio Checkstyle ratio
1.4 0 0 290 0.00% 0.00%
1.6 0 0 366 0.00% 0.00%
1.9.1 0 1 678 0.00% 0.15%
1.9.6 1 2 1302 0.08% 0.15%
1.9.10 2 5 878 0.23% 0.57%
1.10.2 2 5 1869 0.11% 0.27%
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Table 17 — Long parameter list comparison

O
=
: ¥ g =
3 = = S
Version Z. O A~ aa} Same Different Size
1.4 290 0 0 0 290 100.00% 0 0.00% 290
1.6 366 0 0 0 366 100.00% 0 0.00% 366
1.9.1 677 1 0 0 677 99.85% 0 0.00% 678
1.9.6 1300 1 0 1 1301 99.92% 1 0.08% 1302
1.9.10 873 3 0 2 875  99.66% 2 0.23% 878
1.10.2 1864 3 0 2 1866  99.84% 2 0.11% | 1869

Conclusions The experiments pointed out that different detectors for a same code
smell produce different answers even if they are based on similar detection algorithms.
The only notable exception is given by the tools that detect the God Class smell.

5.2 Code smell relevance

Question 2. How relevant are the automatically detected smells to future software
development?

Figures 1 and 2 track the six analyzed versions of GanttProject the introduction
and removal of all the Duplicated Code and Feature Envy smells. Each horizontal line
indicates a set of smells'? that are introduced (dotted end) and removed (crossed end)
at the same version. The size of each set of smells is reported on the left of the dotted
end of the corresponding line. Table 18 reports the number of detected smells in the
six analyzed versions, for each possible value of persistence (we recall that persistence
is the number of analyzed versions a smell is present in code). We did not analyze the
evolution of the other smells, because either their higher granularity (Large Class, God
Class), or the low number of positive occurrences found by the tools (Long Parameter
List) do not allow us to draw significant conclusions.

For the Duplicated Code smell, Checkstyle and inFusion produced a total of 193
positive answers over the six versions of GanttProject we analyzed. Of them, 134
(69.4%) are removed from code before the last analyzed version 1.10.2, 22 (11.4%)
remain in the code, and the remaining 37 (9.2%) cannot be assessed. It clearly emerges
that most of the smells that are removed from the code, are removed within the next
version after their introduction—precisely, 124 of 134 (92.5%). These results strongly
suggest that the tools are able to detect sensible regions of code, that are subject to
refactoring within a short time horizon. The Feature Envy data substantially agree,
with 22 smells removed at the next version after their introduction, of 32 that are
removed from the code (68.8%).

Conclusions Most of the automatically detected smells are relevant to the future
evolution of the software system.

10Here we consider all the instances reported by at least one tool.
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Figure 1 — Introduction and removal of Duplicated Code smells in GanttProject
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Figure 2 — Introduction and removal of Feature Envy smells in GanttProject
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Table 18 — Persistence of smells in code

Duplicated Code Feature Envy
Persistence Total ‘ Checkstyle inFusion | Total ‘ JDeodorant  inFusion
1 version 124 122 18 22 21 1
2 versions 4 4 2 2 2 0
3 versions 0 0 0 ) 5 0
4 versions 4 4 2 1 1 0
5 versions 2 2 0 2 2 0
not removed 22 22 2 30 29 1
unassessable 37 37 0 36 35 6

5.3 Code smells evolution

Question 3. Is the presence of smells related to some observable feature of the source
code or of the process?

We briefly summarize the evolution of GanttProject across the analyzed versions.

e Version 1.4 to 1.6: Added support to the Spanish language locale (added class
GanttLanguageSpanish). Class GanttAppli has been renamed GanttProject.

e Version 1.6 to 1.9.1 More locales (added classes GanttLanguageGerman and
GanttLanguagePortugues), added management of human resources (added
classes GanttPeople and GanttPeoplePanel), plus facilities for exporting projects
to XML, HTML and PNG file formats (added classes GanttDialogExport,
GanttHTMLExport, GanttIO0, GanttXMLFileFilter, GanttXMLOpen, GanttXMLSaver).

o Version 1.9.1 to 1.9.6: More locales (added classes GanttLanguageChineseBigh,
GanttLanguageChineseGB, GanttLanguageItalian, GanttLanguageNorwegian,
GanttLanguagePolish, and GanttLanguageTurkish), added possibility of as-
signing tasks to human resources (added class GanttDialogAssign), added an
unused GanttGraphicPrint class very similar to the GanttGraphicArea class.

e Version 1.9.6 to 1.9.10: Version 1.9.10 is characterized both by an overall
refactoring of the code, and by the introduction of many new features. The
existing and new classes were organized in packages, locales management was
modified to load locales from resource bundles (eliminated GanttLanguageXxxx
classes), GUI actions were moved to dedicated classes, a more comprehensive
support to project resources was introduced (added classes ProjectResource
and ResourcelLoadGraphicArea, classes GanttPeople and GanttPeoplePanel
refactored to HumanResource and GanttResourcePanel), added support to
graphic themes and PDF export.

o Version 1.9.10 to 1.10.2: Added many packages and classes to implement
additional functionalitie, for example time units and automatic task scheduling.
The architecture is identical to that of version 1.9.10.

Figures 3 to 8 depict the evolution of the detected code smells in the six analyzed
versions of GanttProject. Data are presented in percentage on the total number of
classes or methods in the system.
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Figure 4 — Large Class results on GanttProject
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The figures highlight how the tools report relevant increases (3 to 6 percentage
points) in all the smells densities except God Class between versions 1.6 and 1.9.10.
In detail, version 1.9.6 has maximum density of Duplicated Code and Large Class
smells, and version 1.9.10 has maximum density of Feature Envy, Long Method, and
Long Parameter List smells. By manually analyzing the source code, we noticed that
starting from version 1.9.6 the size of the system grows rapidly, mainly because of the
addition of new functionalities and the extension of existing ones. This evolution is
also reflected in the progressive introduction of the use of packages to organize the
classes in subsystems.

The rest of this section will report our qualitative analysis of tool data, and our
remarks on how this data may be related to the actual evolution of the system.

Duplicated Code and Large Class The increase in the amount of Duplicated
Code and Large Classes in version 1.9.6 (see Figure 3 and Figure 4) is mainly due to
the introduction of the class GanttGraphicPrint which is mostly a copy of the existing
GanttGraphicArea Large Class. Version 1.9.10 is characterized by the introduction
of many new functionalities, implemented in a high number of new classes. Of these,
the introduction of several implementations of the abstract TableModel class, all
sharing Duplicated Code, increase the density of this smell. Finally, the introduction
of the ResourceloadGraphicArea class, almost a clone of the GanttGraphicArea
class, contributes to the increase in density of the Duplicated Code smell. Overall, the
classes GanttGraphicArea, GanttGraphicPrint, the subclasses of the TableModel
class, and ResourceLoadGraphicArea account for more than the 78% of the duplicates
in version 1.9.6, more than the 56% of the duplicates in version 1.9.10, and more than
the 42% of the duplicates in version 1.10.2.

Feature Envy The increase in density of the Feature Envy (see Figure 5) smell
in version 1.9.10 is justified by a decrease in size of the system, while the total
number of Feature Envy instances grow slightly because of the introduction of
clones (e.g., the ResourceLoadGraphicArea class) or new functionalities (e.g., in
the GanttGraphicArea class). Overall, the classes GanttProject, GanttCalendar,
GanttResourcePanel, GanttGraphicArea and ResourcelLoadGraphicArea are always
present among the first five most “smelly” classes in all the analyzed versions.

God Class Figure 6 suggests that the presence of the God Class smell is the
most stable one: The tools consistently report as God Classes some fixed classes
of the system (GanttProject, GanttGraphicArea, GanttTree, GanttTask) across
all the analyzed versions. A manual analysis highlights how these classes indeed
centralize a large part of the core functionalities of the project. The slight incre-
ment trend in God Classes is also justified by the introduction of clones (again, the
ResourceLoadGraphicArea class) and new functionalities, which lower the cohesion
of the classes where they are introduced (e.g., GanttTree). The overall stability of
God Classes is a hint of the fact the developers never considered it important to
refactor them. An aggregated package analysis on versions 1.9.10 and 1.10.2 high-
lights that the most problematic packages are, again, those devoted to the overall
management of the application (net.sourceforge.ganttproject) and to the GUI
(net.sourceforge.ganttproject.gui.*). These packages form 76% of the God
Classes in version 1.9.10, and 56% of the God Classes in version 1.10.2, followed by
the net.sourceforge.ganttproject.io package that contributes 13% more smells.
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Figure 6 — God Class results on GanttProject
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Figure 7 — Long Method results on GanttProject

The latter essentially is a refactoring of the net.sourceforge.ganttproject package
of version 1.9.10, with some additional classes.

Long Method The increase of the Long Method density (see Figure 7) in version
1.9.10 is due both to the decrease in size of the system, as for the Feature Envy
smell, and to the increase in number of found Long Method. All the tools agree in
the positive trend, and most of the Long Method instances are in the problematic
classes detected by the other smell analyses, i.e., GanttProject, GanttGraphicArea,
GanttTree, GanttGraphicPrint and ResourceLoadGraphicArea. The three classes
GanttProject, GanttGraphicArea and GanttTree are the top three most “smelly”
classes in all the analyzed versions.

Long Parameter List The data about the Long Parameter List smell (see Figure 8)
are not sufficient to derive sound conclusions about the evolution of software. We
however remark that they are consistent with the trends highlighted in the rest of this
section.

Conclusions The information about density and position of bad smells, as reported
by the tools, appear to be related to observable features of the analyzed systems,
both in its history and in its structure. It was not possible to perform a significant
statistical correlation analysis because of the small size of the available data, and
because the observed features are not easily measurable in an objective way.
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Figure 8 — Long Parameter List results on GanttProject

5.4 Threats to validity

The remainder of the section discusses the main threats to the validity of our experi-
ments. We will first discuss the factors affecting the internal validity, and then those
affecting the external validity.

5.4.1 Threats to internal validity

The main factors that negatively affect the internal validity of the above reported
experiments are the size of the subject programs, the statistical dependence between
different versions of the same program, and the possible errors in the transcription of
the results of tools analysis. While we are not able to quantify their effect, we will
give our informed opinion on them.

Size of subject programs The subjects of our analysis are small to medium size
programs. Our experiments revealed that, at least for the chosen programs, the
presence of a smell in a given code element is a low-probability event. This yielded a
highly skewed distribution of “smelly” and “non-smelly” code elements, exacerbating
the small scale effect and hindering the statistical relevance of the experiments.

Statistical dependence between different versions One may reasonably expect
a strong correlation between the smells present in different versions of a software
system if they are sufficiently close in time. The experiments for Question 2 highlight
that a small but meaningful fraction of the smell instances detected by the tools persist
across many versions of the software. A lower temporal granularity would enhance
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this phenomenon. This might explain in part why the data reported for Question 1 in
many cases does not vary meaningfully across versions.

Transcription errors Different tools produce their output in different formats.
We obviated the need for translating tools results to a common format by a mix
of automatic and manual translation. Unfortunately, distraction may introduce
errors during manual translation; automatic translation is not affected by distraction,
but, when it fails, it fails catastrophically. This happened as no tool maker usually
documents the format of tool reports. We had therefore to infer these formats from
examples of the reports themselves. Some tools did not even produce a report. In
such a case, we had no alternative to manually transcribing tools results. Based on
our experience we reviewed all produced data for consistency multiple times.

5.4.2 Threats to external validity

The main threats to external validity of our experiment are the nature of the analyzed
system, and the temporal extent and granularity of our analysis.

Nature of the analyzed system GanttProject is a small size, open source software
system developed in Java by a small team. We do not consider them to be readily
extendable to large scale, non-Java, or proprietary projects. Appendix A reports the
synthetic results of our replication of the Question 1 experiments on other small-to-
medium size open source software systems written in Java, which essentially confirm
our conclusions.

Temporal extent and granularity of the analysis We chose to analyze a man-
ageable subset of all the released versions of GanttProject across a period of time (21
months) long enough to allow meaningful changes in software, but short enough to
justify the rationale of Question 2 experiments. The selected versions from 1.4 to
1.10.2 can be considered a snapshot of the system evolution in its earliest phase. One
can conjecture that a different temporal window, or a different temporal granularity
between the chosen versions, would yield different results.

Definition of metrics When designing our experiments we took some decisions
on how to measure some observed quantities. Some of these choices arose naturally,
given the nature of the project under analysis, but they cannot be generalized. As an
example, our choice of not considering anonymous inner classes as independent entities
was motivated by the fact that GanttProject has few of them, they are usually found
in GUI classes, and are mostly used as callbacks to methods of their container classes.
This may not be always the case. Other choices are even less clear, e.g., whether Java
interfaces should be counted when measuring the density of class smells (we chose
to count them), and how many distinct instances of the Duplicated Code code smell
are given by n different replicas of a same code block (we chose to consider them as
n different instances of the Duplicated Code smell). These slight variations in the
exact definition of the metrics have a very limited impact on the systems we analyzed,
but we cannot exclude that they might become meaningful when analyzing different
systems.
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6 Related work

We have not found in the literature papers describing experience reports on the usage
of several tools for code smell detection. The only work, to our knowledge, attempting
a quantitative assessment of the detection ability of more than one code smell detection
tool is from Moha et al. [MGM™10]. The authors compare their automatic code smell
detection tool and iPlasma against precision and recall. Benchmark data are obtained
by manual inspection of GanttProject v1.10.2 and Xerces v2.7.0. This is the reason
why we decided to start our experiments by analyzing the GanttProject system.

Many publications are available on code smells and refactoring. We cite below
some relevant papers which we include in the following subsections.

6.1 Code smell detection tools

We found many papers on single tools for code smell detection, as those we have
described in Section 3.

6.2 Code smells and refactoring

Kerievsky defines some new smells in his book [Ker04], but the central aim of the
book is on refactoring. In particular, he analyzes how through refactoring one can
introduce patterns into a system, exploiting the fact that design patterns can provide
targets for the refactoring.

Mens et al. provide a survey of existing research in the field of software refactor-
ing [MT04], where they identify six distinct activities the refactoring process consists
of. They do not pay particular attention to the refactoring of code smells.

Wake, in the Refactoring Workbook [Wak03], aims to provide practice in the
identification of the most important smells and practice with the most important
refactoring techniques, with particular emphasis on discovering new refactorings.

Counsell et al. [CHH*10b, CHH10a] analyze a set of five open-source Java systems;
they show very little tendency for smells to be eradicated by developers, and they
provide a theoretical enumeration of smell-related refactorings to suggest why smells
may be left alone from an effort perspective.

6.3 Code smells evolutions

It is claimed that classes that are involved in certain code smells are liable to be
changed more frequently and have more defects than other classes in the code.

A study of God Classes and Brain Classes in the evolution of three open source
systems by Olbrich et al. [OCS10| investigated the extent to which this claim is true
for God Classes and Brain Classes. The results show that God and Brain Classes
were changed more frequently and contained more defects than other kinds of classes.
However, when they normalized the measured effects with respect to size, then God
and Brain Classes were less subject to change and had fewer defects than other classes.
Hence, the presence of God and Brain Classes is not necessarily harmful because such
classes may be an eflicient way of organizing code.

Zhang et al. [ZHBWOS] assert that the empirical basis of using bad smells to direct
refactoring and to address “trouble” in code is not clear, and they propose a study
which aims to empirically investigate the impact of bad smells on software in terms of
their relationship to faults.

Journal of Object Technology, vol. 11, no. 2, 2012


http://dx.doi.org/10.5381/jot.2012.11.2.a5

28 - Francesca Arcelli Fontana et al.

Zhang et al. [ZBWH11] investigated the relationship between six of Fowler et al.’s
code bad smells (Duplicated Code, Data Clumps, Switch Statements, Speculative
Generality, Message Chains, and Middle Man) and software faults. Their study can be
used by software developers to prioritise refactoring. In particular, they suggest that
source code containing Duplicated Code is likely to be associated with more faults than
source code containing the other five code bad smells. As a consequence, Duplicated
Code should be prioritised for refactoring. Source code containing Message Chains
seems to be associated with a high number of faults in some situations. Consequently,
it is another code bad smell which should be prioritised for refactoring. Source code
containing only one of the other smells is not likely to be fault-prone.

Vaucher et al. [VKMGO09] study in two open-source systems the “life cycle” of God
Classes: how they arise, how prevalent they are, and whether they remain or they are
removed as the systems evolve over time through a number of versions. They show
how to automatically detect the degree of “godliness” of classes. Then they show that
by identifying the evolution of “godliness”, it is possible to distinguish between those
classes by design (good code), from those that occurred by accident (bad code). This
methodology can guide software quality teams in their efforts to implement prevention
and correction mechanisms.

Khomh et al. [KDPGO09| investigate if classes with code smells are more change-
prone than classes without smells. They detect 29 code smells in 9 releases of Azureus
and in 13 releases of Eclipse and study the relationship between classes with these code
smells and class change-proneness. They show that in almost all releases of Azureus
and Eclipse, classes with code smells are more change-prone than others, and that
specific smells are more correlated than others to change-proneness.

Li et al. [LSO7] present the results from an empirical study that investigated the
relationship between bad smells and class error probability in three error-severity levels
in an industrial-strength open source system. Their research, which was conducted in
a context of the post-release system evolution process, showed that some bad smells
were positively associated with the class error probability in the three error-severity
levels. This finding supports the use of bad smells as a systematic method to identify
and refactor problematic classes in this specific context.

6.4 Software quality evaluation for code smell detection and refactoring

Kataoka et al. [KIAF02] propose coupling metrics as an evaluation method to determine
the effect of refactoring on the maintainability of programs.

Tahvildari et al. [TK03| analyze the association of refactorings with a possible
effect on maintainability enhancements through refactorings. They use a catalogue
of object-oriented metrics as an indicator for the transformations to be applied to
improve the quality of a legacy system. The indicator is achieved by analysing the
impact of each refactoring on these object-oriented metrics.

Similar to this approach, Arcelli et al. [AFS11], according to well known metrics
for code and design quality evaluation, analyze the impact of refactoring applied to
remove some code smells on the quality evaluation of these metrics, with the aim to
prioritize the smells to be removed.

Work on refactoring prioritization using bad code smells is described by Zhang et
al. [ZBWH11], where they provide a prioritization among six analyzed smells according
to their association with software faults.
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6.5 Taxonomies or Classifications of Smells

Fowler in his book on code smells and refactoring [Fow99] does not propose any type of
smell classification or taxonomy. The first taxonomy we are aware of has been proposed
by Mantyld et al. [MVLO03, MVLO04], with the aim to identify possible correlations
among smells. They identify six disjoint classes, which include all the smells identified
by Fowler.

Wake proposes a different classification in his book [Wak03]. He first distinguishes
between smells within classes and smells between classes, he defines new smells, and
classifies all the smells of Fowler and the new ones in nine classes. In his book, Wake
describes also the refactoring necessary to remove all the described smells and how
the classification suggests possible smell correlations.

Lanza et al. [LMO6] classify 11 smells in three different categories, 7 from Fowler
and 6 new smells. Their classification is particularly oriented to the identification of
relationships existing among smells.

Moha et al. [MGDM10] propose a generic classification of the smells as intra-class
and inter-class smells, as in the classification of Wake. Then they identify three
categories (Structural, Lexical, Measurable), where they classify the smells of Fowler,
with some overlapping because they classify some smells in more than one category.
They propose this kind of categorization, with the aim of simplifying the detection
technique of the different smells. In fact, they assert that “for example, the detection
of a structural smell may essentially be based on static analyses; the detection of a
lexical smell may rely on natural language processing; the detection of a measurable
smell may use metrics”.

Marticorena [MLCO6] establishes additional criteria for classifying bad smells,
criteria related to metric features, and proposes a method to evaluate the suitability
of the tools assisting bad code smell detection, as well as selection and implementation
of metrics linked with bad code smells.

Counsell et al. [CHH"10b| provide an in-depth deconstruction of both Fowler’s
and Kerievsky’s code smells in an attempt to determine their overlap.

6.6 Experimental evaluations

Few studies have tackled the evaluation of smell occurrences in code. Maéantyld
et al. [MVL04, M#05] study how humans, rather than tools, evaluate code smells
by analyzing a number of manual surveys by 12 different software developers of a
Finnish software house. From their analysis they address questions on how different
evaluators disagree, how their decisions are correlated to software metrics, to the
evaluator demographics and experience. Murphy-Hill and Black [MHB10] designed a
similar experiment with 12 software developers with heterogeneous background, which
inspected code from two open source projects. From the experimental data the authors
assessed the usefulness, rather than precision and recall, of their code smell detection
tool Stench Blossom, and also analyzed, similarly to Méntyld, whether answers given
by different evaluators disagreed.

7 Conclusions and future work
This paper presented a comparison of four code smell detection tools on six versions

of a medium-size software project, and an assessment of the agreement, consistency
and relevance of the answers produced. To the best of our knowledge, this is the first
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comparative study with similar aims and scope. Our experiments suggest that different
detectors for the same smell do not meaningfully agree in their answers. Nevertheless,
they can detect problematic regions of code which are relevant for the future evolution
of software. It is our opinion that a better understanding of what the tools available
today can do is a step towards devising what future tools shall do to support the real
needs of developers, software architects and managers. We believe that this paper
provides the community with a view on these needs, and an approach to giving a
quantitative assessment on how tools come close to fulfilling them.

We can assert that code smell detection tools are certainly useful to assess which
parts of the code need to be improved, but we are not able to determine which is
the best one. This was one of the aims of our analysis, but as largely outlined in the
paper, the agreement in the results is scarce and a benchmark for the comparison of
these results is not yet available. We observed that we have the best agreement in the
results for the God Class detection and then for the Large Class and Long Parameter
List smells. Developers aiming to recover all the parts of the code that need to be
improved perhaps need to exploit the output of more than one tool. We remarked
that the automatically detected smells usually are in sensible zones of the project, and
are removed quickly: This suggests that tools are able to highlight relevant issues in
code. Finally, project evolution data strongly suggests that automatic smell detection
helps provide an understanding of software evolution. We notice that only one of the
considered tools, JDeodorant, can perform refactoring, despite the idea of code smell
is strictly related to refactoring opportunities. A user would expect smell detection
tools to be able to support at least the removal of the simplest kind of smells, but this
functionality is unsupported in most cases.

Our current research efforts are directed both on refining our experiments by
gathering more data on different combination of tools, smells, and analyzed systems;
we aim at deriving more general results, and at extending our analysis with experiments
to investigate how useful code smell detection tools are for assessing internal software
quality and directing refactoring activities. There are several issues which make these
tasks harder than one would expect. We discussed obstacles to gathering data by
applying the available tools to different software systems.

Another objective is to determine how well code smell detection tools approximate
human ability for detecting problematic regions of code. This requires sufficient manual
code analysis data to perform a statistically significant test. These manual validations
will allow a better comparison of results from tools and to create a benchmark dataset.
To do that we aim to better refine the definitions of the smells we have analyzed in
this paper and the definitions of other common smells as Data Class, Speculative
Generality and Intensive Coupling (see Appendix B). The refined definitions can
be used to improve the detection techniques of the smells. This should take into
account information related to the domain of the analyzed systems, to better perform
a sensitivity analysis on metrics thresholds and discard from the detection the domain
dependent smells, which do not represent symptoms of code decay.

Finally, we would like to analyze the mutual relationships between code smells,
and between smells and other recurrent structures in code, such as design patterns and
antipatterns, and how these can be sources of misclassification by tools and humans.
As an example, there is a well known relationship [Fow99] between the Feature Envy
smell and the Visitor pattern, since a Visitor relocates on purpose some code outside
the class where it would naturally belong. A tool that is able to recognize an instance
of a Visitor pattern would be, in principle, more precise in detecting real smells than

Journal of Object Technology, vol. 11, no. 2, 2012


http://dx.doi.org/10.5381/jot.2012.11.2.a5

Automatic detection of bad smells in code - 31

one that is unable to. We are also doing some preliminary research to correlate
code smells and micro patterns [AFZ11a| and both antipatterns and design pattern
detection within our MARPLE project [AFZ11b).
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A Experiments on other systems

In this section we report additional data gathered on other systems using the same
code smell detectors. The data reported in this section does not have the same coverage
(in terms of number of analyzed versions and smell types) of the data reported in the
paper, because of the manual effort needed for the merge, check and transcription of
the results from different tools. We reported all the experimental data whose quality
we were able to align with that of GanttProject data, and disregarded all the data
whose inconsistencies we were not able to adjust or justify.

Table 19 reports results on the detection of the Long Method smell using PMD
and Checkstyle. In the JEdit 3.0, 3.2 and 4.2 experiments we also used JDeodorant.
In Table 20 the results of the detection of the Long Parameter List smell on four
systems/versions are reported. The experiments have been made using PMD and
Checkstyle. Table 21 and Table 22 show respectively the agreement and kappa statistics
values about the detection of the Feature Envy and the God Class smells using inFusion
and JDeodorant.

Looking at the data it emerges clearly that the agreement is very low in most cases,
and it is not homogeneous from system to system and from version to version. We
do not have an explanation for this disparity. We conjecture that it is due to some
instability of the tools, or to errors during the manual data merge and transcription
phase.

B  Other code smell definitions

We give below the definitions of the smells we have mentioned in the paper and in
Table 2, which have been not the subject of our detailed analysis. The definitions are
reported verbatim from their sources.

B.1 Fowler definitions

Data Class These are classes that have fields, getting and setting methods for the
fields, and nothing else. Such classes are dumb data holders and are almost certainly
being manipulated in far too much detail by other classes [Fow99, p. 86].

Data Clumps Often you’ll see the same three or four data items together in lots of
places: fields in a couple of classes, parameters in many method signatures. Bunches of
data that hang around together really ought to be made into their own object [Fow99,
p. 81].

Message Chains You see message chains when a client asks one object for another
object, which the client then asks for yet another object, which the client then asks
for yet another another object, and so on. (...) Navigating this way means the client
is coupled to the structure of the navigation. [Fow99, p. 84].

Refused Bequest Subclasses get to inherit the methods and data of their parents.
But what if they don’t want or need what they are given? (...) this means the
hierarchy is wrong [or| the subclass is reusing behavior but does not want to support
the interface of the superclass [Fow99, p. 87].
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Table 19 — Results on Long Method comparing PMD and Checkstyle (also JDeodorant for
JEdit 3.0, 3.2, 4.2)

System # methods  Agreement Kappa 95% conf interval
JEdit 3.0 2973 88.66% 0.0498 [0.0290, 0.0705]
JEdit 3.2 3568 88.99% 0.0520 [0.0331, 0.0710]
JEdit 4.0 4127 99.10% 0.4093 [0.3828, 0.4358]
JEdit 4.2 5288 98.85% 0.2240 [0.2084, 0.2395]
JEdit 4.4 6941 99.27% 0.4242 [0.4040, 0.4445]
JFreeChart 0.9.15 5812 99.55% -0.0022  [-0.0280, 0.0235]
JRefactory 2.9.9 8475 99.86% 0.6660 [0.6447, 0.6872]
JRefactory 2.9.18 10660 99.94% 0.8418 [0.8228, 0.8608]
JRefactory 2.9.19 10660 99.69% 0.1523 [0.1333, 0.1713]
Lucene 1.9.1 340 96.47% 0.0000  [-0.0000, 0.0000]

Table 20 — Results on Long Parameter List (PMD and Checkstyle)

System # methods  Agreement Kappa 95% conf interval
JFreeChart 0.9.15 5812 98.73% -0.0064  [-0.0321, 0.0193]
JRefactory 2.9.9 8475 99.98% 0.8570 [0.8357, 0.8783]
JRefactory 2.9.18 10660 99.98% 0.8999 [0.8809, 0.9189]
JRefactory 2.9.19 10660 99.80% 0.1590 [0.1400, 0.1780]

Table 21 — Results on Feature Envy (JDeodorant and inFusion)

System # methods Agreement Kappa 95% conf interval
Lucene 1.9.1 340 97.65% 0.0000 [0.0000, 0.0000]
Lucene 2.2.0 403 83.87% -0.0013  [-0.0577, 0.0551]
Lucene 2.4.0 538 84.57% -0.0004  [-0.0441, 0.0434]
Lucene 2.9.2 698 81.95% -0.0245  [-0.0600, 0.0110]
Lucene 3.0.3 624 84.29% -0.0064  [-0.0487, 0.0359]

Table 22 — Results on God Class (JDeodorant and inFusion)

System # classes Agreement Kappa 95% conf interval
Lucene 2.2.0 160 71.25% 0.1873 [0.0970, 0.2776]
Lucene 2.4.0 220 70.00% 0.1352 [0.0454, 0.2250]
Lucene 3.0.3 268 76.12% 0.1845 [0.1038, 0.2651]
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Shotgun Surgery [This smell occurs| when every time you make a kind of change,
you have to make a lot of little changes to a lot of different classes. When the changes
are all over the place, they are hard to find, and it’s easy to miss an important
change. [Fow99, p. 80].

Speculative Generality You get it when people say, “Oh, I think we need the
ability to this kind of thing someday” and thus want all sorts of hooks and special
cases to handle things that aren’t required [Fow99, p. 83].

Switch Statements Often you find the same switch statement scattered about a
program in different places. If you add a new clause to the switch, you have to find all
these switch statements and change them. The object-oriented notion of polymorphism
gives you an elegant way to deal with this problem. (...) Often the switch statement
switches on a type code [Fow99, p. 82].

B.2 van Emden and Moonen definitions

Instanceof A concentration of instanceof operators in the same block of code may
indicate a place where the introduction of an inheritance hierarchy or the use of
method overloading might be a better solution [vEMO02, p. 101].

Typecast Typecasts are used to explicitly convert an object from one class type
into another. Many people consider typecasts to be problematic since it is possible to
write illegal casting instructions in the source code which cannot be detected during
compilation but result in runtime errors [vEMO02, p. 101].

B.3 Mantylad definitions

Dead Code Fowler and Beck did not present a smell for dead code, which is quite
surprising (...). With Dead Code I mean code that has been used in the past, but is
not currently used. [M&03, p. 97].

B.4 Lanza and Marinescu definitions

Brain Class [Brain Classes are| complex classes that tend to accumulate an excessive
amount of intelligence, usually in the form of several methods affected by Brain
Method. (...) [Brain Classes| are not detected as God Classes either because they
do not abusively access data of “satellite” classes, or because they are a little more
cohesive [LMO06, p. 33].

Brain Method Brain Methods tend to centralize the functionality of a class, in
the same way as a God Class centralizes the functionality of an entire subsystem, or
sometimes even a whole system [LMO06, p. 92].

Extensive (Dispersed) Coupling This is the case where a single operation com-
municates with an excessive number of provider classes, whereby the communication
with each of the classes is not very intense i.e., the operation calls one or a few methods
from each class [LMO06, p. 127].
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Intensive Coupling One of the frequent cases of excessive coupling that can be
improved is when a method is tied to many other operations in the system, whereby
these provider operations are dispersed only into one or a few classes (... ). In other
words, this is the case where the communication between the client method and (at
least one of) its provider classes is excessively verbose [LMO06, p. 120].

Tradition Breaker [A] derived class should not break the inherited “tradition” and
provide a large set of services which are unrelated to those provided by its base class.
(...) if the child class hardly specializes any inherited services and only adds brand
new services which do not depend much on the inherited functionality, then this is a
sign that something is wrong either with the definition of the child’s class interface or
with its classification relation [LM06, p. 152].
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