
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets, c© JOT 2011

Online at http://www.jot.fm.

Surveying Rule Inheritance in
Model-to-Model Transformation

Languages

M. Wimmera G. Kappelb A. Kuselc W. Retschitzeggerc

J. Schönböckb W. Schwingerc D. Kolovosd R. Paiged

M. Laudere A. Schürre D. Wagelaarf

a. Universidad de Málaga, Spain

b. Vienna University of Technology, Austria

c. Johannes Kepler University Linz, Austria

d. University of York, United Kingdom

e. Technische Universität Darmstadt, Germany

f. INRIA & École des Mines de Nantes, France

Abstract Model transformations play a significant role in Model-Driven
Engineering. However, their reuse mechanisms have yet to receive much
attention. In this paper, we propose a comparison framework for rule
inheritance in model-to-model transformation languages, and provide an
in-depth evaluation of prominent representatives of imperative, declarative
and hybrid transformation languages. The framework provides criteria for
comparison along orthogonal dimensions, covering static aspects, which
indicate whether a set of inheriting transformation rules is well-formed
at compile-time, and dynamic aspects, which describe how inheriting rules
behave at run-time. The application of this framework to dedicated trans-
formation languages shows that, while providing similar syntactical inher-
itance concepts, they exhibit different dynamic inheritance semantics and
offer basic support for checking static inheritance semantics, only.

Keywords Rule Inheritance, Model Transformation, Comparison

1 Introduction

Model-Driven Engineering (MDE) defines models as first-class artifacts throughout
the software lifecycle, which leads to a shift from the “everything is an object”

M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger, J. Schönböck, W. Schwinger, D. Kolovos, R.
Paige, M. Lauder, A. Schürr, D. Wagelaar. Surveying Rule Inheritance in Model-to-Model
Transformation Languages. In Journal of Object Technology, vol. 11, no. 2, 2012, pages 3:1–46.
doi:10.5381/jot.2012.11.2.a3

http://www.jot.fm/copyright.html
http://www.jot.fm
http://dx.doi.org/10.5381/jot.2012.11.2.a3
http://dx.doi.org/10.5381/jot.2012.11.2.a3

2 · Wimmer et al.

paradigm to the “everything is a model” paradigm [Béz05]. In this context, model
transformations are crucial for the success of MDE [SK03], being comparable in role
and importance to compilers for high-level programming languages. Support for large
transformation scenarios is still in its infancy, since reuse mechanisms such as inheri-
tance have received little attention so far [KKS07], although the concept of inheritance
plays a major role in metamodels, as revealed, e.g., by the evolution of the UML stan-
dard [MSZJ04]. As inheritance is employed in metamodels to reuse feature definitions
from previously defined classes, inheritance between transformation rules is useful in
order to avoid code duplication and consequently maintenance problems. Although
this need has been recognized by developers of transformation languages, the design
rationales underlying individual transformation languages are not comparable at first
sight. This makes it difficult to understand how these constructs are to be used.

Therefore, we propose a comparison framework for rule inheritance in model-to-
model transformation languages1 that makes explicit the hidden design rationales.
The proposed framework categorizes the comparison criteria along three orthogo-
nal dimensions – analogous to the three primary building blocks of programming
languages [ASU86]. The first two dimensions comprise static criteria: (i) the syn-
tax, a transformation language defines with respect to inheritance and (ii) the static
semantics, which indicates whether a set of inheriting transformation rules is well-
formed at compile-time. The third dimension of the comparison framework describes
how inheriting rules interact at run-time, i.e., dynamic semantics. On the basis of
this framework, inheritance mechanisms in dedicated transformation languages are
compared. In order to provide an extensive survey, representatives of the three com-
mon paradigms of imperative, declarative and hybrid transformation languages have
been chosen [CH06]. In this context, we examined the imperative transformation
languages Kermeta [MFJ05] and QVT-Operational [OMG09], the declarative trans-
formation languages Triple Graph Grammars (TGGs) [KKS07] and Transformation
Nets (TNs) [Sch11], and the hybrid transformation languages Atlas Transformation
Language (ATL) [JABK08] and Epsilon Transformation Language (ETL) [KPP08].
The results show that the inheritance semantics of these languages differ in various
aspects, which has profound consequences for the design of transformation rules.

Outline. While Section 2 explains the rationale of this work, Section 3 presents
the comparison framework with its three dimensions. In Section 4 we compare the
inheritance mechanisms of the selected languages and present lessons learned in Sec-
tion 5. Section 6 gives an overview on related work, and finally, Section 7 concludes
the paper.

Please note that this paper is an extended version of [WKK+11], whereby three
major parts have been added. First, for the static semantics, OCL constraints have
been introduced based on a generic transformation language metamodel, providing the
basis to implement the static semantics in specific transformation languages. Second,
in the original version, the focus was on declarative transformation languages as well as
on hybrid transformations languages covering the declarative parts, only. In contrast,
in this extended version we also investigate imperative languages as well as imperative
parts of hybrid approaches. Finally, an extensive survey on reuse mechanisms in
transformation languages has been added to the related work section.

1With the term model-to-model transformations, we refer to exogenous transformations according
to [MG06].

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a3

Rule Inheritance in M2M Transformation Languages · 3

2 Motivation

When developing a framework for comparing rule inheritance in model-to-model trans-
formation languages, one starting point is to look at the well-known model transfor-
mation pattern (cf. Fig. 1) and to examine where the introduction of inheritance would
play a role. As may be seen in Fig. 1, a transformation specification consists of a set of
rules, which are responsible to describe how source models should be transformed into
target models. In this context, the transformation rules may inherit from each other
in order to avoid code duplication. Obviously, in order to enable rule inheritance,
a transformation language must define syntactic concepts (cf. question 1 in Fig. 1),
which leads to the first dimension of our comparison framework, namely syntax. In
this context, the following questions are of interest:

• Which types of inheritance are supported? Does the transformation language
support only single or multiple inheritance?

• Are abstract rules supported? Is it possible to specify transformation behavior
that is purely inherited?

In addition to syntax, further well-formedness constraints on the transformation rules
must hold (cf. question 2 in Fig. 1), which represents the second dimension, namely
static semantics. Thereby, the following questions may arise:

• In which way may a subrule modify a superrule? For instance, how may the
types of input and output elements be changed in subrules such that they may
be interpreted in a meaningful way?

Static
Semantics When is a set of rules wrt. inheritance

well‐formed at compile‐time?

2
Syntax

Which syntactic constructs wrt.
1

Source Metamodel Target Metamodel

Transformation Specification

conforms to

well formed at compile time?

conforms to

Which syntactic constructs wrt.
inheritance are offered?

Source Metamodel Target Metamodel

Rule Rule…
Condition Condition

1..n superrules

A B X Y

Rule

1..n input
l t

1..n output
l t

… …

Condition
C Z

elements elements

Source Model

i1:A i2:B

Target Model

i1:X i2:Y

conforms to conforms to

executes

i3:C i3:Z• Rule Selection
• Rule Execution

Transformation Engine

How are inheriting rules
interpreted at run‐time?

3

Dynamic Semantics

Figure 1 – Model-to-Model Transformation Pattern

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a3

4 · Wimmer et al.

• When is a set of inheriting rules (i.e., rules that inherit from others) defined
unambiguously? Are there sets of rule definitions that do not allow selecting a
single rule for specific instances?

A transformation specification is usually compiled into executable code, which is
interpreted by a transformation engine that takes a source model and produces a
target model by executing the transformation. The main challenge in executing the
transformation is the dispatching of rules for source model instances, i.e., selecting
and applying rules for specific instances. In declarative transformation languages, rule
selection is performed automatically, whereas in imperative transformation languages
rule selection must be performed by the transformation designer. Finally, hybrid
approaches combine these two paradigms. Again several questions concerning the
interpretation of inheritance at run-time arise (cf. question 3 in Fig. 1), which leads
to the third dimension, namely dynamic semantics:

• Which instances are matched by which rule? If a rule is defined for a supertype,
are the instances of the subtypes, i.e., the indirect instances of the supertype,
also affected by this rule?

• How are inheriting rules executed? Either top down or bottom up the rule
inheritance hierarchy?

Please note that although the last two questions seem applicable to transforma-
tions languages, which perform rule selection automatically, only, these questions are
also crucial for imperative transformation languages, since dynamic dispatching of
rules may be used, i.e., a general rule is called statically, but nevertheless, the most
specific subrule should be executed for a given instance at run-time.

3 Comparison Framework

This section presents our framework for comparing inheritance support in model-to-
model transformation languages, which are used to describe transformations between
object-oriented metamodels, conforming to, e.g., Ecore2 or MOF23. Although meta-
modeling languages such as MOF2 support refinements between associations, e.g.,
subsets or redefines, these are out of scope of this paper. As shown in Fig. 2, the
comparison criteria may be divided into the three dimensions of (i) syntax, (ii) static
semantics, and (iii) dynamic semantics. These dimensions and the corresponding
sub-criteria are described in the following subsections.

3.1 Syntax

This subsection provides criteria for comparing the supported syntactic concepts of
model-to-model transformation languages. We consider both, general criteria (e.g.,
the numbers of input and output elements of a rule) and inheritance-related criteria
(e.g., whether single or multiple inheritance is supported). The general criteria are
included in the comparison, since they play a major role when investigating the static
semantics of inheriting transformation rules (cf. Section 3.2).

2http://www.eclipse.org/modeling/emf
3http://www.omg.org/mof

Journal of Object Technology, vol. 11, no. 2, 2012

http://www.eclipse.org/modeling/emf
http://www.omg.org/mof
http://dx.doi.org/10.5381/jot.2012.11.2.a3

Rule Inheritance in M2M Transformation Languages · 5

• Number of Input Elements

Syntax

Number of Input Elements
• Number of Output Elements
• Support for Conditions
• Type of Rule Inheritance
• Support for Abstract Rules

Static
Semantics

Support for Abstract Rules
• RefinementModes of Assignments • Dispatch Semantics

• Kind of Inheritance Execution
• Condition Evaluation
• Assignment Execution

Dynamic
Semantics

Semantics Assignment Execution

• Incompatibility of Input and Output Elements
• Non‐Instantiability of Abstract Classes
Mi i C t R l f Ab t t R l•Missing Concrete Rule for Abstract Rule
• Ambiguities in Rule Definitions
• Conflicts in Multiple Inheritance

Figure 2 – Overview on the Comparison Framework

General Criteria. To identify the criteria for comparison, we analyzed (i) the fea-
tures of transformation languages, and (ii) the classification of model transformation
approaches presented in [CH06]. The identified features are expressed in a metamodel,
shown in Fig. 3 (cf. area Transformation Metamodel) illustrating the core concepts
of rule-based model-to-model transformation languages. A Transformation typi-
cally consists of several TransformationRules. A TransformationRule comprises an
InPattern, referring to InputElements of the source metamodel, and an OutPattern,
referring to OutputElements of the target metamodel. Please note that programmed
graph transformations and TGGs distinguish between (i) rule parameters and (ii)
input/output elements, whereby we consider only the latter. A general distinguishing
criterion is the allowed number of input and output elements. Furthermore, trans-
formation languages typically support the definition of a Condition, which may be
interpreted in different ways (cf. Section 3.3). Furthermore, they provide the possibil-
ity of setting values for target features by means of Assignments. Please note that the
relationships between the transformation language and the metamodeling language
(cf. area Extract of MOF) are explicitly illustrated. In particular, InputElements and
OutputElements refer to Classes and Assignments compute values for Features,
which are contained by the classes referenced by the OutputElements. Finally, as
already introduced, TransformationRules may be either applied automatically by
the transformation engine or explicitly called by the transformation designer. To rep-
resent these two kinds, a rule may be marked as being lazy, whereby lazy means that
the rule has to be explicitly called.

Inheritance-Related Criteria. In the context of inheritance-related aspects,
three criteria are relevant. First, a TransformationRule may inherit from either one
or multiple other transformation rules, depending on whether single or multiple inher-
itance is supported. Second, the concept of abstract rules may be supported in order
to specify that a certain rule is not executable per se but provides core behavior that
may be reused in subrules. Finally, one may distinguish between different refinement
modes, which determine how inherited assignments are incorporated into inheriting
rules (cf. enumeration RefinementMode in Fig. 3). First, override implies that when
a subrule refines an assignment of a superrule, the assignment of the subrule is ex-
ecuted together with those assignments in the superrule which are not overridden.
In the refinement mode inherit first the assignments of the superrule are executed,
and then the assignments of the subrule may alter the resulting intermediate result

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a3

6 · Wimmer et al.

Transformation
Metamodel

Transformation

Transformation Rule

name : String
abstract : Boolean
lazy : Boolean

rules 1..*

0..*

0..*
subrules

superrules 1..1
inpattern

InPattern

InputElement

varName : String

1..*
elems

Condition

value : Exp

1..1
condition

OutPattern

outpattern
1..1

OutputElement

varName : String

elems
1..*

1..*
assignments

Assignment
value : Exp

RefinementRefinementMode
‐ override
‐ inherit
‐merge
‐ extend

«enum»

mode : RefinementMode

Extract of MOF

Class
abstract : Boolean

Feature

0..*
superClasses Reference Attribute

0..*
features

class
1..1

1..1
feature

class
1..1

Figure 3 – Inheritance-Related Concepts of Transformation Languages

(such as by initializing some state by a supercall and then altering this intermediate
result). Third, merge means that again both assignments are executed, but first the
assignments of the subrule and then the assignments of the superrule are executed.
Finally, the refinement mode extend induces that inherited assignments may not be
changed at all. For consistency reasons, all assignments inherited from a certain rule
should follow the same refinement mode. Therefore, the class Refinement is mod-
eled as an association class on the association modeling the inheritance relationship
between transformation rules in Fig. 3.

3.2 Static Semantics

In the previous subsection, we identified criteria targeting the comparison of syntactic
concepts. Now we elaborate on criteria relevant for checking the static semantics of
rule inheritance. These criteria reflect the following semantic constraints: (i) incom-
patibility of input and output elements of subrules and superrules in terms of type
and number, (ii) non-instantiability of abstract classes, (iii) missing concrete rule for
an abstract rule, (iv) ambiguities in rule definitions, and (v) conflicts in multiple in-
heritance. In order to clarify the semantics of each static constraint and to provide
the basis to implement the static semantics in specific transformation languages, a
specification on basis of OCL4 is provided.

3.2.1 Incompatibility of Input and Output Elements

In the context of transformation rules, both feature assignments and conditions should
be inheritable to subrules. Thus, it must be ensured that the types of the input
and output elements of subrules provide at least the features of the types of the
elements of the superrule. Consequently, types of the input and output elements
of a subrule might become more specific than those of the overridden rule. The
inheritance hierarchy of the transformation rules must thus, exhibit the same structure
as the inheritance hierarchy of the metamodels. This means that co-variance for
input and output elements is demanded, conforming to the principle of specialization

4http://www.omg.org/spec/OCL

Journal of Object Technology, vol. 11, no. 2, 2012

http://www.omg.org/spec/OCL
http://dx.doi.org/10.5381/jot.2012.11.2.a3

Rule Inheritance in M2M Transformation Languages · 7

inheritance in object-oriented programming. This is in contrast to popular design
rules for object-oriented programming languages, where a contra-variant refinement
of input parameters and a co-variant refinement of output parameters of methods is
required to yield type substitutability, also known as specification inheritance [LW93].

Specification in OCL. For ensuring co-variance of input and output elements,
the OCL constraint (invariant) shown in Listing 1 must hold for each transformation
rule. The constraint is shown for input elements only, since it is analogous for output
elements.

1 context TransformationRule inv CoVarianceOfInputElements:
2 −− select InputElements of context rule
3 self.inpattern.elems −> forall(ie : InputElement |
4 −− query and iterate all effectively inherited input elements
5 self.allEffInhIE() −> collect(varName)
6 −− if an effectively inherited input element is overridden
7 −> includes(ie.varName) implies
8 −− then check co−variance condition
9 ie.class.allSuperClasses() −> union(ie.class) −> includesAll(

10 self.allEffInhIE() −> select(iie : InputElement | iie.varName = ie.varName)
11 −> collect(class) −> flatten()
12)
13)
14
15 −− OCL operation to compute all effective (most specific) inherited input elements
16 −− this operation should be equivalent to the operation used for executing transformations
17 context TransformationRule : def allEffInhIE() : Set (InputElement)= ...
18
19 −−OCL operation to compute all super classes
20 context Class: def allSuperClasses: Set(Class)=
21 self.superClasses−>asSet()−>union(self.superClasses−>
22 collect(c| c.allSuperClasses)−>asSet())

Listing 1 – Invariant to Check Co-Variance of Input Elements

Since co-variance must be ensured for all directly contained InputElements of
the context rule, first an iteration over all InputElements has been specified (cf.
line 3). Second, it is checked, if the currently processed InputElement overrides
an InputElement of a superrule (cf. lines 4-7). For this, the set of all effectively

from
myVarName1:SourceMM!A,
myVarName2:SourceMM!R

Transformation Specification
RuleAR2X

Source Metamodel

myVarName2:SourceMM!R
to
myVarName3:TargetMM!X {
...

}
A

R l BR2Y

R
Target Metamodel

X

B

RuleBR2Y
from
myVarName1:SourceMM!B

to
myVarName3:TargetMM!Y {
...

Y

C

...
}

RuleCR2Z
from
myVarName1:SourceMM!C

t

Z

to
myVarName3:TargetMM!Z {
...

}

allEffInhIE:
myVarName1:SourceMM!B
myVarName2:SourceMM!R

Figure 4 – Example for Co-Variance Check for Input Elements

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a3

8 · Wimmer et al.

inherited InputElements (cf. helper function allEffInhIE()) is calculated. This
set contains all InputElements, which are directly inherited by the context rule. To
exemplify this, Fig. 4 shows a simple example with three inheriting rules. The set of
all effectively inherited InputElements for rule CR2Z includes myVarName1 pointing
to type B and myVarName2 pointing to type R. myVarName1 pointing to type A is not
included, since it is overridden in rule BR2Y. Finally, if a certain InputElement of
the current rule overrides an InputElement of a superrule, i.e., if the varName of the
current InputElement is contained in the set of varNames of the effectively inherited
InputElements (cf. lines 4-7), then the actual co-variance check is performed. For
this, the set of all superclasses of the type of the current InputElement including
the type of the current InputElement is calculated (cf. line 9 by calling the helper
function defined on line 20). This set must then contain the type of the overridden
InputElement (cf. lines 10-11). In case of the example depicted in Fig. 4, the set
of all supertypes including the current type of myVarName1 of rule CR2Z is {C, B, A}.
Since B, i.e., the type of the effectively inherited InputElement, is included in this
set, the co-variance condition for rule CR2Z is fulfilled.

3.2.2 Non-Instantiability of Abstract Classes

Since abstract classes cannot be instantiated, it must be ensured statically that no
concrete rule tries to create instances of an abstract target class as output. Only
abstract rules are allowed in this case, since they are not themselves executed, but
must be refined by a subrule. The situation is different for abstract source classes:
although an abstract source class cannot have any direct instances, indirect instances
may be affected by the transformation rule.

Specification in OCL. For ensuring this constraint, again an invariant in OCL
has been specified as shown in Listing 2. This invariant specifies that if a rule is
concrete (cf. line 3) then all classes referenced by the OutputElements of the rule
must be concrete (cf. lines 6-10).

1 context TransformationRule inv OnlyConcreteTargetClassesForConcreteRule:
2 −− if rule is concrete
3 (not self.abstract) implies
4 −− then all referenced target classes of output elements must be concrete
5 −− this condition has to be fulfilled also by non−overridden effectively inherited output elements
6 self.allEffInhOE() −> reject(ioe:OutputElement | self.outpattern.elems−>collect(varName)
7 −> includes(ioe.varName))−>union(self.outpattern.elems)
8 −> collect(class)−> flatten()
9 −−check if the referenced target class is concrete

10 −> forAll(c:Class | not c.abstract)
11
12 −− OCL operation to compute all effective (most specific) inherited output elements
13 −− this operation should be equivalent to the operation used for executing transformations
14 context TransformationRule : def allEffInhOE() : Set (OutputElement)= ...

Listing 2 – Invariant to Check Non-Instantiability of Abstract Classes

In this context, OutputElements may also be inherited from superrules. Conse-
quently, not only the directly contained OutputElements of the context rule must
be checked, but also inherited OutputElements. To achieve the set of inherited
OutputElements, the set of all effectively inherited OutputElements (which is analo-
gously defined to the set of effectively inherited InputElements - cf. Listing 1) must
be calculated with a corresponding helper function (cf. allEffInhOE()). In case of
the rule B2YU of the example shown in Fig. 5, this set comprises the OutputElements
myVarName2 pointing to type X and myVarName3 pointing to type U. This set must then

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a3

Rule Inheritance in M2M Transformation Languages · 9

from
myVarName1:SourceMM!A

Transformation Specification
abstract RuleA2XU

Source Metamodel
myVarName1:SourceMM!A

to
myVarName2:TargetMM!X,
myVarName3:TargetMM!U {
...

}

A

Target Metamodel
<abstract>

X
<abstract>

U

B
concrete RuleB2YU
from
myVarName1:SourceMM!B

to
myVarName2:TargetMM!Y {

Y V

myVarName2:TargetMM!Y {
...

} allEffInhOE:
myVarName2:TargetMM!X
myVarName3:TargetMM!U

myVarName3 is
not overridden

Figure 5 – Example for Non-Instantiability of Abstract Classes Check

be reduced by those OutputElements, which are overridden in the current rule (cf.
reject()-operation in line 6) – in case of the example the variable myVarName2 of the
rule A2X is overridden and thus, removed from the set. In order to consider also the
OutputElements of the context rule, the resulting set is unified with OutputElements
of the context rule (cf. union()-operation in line 7). Consequently, the set of classes,
which must not be abstract, includes type U referenced by myVarName3 and type Y
referenced by myVarName2. Since type U is abstract, the example shown in Fig. 5 does
not fulfill the given constraint.

3.2.3 Missing Concrete Rule for an Abstract Rule

In order to execute the transformation code specified within an abstract rule, at least
one concrete rule needs to be specified, which inherits from an abstract rule. However,
since this does not lead to an error during execution, only a warning should be given
to the user.

Specification in OCL. For ensuring this constraint, it is first checked if the
context TransformationRule is abstract (cf. line 3 in Listing 3). If this is the case,
then all subrules are collected by an according helper function (cf. line 7-9). In the
resulting set of rules, at least one concrete rule has to exist (cf. line 4).

1 context TransformationRule inv ConcreteRuleToAbstractRule:
2 −− if rule is abstract
3 self.abstract implies
4 self.allSubrules()−> exists(r | not r.abstract)
5
6 −− OCL operation to compute all subrules of a Transformation Rule
7 context TransformationRule: def allSubrules: Set(TransformationRule)=
8 self.subrules−>asSet()−>union(self.subrules−>
9 collect(r| r.allSubrules)−>asSet())

Listing 3 – Invariant to Check if a Concrete Rule Exists For an Abstract Rule

3.2.4 Ambiguities in Rule Definitions

Provided that rules inherit from each other, it has to be ensured that a single rule
may be determined for a specific instance or a specific set of instances, respectively.
Consequently, the rules in an inheritance hierarchy must match for disjoint sets of

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a3

10 · Wimmer et al.

objects, since otherwise redundant target model instances may result, if the multiple
processing of input elements is not prohibited.

Although the dispatching of rules is tightly coupled to the dynamic semantics,
the fact that more than one rule potentially matches for a single instance or a set of
instances, respectively may be anticipated statically to a certain extent. Basically,
disjoint sets may be either achieved (i) by subtyping, or (ii) by corresponding con-
ditions, which divide the instances into the required sets, assuming that the most
specific rule is applied to a certain instance and that the multiple processing of input
elements is prohibited. This means also that if an object is matched and transformed
by a specific rule, more general rules should not match and transform this element
again. Given the fact that input elements may change in type or number in subrules,
four valid cases ensuring rule compatibility exist as shown in Fig. 6 and detailed in
the following.

• Same number, different types: In the first case, transformation rules with
the same number of input elements, but with different types have been defined.
In this case, the required disjoint subsets are achieved by subtyping, i.e., the
subrule C2Z refines the types of the input elements from A and B, respectively
to C. Consequently, it is clearly defined, that the subrule C2Z matches for C
instances, whereas the superrules A2X and B2Y match for instances of types A
and B, respectively.

• Same number, equal types: In this case, transformation rules with input
elements of equal types and same number exist. Thus, the needed disjoint
subsets may be achieved by conditions, only, since the input elements exhibit
no other distinguishing factor.

• Different number, different types: The third case incorporates a different
number of input elements as well as different types. Consequently, the needed
subsets are built by subtyping – as in case (a).

Source Metamodel Target Metamodel

A B X Y

Transformation Specification

RuleA2X RuleB2Y
Source Metamodel Target Metamodel

X
Transformation Specification

RuleA2X

f4 <‐ f1; f5 <‐ f2;

Condition ConditionA
f1

B
f2

X
f4

Y
f5

RuleA2X
Condition

A

X

Condition

C
f3

Z
f6

RuleC2Z
Condition Condition

Y ZRuleA2Y RuleA2Z

f4 <‐ f1;
f5 <‐ f2;
f6 <‐ f3;

f3

f6 < f3;
Subsets by
Subtyping

Subsets by
Conditions

S M d l Target MetamodelTransformation Specification

(a) Same Number of Input Elements, Different Types (b) Same Number of Input Elements, Equal Types

Source Metamodel Target MetamodelTransformation Specification
Source Metamodel Target Metamodel

ConditionA X

p

RuleA2X
Source Metamodel Target Metamodel

Condition

B A

XRuleA2X

C ditiBC YRuleBC2Y
Condition

B A

YRuleAB2Y
ConditionB

Subsets by

Condition

Subsets by

(c) Different Number of Input Elements, Different Types

Subsets by
Subtyping

(d) Different Number of Input Elements, Equal Types

Subsets by
Conditions

p yp

A3A3 Figure 6 – Rule Compatibility

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a3

Rule Inheritance in M2M Transformation Languages · 11

• Different number, equal types: Finally, the fourth case includes a different
number of input elements, but the types of the input elements inherited from
the superrules have not changed in the subrule (cf. input element A). Due to
the equal typing of the inherited input elements, the required disjoint subsets
may again only be achieved by conditions. However, this time the condition is
given by the fact, that the subrule demands for more elements, i.e., the subrule
AB2Y matches all A instances that exhibit a link to an instance of B, whereas the
remaining instances may be matched by the superrule A2X.

In summary, it must be ensured statically, that the input and output elements
are changed in a co-variant manner and the number might be extended, only. If the
types of input elements are refined, subsets by subtyping are automatically built. In
case that the types of input elements are not refined, it might only be checked that
at least all the subrules specify conditions. The decision, whether these conditions
really select disjoint subsets would be a task for program analysis. One interesting
question that remains open in the context of cases (b) and (d) is whether the instances
that do not fulfill any of the conditions of the subrules are matched by the superrule
(provided that the superrule is concrete). Since this question is closely related to
dynamic semantics, it is further discussed in Section 3.3.

Multiple Dispatching Problem. A special case of rule ambiguities may arise
in the context of scenario 1 (cf. same number of input elements with different types).
Provided that a rule requires multiple input elements, the situation may arise that
there is no single rule for which the match in run-time types is closer than all the
other rules. This is analogous to the problem that arises in multiple dispatching as
needed for multi-methods (cf. [ADL91, Cha92]), since choosing a method requires the
run-time type not of a single input element, only but of a set of input elements. Thus,
the method whose run-time types most closely match the statically specified types
should be dispatched at run-time.

A simple example of a rule ambiguity problem is depicted in Fig. 7. In this
context, three transformation rules are specified taking two input elements of different
metamodel types, respectively. Now, suppose that a pair of instances (b,y) of type
B and Y is transformed, and let us assume that the rules might also match indirect
instances. The transformation engine should now look for a rule, whose arguments
most closely match the pair (b,y). In this case, no single rule may be determined,
since RuleBX2... and RuleAY2... are equally good matches. Thus, the set of defined
transformation rules is ambiguous.

Source Metamodel

Transformation Specification

RuleAX2…

A X
ref

RuleBX2… RuleAY2…
B Y

.

Figure 7 – Example for Rule Ambiguity

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a3

12 · Wimmer et al.

The actual check for rule ambiguities may be implemented in an imperative lan-
guage such as Java, since for this check, a complex data structure has to be computed
and processed. Thus, we refrain to present a concrete OCL constraint for this check.
To actually implement this derived property, algorithms for explicit disambiguation
in the area of multi-methods may be applied. For instance, in [AD96] an algorithm
is proposed, which calculates a minimal set of method redefinitions necessary for dis-
ambiguation. This algorithm consists of two steps. In the first step, so-called pole
signatures are calculated, whereby these pole signatures represent a minimal set of
combinations of types, for which the algorithm must check for ambiguities. In the
second step, the algorithm computes the most specific applicable (MSA) method for
each pole signature, whereby the basis for method specificity is a precedence relation-
ship: a method mi is more specific than a method mj , if all arguments of mi are
subtypes of the arguments of mj . An ambiguity arises, if for a certain pole signature
more than one MSA method exists.

To exemplify this, Fig. 8 depicts an example. One may see that three different rules
with different arguments have been specified. To achieve the set of pole signatures,
first the pole types for each argument position have to be calculated. This is achieved
by collecting the types appearing at a certain position (e.g., {A,B,C}) and adding
those types from the class hierarchy, which inherit from multiple classes – in the
inheritance hierarchy shown in Fig. 8, the type D must be added, since this is the
only type, which inherits from multiple classes (A and B) and is not yet in the set
of {A,B,C}. The set of pole signatures is then achieved by building the cartesian
product of the set of pole types on the different argument positions. This set of pole
signatures may be reduced by the signatures appearing in the given rules, since for
these signatures, no ambiguity may arise (in the example {{A,G},{B,F},{C,G}}).
Consequently, in the second step of the algorithm, ambiguities have to be checked for

A

Source Metamodel

F
refB

Transformation Specification

RuleAG2… RuleBF2…

C D G

.

RuleCG2…

E

{A,B,C} ∪ {D} x {F,G} =

{{A,F},{A,G},{B,F},{B,G},
{C F} {C G} {D F} {D G}}

Pole Signature MSA Rule(s)

{A F}

Step 1 Step 2

{C,F},{C,G},{D,F},{D,G}} {A,F} ‐

{B,G} RuleBF2…

{C,F} RuleBF2…

{D,F} RuleBF2…

{D,G}
RuleAG2…,
RuleBF2…

Transformation exhibits
ambigious rule definitions

Figure 8 – Rule Disambiguation Algorithm by Example

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a3

Rule Inheritance in M2M Transformation Languages · 13

S M t d l T t M t d l

Transformation
Specification

Source Metamodel Target Metamodel

A W

f4
f4 <‐ …;

RuleA2W

f4 <‐ …;
.

f4 <‐…;B C
RuleB2X RuleC2Y

R l D2Z

X

…

Y

…

D

RuleD2Z

Z

…
f4?

Figure 9 – Example of Diamond Problem

five different pole signatures in this example. For this, the MSA rules are calculated
for each pole signature and if more than one MSA rule exists, an ambiguity arises,
as is the case for the pole signature {D,G} in the example since RuleAG2... and
RuleBF2... are both applicable and none of them is more specific than the other
one.

3.2.5 Conflicts in Multiple Inheritance

The diamond problem [Tai96], also referred to as fork-join inheritance [Sak89], arises,
when contradicting assignments are inherited via different inheritance paths. Con-
sider, for instance, the common superrule A2W in Fig. 9, which contains an assignment
for feature f4. This assignment is overridden within the transformation rules B2X and
C2Y. Thus, it cannot be decided in the rule D2Z which assignment should be applied
for feature f4, unless assistance is given by the transformation designer, e.g., either
by selecting one of the inherited assignments or by specifying a specific assignment
for feature f4 in rule D2Z.

Specification in OCL. For detecting conflicts in multiple inheritance, Listing 4
depicts the corresponding OCL invariant.

1 context TransformationRule inv NoDiamondProblem:
2 self.allEffOE() −> forall(oe | oe.allInhAssignments()
3 −> reject(ib | oe.assignments−>collect(feature) −> includes(ib.feature))
4 −> forall(ib1,ib2 | ib1 <> ib2 and ib1.feature = ib2.feature implies
5 ib1.distance <> ib2.distance or ib1.rule = ib2.rule)
6)
7
8 −− OCL operation to compute all inherited assignments.
9 −− this operation should be equivalent to the operation used for executing transformations

10 context TransformationRule : def allInhAssignments() : Set(TupleType(feature : Feature,
11 rule : TransformationRule, distance : Int)) = ...
12
13 −− OCL operation to compute all effective output elements
14 −− this operation should be equivalent to the operation used for executing transformations
15 context TransformationRule : def allEffOE() : Set (OutputElement) = ...

Listing 4 – Invariant to Check Conflicts in Multiple Inheritance

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a3

14 · Wimmer et al.

By means of a helper function (cf. allEffOE()), the set of all effective output
elements for a transformation rule is calculated first. For each element of this set, the
set of all inherited assignments is calculated by means of another helper function (cf.
allInhAssignments()), whereby for each assignment, the affected feature, the rule
as well as the distance from the context rule to the rule setting the feature is stored.
The output of this function for a concrete example is illustrated on the right hand
side of Fig. 10. The resulting set of assignments is reduced by those assignments,
which are overridden in the current context rule (cf. line 3). This is done, since
those assignments may not result in a conflict anymore (cf. case 2 in Fig. 10). The
remaining assignments are then examined for occurring conflicts (cf. lines 4-5). A
conflict exists, if two assignments target the same feature, occur at the same distance
and originate from different rules. This is, since assignments originating from the
same rule exhibit the same specification and thus, no conflict might arise (cf. case
1 in Fig. 10). Furthermore, if the distance is different, the most specific assignment,
i.e., the one, which is closer to the context rule, wins (cf. case 3 in Fig. 10).

f2 is inherited via two paths and same
distance, but is overridden in current rule

22

Transformation no conflict

f1 is inherited via two paths and same
distance, but originates from same rule

→ no conflict

11
no conflict

distance, but is overridden in current rule
→ no conflict

RuleD2Z

Source Metamodel
Target Metamodel

Transformation
Specification

A
W

f1
f2

f1 <‐ …;
f2 <‐ …;
f3 <‐ ;

RuleA2W Feature Rule Distance

f1 A2W 2

RuleD2Z

f2 <‐…; f2<‐…;
B C RuleB2X RuleC2Y

X Y

f2
f3

f3 <‐ …;
f1 A2W 2

f2 D2Z 0

f2 B2X 1

f2<‐…;

;
. f3<‐…;

D
RuleD2Z

Z

… …
f2 B2X 1

f2 C2Y 1

f2 A2W 2

… f3 C2Y 1

f3 A2W 2

f h d hf h d h33 f3 is inherited via two paths,
but distance is different

→ no conflict

33

Figure 10 – Example for Diamond Check

3.3 Dynamic Semantics

Now we shift our focus from static to dynamic semantics, i.e., how transformation
specifications may be interpreted at run-time. In this context, two main aspects are
investigated: (i) which rules apply to which instances, i.e., dispatch semantics, and
(ii) how a set of inheriting rules gets executed, i.e., execution semantics.

Dispatch Semantics. In order to execute transformation specifications, it must
be determined which rules apply to which instances, i.e., transformation rules must
be dispatched for source model instances. In [CH06], potential strategies and schedul-
ing variations of rules were discussed, but without any focus on inheritance. Thus,
literature does not indicate, whether type substitutability should be considered in the
context of model transformations – instead there exists work on model typing [SJ07],
i.e., when a whole model is substitutable by another model, only. The principle of
type substitutability is well-known in object-oriented programming and states that

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a3

Rule Inheritance in M2M Transformation Languages · 15

if S is a subtype of T, objects of type T may be safely replaced by objects of type
S [LW93]. Type substitutability for transformation rules would thus, mean that if a
rule may be applied to all instances of class T, then this rule may also be applied
to all instances of all subclasses of T. Consequently, if no specific subrule is defined
for instances of a subclass, then these instances of the subclass may be transformed
by the rule defined for the superclass. However, as already stated, if an object is
matched and transformed by a specific rule, more general rules should not match and
transform this element again.

Concerning the evaluation of the conditions three main strategies may be followed
during dispatching. First, the condition is part of the matching process, i.e., if the
condition fails, the rule is not applicable, but a superrule might be applied (rule ap-
plicability semantics). Second, the condition is not part of the matching process, i.e.,
the matching takes only place on the specified types of the input elements and thus,
those elements, which do not fulfill the condition, are filtered, but never matched
by a superrule anymore (filter semantics). Finally, a condition may represent a pre-
condition on the source instances, i.e., instances that do not fulfill the condition are
considered to be erroneous and therefore, an exception should be raised.

Execution Semantics. After having determined which rules are applicable to
which source model instances, the question arises, how a set of inheriting rules is
executed. A first distinguishing criterion is, whether the concept of inheritance is
directly supported by the execution engine or whether it is first flattened to ordinary
transformation code in a pre-processing step. Independent of whether the inheritance
hierarchy is flattened or not, various strategies may be applied to evaluate conditions
and to execute assignments. This raises questions such as “Are conditions of a su-
perrule also evaluated?" and “Are the assignments of a superrule executed before the
assignments of a subrule?". Hence, we investigated the main characteristics of exe-
cuting methods in an inheritance hierarchy in object-oriented programming [Tai96]:
(i) the completion of the message lookup, i.e., whether only the first matching method
is executed (asymmetric) or all matching methods along the inheritance hierarchy are
executed (composing), and (ii) provided that a composing completion of the message
lookup is given, the direction of the message lookup, i.e., whether a method lookup
starts in the subclass (descendant-driven) or in the superclass (parent-driven). Please
note that the execution of the assignments may be influenced by the transformation
designer in case that a transformation language offers different refinement modes, as
discussed in Section 3.1.

4 Comparison of Transformation Languages

In this section, we use the criteria introduced in the previous sections to compare
inheritance support in model-to-model transformation languages. The results are
based on a carefully developed test set, which includes at least one test case for each
criterion. These documented test cases including the example code, the metamodels,
and source models may be downloaded from our project homepage5.

4.1 Comparison Setup

Before delving into the details of the comparison, the chosen set of transformation
languages as well as a running example are introduced.

5http://www.modeltransformation.net

Journal of Object Technology, vol. 11, no. 2, 2012

http://www.modeltransformation.net
http://dx.doi.org/10.5381/jot.2012.11.2.a3

16 · Wimmer et al.

4.1.1 Chosen Transformation Languages

For the comparison, model-to-model transformation languages with dedicated inher-
itance support have been considered. In order to provide an extensive survey, rep-
resentatives of the three common paradigms of imperative, declarative, and hybrid
transformation languages have been chosen [CH06]. In this context, we examined the
imperative transformation languages Kermeta6 (version 1.4.0) and QVT-O7 (version
3.1.0), the declarative transformation languages TGGs8 and TNs [Sch11], and the hy-
brid transformation languages ATL9 (version 3.1.0) and ETL10 (version 0.9.1). Please
note that there are different implementations of TGGs, whereby our comparison bases
on the one of MOFLON. Although MOFLON’s current implementation of the execu-
tion engine of TGGs (MOFLON 1.5.1) does not yet support inheritance, TGGs were
included, since specific literature concerning inheritance support exists [KKS07]. In
order to compare the bidirectional TGG-based model transformation approach with
unidirectional languages, we considered only the unidirectional forward translation.

Besides the imperative transformation language QVT-O, the QVT standard spec-
ifies additionally the declarative transformation language QVT Relations and a low-
level language for specifying the semantics of QVT Relations, i.e. QVT Core. How-
ever, QVT Relations is not included in this survey, since QVT Relations supports
the redefinition of whole rules, only, i.e., they do not allow the reuse of original rule
definitions, and thus, no inheritance between rules is offered.

4.1.2 Running Example

In order to demonstrate the inheritance-related differences in the investigated lan-
guages, a running example is introduced. The example has been chosen to be as
simple as possible to foster comprehensibility but nevertheless, complex enough to
evaluate the key criteria of the framework. As may be seen in Fig. 11, the example
aims at transforming UML Statemachine models into according Petri Net models. For
achieving this, the actual transformation specification includes three transformation
rules, whereby the first transformation rule Statemachine2Petrinet is responsible
for transforming the according root container objects of the models. The two remain-
ing transformation rules ModelElem2Element and State2Place, inheriting from each
other, should achieve the goal of transforming State instances into Place instances,
whereby only State instances, whose kind is unequal “initial” and whose name is not
null, should be transformed into according Place instances as defined by correspond-
ing conditions. Another inheriting transformation rule Transition2PNTransition,
which may transform Transition instances into PNTransition instances has been
consciously omitted for demonstration purposes, e.g., to check if a superrule also
matches for elements of subtypes if no specific rule has been defined.

In the following, the chosen transformation languages are evaluated according to
the comparison framework. Consequently, first a comparison concerning syntactic
constructs is performed (cf. Section 4.2), followed by the evaluation concerning the
static semantic constraints (cf. Section 4.3). Finally, the dynamic semantics is inves-
tigated (cf. Section 4.4), in order to verify if different target models are produced by
the transformation languages.

6http://www.kermeta.org
7http://www.eclipse.org/projects/project.php?id=modeling.m2m.qvt-oml
8http://www.moflon.org
9http://www.eclipse.org/atl

10http://www.eclipse.org/epsilon/doc/etl0

Journal of Object Technology, vol. 11, no. 2, 2012

http://www.kermeta.org
http://www.eclipse.org/projects/project.php?id=modeling.m2m.qvt-oml
http://www.moflon.org
http://www.eclipse.org/atl
http://www.eclipse.org/epsilon/doc/etl0
http://dx.doi.org/10.5381/jot.2012.11.2.a3

Rule Inheritance in M2M Transformation Languages · 17

A3

Transformation
Target MetamodelSource Metamodel

Statemachine

Transformation

elements <‐ elements;

Statemachine2Petrinet
Petrinet

elements
0..* ModelElem2Element

name <> null

elements
0..*

Element

name : String

ModelElem

name : String
name <‐ name;

name null

Place PNTransition

hasToken : Bool guard : String

from
1..*
to

State

kind : String
1..1
source

target

Transition

guard : String hasToken <‐ isActive;

State2Place
kind <> ‘initial‘

hasToken : Bool guard : String
1..*

g
1..1
g

isActive : Bool

Sample Source Model Resulting Target Model

guard : String

source

hasToken isActive;

s1:State
name = “s1“
kind = “initial“ t1:Transition

source

elements

?
isActive = true

s2:State

name = “t1“
guard = ““

elements

?sm1:Statemachine
s2:State

name = null

isActive = false

target

kind = “initial“

i i

source

isActive = false

s3:State

t2:Transition

name = “t2“
guard = ““

elements

elements

name = “s3“

isActive = false
kind = “final“ target

elements

Figure 11 – Running Example

4.2 Comparison of Syntax

As already mentioned, transformation languages allow to specify relationships be-
tween source metamodel elements and target metamodel elements by means of dedi-
cated rules. For realizing a model transformation, the specified rules must be applied
including recurring tasks. These tasks comprise (i) reading of the source model, (ii)
dispatching of rules for source model elements, (iii) execution of the dispatched rules
including the instantiation of target model elements and the establishing of a trace
model between source model elements and target model elements, and (iv) writing
of the target model. Depending on the style of the transformation language and the
provided support, some of these tasks may happen transparent to the transformation
designer, i.e., no syntactical elements have to be specified for them. For example, in
declarative transformation languages the dispatching of rules for source model ele-
ments is transparent to the transformation designer, i.e., an abstraction from control
flow is achieved. Although the support for these recurring tasks does not directly
influence the syntactical elements provided for inheritance, it determines how the
presented syntactical solutions for the running example look like and thus, they were
shortly discussed beforehand.

In the following, the syntactic elements with respect to inheritance provided by
the inspected transformation languages are discussed. To illustrate them, exemplary
solutions for the running example in the according languages are presented.

4.2.1 Imperative Languages

In imperative transformation languages, the transformation designer has to take care
of the dispatching of rules. This gives full control over the transformation execution,
but comes with additional efforts for orchestrating the rules in an appropriate way.
Depending on the design of the imperative transformation language, other tasks may

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a3

18 · Wimmer et al.

be transparent to the transformation designer such as building a trace model between
the source and the target model automatically. In the following, the two imperative
languages Kermeta and QVT Operational are evaluated according to the comparison
framework.

Kermeta. Kermeta allows not only to specify model transformations, but also
metamodels including OCL constraints and executable operations. Consequently,
Kermeta may be described as a comprehensive environment for metamodel engineer-
ing [MFJ05]. Due to this general nature, Kermeta does neither support an explicit
rule concept for model transformations nor any support for the recurring tasks of
a model transformation out-of-the-box as described above, e.g., dispatching of rules
for source model elements, tracing, etc. Although the missing rule concept might be
simulated by classes with according methods, the missing support for the recurring
tasks leads to verbose transformation specifications that must be defined again and
again. Nevertheless, Kermeta is considered to be a dedicated imperative transforma-
tion language [CH06] and has thus, been included in this comparison.

In order to make Kermeta comparable with rule-based transformation languages,
each transformation rule is implemented by one class and one additional class is
responsible for rule dispatching (cf. Listing 5 and Listing 6). Consequently, to imple-
ment the running example, one ends up with three classes implementing the transfor-
mation rules Statemachine2PetriNet (cf. lines 2-18 in Listing 5), ModelElem2Element
(cf. lines 21-33 in Listing 5), and State2Place (cf. lines 36-51 in Listing 5) as well as
a third class StateMachine2Petrinet_Dispatcher (cf. Listing 6) for the dispatching
of the transformation rules.

In this context, each class, which implements a transformation rule follows a cer-
tain style, i.e., implements three specific methods. The first method is responsible
for implementing conditions (cf. method conditionFulfilled), the second one is
responsible for implementing attribute assignments (cf. method attAssignments)
and the third one is responsible for implementing reference assignments (cf. method
refAssignments). Attribute assignments have been separated from reference assign-
ments, since the assignment of references demands for the availability of the to be
referenced objects and may thus, be performed after object creation, only, i.e., in a
potential second pass by querying the established trace model.

If transformations in Kermeta are specified in this manner, it is possible to let the
according transformation classes inherit from each other (cf. keyword inherits in line
36 in Listing 5), since each class follows the same style. However, some specifics must
be regarded. First, Kermeta does neither support contra-variance of input parameters
nor co-variance of output parameters. Consequently, all methods of classes in an
inheritance hierarchy must exhibit exactly the same signatures. Thus, the methods
in the class State2Place are also typed to ModelElems and Elements instead of
States and Places, resulting in cast operations (cf. line 45 in Listing 5) for accessing
specific attributes and references in subrules. Second, to actually override methods,
the keyword for specifying methods must be operation in the superclass and method
in all subclasses.

1 //transformation code for Statemachine2PetriNet
2 class Statemachine2PetriNet{
3
4 operation conditionFulFilled(s : Statemachine) : kermeta::standard::Boolean is do
5 result := true
6 end
7
8 operation attAssignments(s : Statemachine, p : PetriNet) is do
9 end

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a3

Rule Inheritance in M2M Transformation Languages · 19

10
11 operation refAssignments(s : Statemachine, p : PetriNet, trace: Trace<Object, Object>) is do
12 s.elements.each{ e |
13 if trace.getTargetElem(e) != void then
14 p.elements.add(trace.getTargetElem(e).asType(Element))
15 end
16 }
17 end
18 }
19
20 //transformation code for ModelElem2Element
21 class ModelElem2Element{
22
23 operation conditionFulFilled(m : ModelElem) : kermeta::standard::Boolean is do
24 result := and m.name != void
25 end
26
27 operation attAssignments(m : ModelElem, e : Element) is do
28 e.name := m.name
29 end
30
31 operation refAssignments(m : ModelElem, e : Element, trace: Trace<Object, Object>) is do
32 end
33 }
34
35 //transformation code for State2Place
36 class State2Place inherits ModelElem2Element{
37
38 method conditionFulFilled(m : ModelElem) : kermeta::standard::Boolean is do
39 result := super(m)
40 result := result and (m.asType(State)).kind != "initial"
41 end
42
43 method attAssignments(m : ModelElem, e : Element) is do
44 super(m,e)
45 (e.asType(Place)).hasToken := (m.asType(State)).isActive
46 end
47
48 method refAssignments(m : ModelElem, e : Element, trace: Trace<Object, Object>) is do
49 super(m,e,trace)
50 end
51 }

Listing 5 – Transformation Rules in Kermeta

Furthermore, the class Statemachine2Petrinet_Dispatcher has been realized.
This class is responsible for iterating the source model elements and ensuring that the
corresponding rules are dispatched for them. Additionally, the target model elements
are instantiated and trace links are established. To follow the design rationale that the
most specific rule is dispatched for a certain source model element, the transformation
rules must be called in right order, i.e., from specific to general. For example the
rule State2Place must be called before the rule ModelElem2Element to correctly
transform State instances with the specific rule. To prevent multiple matches, i.e.,
to check whether a certain source model element has already been transformed by
another rule, first always a query on the trace model is performed. After a first pass
for object creation and attribute assignments, a second pass for reference assignments
is done (cf. lines 57-76 in Listing 6).

1 class Statemachine2Petrinet_Dispatcher{
2
3 //global variable for the trace model
4 reference SM2PN_Trace : Trace<Object, Object>
5
6 //global variables for rules
7 reference SM2PN_Rule : Statemachine2PetriNet
8 reference S2P_Rule : State2Place
9 reference ME2E_Rule : ModelElem2Element

10

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a3

20 · Wimmer et al.

11 //main entry point for the transformation
12 operation transform(sm : Statemachine) : PetriNet is do
13
14 //initialize the trace model
15 SM2PN_Trace := Trace<Object, Object>.new
16 SM2PN_Trace.create
17
18 //instantiation of rules
19 SM2PN_Rule := Statemachine2PetriNet.new
20 S2P_Rule := State2Place.new
21 ME2E_Rule := ModelElem2Element.new
22
23 //first pass for object creation + attribute assignments
24 //call the rules in right order (from specific to general)
25 //transformation for the root object Statemachine
26 if SM2PM_Trace.getTargetElem(sm) == void and
27 SM2PN_Rule.conditionFulFilled(sm) then
28 //initialize the target element
29 var pn : PetriNet init PetriNet.new
30 SM2PN_Rule.attAssignments(sm, pn)
31 //create the trace entry
32 SM2PN_Trace.storeTrace(sm, pn)
33 //set the root target element
34 result := pn
35 end
36
37 //transformation for the specific type State
38 getAllStates(sm).each{s|
39 if SM2PM_Trace.getTargetElem(s) == void and
40 S2P_Rule.conditionFulFilled(s) then
41 var p : Place init Place.new
42 S2P_Rule.attAssignments(s, p)
43 SM2PM_Trace.storeTrace(s, p)
44 end
45 }
46
47 //transformation for the general type ModelElem
48 getAllModelElements(sm).each{me|
49 if SM2PM_Trace.getTargetElem(me) == void and
50 ME2E_Rule.conditionFulFilled(me) then
51 var e : Element init Element.new
52 ME2E_Rule.attAssignments(me, e)
53 SM2PM_Trace.storeTrace(me, e)
54 end
55 }
56
57 //second pass for reference assignments
58 if SM2PN_Trace.getTargetElem(sm) != void then
59 SM2PN_Rule.refAssignments(sm, SM2PN_Trace.getTargetElem(sm).asType(PetriNet),
60 SM2PN_Trace)
61 end
62
63 getAllStates(sm).each{s|
64 if SM2PN_Trace.getTargetElem(s) != void then
65 S2P_Rule.refAssignments(s,SM2PN_Trace.getTargetElem(s).asType(Element),
66 SM2PN_Trace)
67 end
68 }
69
70 getAllModelElements(sm).each{e|
71 if SM2PN_Trace.getTargetElem(e) != void then
72 ME2E_Rule.refAssignments(e, SM2PN_Trace.getTargetElem(e).asType(Element),
73 SM2PN_Trace)
74 end
75 }
76 end
77
78 //helper to query all States
79 operation getAllStates(sm : Statemachine) : State[0..∗] is do...
80 //helper to query all ModelElements
81 operation getAllModelElements(sm : Statemachine) : ModelElem[0..∗] is do...
82 }

Listing 6 – Rule Dispatching in Kermeta

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a3

Rule Inheritance in M2M Transformation Languages · 21

Concerning the evaluation of Kermeta according to the criteria posed in the evalu-
ation framework with respect to syntax, one may now conclude that a transformation
rule may reference an arbitrary number of source model elements as well as target
model elements, since the methods conditionFulFilled, attAssignments, as well
as refAssignments may exhibit an arbitrary number of parameters. However, please
note that the number of parameters must not be changed in subrules – neither in
type nor in number. Furthermore, although no explicit concept for specifying condi-
tions is provided, this may be simulated by an according method returning a boolean
value (cf. method conditionFulFilled). Since Kermeta is an imperative language
the criterion rule type is evaluated as lazy. Additionally, in Kermeta a class may
inherit from multiple other classes, i.e., multiple inheritance is supported. It is also
possible to mark classes as being abstract in order to simulate abstract rules. Since
Kermeta does not restrict the access to super classes, it is possible to simulate all the
introduced refinements modes. For example, it is possible to realize the refinement
mode inherit by first calling the attAssignments method of the base class and then
altering some attribute values.

QVT Operational. QVT Operational (QVT-O), as the imperative protagonist
of the QVT language family, represents a dedicated model-to-model transformation
language. Consequently, QVT-O keeps most of the recurring tasks of a model trans-
formation transparent to the transformation designer, e.g., automatically building a
trace model during execution. However, since QVT-O is an imperative language,
the dispatching of the transformation rules is not automatically achieved, i.e., the
transformation designer must take care of the control flow by herself.

Transformation rules are denoted as mappings in QVT-O and consist of a single
input element and an arbitrary number of output elements (cf. Listing 7). Additional
input elements may be specified as according parameters of the mapping. Conditions
restricting the applicability of a certain mapping may be specified in terms of OCL
within a so-called when-clause (cf. lines 17 and 22). QVT-O allows to specify multiple
supermappings, i.e., multiple inheritance is supported. Although abstract mappings
may be syntactically specified, they are ignored at run-time, i.e., they are nevertheless
executed11. In the context of inheritance, different refinement modes of assignments
are provided depending on the keyword used for specifying the inheritance relationship
between rules, e.g., the keyword inherit used in the example in Listing 7 implements
the inherit semantics. Please note that a QVT-O transformation starts automatically
with the main method, but mappings have to be explicitly invoked such as done in
lines 7, 12, and 13 (cf. rule type lazy). In this context, the rules must be called in
right order again, i.e., from specific to general.

1 modeltype pn uses ’petrinet_1’;
2 modeltype sm uses ’statemachine_1’;
3
4 transformation testTrafo(in inModel : sm, out outModel : pn);
5
6 main() {
7 inModel.rootObjects()[Statemachine] −> map Statemachine2PetriNet();
8 }
9

10 mapping Statemachine::Statemachine2PetriNet() : PetriNet {
11 //please note that specific rules must be called first!
12 elements := self.elements[State] −> map State2Place();
13 elements += self.elements[ModelElem] −> map ModelElem2Element();
14 }
15

11However, what can be concluded from the OMG standard document, abstract mappings should
not be executable.

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a3

22 · Wimmer et al.

16 mapping ModelElem::ModelElem2Element() : Element
17 when{self.name != null}{
18 name := self.name;
19 }
20
21 mapping State::State2Place() : Place inherits ModelElem::ModelElem2Element
22 when{self.kind != ’initial’}{
23 result.hasToken := self.isActive;
24 }

Listing 7 – Transformation Example in QVT-O

4.2.2 Declarative Languages

In contrast to imperative model-to-model transformation languages, declarative trans-
formation languages release the transformation designer from the burden of specifying
the control flow, since this is handled by the underlying execution engine. As a con-
sequence, the resulting specifications for TGGs and TNs as depicted in Fig. 12 and
in Fig. 13 do not contain any control sequences, but solely define declarative rela-
tions between source metamodel elements and their corresponding target metamodel
elements (cf. rule type non-lazy in Table 1).

Triple Graph Grammars. Triple Graph Grammars (TGGs) exhibit two differ-
ent levels for the specification of model transformations – first a so-called type level to
specify high-level correspondence nodes, i.e., trace links, and second a so-called rule
level to specify the actual implementation of correspondence nodes, e.g., attribute
assignments. In this context, TGGs allow for 1:1 correspondences on the type level,
only, i.e., a single input and a single output element is supported. This is in contrast
to the rule level, where an arbitrary number of input and output elements may be
specified. For the specification of conditions, TGGs allow to attach OCL constraints
to correspondence nodes on the type level, as may be seen in Fig. 12. Inheritance
itself is also specified between correspondence nodes, whereby multiple inheritance
is supported. Furthermore, it is possible to specify abstract correspondence nodes,
i.e., abstract transformation rules. However, TGGs do not provide means to specify
different refinement modes – instead the refinement mode extend is assumed, i.e., as-
signments may be added, only, but assignments of a superrule must not be altered. On
investigating the rule level view, one may further see that the inherited assignments
are duplicated (e.g., name:=name in rule State2Place).

Transformation Nets. Transformation Nets are a declarative model-to-model
transformation language, forming a DSL on top of Colored Petri Nets (CPNs) [JK09].
They may not only be used to specify model transformations, but may also act as
compilation target for other declarative, rule-based model-to-model transformation
languages for debugging. This is, since the explicit representation of all the ingredients
of a model transformation – i.e., metamodels, models and transformation logic –
makes them especially suitable for debugging. In this context, metamodel elements
are represented by places, whereby a corresponding place exists for each class, each
attribute and each reference. Additionally, model elements are represented by tokens,
which are put into the according places. Finally, the actual transformation logic
is represented by a system of transitions, which employ graphical patterns in order
to describe the matching and producing of tokens (cf. Fig. 13). Further details of
Transformation Nets may be found in [Sch11].

In Transformation Nets, it is allowed to match for an arbitrary number of input
elements (left side of a transition) and to produce an arbitrary number of output

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a3

Rule Inheritance in M2M Transformation Languages · 23

input element

Statemachine

statemac

p

Statemachine
0..1

el
)

modelelepe
 L
ev
e

ModelElem
0..1

modelele

m
a
(T
yp

‐S
ch
em

State
stateTG

G
‐

0..1

context:Sta
inv: self.kind{

<<create>>

srcObj1:Statemach

srcObj1:Statemachine

el
)

<<create

elements

ul
e
Le
v

srcObj2:ModelElem

name := namem
a
(R
u

name := name

G
‐S
ch
em

srcObj1:StatemachineTG
G

elements

srcObj2:State

<<create>

elements

srcObj2:State

isActive := activeFlag
name := namename := name

A2A2
output element

P t i t
petrinetStatemachine2Petrinet

chine

p

Petrinet
1 0..1Statemachine2Petrinet()

m elementModelElem2Element
Element

0..1

m e e e tModelElem2Element
ModelElem2Element(name:String)

inheritance context:ModelElem2Element::modelElem
inv: self.name <> null

{ }

Place
0 1
placeState2Place condition

Place
0..1State2Place(activeFlag:Boolean, name:String)

te2Place::state
d <> “initial“ } context:ModelElem2Element::modelElem

inv: self.name <> null
{ }

<< t >>
<<create>>

ine trgObj1:Petrinet

<<create>>
tggLink1:Statemachine2Petrinet

Rule Statemachine2Petrinet

trgObj1:Petrinet
tggLink1:Statemachine2Petrinet

>> <<create>>
<<create>>

elements

trgObj2:Element

name := name

tggLink2:ModelElem2Element

name := name

Rule ModelElem2Element

e trgObj1:Petrinet
tggLink1:Statemachine2Petrinet

elements

Obj2 Pl

>> <<create>>
<<create>>

tggLink3:State2Place
trgObj2:Place

hasToken := activeFlag
name := name

Rule State2Place

Figure 12 – Transformation Example in TGGs

elements (right side of a transition). It is further possible to add conditions to tran-
sitions in terms of OCL constraints (extended with the capability to refer to the
variables of a certain pattern with the symbol @ – cf. Fig. 13). Transformation Nets
allow for multiple inheritance between transitions. Additionally, transitions may be
marked as being abstract. Finally, no means are provided to define different refinement
modes of assignments. Instead, the refinement mode override is implicitly assumed,
whereby patterns of subtransitions may override patterns of supertransitions, if they
exhibit the same color (variable), e.g., the pattern querying for State instances in

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a3

24 · Wimmer et al.

Source Metamodel Transformation Logic Target Metamodel

Statemachine Petrinet
Statemachine2

Petrinet sm

m1

<<TracePlace>>

input element output element

ModelElem2M d lEl El t

elements
0..*

elements
0..*

<<TracePlace>>

@name<>null
ModelElem2
ElementModelElem

name: String

Element

name: String

sm

name: String
s1
“s1”

name: String
t1
“t1”

s3
“s3”

t2
“t2”

s2
“ ”

modelElem

Transition
1..1

t1
State

source
PNTransition1..1

from

PlSt t 2Pl

name

inheritance
t2

guard : String

t1

t1
“ ”

kind : String
target
1..1 guard : String

to
1..1

Place

hasToken : Bool

State2Place
modelElems1 s2

s1 s2

t2
s3

s3

t2
“ ”

@kind<>’initial’
isActive : Bool

hasToken : Bool

isActive

kind
s1

“initial”

s1
t

s2
“final”

s2
f l

condition

s3
“initial”

s3
f ltrue false false

A3

Figure 13 – Transformation Example in TNs

the transition State2Place overrides the pattern querying for ModelElem instances
in the transition ModelElem2Element, since both exhibit the same color (variable).
In contrast to TGGs, TNs do not enforce syntactical duplication.

4.2.3 Hybrid Languages

Hybrid languages allow to specify transformations by mixing up declarative constructs
with imperative ones. For example in ATL and ETL, it is possible to specify declar-
ative transformation rules that are executed by an underlying transformation engine
– similar to declarative approaches. Additionally, these rules may incorporate im-
perative expressions for conditions and assignments. Moreover, both ATL and ETL
allow to explicitly call transformation rules which are not automatically activated by
the transformation engine, i.e., lazy rules. In order to make explicit the associated
semantics for inheritance for the declarative parts as well as for the imperative parts,
we present for each hybrid language two solutions for the running example. The first
solutions (dATL and dETL) are using non-lazy rules, only, whereas the second so-
lutions (iATL and iETL) are employing lazy rules. The resulting specifications are
shown for dATL and iATL in Listing 8 and in Listing 9, respectively. Listing 10 shows
the dETL solution, while Listing 11 provides a solution in iETL.

ATL. ATL allows for multiple input elements in the from pattern as well as
multiple output elements in the to pattern. Furthermore, conditions may be specified
in ATL in terms of OCL conditions after the last input element in the from clause (cf.
lines 9 and 16 in Listing 8). Additionally, one rule may inherit from one single other
rule by means of the keyword extends, i.e., single inheritance is supported, only.
Please note that since the preceding version of this paper, an experimental version of
ATL supporting multiple inheritance has been proposed [Wag11]. Nevertheless, this
feature is not publicly available in the official distribution yet, and thus, has been
neglected in the further comparison. Abstract rules are supported by means of the
keyword abstract. Finally, concerning potential refinement modes of assignments,
ATL does not provide specific keywords for explicitly choosing a specific semantics to
be applied. Instead, override semantics is implicitly assumed.

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a3

Rule Inheritance in M2M Transformation Languages · 25

1 rule Statemachine2Petrinet {
2 from sm: Statemachine!Statemachine
3 to pn: Petrinet!Petrinet(
4 elements <− sm.elements
5)
6 }
7
8 rule ModelElem2Element {
9 from mElem : Statemachine!ModelElem (mElem.name <> null)

10 to elem : Petrinet!Element (
11 name <− mElem.name
12)
13 }
14
15 rule State2Place extends ModelElem2Element {
16 from mElem : Statemachine!State (mElem.kind <> ’initial’)
17 to elem : Petrinet!Place (
18 hasToken <− mElem.isActive
19)
20 }

Listing 8 – Transformation Example in dATL

The mentioned language features are available for automatically matched rules (cf.
Listing 8) as well as for lazy rules (cf. Listing 9). Lazy rules have to be additionally
marked by the lazy keyword and are called by using thisModule.rule_name(in-
put_elements) explicitly. The return value of a lazy rule is per default its first output
element. Please note that the subsequent processing of the produced collection is
necessary, because for elements which are not processed by any subrule, a trace entry
is created and returned.

1 rule Statemachine2Petrinet {
2 from sm: Statemachine!Statemachine
3 to pn: Petrinet!Petrinet(
4 elements <− sm.elements −> collect(e|thisModule.ModelElem2Element(e))
5 −> reject(e|e.oclType().toString().startsWith(’TransientLink’))
6)
7 }
8
9 lazy rule ModelElem2Element {

10 from mElem : Statemachine!ModelElem (mElem.name <> null)
11 to elem : Petrinet!Element (
12 name <− mElem.name
13)
14 }
15
16 lazy rule State2Place extends ModelElem2Element {
17 from mElem : Statemachine!State (mElem.kind <> ’initial’)
18 to elem : Petrinet!Place (
19 hasToken <− mElem.isActive
20)
21 }

Listing 9 – Transformation Example in iATL

ETL. ETL allows for a single input element, only – cf. single variable after
transform keyword (cf. lines 2, 8 and 15 in Listing 10). However, an arbitrary
number of output elements may be specified in the to pattern. Conditions may
be defined in ETL by means of OCL after the keyword guard (cf. lines 10 and
18). Additionally, ETL allows for multiple inheritance, i.e., several superrules
may be specified after the extends keyword. Furthermore, abstract rules may be
specified with the annotation @abstract. Finally, ETL again implicitly assumes
override semantics instead of providing several refinement modes of assignments.

1 rule Statemachine2Petrinet
2 transform sm: Statemachine!Statemachine
3 to pn : Petrinet!Petrinet {

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a3

26 · Wimmer et al.

4 pn.elements ::= sm.elements;
5 }
6
7 rule ModelElem2Element
8 transform mElem : Statemachine!ModelElem
9 to elem : Petrinet!Element {

10 guard : mElem.name <> null
11 elem.name := mElem.name;
12 }
13
14 rule State2Place
15 transform mElem : Statemachine!State
16 to elem : Petrinet!Place
17 extends ModelElem2Element {
18 guard : mElem.kind <> ’initial’
19 elem.hasToken := mElem.isActive;
20 }

Listing 10 – Transformation Example in dETL

As for ATL, in ETL there are the same possibilities for lazy rules as for automat-
ically matched rules. Lazy rules are marked by a special annotation given before the
rule and are called by using the equivalent operation. This operation searches for
all matching rules for the given context element.

1 rule Statemachine2Petrinet
2 transform sm: Statemachine!Statemachine
3 to pn : Petrinet!Petrinet {
4 pn.elements.addAll(sm.elements.equivalent());
5 }
6
7 @lazy
8 rule ModelElem2Element
9 transform mElem : Statemachine!ModelElem

10 to elem : Petrinet!Element {
11 guard : mElem.name <> null
12 elem.name := mElem.name;
13 }
14
15 @lazy
16 rule State2Place
17 transform mElem : Statemachine!State
18 to elem : Petrinet!Place
19 extends ModelElem2Element {
20 guard : mElem.kind <> ’initial’
21 elem.hasToken := mElem.isActive;
22 }

Listing 11 – Transformation Example in iETL

4.2.4 Synopsis

In summary, one may detect that the languages evaluated offer similar syntactic con-
structs for the specification of inheritance between transformation rules. Although
some languages allow for single input or output elements, only, this does not nec-
essarily influence the expressivity of the languages, since typically other means are
provided to add further elements, e.g., multiple elements at the rule level in TGGs.
Furthermore, all languages allow for the specification of conditions. In addition to
that, all of the languages except ATL support multiple inheritance. Abstract rules
are also possible in all languages. Finally, a main difference lies in the supported
refinement modes for assignments as may be seen in Table 1.

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a3

Rule Inheritance in M2M Transformation Languages · 27

Table 1 – Comparison of Syntax

A3

Rule Part Values
Imperative Declarative Hybrid

Kermeta1 QVT‐O TGGs TNs ATL ETL

Input Elements 1 | 1…n 1..n 12 14 1..n 1..n 1

Output Elements 1 | 1…n 1..n 1..n 14 1..n 1..n 1..n

Condition Yes | No Yes Yes Yes Yes Yes Yes

Rule Types Lazy | Non‐lazy Lazy Lazy Non‐lazy Non‐lazy
Lazy |

Non‐lazy
Lazy |

Non‐lazyNon lazy Non lazy

Type of Rule Inheritance Single | Multiple Multiple Multiple Multiple Multiple Single5 Multiple

Abstract Rules Yes | No Yes Yes3 Yes Yes Yes YesAbstract Rules Yes | No Yes Yes Yes Yes Yes Yes

Refinement Modes of
Assignments

Override | Inherit |
Merge | Extend

Override |
Inherit |
Merge

Override |
Inherit |
Merge

Extend
Override
(implicit)

Override
(implicit)

Override
(implicit)

Merge Merge
1 No rule concept in the language available, but may be simulated by dedicated classes and methods
2 Rule exhibits a single input element only, but may contain several parameters
3 Although foreseen in the language, they are nevertheless, executed such as concrete rules by the QVT‐O implementationAlthough foreseen in the language, they are nevertheless, executed such as concrete rules by the QVT O implementation
4 N elements are allowed on rule‐level, only
5 Multiple inheritance has been proposed in [Wag11], but is not publicly available yet

4.3 Comparison of Static Semantics

This part of the comparison evaluates to which extent the static semantics of inheri-
tance is checked in each transformation language, being summarized in Table 2.

4.3.1 Imperative Languages

In this subsection, the evaluation of the imperative languages Kermeta and QVT
Operational is performed.

Kermeta. Concerning the input elements and output elements, Kermeta does
neither support contra-variance of input parameters nor co-variance of output pa-
rameters. Consequently, no changes in the types of input and output elements are
allowed, i.e., the parameter types of the subrule need to be exactly the same types as
those of the superrule, which is enforced at compile-time (cf. Table 2). Furthermore,
Kermeta does not allow to alter the number of parameters between inheriting meth-
ods, which is again checked at compile-time. In contrast, concrete rules, which target
abstract target classes, are not recognized at compile-time. However, a run-time error
is thrown instead. Furthermore, Kermeta reports no warning, if an abstract class,
which represents a rule, is never refined by a concrete class, since Kermeta does not
implement the rule concept and thus, is not aware of such a problem. With respect
to ambiguous rule definitions, this criterion is not applicable in Kermeta, since rules
are dispatched according to a single type, only, i.e., multiple dispatching of methods
is not supported. Finally, the diamond problem is detected at compile-time, since the
problem of inheriting several equally named methods is recognized. To resolve such
ambiguities, the user is asked to explicitly decide for a certain method by the usage
of the from keyword.

QVT Operational. As demanded by inheriting transformation rules, QVT-O
allows for type changes of input elements and output elements in a co-variant man-
ner. If this design principle is disregarded, i.e., if the types are changed in a non
co-variant manner, an according error message is shown at compile-time – “Mapping
operation has non-conformant signature for inherits”. It is not allowed to
change the number of parameters in a mapping rule – neither by extension nor by

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a3

28 · Wimmer et al.

restriction. Consequently, these criteria have been evaluated as not applicable in
Table 2. Regarding concrete rules targeting abstract target classes, QVT-O recog-
nizes this at compile-time by the error message “Result and out parameters of
abstract types must be explicitly instantiated in the init-section”. In
contrast, abstract rules, which are never refined by any concrete rule are not detected
– neither at compile-time nor at run-time. With respect to rule ambiguities, this cri-
terion is not applicable, since each rule allows for a single input element, only, which
is used for dispatching, i.e., single dispatching is applied. Finally, QVT-O does not
recognize the diamond problem. Instead, the latest specified inherited rule is executed.

4.3.2 Declarative Languages

In the following, the static semantics of the declarative languages TGGs and TNs is
evaluated.

Triple Graph Grammars. Regarding input elements and output elements,
TGGs allow for a co-variant type change of parameters, whereby non co-variant
changes are detected at compile-time. To conform to the main principle that ap-
plying the subrule should guarantee the existence of the subgraph created by the
superrule, only an extension of the number of input and output elements is allowed,
which is again ensured statically. With respect to concrete rules, which target ab-
stract classes, this problem is not detected at compile-time, but a run-time error is
thrown. Concerning a potential warning for abstract rules which are never refined by
any concrete rule, TGGs do not provide any support. Regarding, rule ambiguities,
this criterion is not applicable in TGGs, since one input element is allowed at the
type level of a TGG rule, only, which is responsible for dispatching the according
transformation rule. In case that several rules match for the same input element on
the type level, the rule level is investigated. Thereby, it is required that the rules
match for disjoint sets of source objects, e.g., built by according conditions. Finally,
the diamond problem is detected at compile-time.

Transformation Nets. With respect to input elements and output elements, like
TGGs, also TNs allow for a co-variant type change of parameters, whereby non co-
variant changes are again detected at compile-time. Furthermore, an extension of the
number of input and output elements is allowed, whereas a restriction is not possible.
This is, since elements, which are not re-specified in the syntax, are nevertheless,
inherited. Consequently, it is required that inherited patterns still match in case of
input elements (denoted as LHS patterns). In case of output elements (denoted as
RHS patterns), the same principle is followed, i.e., although patterns need not to
be re-specified in the subrule, they are produced anyway. Concrete rules targeting
abstract classes are detected at compile-time by the error message ”Only abstract
transitions may target abstract target classes”. Furthermore, TNs provide
a warning, if an abstract rule is never refined by any concrete rule. In contrast to
the previous approaches, the rule ambiguity problem may arise in TNs, since multiple
input elements are considered for dispatching, i.e., multiple dispatching is performed.
However, potentially arising rule ambiguity problems are detected at compile-time. In
order to resolve ambiguity problems, the transformation designer may add priorities to
transitions in order to manually influence dispatching. Finally, the diamond problem
is also recognized at compile-time in TNs. Thereby, a fine-grained check is performed,
i.e., an error is only reported, if conflicting assignments are inherited. However, TNs
do not provide any means for automatic resolution.

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a3

Rule Inheritance in M2M Transformation Languages · 29

Table 2 – Comparison of Static Semantics
A
3

Im
pe

ra
ti
ve

D
ec
la
ra
ti
ve

H
yb
ri
d

Ve
ri
fic
at
io
n

Ta
rg
et

Fa
ul
t

Va
lu
es

Im
pe

ra
ti
ve

D
ec
la
ra
ti
ve

H
yb
ri
d

Ke
rm

et
a

Q
V
T‐
O

TG
G
s

TN
s

AT
L

ET
L

[C
om

pi
le
‐T
im

e|
n
a
(s
ig
na
tu
re

In
pu

t
El
em

en
ts

N
on

‐c
o‐
va
ri
an

t
Ty
pe

 C
ha

ng
e

[C
om

pi
le
‐T
im

e|
Ru

n‐
Ti
m
e|
N
o]

Er
ro
r

n.
a.
(s
ig
na
tu
re

m
us
t n

ot
 b
e

ch
an
ge
d)

Co
m
pi
le
‐T
im

e
Er
ro
r

Co
m
pi
le
‐T
im

e
Er
ro
r

Co
m
pi
le
‐T
im

e
Er
ro
r

Ru
n‐
Ti
m
e
Er
ro
r

N
o
Er
ro
r (
in
va
lid

ta
rg
et
 m

od
el
)

[C
om

pi
le
‐T
im

e|
n
a
(s
ig
na
tu
re

n
a
(s
ig
na
tu
re

n
a
(in

pu
te

le
m
en

ts
Re

st
ri
ct
io
n
in

N
um

be
r

[C
om

pi
le
‐T
im

e|
Ru

n‐
Ti
m
e|
N
o]

Er
ro
r

n.
a.
(s
ig
na
tu
re

m
us
t n

ot
 b
e

ch
an
ge
d)

n.
a.
(s
ig
na
tu
re

m
us
t n

ot
 b
e

ch
an
ge
d)

Co
m
pi
le
‐T
im

e
Er
ro
r

n.
a.
 (i
np

ut
 e
le
m
en

ts
ar
e
st
ill
 m

at
ch
ed

 e
ve
n

if
no

t s
pe

ci
fie

d
ag
ai
n)

Ru
n‐
Ti
m
e
Er
ro
r

(a
ls
o
w
ith

 e
xt
en

si
on

)
n.
a.
 (c
f.
sy
nt
ax
)

[C
om

pi
le
‐T
im

e|
n
a
(s
ig
na
tu
re

O
ut
pu

t
El

t

N
on

‐c
o‐
va
ri
an

t
Ty
pe

 C
ha

ng
e

[C
om

pi
le
‐T
im

e|
Ru

n‐
Ti
m
e|
N
o]

Er
ro
r

n.
a.
(s
ig
na
tu
re

m
us
t n

ot
 b
e

ch
an
ge
d)

Co
m
pi
le
‐T
im

e
Er
ro
r

Co
m
pi
le
‐T
im

e
Er
ro
r

Co
m
pi
le
‐T
im

e
Er
ro
r

Ru
n‐
Ti
m
e
Er
ro
r

N
o
Er
ro
r (
in
va
lid

ta
rg
et
 m

od
el
)

n
a
(o
ut
pu

te
le
m
en

ts
El
em

en
ts

Re
st
ri
ct
io
n
in

N
um

be
r

[C
om

pi
le
‐T
im

e|
Ru

n‐
Ti
m
e|
N
o]

Er
ro
r

n.
a.
(s
ig
na
tu
re

m
us
t n

ot
 b
e

ch
an
ge
d)

n.
a.
(s
ig
na
tu
re

m
us
t n

ot
 b
e

ch
an
ge
d)

Co
m
pi
le
‐T
im

e
Er
ro
r

(e
xc
ep

t o
f o

ut
pu

t t
o

in
pu

t m
od

ifi
ca
tio

n)

n.
a.
 (o

ut
pu

t e
le
m
en

ts
ar
e
st
ill
 p
ro
du

ce
d

ev
en

if
no

t s
pe

ci
fie

d
ag
ai
n)

n.
a.
 (o

ut
pu

t e
le
m
en

ts
ar
e
st
ill
 p
ro
du

ce
d
ev
en

if
no

t s
pe

ci
fie

d
ag
ai
n)

Ru
n‐
Ti
m
e
Er
ro
r

A
bs
tr
ac
t T
ar
ge
t

Cl
as
se
s

Co
nc
re
te
 R
ul
es

fo
r
A
bs
tr
ac
t

Ta
rg
et
 C
la
ss
es

[C
om

pi
le
‐T
im

e|
Ru

n‐
Ti
m
e|
N
o]

Er
ro
r

Ru
n‐
Ti
m
e
Er
ro
r

Co
m
pi
le
‐T
im

e
Er
ro
r

Ru
n‐
Ti
m
e
Er
ro
r

(a
pp

lic
at
io
n
fa
ils
)

Co
m
pi
le
‐T
im

e
Er
ro
r

Ru
n‐
Ti
m
e
Er
ro
r

Ru
n‐
Ti
m
e
Er
ro
r

M
is
si
ng

Co

nc
re
te
 R
ul
e

fo
r
A
bs
tr
ac
t

[C
om

pi
le
‐T
im

e|
Ru

n‐
Ti
m
e|
N
o]

[W
ar
ni
ng
|E
rr
or
]

n.
a.
 (n

o
ru
le

co
nc
ep

t
su
pp

or
te
d)

N
o
W
ar
ni
ng

N
o
W
ar
ni
ng

Co
m
pi
le
‐T
im

e
W
ar
ni
ng

Ru
n‐
Ti
m
e
Er
ro
r

N
o
W
ar
ni
ng

Ru
le

[W
ar
ni
ng
|E
rr
or
]

su
pp

or
te
d)

Ru
le
A
m
bi
gu
it
y

[C
om

pi
le
‐T
im

e|
Ru

n‐
Ti
m
e|
N
o]

n.
a.
 (n

o
m
ul
ti‐

di
sp
at
ch
)

n.
a.
 (c
f.
sy
nt
ax
)

n.
a.
 (c
fs
yn
ta
x)

Co
m
pi
le
‐T
im

e
Er
ro
r

N
o
Er
ro
r(
fir
st
 m

at
ch
in
g

ru
le
in
fil
e
w
in
s)

n.
a.
 (c
f.
sy
nt
ax
)

Er
ro
r

di
sp
at
ch
)

ru
le
 in
 fi
le
 w
in
s)

D
ia
m
on

d
Pr
ob

le
m

[C
om

pi
le
‐T
im

e|
Ru

n‐
Ti
m
e|
N
o]

Co
m
pi
le
‐T
im

e
Er
ro
r

N
o
Er
ro
r (
la
te
st

sp
ec
ifi
ed

 in
he

ri
te
d

Co
m
pi
le
‐T
im

e
Er
ro
r

Co
m
pi
le
‐T
im

e
Er
ro
r

n.
a.
 (c
f.
sy
nt
ax
)

Co
m
pi
le
‐T
im

e
Er
ro
r

Pr
ob

le
m

Er
ro
r

Er
ro
r

ru
le
 w
in
s)

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a3

30 · Wimmer et al.

4.3.3 Hybrid Languages

Finally, this subsection surveys static semantics with respect to the hybrid languages
ATL and ETL.

ATL. Concerning input and output elements, in ATL a violation of co-variance is
detected at run-time, only, resulting in a “feature not found” exception. Regarding
the number of input elements, in ATL a run-time error occurs, if the number is
changed in any way, i.e., ATL prohibits to extend the number of input elements.
ATL does not raise any exception if the number of output elements is restricted, since
they are produced, even if they are not re-specified. Concrete rules targeting abstract
classes are not detected at compile-time – instead a run-time error is thrown. The
same applies for abstract rules which are never refined by any concrete rule. Instead
of providing a warning at compile-time, the run-time error “Operation not found”
is thrown. In ATL, where also multiple input elements are allowed and thus, multiple
dispatching is considered, no exceptions for ambiguous rule definitions are thrown
– neither at compile-time nor at run-time. Instead, the first matching rule defined
in the file is executed. Finally, in ATL the diamond problem does not apply, since
multiple inheritance is not supported.

ETL. With respect to input and output elements, in ETL no error is reported, if
the types are changed in a non-covariant way. Instead, a target model with invalid
features is created. The restriction of the number of input elements is not applicable,
since ETL restricts the number of input elements to exactly one, anyway. If the
number of output elements is restricted, a run-time error (“index out of bound”
exception) is raised. Concrete rules targeting abstract classes are not detected at
compile-time, but run-time errors are thrown instead. In contrast, abstract rules,
which are never refined by any concrete rule are not detected at all – neither at
compile-time nor at run-time. The problem of ambiguous rule definitions may not
arise in ETL, since multiple input elements are not supported. Finally, the diamond
problem results in a compile-time error. However, it is recognized at a coarse-grained
level, only, since an error is reported in any case, even if no conflicting assignments
exist.

4.3.4 Synopsis

In summary, one may see that the checking of the static semantics is still limited in the
various transformation languages (cf. Table 2). Regarding input and output elements,
Kermeta is most restrictive, since no changes in types and number are allowed. In
contrast, all the other languages allow for co-variance of input elements and output
elements, which is typically ensured at compile-time – the only exceptions are ATL
and ETL. In contrast, a potential restriction in number is either not allowed (cf.
Kermeta and QVT-O), not possible due to syntactical constraints (cf. ETL), statically
checked (cf. TGGs) or not applicable, since the elements, which are not re-specified
are nevertheless inherited (cf. TNs and ATL). With respect to concrete rules targeting
abstract classes, most of the languages detect this not before run-time, except QVT-
O and TNs. Concerning abstract rules which are never refined by any concrete rule,
only TNs provide support. The rule ambiguity problem is in four of the six languages
rated as not applicable, since a single element is employed for dispatching, only. The
only exceptions are TNs and ATL. Finally, the diamond problem is in all languages
that support multiple inheritance statically detected, except in QVT-O.

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a3

Rule Inheritance in M2M Transformation Languages · 31

4.4 Comparison of Dynamic Semantics

Fig. 14 shows the resulting target models after having executed the specified trans-
formations. It may be seen that the languages produce partly different target models,
although syntactically equal transformation logic has been specified. Consequently,
the investigated transformation languages exhibit different dynamic semantics. In or-
der to compare the dynamic semantics, the dispatch semantics as well as the execution
semantics are investigated in the following (cf. Table 3).

QVT‐O

Kermeta, TGGs, TNs, ATL (dATL, iATL)

Sample Source Model

s1:State
name = “s1“

isActive = true
kind = “initial“

s2:State
name = null

isActive = false

t1:Transition
name = “t1“
guard = ““

source

target

kind = “final“

s3:State
name = “s3“

isActive = false
kind = “final“

t2:Transition
name = “t2“
guard = ““

source

target

elements

elements

elements

elements

elements

s1:Element
name = “s1“

s3:Place
name = “s3“
hasToken = false

t1:Element
name = “t1“

t2:Element
name = “t2“

s2:Place
name = null
hasToken = false

sm1:Statemachine

s1:Element
name = “s1“

s3:Place
name = “s3“
hasToken = false

t1:Element
name = “t1“

t2:Element
name = “t2“

sm1:Petrinet

elements

elements

elements

elements

sm1:Petrinet

elements

elements

elements

elements

elements

Target Models produced by …

dETL

s3:Place
name = “s3“
hasToken = false

sm1:Petrinet

elements t2
t1

s1

iETL

sm1:Petrinet

t2
t1

s1

s3

Figure 14 – Resulting Target Models of the Specified Transformations

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a3

32 · Wimmer et al.

4.4.1 Imperative Languages

In this subsection, the evaluation of the imperative languages Kermeta and QVT
Operational is performed.

Kermeta. Since in Kermeta no explicit rule concept is available, the dynamic
semantics of a transformation incorporating inheritance depends on the concrete re-
alization of the rule concept as decided by the transformation designer. For example,
type substitutability may be realized, if rules are called accordingly, but may also not
be supported, if the transformation designer decides differently. Consequently, the
criteria for dynamic semantics have been rated as not applicable. Kermeta provides
direct inheritance support in the engine, since it is compiled into Java code.

QVT Operational. In contrast to Kermeta, QVT-O exhibits an explicit rule
concept, for which dedicated behavior is defined. The only decision, which is left to
the transformation designer is the dispatching of the transformation rules, since in
imperative languages, control flow is typically user-defined. Consequently, the sub-
criteria of the category dispatch semantics have been rated as not applicable. By
default, rule applicability semantics for conditions is applied. However, a specifics of
QVT-O is that conditions may also be interpreted as preconditions, if a transformation
is executed in the so-called strict mode. In case that a condition is not fulfilled in
this mode, the transformation throws an exception and terminates execution. Thus,
in this mode, conditions act as preconditions that need to be fulfilled by any input
model. Regarding execution semantics, inheritance support in the engine in QVT-O
is unknown, but it is assumed that direct support in the engine is available, since the
implementation builds on Java. Concerning the execution of conditions, surprisingly,
an asymmetric completion of the lookup is performed, i.e., conditions are not inherited
along the inheritance hierarchy. Consequently, the output model produced by QVT-O
deviates from the other output models, since it exhibits an additional Place instance
s2, which results from the fact that the State instance s2 fulfills the condition of the
subrule, but needs not to fulfill the condition of the superrule. Finally, regarding the
execution of assignments, a composing completion of the lookup is performed, i.e.,
all assignments along the inheritance hierarchy are executed. The actual direction of
the lookup is parent-driven, i.e., assignments of superrules are executed before the
assignments of the subrule.

4.4.2 Declarative Languages

In the following, the dynamic semantics of the declarative languages TGGs and TNs
is evaluated.

Triple Graph Grammars. When regarding the dispatch semantics of TGGs,
one might detect that type substitutability is supported. Furthermore, rule applica-
bility semantics for evaluating conditions is employed as may be concluded from the
resulting instances in the output model. Concerning the realization of inheritance in
the engine (cf. sub-criterion of execution semantics), TGGs do not need an explicit
support for the concept, since inheritance is flattened in the syntax already – thus,
this criterion has been rated as not applicable. Finally, regarding the execution of
conditions and assignments, a composing behavior is automatically given due to the
flattening in the syntax. This is also the reason, why direction of the lookup is not
applicable.

Transformation Nets. Like TGGs, TNs also support type substitutability as
well as rule applicability for conditions when analyzing the dispatch semantics. When
taking a look at the execution semantics, one may find that TNs support the con-

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a3

Rule Inheritance in M2M Transformation Languages · 33

cept of inheritance in the engine by flattening, i.e., all inherited patterns along the
inheritance hierarchy are collected and result in a single transition on the CPN level.
Conditions as well as assignments exhibit a composing completion of the lookup,
i.e., all inherited conditions and assignments are applied in a transformation rule.
Whereas the direction of the lookup in case of conditions happens descendent-driven,
i.e., the most specific condition is evaluated first, the direction of the lookup in case
of assignments has been evaluated as not applicable, since the assignments occur in
a single firing step on the CPN level due to the flattening.

4.4.3 Hybrid Languages

Finally, this subsection surveys dynamic semantics with respect to the hybrid lan-
guages ATL and ETL.

ATL. As may be seen in Fig. 14, the outputs for the dATL and iATL solutions
are the same. With respect to dispatch semantics, ATL employs type substitutability
as well as rule applicability for evaluating conditions. When taking a look at the
sub-criteria making up the execution semantics, one may find that the concept of
inheritance is not directly supported in the engine, but flattened before execution.
Furthermore, conditions as well as assignments exhibit both a composing comple-
tion of the lookup. Nevertheless, conditions are evaluated parent-driven, whereas
assignments are evaluated descendent-driven. The descendent-driven evaluation of
assignments is surprising, since typically assignments must be executed parent-driven
in order to achieve override semantics, which is implicitly assumed in ATL. However,
ATL accomplishes override semantics by the descendent-driven evaluation of assign-
ments though, since it pursues an optimized composing strategy, i.e., in the flattening
process the overridden assignments are removed and thus, for each feature a single
assignment remains, only. Please note that only assignments specified within the
declarative part of ATL are inherited, whereas the imperative parts, i.e., statements
in the do-block, are ignored.

ETL. Concerning dispatch semantics, one may see that ETL does not support type
substitutability by default – neither for lazy rules nor for non-lazy rules. This may be
inferred from the fact that no Element instances have been created. Instead, dETL’s
target model includes a single Place s3, only and iETL’s target model includes no
Place instance at all, since no dynamic dispatching for source model instances is
supported (cf. Fig. 14). The dispatch semantics may be modified by annotating rules
with @greedy. Such rules also match indirect instances, but the interpretation is
different though, since the superrule still regards all instances irrespective of whether
the instances have already been matched by subrules or not. Consequently, the appli-
cation of the rule ModelElem2Element annotated with @greedy would result in both
cases, i.e., dETL and iETL, in six instances in total: four Element instances s1, s3,
t1, and t2 produced by the superrule ModelElem2Element, one Place instance s3
produced by the subrule State2Place, and finally, one Petrinet sm1 stemming from
the rule Statemachine2Petrinet. Thus, even if type substitutability is enabled in
ETL, the result of the condition evaluation does not influence the dispatch semantics
because the superrule always matches all direct and indirect instances, i.e., disregards
subrules. Consequently, the criterion condition semantics has been rated as not ap-
plicable. Regarding the sub-criteria of the execution semantics, one may first find
that ETL provides direct support for the concept of inheritance in the engine. With
respect to the execution of conditions and assignments, one may see that both are
performed by a composing completion of lookup. However, conditions are evaluated

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a3

34 · Wimmer et al.

descendent-driven, whereas assignments are evaluated parent-driven, whereby the im-
plicitly assumed override semantics is achieved. Please note that in contrast to ATL,
ETL does not exhibit an explicit section for imperative parts and consequently, also
imperative parts are inherited to subrules.

4.4.4 Synopsis

In summary, one main difference with respect to dispatch semantics is the application
of type substitutability in the different languages as may be seen in Table 3. Whereas
ATL, TGGs, and TNs provide support by default, ETL allows the transformation
designer to interfere. However, type substitutability is interpreted differently in ETL
anyhow, as discussed above. Furthermore, the imperative languages QVT-O and
Kermeta also allow the transformation designer to interfere, since the calling of rules
is performed by the transformation designer. Provided that type substitutability is
supported, all the languages evaluated provide rule applicability semantics for condi-
tions. This may be inferred from the fact that the output models produced by ATL,
TGGs and TNs include an Element instance s1, which has been produced by the
superrule ModelElem2Element, since s1 does not fulfill the condition of the specific
rule State2Place. Regarding execution semantics, one may find that the concept
of inheritance is rarely supported in the engine – typically, inheritance is flattened
before execution. Furthermore, conditions are evaluated by a composing completion
of the lookup - the only exception thereof is QVT-O, which implements an asymmet-
ric completion of lookup. Finally, all of the transformation languages implement a
composing behavior for assignments.

5 Lessons Learned

This subsection presents lessons learned from our comparison.
Similar Syntax, Different Semantics. As especially the examples in Listing 8

and in Listing 10 reveal, similar syntax does not necessarily lead to the same results,
which implies different dynamic semantics. This is undesirable, since the dynamic
semantics is not made explicit by any syntactical elements to the transformation
designer. Thus, the transformation designer must know the design decisions taken
in each transformation language in order to obtain the desired result. Therefore, the
current situation concerning rule inheritance is comparable to the situation in the
early stages of object-oriented programming, where no common agreements on the
dynamic semantics of inheritance had been reached.

Limited Support for Static Semantics. Currently, support for checking the
static semantics is limited except in TGGs and TNs. This gives rise to run-time
errors or – even worse – to erroneous target instances with no error message. Thus,
the tedious task of checking the static semantics is left entirely to the transformation
designer. The OCL invariants defined in Section 3.2 for the generic transformation
metamodel, may act as a blueprint for developing static checks for specific transfor-
mation languages. In particular, transformation languages which are equipped by a
metamodel may adopt the present OCL constraints to their specific structures.

Fixed Dynamic Semantics. As introduced above, different kinds of refinement
modes may be desirable. The evaluation of the languages has shown, that most of
them assume a certain refinement mode, but only QVT-O allows the transformation
designer to choose between different options. Thus, most of the languages support
only fixed dynamic semantics for rule inheritance. Since different dynamic semantics

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a3

Rule Inheritance in M2M Transformation Languages · 35

Table 3 – Comparison of Dynamic Semantics

A
3

Cr
it
er
io
n

Su
bc
ri
te
ri
on

Va
lu
es

Im
pe

ra
ti
ve

D
ec
la
ra
ti
ve

H
yb
ri
d

Ke
rm

et
a

Q
V
T‐
O

TG
G
s

TN
s

AT
L

ET
L

D
is
pa

tc
h

se
m
an

ti
cs

Ty
pe

Su
bs
ti
tu
ta
bi
lit
y

Ye
s
|
N
o

n.
a.
 (d

et
er
m
in
ed

by
 p
ro
gr
am

m
er
)

n.
a.
 (d

ep
en

ds
 o
n
ru
le

ca
lli
ng

 o
rd
er
)

Ye
s

Ye
s

Ye
s

U
se
r‐
D
ef
in
ab
le

C
di

i
Fi
lt
er

|
(d

i
d

Ru
le
A
pp

lic
ab
ili
ty
(o
r

l
l

l
n.
a.
(d
ue

to
di
ff
er
en

t
se
m
an

ti
cs

Co
nd

it
io
n

Se
m
an

ti
cs

Fi
lt
er

|
Ru

le
 A
pp

lic
ab

ili
ty

|
Pr
ec
on

di
ti
on

n.
a.
 (d

et
er
m
in
ed

by
 p
ro
gr
am

m
er
)

Ru
le
A
pp

lic
ab
ili
ty
 (o

r
Pr
ec
on

di
tio

n
in
 c
as
e

of
 s
tr
ic
t m

od
e)

Ru
le

A
pp

lic
ab
ili
ty

Ru
le

A
pp

lic
ab
ili
ty

Ru
le

A
pp

lic
ab
ili
ty

n.
a.
 (d

ue
to
 d
iff
er
en

t
in
te
rp
re
ta
tio

n
of

ty
pe

 s
ub

st
itu

ta
bi
lit
y)

l
d
|

D
ire

ct
en

gi
ne

U
nk
no

w
n
(D
ire

ct
n.
a.
(s
in
ce

In
he

ri
ta
nc
e

Su
pp

or
t

‐
Fl
at
te
ne

d
|

D
ir
ec
te

ng
in
e

su
pp

or
t

D
ire

ct
en

gi
ne

su
pp

or
t

(b
ui
ld
in
g
on

Ja
va
)

U
nk
no

w
n
(D
ire

ct

su
pp

or
t a

ss
um

ed

si
nc
e
bu

ild
in
g
on

Ja
va
)

n.
a.
(s
in
ce

fla
tt
en

ed
 in

pa
tt
er
ns

al
re
ad
y)

Fl
at
te
ne

d
Fl
at
te
ne

d
D
ire

ct
en

gi
ne

su
pp

or
t

emantics

Co
nd

it
io
n

Co
m
pl
et
io
n
of

lo
ok
up

A
sy
m
m
et
ri
c
|

Co
m
po

si
ng

n.
a.
 (d

et
er
m
in
ed

by
 p
ro
gr
am

m
er
)

A
sy
m
m
et
ri
c

Co
m
po

si
ng

(b
y
co
py
)

Co
m
po

si
ng

 (b
y

fla
tt
en

in
g)

Co
m
po

si
ng

Co
m
po

si
ng

i
i

f
Pa
re
nt
‐d
ri
ve
n
|

(d
i

d
n.
a.
(d
ue

to
n.
a.
(d
ue

to
d

ecution Se

D
ir
ec
ti
on

 o
f

lo
ok
up

Pa
re
nt

dr
iv
en

 |
D
es
ce
nd

en
t‐

dr
iv
en

n.
a.
 (d

et
er
m
in
ed

by
 p
ro
gr
am

m
er
)

n.
a.
 (d

ue
 to

as
ym

m
et
ri
c

be
ha
vi
ou

r)

n.
a.
 (d

ue
 to

co
py
 in

sy
nt
ax
)

D
es
ce
nd

en
t‐

dr
iv
en

Pa
re
nt
‐

dr
iv
en

D
es
ce
nd

en
t‐
dr
iv
en

C
l

i
f

i
|

(d
i

d
C

i
O
pt
im

iz
ed

O
i

i
d

Ex

A
ss
ig
nm

en
ts

Co
m
pl
et
io
n
of

lo
ok
up

A
sy
m
m
et
ri
c
|

Co
m
po

si
ng

n.
a.
 (d

et
er
m
in
ed

by
 p
ro
gr
am

m
er
)

Co
m
po

si
ng

Co
m
po

si
ng

(b
y
co
py
)

O
pt
im

iz
ed

Co

m
po

si
ng

 (b
y

fla
tt
en

in
g)

O
pt
im

iz
ed

Co

m
po

si
ng

Co
m
po

si
ng

i
i

f
Pa
re
nt
‐d
ri
ve
n
|

(d
i

d
n.
a.
(d
ue

to
(
i

l
d

D
ir
ec
ti
on

 o
f

lo
ok
up

Pa
re
nt

dr
iv
en

 |
D
es
ce
nd

en
t‐

dr
iv
en

n.
a.
 (d

et
er
m
in
ed

by
 p
ro
gr
am

m
er
)

Pa
re
nt
‐d
ri
ve
n

n.
a.
 (d

ue
 to

co
py
 in

sy
nt
ax
)

n.
a.
 (s
in
gl
e

fir
in
g
st
ep

)
D
es
ce
nd

en
t‐

dr
iv
en

Pa
re
nt
‐d
ri
ve
n

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a3

36 · Wimmer et al.

are suitable for different transformation scenarios, the transformation designer should
be enabled to alter the dynamic semantics. The introduction of a super reference as
in object-oriented programming languages and already supported in Kermeta would
enable the transformation designer to express different refinement modes.

Missing Access Modifiers. None of the transformation languages evaluated
provide any means to restrict accessability of assignments of a superrule. Instead, all
assignments may be accessed by the subrules. However, such access modifiers could
be employed to prohibit overriding of assignments in subrules. Furthermore, modifiers
to prohibit the overriding of rules are missing, e.g., a keyword with the semantics of
final in Java – especially in the context of inheriting whole transformations.

Consequences for Transformation Design. The discovered differences in
the interpretation of inheritance lead to profound consequences for transformation
design. Concerning ATL, the main restriction is the support for single inheritance,
only. Although multiple inheritance may be achieved by simulation, this leads to code
duplication reducing the advantages of the concept of inheritance significantly. In
contrast, although TGGs and ETL allow for multiple inheritance, they exhibit other
intricacies. In case of TGGs, assignments are duplicated in any case. ETL provides a
different interpretation of type substitutability, leading to redundant instances. Thus,
transformation development demands for a detailed knowledge to achieve exactly the
same outcome of a transformation expressed in different transformation languages.

Imperative Languages Provide Freedom but Little Support. When tak-
ing a look at the imperative languages evaluated, one might detect that concerning
the dynamic semantics much freedom is provided due to the user-defined specification
of control flow. This exhibits the advantage that the actual execution semantics of
inheritance may be influenced by the transformation designer. Maximal freedom in
writing transformations may be achieved by employing general purpose programming
languages like Java. To include the concept of transformation rules therein, frame-
works for writing transformations have been proposed [ABE+06]. However, the main
drawback of this is that the transformation designer must take care thereof by herself.
Especially, how to properly orchestrate lazy rule calls without having dynamic bining
seems to be challenging in large model transformations.

6 Related Work

This section considers three threads of related work. First, we focus on inheritance
support in transformation languages, and second, since inheritance is mainly a reuse
mechanism, we broaden the scope to other reuse facilities. Finally, inheritance support
in rule-based languages beyond the scope of MDE is highlighted.

6.1 Inheritance Support in Transformation Languages

Although inheritance plays a vital role in object-oriented modeling, and thus, also in
model transformations, no dedicated survey exists to the best of our knowledge. Only
a small number of publications mention inheritance, explicitly. Inheritance support
in ATL is briefly described in [JK05], and that in ETL in [KPP08], but rather on a
syntactical level, while the actual execution semantics are left open. A detailed dis-
cussion of static semantics that must be considered in TGG rule inheritance may be
found in [KKS07]. For graph transformations in general, Bardohl et. al [BEdLT04]
introduced type substitutability when executing graph transformation rules, i.e., (ab-

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a3

Rule Inheritance in M2M Transformation Languages · 37

stract) supertypes may be used in patterns which are then applicable to subtypes at
run-time. Finally, in the QVT standard [OMG09] detailed semantics with respect to
inheritance is defined for QVT Operational, only.

6.2 Reuse Facilities in Model Transformations

Proposed reuse facilities in the area of model transformations target at different
scopes, e.g., within/across transformations or between the same/different metamod-
els. Consequently, reuse facilities may be divided into five different scopes ranging
from reuse in the small to reuse in the large, as detailed in the following.

Scope 1. To avoid code duplication, reuse of logic within a single transformation
is needed, i.e., the scope is to reuse the same transformation logic between the same
metamodels in the same transformation. Proposed reuse facilities for this scope in-
clude functions as well as inheritance, whereby functions are supported by nearly all
transformation languages, being in contrast to inheritance as already detailed above.

Scope 2. To realize similar transformation logic, reuse of transformation logic
between the same metamodels in different transformations is needed. In this con-
text, two main reuse facilities have been proposed - namely superimposition for ATL
[WVDSD10] or QVT Relations (cf. redefinition of whole rules in an inheriting trans-
formation) and so-called transformation product lines [KGKG09, Sij10]. Thereby, su-
perimposition allows to build the union of transformation rules from different trans-
formations. Rules may be redefined, i.e., a rule is replaced by a new one if their
signatures are identical, and added, whereby it is impossible to reuse the original
rule. To deal with variabilities in model transformations, approaches arose that allow
transformation designers to explicitly specify potential variabilities in model trans-
formations, which we call transformation product lines (inspired by software product
lines). These approaches typically use some variability model, e.g., feature models,
to guide the generation of a specific transformation.

Scope 3. Thirdly, reuse of transformation logic may be required across the bound-
aries of metamodels. In this respect, generic transformations and domain-specific
languages (DSLs) have been proposed, whereby genericity allows to parameterize
transformation logic with types to abstract from concrete metamodels. Thereby, ap-
proaches have been proposed for fine-grained genericity [LAKS09, VP04], i.e., on the
level of rules or functions, and coarse-grained genericity [CGdL11, WKR+11], i.e., on
the level of transformations. DSLs provide means to simplify specification of recur-
ring problems in transformations. Two different kinds of DSLs may be distinguished:
(i) external DSLs, i.e., the DSL may be used independently from the underlying
transformation language, and (ii) internal DSLs, i.e., DSL constructs are embedded
in a transformation language. External DSLs have been proposed by [DFV09] and
[WKK+10], which focus on the resolution of structural heterogeneities. In order to
execute a DSL-based specification, it has to be translated into a certain executable
transformation language. Internal DSLs follow the same principles but differ in the
fact that DSL constructs are tightly integrated in a certain transformation language.
A representative for internal DSLs is the High Level Navigation Language (HNL)
[CJGMB09], which hides complex OCL navigation expressions using ATL as host
language. Furthermore, modularization concepts in the area of graph transforma-
tions have been proposed, which allow to encapsulate graph transformation rules in
so-called units [KHKK04]. These units may then be imported in a graph transforma-
tion and by this reused.

Scope 4. Since cross-cutting concerns, e.g., debugging or tracing, should be

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a3

38 · Wimmer et al.

reusable throughout transformations, mechanisms are needed that allow to reuse
logic irrespective of metamodels and transformations. To reuse such cross-cutting con-
cerns, several mechanisms have been proposed, including higher-order transformations
[TJF+09], aspect-orientation, e.g., supported in Kermeta, and reflection [Kur10].

Scope 5. Finally, to achieve reuse in the large, whole transformations might be
reused without adaptations. Thus, mechanisms exist to orchestrate model transforma-
tions, e.g., describing sequential or conditional executions of model transformations.
Orchestration languages have been proposed to replace low-level descriptions, e.g.,
in terms of Ant12 tasks. Basically, they may be divided into approaches allowing
to orchestrate model transformations written in different languages [Kle06, Old05,
VAB+07] or in a specific language, only (Wires* [RRGLR+09], ATLFlow13, QVT-
O14).

Synopsis. Although a large number of reuse mechanisms including inheritance
has been proposed, several shortcomings might be identified, which still represent ma-
jor barriers to efficient reuse in model transformations. These barriers include, e.g., in-
sufficient abstraction from metamodels, since most of the proposed reuse mechanisms
do not allow to decouple transformation logic and concrete metamodels. Further-
more, although mechanisms for reuse have been presented, corresponding repositories
of reusable artifacts are still missing. This is in contrast to software engineering,
where different kinds of repositories of reusable artifacts exist, ranging from fine-
grained class-libraries (being delivered with any programming language) over compo-
nents to coarse-grained frameworks. Finally, the specialization of reusable artifacts
is often challenging. For example, in case of inheritance, specialization has potential
for improvement, since none of the approaches allows to define reuse policies, e.g., to
disallow rule inheritance (cf. final keyword in Java) or to define some access rights
(cf. keywords private, protected or public).

6.3 Inheritance in Rule-Based Languages Beyond MDE

Beyond the area of MDE, rule-based languages may be found in the area of data engi-
neering as well as ontology engineering. Concerning the former, rule-based languages
are employed in active databases in the form of event-condition-action constructs,
i.e., triggers. In this context, static semantics for inheriting triggers has been defined
in [CMR99]. This work has been complemented in [BGM00] by also discussing the
dynamic semantics of inheriting triggers. When regarding XML, the concept of in-
heritance is considered in the XML Schema15 standard by type derivation. However,
corresponding transformation languages like XSLT16 or XQuery17 neglect the concept
of rule inheritance, e.g., XSLT supports the reuse of templates only by delegation.
Regarding the area of ontology engineering, an extensive survey on inheritance in
rule-based frame systems may be found in [YK06].

12http://ant.apache.org/
13http://opensource.urszeidler.de/ATLflow/
14http://www.omg.org/spec/QVT/1.1/
15http://www.w3.org/XML/Schema
16http://www.w3.org/TR/xslt
17http://www.w3.org/TR/xquery

Journal of Object Technology, vol. 11, no. 2, 2012

http://ant.apache.org/
http://opensource.urszeidler.de/ATLflow/
http://www.omg.org/spec/QVT/1.1/
http://www.w3.org/XML/Schema
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xquery
http://dx.doi.org/10.5381/jot.2012.11.2.a3

Rule Inheritance in M2M Transformation Languages · 39

7 Conclusion and Future Work

In this paper, we have presented a systematic comparison of inheritance support
in model-to-model transformation languages. In particular, we considered Kermeta,
QVT-O, TGGs, TNs, ATL, and ETL. We (i) identified syntactic concepts required
for inheritance, (ii) elaborated on static semantics that should be checked between
inheriting rules, and (iii) investigated potential dynamic semantics of rule inheritance.
Thus, the design rationales behind the realizations of rule inheritance in different
languages have been made explicit.

Since this paper focussed on inheritance in model-to-model transformation lan-
guages, future work includes a survey of inheritance in model-to-text transformation
languages, e.g., in Xtend18. Furthermore, since we considered functional require-
ments of inheritance only, an investigation of non-functional requirements, e.g., per-
formance measures between transformations employing inheritance and transforma-
tions neglecting inheritance may also be an interesting point for future work. Finally,
a user study with transformation designers would be of interest to find out, to which
extent inheritance is applied in real world transformation examples.

References

[ABE+06] David H. Akehurst, Behzad Bordbar, M. J. Evans, W. Gareth J.
Howells, and Klaus D. McDonald-Maier. SiTra: Simple Transfor-
mations in Java. In Oscar Nierstrasz, Jon Whittle, David Harel,
and Gianna Reggio, editors, Proceedings of the 9th International
Conference on Model Driven Engineering Languages and Systems
(MoDELS’06), volume 4199 of LNCS, pages 351–364. Springer, 2006.
doi:10.1007/11880240_25.

[AD96] Eric Amiel and Eric Dujardin. Supporting explicit disambiguation
of multi-methods. In Pierre Cointe, editor, Proceedings of the 10th
European Conference on Object-Oriented Programming (ECOOP’96),
volume 1098 of LNCS, pages 167–188. Springer, 1996. doi:10.1007/
BFb0053061.

[ADL91] Rakesh Agrawal, Linda G. Demichiel, and Bruce G. Lindsay. Static
Type Checking of Multi-Methods. In Andreas Paepcke, editor, Pro-
ceedings of the 6th International Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications (OOPSLA’91),
pages 113–128. ACM, 1991. doi:10.1145/117954.117963.

[ASU86] Alfred Aho, Ravi Sethi, and Jeffrey Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley, 1986.

[BEdLT04] Roswitha Bardohl, Hartmut Ehrig, Juan de Lara, and Gabriele
Taentzer. Integrating Meta-modelling Aspects with Graph Transfor-
mation for Efficient Visual Language Definition and Model Manipula-
tion. In Michel Wermelinger and Tiziana Margaria, editors, Proceed-
ings of the 7th International Conference on Fundamental Approaches
to Software Engineering (FASE’04), volume 2984 of LNCS, pages
214–228. Springer, 2004. doi:10.1007/978-3-540-24721-0_16.

18http://www.eclipse.org/workinggroups/oaw

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.1007/11880240_25
http://dx.doi.org/10.1007/BFb0053061
http://dx.doi.org/10.1007/BFb0053061
http://dx.doi.org/10.1145/117954.117963
http://dx.doi.org/10.1007/978-3-540-24721-0_16
http://www.eclipse.org/workinggroups/oaw
http://dx.doi.org/10.5381/jot.2012.11.2.a3

40 · Wimmer et al.

[Béz05] Jean Bézivin. On the Unification Power of Models. SoSyM Journal,
4(2):171–188, 2005. doi:10.1007/s10270-005-0079-0.

[BGM00] Elisa Bertino, Giovanna Guerrini, and Isabella Merlo. Trigger In-
heritance and Overriding in an Active Object Database System.
IEEE Trans. on Knowl. and Data Eng., 12(4):588–608, 2000. doi:
10.1109/69.868909.

[CGdL11] Jesús Cuadrado, Esther Guerra, and Juan de Lara. Generic Model
Transformations: Write Once, Reuse Everywhere. In Jordi Cabot and
Eelco Visser, editors, Proceedings of the 4th International Confer-
ence on Theory and Practice of Model Transformations (ICMT’11),
volume 6707 of LNCS, pages 62–77. Springer, 2011. doi:10.1007/
978-3-642-21732-6_5.

[CH06] Krzysztof Czarnecki and Simon Helsen. Feature-based Survey of
Model Transformation Approaches. IBM Systems Journal, 45(3):621–
645, 2006. doi:10.1147/sj.453.0621.

[Cha92] Craig Chambers. Object-Oriented Multi-Methods in Cecil. In
Ole Lehrmann Madsen, editor, Proceedings of the 6th European Con-
ference on Object-Oriented Programming (ECOOP’92), volume 615 of
LNCS, pages 33–56. Springer, 1992. doi:10.1007/BFb0053029.

[CJGMB09] Jesús Cuadrado, Frédéric Jouault, Jesús García Molina, and Jean
Bézivin. Experiments with a High-Level Navigation Language.
In Richard F. Paige, editor, Proceedings of the 2nd International
Conference on Theory and Practice of Model Transformations
(ICMT’09), volume 5563 of LNCS, pages 229–238. Springer, 2009.
doi:10.1007/978-3-642-02408-5_16.

[CMR99] Naumann Chaudry, James Moyne, and Elke Rundensteiner. Rule
Inheritance and Overriding in Active Object-Oriented Databases. In
Current trends in data management, pages 153–178. IGI Publishing,
1999.

[DFV09] Marcos Del Fabro and Patrick Valduriez. Towards the Efficient
Development of Model Transformations using Model Weaving and
Matching Transformations. SoSyM Journal, 8(3):305–324, 2009.
doi:10.1007/s10270-008-0094-z.

[JABK08] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev.
ATL: A Model Transformation Tool. Science of Computer Program-
ming, 72(1-2):31–39, 2008. doi:10.1016/j.scico.2007.08.002.

[JK05] Frédéric Jouault and Ivan Kurtev. Transforming Models with ATL.
In Proceedings of the Model Transformations in Practice Workshop @
MoDELS’05, 2005.

[JK09] Kurt Jensen and Lars M. Kristensen. Coloured Petri Nets - Modeling
and Validation of Concurrent Systems. Springer, 2009.

[KGKG09] Amogh Kavimandan, Aniruddha Gokhale, Gabor Karsai, and Jeff
Gray. Templatized Model Transformations: Enabling Reuse in Model
Transformations. Technical report, Vanderbilt University, 2009.

[KHKK04] Renate Klempien-Hinrichs, Hans-Jörg Kreowski, and Sabine Kuske.
Typing of Graph Transformation Units. In Hartmut Ehrig, Gregor

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.1007/s10270-005-0079-0
http://dx.doi.org/10.1109/69.868909
http://dx.doi.org/10.1109/69.868909
http://dx.doi.org/10.1007/978-3-642-21732-6_5
http://dx.doi.org/10.1007/978-3-642-21732-6_5
http://dx.doi.org/10.1147/sj.453.0621
http://dx.doi.org/10.1007/BFb0053029
http://dx.doi.org/10.1007/978-3-642-02408-5_16
http://dx.doi.org/10.1007/s10270-008-0094-z
http://dx.doi.org/10.1016/j.scico.2007.08.002
http://dx.doi.org/10.5381/jot.2012.11.2.a3

Rule Inheritance in M2M Transformation Languages · 41

Engels, Francesco Parisi-Presicce, and Grzegorz Rozenberg, editors,
Proceedings of the 2nd International Conference on Graph Transfor-
mations (ICGT’04), volume 3256 of LNCS, pages 203–206. Springer,
2004. doi:10.1007/978-3-540-30203-2_10.

[KKS07] Felix Klar, Alexander Königs, and Andy Schürr. Model transforma-
tion in the large. In Ivica Crnkovic and Antonia Bertolino, editors,
Proceedings of the 6th Joint Meeting of the European Software En-
gineering Conference and the ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering (ESEC/FSE), pages
285–294. ACM, 2007. doi:10.1145/1287624.1287664.

[Kle06] Anneke Kleppe. MCC: A Model Transformation Environment. In
Arend Rensink and Jos Warmer, editors, Proceedings of the 2nd Eu-
ropean Conference on Model Driven Architecture - Foundations and
Applications (ECMDA-FA’06), volume 4066 of LNCS, pages 173–187.
Springer, 2006. doi:10.1007/11787044_14.

[KPP08] Dimitrios S. Kolovos, Richard F. Paige, and Fiona Polack. The Ep-
silon Transformation Language. In Antonio Vallecillo, Jeff Gray,
and Alfonso Pierantonio, editors, Proceedings of the 1st Interna-
tional Conference on Theory and Practice of Model Transforma-
tions (ICMT’08), volume 5063 of LNCS, pages 46–60. Springer, 2008.
doi:10.1007/978-3-540-69927-9_4.

[Kur10] Ivan Kurtev. Application of Reflection in a Model Transformation
Language. SoSyM Journal, 9(3):311–333, 2010. doi:10.1007/
s10270-009-0138-z.

[LAKS09] Elodie Legros, Carsten Amelunxen, Felix Klar, and Andy Schürr.
Generic and Reflective Graph Transformations for Checking and En-
forcement of Modeling Guidelines. Journal of Visual Language and
Computing, 20(4):252–268, 2009. doi:10.1016/j.jvlc.2009.04.
005.

[LW93] Barbara Liskov and Jeannette M. Wing. A New Definition of the
Subtype Relation. In Oscar Nierstrasz, editor, Proceedings of the 7th
European Conference on Object-Oriented Programming (ECOOP’93),
volume 707 of LNCS, pages 118–141. Springer, 1993. doi:10.1007/
3-540-47910-4_8.

[MFJ05] Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel. Weav-
ing Executability into Object-Oriented Meta-languages. In Lionel C.
Briand and Clay Williams, editors, Proceedings od the 8th Interna-
tional Conference on Model Driven Engineering Languages and Sys-
tems (MoDELS’05), volume 3713 of LNCS, pages 264–278. Springer,
2005. doi:10.1007/3-540-47910-4_8.

[MG06] Tom Mens and Pieter Van Gorp. A taxonomy of model transfor-
mation. Electr. Notes Theor. Comput. Sci., 152:125–142, 2006.
doi:10.1016/j.entcs.2005.10.021.

[MSZJ04] Haohai Ma, Weizhong Shao, Lu Zhang, and Yanbing Jiang. Apply-
ing OO metrics to assess UML meta-models. In Thomas Baar, Al-
fred Strohmeier, Ana M. D. Moreira, and Stephen J. Mellor, editors,

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.1007/978-3-540-30203-2_10
http://dx.doi.org/10.1145/1287624.1287664
http://dx.doi.org/10.1007/11787044_14
http://dx.doi.org/10.1007/978-3-540-69927-9_4
http://dx.doi.org/10.1007/s10270-009-0138-z
http://dx.doi.org/10.1007/s10270-009-0138-z
http://dx.doi.org/10.1016/j.jvlc.2009.04.005
http://dx.doi.org/10.1016/j.jvlc.2009.04.005
http://dx.doi.org/10.1007/3-540-47910-4_8
http://dx.doi.org/10.1007/3-540-47910-4_8
http://dx.doi.org/10.1007/3-540-47910-4_8
http://dx.doi.org/10.1016/j.entcs.2005.10.021
http://dx.doi.org/10.5381/jot.2012.11.2.a3

42 · Wimmer et al.

Proceedings of the 7th International Conference on the Unified Mod-
elling Language (UML’04), volume 3273 of LNCS. Springer, 2004.
doi:10.1007/978-3-540-30187-5_2.

[Old05] Jon Oldevik. Transformation Composition Modelling Framework. In
Lea Kutvonen and Nancy Alonistioti, editors, Proceedings of the 5th
IFIP WG 6.1 International Conference on Distributed Applications
and Interoperable Systems (DAIS’05), volume 3543 of LNCS, pages
108–114. Springer, 2005. doi:10.1007/11498094_10.

[OMG09] OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification. http://www.omg.org/spec/QVT/1.1/Beta2/PDF/,
2009.

[RRGLR+09] José E. Rivera, Daniel Ruiz-Gonzalez, Fernando Lopez-Romero, José
Bautista, and Antonio Vallecillo. Orchestrating ATL Model Transfor-
mations. In Proceedings of the 1st International Workshop on Model
Transformation with ATL (MtATL’09), 2009.

[Sak89] Marko Sakkinen. Disciplined Inheritance. In Stephen Cook, editor,
Proceedings of the 3rd European Conference on Object-Oriented Pro-
gramming (ECOOP’89), pages 39–56. Cambridge University Press,
1989.

[Sch11] Johannes Schönböck. Testing and Debugging of Model Transforma-
tions. PhD thesis, Vienna University of Technology, Business Infor-
matics Group, 2011.

[Sij10] Marten Sijtema. Introducing Variability Rules in ATL for Man-
aging Variability in MDE-based Product Lines. In Proceedings of
the 2nd International Workshop on Model Transformation with ATL
MtATL’10, 2010.

[SJ07] Jim Steel and Jean-Marc Jézéquel. On model typing. SoSyM Journal,
6(4):401–413, 2007. doi:10.1007/s10270-006-0036-6.

[SK03] Shane Sendall and Wojtek Kozaczynski. Model transformation: The
heart and soul of model-driven software development. IEEE Software,
20(5):42–45, 2003. doi:10.1109/MS.2003.1231150.

[Tai96] Antero Taivalsaari. On the notion of inheritance. ACM Comput.
Surv., 28(3):438–479, 1996. doi:10.1145/243439.24344.

[TJF+09] Massimo Tisi, Frédéric Jouault, Piero Fraternali, Stefano Ceri, and
Jean Bézivin. On the Use of Higher-Order Model Transformations.
In Richard F. Paige, Alan Hartman, and Arend Rensink, editors,
Proceedings of the 5th European Conference on Model Driven Ar-
chitecture - Foundations and Applications (ECMDA-FA’09), vol-
ume 5562 of LNCS, pages 18–33. Springer, 2009. doi:10.1007/
978-3-642-02674-4_3.

[VAB+07] Bert Vanhooff, Dhouha Ayed, Stefan Van Baelen, Wouter Joosen,
and Yolande Berbers. UniTI: A Unified Transformation Infras-
tructure. In Gregor Engels, Bill Opdyke, Douglas C. Schmidt, and
Frank Weil, editors, Proceedings of the 10th International Confer-
ence on Model Driven Engineering Languages and Systems (MoD-
ELS’07), volume 4735 of LNCS, pages 31–45. Springer, 2007. doi:
10.1007/978-3-540-75209-7_3.

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.1007/978-3-540-30187-5_2
http://dx.doi.org/10.1007/11498094_10
http://www.omg.org/spec/QVT/1.1/Beta2/PDF/
http://dx.doi.org/10.1007/s10270-006-0036-6
http://dx.doi.org/10.1109/MS.2003.1231150
http://dx.doi.org/10.1145/243439.24344
http://dx.doi.org/10.1007/978-3-642-02674-4_3
http://dx.doi.org/10.1007/978-3-642-02674-4_3
http://dx.doi.org/10.1007/978-3-540-75209-7_3
http://dx.doi.org/10.1007/978-3-540-75209-7_3
http://dx.doi.org/10.5381/jot.2012.11.2.a3

Rule Inheritance in M2M Transformation Languages · 43

[VP04] Dániel Varró and András Pataricza. Generic and Meta-
Transformations for Model Transformation Engineering. In Thomas
Baar, Alfred Strohmeier, Ana M. D. Moreira, and Stephen J. Mel-
lor, editors, Proceedings of the 7th International Conference on the
Unified Modelling Language (UML’04), volume 3273 of LNCS, pages
290–304. Springer, 2004. doi:10.1007/978-3-540-30187-5_21.

[Wag11] Dennis Wagelaar. A Revised Semantics for Rule Inheritance and
Module Superimposition in ATL. In Proceedings of the 3rd Inter-
national Workshop on Model Transformation with ATL (MtATL’11),
2011.

[WKK+10] Manuel Wimmer, Gerti Kappel, Angelika Kusel, Werner Retschitzeg-
ger, Johannes Schönböck, and Wieland Schwinger. Surviving the Het-
erogeneity Jungle with Composite Mapping Operators. In Laurence
Tratt and Martin Gogolla, editors, Proceedings of the 3rd Interna-
tional Conference on Theory and Practice of Model Transformations
(ICMT’10), volume 6142 of LNCS, pages 260–275. Springer, 2010.
doi:10.1007/978-3-642-13688-7_18.

[WKK+11] Manuel Wimmer, Gerti Kappel, Angelika Kusel, Werner Retschitzeg-
ger, Johannes Schönböck, Wieland Schwinger, Dimitris Kolovos,
Richard Paige, Marius Lauder, Andy Schürr, and Dennis Wagelaar.
A Comparison of Rule Inheritance in Model-to-Model Transformation
Languages. In Jordi Cabot and Eelco Visser, editors, Proceedings of
the 4th International Conference on Theory and Practice of Model
Transformations (ICMT’11), volume 6707 of LNCS, pages 31–46.
Springer, 2011. doi:10.1007/978-3-642-21732-6_3.

[WKR+11] Manuel Wimmer, Angelika Kusel, Werner Retschitzegger, Johannes
Schönböck, Wieland Schwinger, Jesús Sánchez Cuadrado, Esther
Guerra, and Juan De Lara. Reusing Model Transformations across
Heterogeneous Metamodels. In Proceedings of the 5th International
Workshop on Multi-Paradigm Modeling @ MoDELS’11 (MPM’11),
2011.

[WVDSD10] Dennis Wagelaar, Ragnhild Van Der Straeten, and Dirk Deridder.
Module superimposition: a composition technique for rule-based
model transformation languages. SoSyM Journal, 9:285–309, 2010.
doi:10.1007/s10270-009-0134-3.

[YK06] Guizhen Yang and Michael Kifer. Inheritance in Rule-Based Frame
Systems: Semantics and Inference. In Stefano Spaccapietra, editor,
Journal on Data Semantics VII, volume 4244 of LNCS, pages 79–135.
Springer, 2006. doi:10.1007/11890591_4.

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.1007/978-3-540-30187-5_21
http://dx.doi.org/10.1007/978-3-642-13688-7_18
http://dx.doi.org/10.1007/978-3-642-21732-6_3
http://dx.doi.org/10.1007/s10270-009-0134-3
http://dx.doi.org/10.1007/11890591_4
http://dx.doi.org/10.5381/jot.2012.11.2.a3

44 · Wimmer et al.

About the authors

M. Wimmer is post-doc researcher at the Business Informat-
ics Group of the Vienna University of Technology. His re-
search interests comprise Web engineering and model engineer-
ing; in particular model transformations based on formal meth-
ods, generating transformations by-example as well as applying
model transformations to deal with model (co-)evolution. Cur-
rently, he is on leave working as visiting researcher at the Soft-
ware Engineering Group of the University of Málaga (Spain).
For further information about his research activities, please visit
http://www.big.tuwien.ac.at/staff/mwimmer or contact him
at wimmer@big.tuwien.ac.at.

G. Kappel is a full professor in the Institute for Software Tech-
nology and Interactive Systems at the Vienna University of Tech-
nology, heading the Business Informatics Group. Her current re-
search interests include model engineering, Web engineering, as
well as process engineering. For further information about her
research activities, please visit http://www.big.tuwien.ac.at/
staff/gkappel or contact her at gerti@big.tuwien.ac.at.

A. Kusel is a postdoctoral researcher at the Cooperative Informa-
tion Systems Group at the Johannes Kepler University, Linz. Her
current research interests include model engineering; in particular
the specification of model transformations. She received a PhD in
Computer Science from the Johannes Kepler University in 2011
in the area of model engineering entitled “Reusability in Model
Transformations – Resolving Recurring Heterogeneities by Com-
posite Mapping Operators.” For further information about her re-
search activities, please visit http://www.tk.jku.at/people or
contact her at Angelika.Kusel@jku.at.

W. Retschitzegger is associate professor at the Johannes Ke-
pler University (JKU) Linz, Austria and scientific head of the
Department of Cooperative Information Systems (CIS). In 2002,
he was appointed a temporary full professorship for business in-
formatics at TU Vienna. From 2003 to 2006 he was chair of the
Institute of Bioinformatics at JKU, from 2008 to 2009 he held a
guest professorship for workflow management at the University of
Vienna. He has published more than 140 papers in international
refereed journals and conference proceedings, along with a series
of books. His research interests focus on the model-driven and
semantic-based engineering of cooperative information systems in
domains like road traffic management, workflow management and
social media. Contact him at werner@ifs.uni-linz.ac.at, or
visit http://www.bioinf.jku.at/people/wr/.

Journal of Object Technology, vol. 11, no. 2, 2012

http://www.big.tuwien.ac.at/staff/mwimmer
mailto:wimmer@big.tuwien.ac.at
http://www.big.tuwien.ac.at/staff/gkappel
http://www.big.tuwien.ac.at/staff/gkappel
mailto:gerti@big.tuwien.ac.at
http://www.tk.jku.at/people
mailto:Angelika.Kusel@jku.at
mailto:werner@ifs.uni-linz.ac.at
http://www.bioinf.jku.at/people/wr/
http://dx.doi.org/10.5381/jot.2012.11.2.a3

Rule Inheritance in M2M Transformation Languages · 45

J. Schönböck is postdoctoral researcher at the Business Infor-
matics Group of the Vienna University of Technology and the
Cooperative Information Systems Group at the Johannes Ke-
pler University Linz. He received a PhD in Computer Science
from the Vienna University of Technology in 2012 for his thesis
“Testing and Debugging of Model Transformations”. His research
comprise model transformations, model transformation testing
and debugging, model (co-)evolution. For further information
about his research activities, please visit http://www.bioinf.
jku.at/people/schoenboeck/ or contact him at schoenboeck@
big.tuwien.ac.at.

W. Schwinger is associate professor at the Department of Co-
operative Information Systems (CIS) at the Johannes Kepler Uni-
versity (JKU) Linz, Austria and jointly is acting as scientific head
of department. Prior to that, he was working as a senior re-
searcher and project manager of strategic research projects at
the Software Competence Center Hagenberg, Austria. He was
involved in several national and international projects in the ar-
eas of context and situation aware systems, model engineering and
web engineering resulting in more than 90 publications in interna-
tional refereed journals and conference proceedings. Contact him
at wieland@schwinger.at, or visit http://www.tk.uni-linz.
ac.at/people/.

D. Kolovos Dimitris Kolovos is a Lecturer in Enterprise Sys-
tems at the Department of Computer Science of the Univer-
sity of York, United Kingdom, and the project leader of the
Epsilon project (http://www.eclipse.org/epsilon). He can
be reached at dimitris.kolovos@york.ac.uk. See also http:
//www-users.cs.york.ac.uk/?dkolovos.

R. Paige is Professor of Enterprise Systems at the University of
York, where he leads research on modelling, domain-specific lan-
guages, agile development and software engineering. He is direc-
tor of the Engineering Doctorate Centre in Large-Scale Complex
IT Systems. He can be reached at richard.paige@york.ac.uk,
followed on Twitter at @richpaige, and on the web at http:
//www.cs.york.ac.uk/~paige.

Journal of Object Technology, vol. 11, no. 2, 2012

http://www.bioinf.jku.at/people/schoenboeck/
http://www.bioinf.jku.at/people/schoenboeck/
mailto:schoenboeck@big.tuwien.ac.at
mailto:schoenboeck@big.tuwien.ac.at
mailto:wieland@schwinger.at
http://www.tk.uni-linz.ac.at/people/
http://www.tk.uni-linz.ac.at/people/
http://www.eclipse.org/epsilon
mailto:dimitris.kolovos@york.ac.uk
http://www-users.cs.york.ac.uk/?dkolovos
http://www-users.cs.york.ac.uk/?dkolovos
mailto:richard.paige@york.ac.uk
http://www.cs.york.ac.uk/~paige
http://www.cs.york.ac.uk/~paige
http://dx.doi.org/10.5381/jot.2012.11.2.a3

46 · Wimmer et al.

M. Lauder is a Ph.D. student at the Graduate School of Com-
putational Engineering and the Real-Time Systems Lab (ES) at
the Technische Universität Darmstadt, Germany. His interests in-
clude bidirectionality of graph transformations, triple graph gram-
mars, and application scenarios concerning incremental and bidi-
rectional model-to-model synchronization (round trip engineering,
DSL development and evolution, tool integration). He received his
master’s degree in Computer Science from the Technische Univer-
sität Darmstadt in 2008 and is currently one of the core devel-
opers of the meta-CASE tool eMoflon (www.moflon.org). Con-
tact him at marius.lauder@es.tu-darmstadt.de, or visit http:
//www.es.tu-darmstadt.de/mitarbeiter/marius-lauder/.

A. Schürr holds the Real-Time System chair of the Electrical
Engineering and Information Technology Department of the Tech-
nische Universität Darmstadt. His main research interests are
related to model-based development of embedded systems with
a special emphasis on automotive software development and au-
tomation engineering. Besides others, his focus is on bidirectional
graph transformations and model-based testing of software prod-
uct lines. His research group develops the meta modeling tool
eMOFLON which offers integrated support for Eclipse-based vi-
sual metamodeling and graph-transformation-based model trans-
formation techniques. A. Schürr is a member of the Steering
Committees of the international ECMFA, ICGT, and MODELS
conference series as well as a co-founder of the German Com-
puter Society Joint Interest Group on Modeling. Contact him at
andy.schuerr@es.tu-darmstadt.de, or visit http://www.es.
tu-darmstadt.de/mitarbeiter/andy-schuerr.

D. Wagelaar is a post-doctoral researcher at the Software Lan-
guages Lab of the Vrije Universiteit Brussel in Belgium. He re-
ceived a Ph.D. in Science at the Vrije Universiteit Brussel for
his dissertation “Platform Ontologies for the Model Driven Ar-
chitecture” and holds a MSc. degree in Computer Science from
the University of Twente (The Netherlands). His research inter-
ests are model-driven engineering, model transformation, software
product lines, and using knowledge-based techniques in the field
of software engineering. His research expertise is on Platform
Variability and platform dependency management. Contact him
at dennis.wagelaar@vub.ac.be, or visit http://soft.vub.ac.
be/soft/members/denniswagelaar/start.

Acknowledgments This work has been partially funded by the FWF under grant
P21374-N13 and J3159-N23.

Journal of Object Technology, vol. 11, no. 2, 2012

www.moflon.org
mailto:marius.lauder@es.tu-darmstadt.de
http://www.es.tu-darmstadt.de/mitarbeiter/marius-lauder/
http://www.es.tu-darmstadt.de/mitarbeiter/marius-lauder/
mailto:andy.schuerr@es.tu-darmstadt.de
http://www.es.tu-darmstadt.de/mitarbeiter/andy-schuerr
http://www.es.tu-darmstadt.de/mitarbeiter/andy-schuerr
mailto:dennis.wagelaar@vub.ac.be
http://soft.vub.ac.be/soft/members/denniswagelaar/start
http://soft.vub.ac.be/soft/members/denniswagelaar/start
http://dx.doi.org/10.5381/jot.2012.11.2.a3

	Introduction
	Motivation
	Comparison Framework
	Syntax
	Static Semantics
	Incompatibility of Input and Output Elements
	Non-Instantiability of Abstract Classes
	Missing Concrete Rule for an Abstract Rule
	Ambiguities in Rule Definitions
	Conflicts in Multiple Inheritance

	Dynamic Semantics

	Comparison of Transformation Languages
	Comparison Setup
	Chosen Transformation Languages
	Running Example

	Comparison of Syntax
	Imperative Languages
	Declarative Languages
	Hybrid Languages
	Synopsis

	Comparison of Static Semantics
	Imperative Languages
	Declarative Languages
	Hybrid Languages
	Synopsis

	Comparison of Dynamic Semantics
	Imperative Languages
	Declarative Languages
	Hybrid Languages
	Synopsis

	Lessons Learned
	Related Work
	Inheritance Support in Transformation Languages
	Reuse Facilities in Model Transformations
	Inheritance in Rule-Based Languages Beyond MDE

	Conclusion and Future Work
	Bibliography
	About the authors

