
Vol. 9, No. 2, March–April 2010

Converting Relational Databases into Object-
relational Databases

Abdelsalam Maatuk
M. Akhtar Ali
Nick Rossiter
School of Computing, Engineering & Information Sciences,
Northumbria University, Newcastle upon Tyne, UK

This paper proposes an approach for migrating existing Relational DataBases (RDBs)
into Object-Relational DataBases (ORDBs). The approach is superior to existing
proposals as it can generate not only the target schema but also the data instances.
The solution takes an existing RDB as input, enriches its metadata representation
with required semantics, and generates an enhanced canonical data model, which
captures essential characteristics of the target ORDB, and is suitable for migration. A
prototype has been developed, which migrates successfully RDBs into ORDBs (Oracle
11g) based on the canonical model. The experimental results were very encouraging,
demonstrating that the proposed approach is feasible, efficient and correct.

1 INTRODUCTION

Relational DataBases (RDBs) have been applied in a number of areas and accepted
as a solution for storing and retrieving data due to their maturity. Most tradi-
tional database applications are based on traditional Database Management Systems
(DBMSs), i.e., Relational DBMSs (RDBMSs) as they have been quite successful in
handling simple but large amount of data. The drawbacks of such RDBMSs in sup-
porting complex data structures, user-defined data types and data persistence re-
quired by Object-Oriented (OO) and e-commence applications have led to the devel-
opment of object-based database systems. Object-Oriented DataBases (OODBs) [6]
and Object-Relational DataBases (ORDBs) [18], which support various diverse OO
concepts, have been proposed in order to fulfil the demands of newer and more com-
plex applications. Consequently, new DBMSs have started to emerge in the market,
providing more functionality and flexibility. Since the majority of data are cur-
rently stored in RDBMSs, it is expected that conversion of RDBs into the database
technology that have emerged recently assumes special significance.

ORDBs are showing potential, because they have a relational base and append
object features. The main goal of their design was to incorporate both robust trans-
action and performance management features of RDBs, and flexibility, scalability
and support for rich data types, which are features of OO models. Some of these
features are defined in the SQL3 [4] and SQL4 [16] standards, e.g., user-defied types

Cite this article as follows: : Converting Relational Databases into Object-relational Databases,
in Journal of Object Technology, vol. 9, no. 2, March–April 2010, pages 145–161,
{http://www.jot.fm/issues/issues 2010 03/article3

http://www.jot.fm/issues/issues_2010_03/article3

CONVERTING RELATIONAL DATABASES INTO OBJECT-RELATIONAL DATABASES

and inheritance. Together with handling simple data types, ORDBs can handle
multimedia data types. Developers can work with the tabular structure and DDL of
RDBs with a better support for complex data and object management. Moreover,
the development of ORDBs was triggered by the growth of object programming
languages to avoid the mismatch between these languages and DBMSs. For these
reasons, the migration of RDB into its extension ORDB is necessary.

Most existing methods for converting RDBs into ORDBs focus on schema trans-
formation, but in the context of database design. A large body of research has con-
centrated on transforming well-known conceptual models such as an Extended Entity
Relationship (EER) and UML into ORDB schemas [8, 13, 17, 19, 9, 15, 3, 7, 14].
Another group of methods and tools exist to enable non-traditional applications to
share data with object schema [21], and to view and publish RDB data in XML [2, 5].
However, none of the existing studies can be considered as a method for migrating
an RDB into an ORDB on both levels: schema and data conversion. Typed data,
the most important part of databases, are to be converted and utilized within the
new environment.

In this paper, we propose a method for migrating RDBs into ORDBs. The
method comprises three basic steps. In the first step, the method produces a Canon-
ical Data Model (CDM), which is enriched with RDB integrity constraints and data
semantics that may not have been explicitly expressed in its metadata. The CDM
so obtained is translated into an ORDB schema in the second step. Data conver-
sion is the third step, in which RDB data are converted into their equivalents in
the ORDB environment. The solution is superior to existing approaches as it can
automatically generate the ORDB schema as well as data instances. We use SQL4
ORDB so that the approach is independent of a particular product. A prototype
has been implemented to demonstrate the migration process and provide proof of
concept. As Oracle 11g supports most of the data types defined by SQL4, we have
used it for implementation. An experimental study has been conducted to evalu-
ate the prototype by checking the results it provides regarding the correctness and
completeness of the solution and its concepts.

This paper is structured as follows. An overview of the related work is presented
in Section 2. Section 3 describes how an existing RDB metadata is enriched in the
form of CDM. The translation of CDM into ORDB schema is presented in Section 4.
Section 5 explains the conversion of RDB data into an ORDB. Section 6 evaluates
the method and reviews its results, and Section 7 concludes the paper.

2 RELATED WORK

Transforming conceptual models (e.g., EER, UML class diagrams) into ORDB have
been studied extensively over the past ten years [18, 8, 13, 17, 19, 9, 15, 1, 3, 7, 14]. A
common finding from these studies is that the logical structure of an ORDB schema
is achieved by creating object-types from UML diagrams. Tables are created based

146 JOURNAL OF OBJECT TECHNOLOGY VOL 9, NO. 2

3 SEMANTIC ENRICHMENT OF RELATIONAL DATABASE

on the pre-defined object-types. An association relationship is mapped using ref or
a collection of refs depending on the multiplicity of the association. Multi-valued
attributes are defined using arrays/nested tables. Inheritance is defined using FKs
or ref types in Oracle 8i and the under clause in Oracle 9i/SQL3 [9].

A method of mapping and preserving collection semantics into an ORDB has
recently been proposed [15]. The method transforms UML conceptual aggrega-
tion and association relationships into ORDB using row and multiset provided by
SQL4 [16]. More recent work has focused on mapping UML aggregation/composition
relationships into ORDBs [9, 3]. Urban et al. described essential rules for convert-
ing UML class diagrams into ORDB schemas, using triggers to preserve inverse
relationships between objects for bi-directional relationships [19]. Marcos et al.
proposed new UML stereotype extensions for an ORDB design, focusing on ag-
gregation and composition relationships [8, 9]. Urban and Dietrich presented an
approach using UML diagrams as a foundation for analysis, transforming them into
RDB/OODB/ORDB schemas [20]. Grant et al. have compared and evaluated most
of the above and others similar proposals. Their analysis might aid in the stan-
dardisation of these techniques and the development of a tool that could support in
ORDBs design [7]. Although most ORDB concepts are present in these proposals,
their focus has been on the design of ORDBs rather than on migration. However,
if a migration process uses a conceptual model as an intermediate stage, then these
proposals could be useful in schema translation.

3 SEMANTIC ENRICHMENT OF RELATIONAL DATABASE

The semantic enrichment of an RBD involves the extraction of its data semantics,
to be enriched and converted into a much enhanced CDM. For this task, we have
applied our approach [11] for semantically enriching RDBs. The process starts
by extracting the basic metadata information about an existing RDB, including
relation names and attribute properties (i.e., attribute names, data types, length,
default values, and whether the attribute is nullable), and Primary Keys (PKs),
Foreign Keys (FKs) and Unique Keys (UKs). We assume that data dependencies
are represented by PKs and FKs as for each FK value there is an existing, matched
PK value, which can be considered as a value reference. To get the best results, it
is preferable that the process is applied to a schema in 3rd Normal Form (3NF). A
relation that is not in 3NF may have redundant data, update anomalies problem or
no clear semantics of whether it represents one real-world entity or relationship type.
These problems may affect the real world meaning materialized in object-relational
models. The next step is to identify the CDM constructs based on a classification
of relations, attributes and relationships, which may be performed through data
access. Lastly, the CDM structure is generated.

Definition of CDM: The CDM is defined as a set of classes: CDM := {C | C
:= 〈cn, cls, abs, Acdm, Rel, UK〉}, where each class C has a name cn, is given a

VOL 9, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 147

CONVERTING RELATIONAL DATABASES INTO OBJECT-RELATIONAL DATABASES

classification cls, and whether or not it is abstract abs. Each C has a set of attributes
Acdm, a set of relationships Rel, and a set of unique keys UK.

Classification (cls): Classification divides classes into the three categories:

1. Main classes (classes forming base types in the target database)

• Regular Strong Class (RST): a class whose PK is not composed of any
FKs.

• Secondary Strong Class (SST): an inherited RST class.

• Sub-class (SUB): a class that inherits another super-class, but is not
inherited by other sub-classes.

• Secondary Sub-class (SSC): a sub-class that is inherited by other sub-
classes.

• Secondary Relationship Class (SRC): a referenced RRC class, an M:N
relationship class with attributes, or n-ary relationships where n>2.

• Regular Component Class (RCC): a weak class that participates in a
relationship with other classes rather than its parent class.

2. Component classes (classes representing multi-valued/composite attributes)

• Multi-valued Attribute Class (MAC): a class that represents a multi-
valued attribute.

• Composite Attribute Class (CAC): a class that represents a composite
attribute.

3. Relationship class (a class describing an M:N relationship between two classes)

• Regular Relationship Class (RRC): an M:N relationship class without
attributes.

Abstraction (abs): A super-class is abstract (i.e., abs := true) when all of its
objects are members of its sub-type objects. Instances of an abstract type cannot
appear in the database extension, but are subsumed into instances of its sub-types.

Attributes (Acdm): A class C has a set of attributes Acdm. Acdm := {a | a := 〈an,
t, tag, l, n, d〉}, where each attribute a has a name an, data type t and a tag, which
classifies a as a non-key ‘NK’, ‘PK’, ‘FK’ or both PK and FK ‘PF’ attribute. Each
a can have a length l and may have a default value d whereas n indicates whether
or not a is nullable (‘y’|‘n’).

148 JOURNAL OF OBJECT TECHNOLOGY VOL 9, NO. 2

3 SEMANTIC ENRICHMENT OF RELATIONAL DATABASE

Relationships (Rel): A class C has a set of relationships Rel. Each relationship
rel ∈ Rel between C and class C ′ is defined in C to represent an association, aggre-
gation or inheritance. Rel := {rel | rel := 〈RelType, dirC, dirAs, c, invAs〉}, where
RelType is a relationship type, dirC is the name of C ′, and dirAs denotes a set
containing the attribute names representing the relationship from the C ′ side. The
invAs denotes a set of inverse attribute names representing the inverse relationship
from the C side, and c is the cardinality constraint of rel from the C side. RelType
can have the following values: ‘associated with’ for association, ‘aggregates ’ for ag-
gregation, and ‘inherits ’ or ‘inherited by ’ for inheritance. Relationships have two
cases: 1:1 and 1:M, and c is defined by min..max notation to indicate the minimum
and maximum occurrences of objects of C ′ within objects of C. Based on c, the
object(s) of C ′ can be single-valued where c := 0..1 (optional) or c := 1..1 (required),
or set-valued where c := 0..* (optional) or c := 1..* (required).

Unique keys (UK): A class C may have a set of UK(s) that are preserved in
UK: UK := {δ | δ := {〈ua, s〉}}, where δ represents one key, ua is an attribute
name, and s is a sequence number.

Generation of CDM from RDB: Using key matching, relations and their at-
tributes are classified, relationships among relations are identified and their cardi-
nalities are determined. All these are translated into equivalents in the CDM. The
semantically enriched CDM forms the starting point for the remaining steps of the
migration process that leads to the generation of the target schema and then the
conversion of relational data into target data. Each relation R is classified based
on the comparison of its PK with the PKs of other relations, and mapped into one
of the nine CDM classes above. After class C is classified, it is important, if C.cls
:= (“SST” | “SSC”), to check whether C is concrete or abstract. C is a concrete
class (i.e., abs := false) when all (or some) of its corresponding RDB table rows
are not members of other sub-tables, and abstract otherwise. Attributes of R are
identified and mapped along with other properties into attributes of C. The keys
of R are used to generate the relationships Rel of C. Using this information, the
relationships among relations are identified, their cardinalities determined, and they
are then mapped into Rel as association, inheritance or aggregation. Using the cor-
responding data, every relationship that R participates in is identified and mapped
into an equivalent relationship rel and added to Rel.

Example 1: Consider the RDB shown in Figure 1. PKs are in italics and FKs
are marked by “*”. Table 1 shows (partly) the resulting CDM. Each RDB relation
is mapped into a class in CDM. For instance, the relation Emp is mapped into the
CDM class Emp, which is an abstract SST class, and has the attributes: ename, eno,
bdate, address, spreno and dno. Other properties of the attributes (e.g., types, tags)
are shown. The class is ‘associated with’ the classes: Dept (twice), Works on and
with itself (twice). Moreover, it ‘aggregates ’ the Kids class and is ‘inherited by ’ the

VOL 9, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 149

CONVERTING RELATIONAL DATABASES INTO OBJECT-RELATIONAL DATABASES

Salaried emp and Hourly emp classes. Cardinality c and UKs are also given for
each class.

Figure 1: Sample input RBD

cn cls abs Acdm Rel UK
an t tag l n d RelType dirC dirAs c invAs ua s

Emp SST true eno int PK 25 n asso Dept dno 1..1 dno
ename char 40 n asso Dept mgr 0..1 eno
bdate date y asso Emp eno 1..1 spreno
address char 40 y asso Emp spreno 0..* eno
spreno int FK 25 y asso Works on eno 1..* eno
dno int FK n aggr Kids eno 0..* eno

inherBy Salaried emp eno 1..1 eno
inherBy Hourly emp eno 1..1 eno

Salaried emp SUB false eno int PF 25 n inherts Emp eno 1..1 eno
salary int y

Dept RST false dno int PK n asso Emp eno 1..1 mgr mgr 1
dname char 40 n asso Emp dno 1..* dno
mgr int FK 25 n asso Proj dnum 1..* dno
startd date y aggr Dept locations dno 1..* dno

Works on RRC false eno int PF 25 n asso Emp eno 1..1 eno
pno int PF n asso Proj pnum 1..1 pno

asso: associated with aggr : aggregates inherBy: inherited by

Table 1: Results of CDM generation

4 TRANSLATING CDM INTO OBJECT-RELATIONAL SCHEMA

This section presents the translation of CDM into object-relational schema. We first
define the SQL4 ORDB target schema, and then explain the rules for translating
the CDM constructs into their equivalents in the target schema.

SQL4 ORDB schema

The SQL4 ORDB schema is defined as a set of user-defined types (UDTs), and a set
of typed tables created based on these UDTs for storing data. Each UDT consists

150 JOURNAL OF OBJECT TECHNOLOGY VOL 9, NO. 2

4 TRANSLATING CDM INTO OBJECT-RELATIONAL SCHEMA

of a set of attributes defined as literal or reference types. Literal types are defined
as a primitive, collection of primitive, row, or collection of row types. Moreover,
an attribute can be defined as a reference (ref) or a collection of references (refs),
pointing to a specific UDT. Composite attributes are defined using row types. An
association relationship is expressed among UDTs using refs. The collection (i.e.,
set) of primitive and row types are used to define simple and composite multi-valued
attributes, respectively, whereas the M side of associations are defined as a collection
of refs. UDTs and typed tables can be defined into hierarchies, realising inheritance
relationships, in which types/tables can be defined as sub-types/sub-tables under
their super-types/super-tables.

Definition of ORDB schema: The SQL4 ORDB schema is denoted as 3-tuple:
ORschema := 〈UT , TT , UKor〉, where UT is a set of UDTs, TT is a set of typed
tables, and UKor is a set of unique keys. The sets UT and TT are defined as follows:

• UT := {udType | udType := 〈utn, sut, Aut〉}, where utn is the name of a
user-defined type udType, sut is the super-type name of udType, and Aut is a
set of udType’s attributes of literal or ref-based data type:

Aut := {aut | aut := 〈an, t, m, n, d〉}, where an is the name of an attribute aut, t
is its data type, which can be primitive (e.g., integer), user-defined constructed
(e.g., row type) or ref-based (e.g., ref(udType)); m denotes whether aut is
single-valued or collection-valued, d is a default value in the case of primitive
attributes, and n denotes whether or not aut accepts nulls.

• TT := {tTable | tTable := 〈ttn, utn, stt, pk, uoid〉}, where ttn is the name of
a typed table tTable, utn is the name of udType based upon which tTable is
defined, stt is the name of its super-table, pk is the primary key of tTable, and
uoid is the user-defined identifer of the objects of tTable.

Algorithm for Schema Translation

When the CDM has been obtained, the schema translation starts by applying an
appropriate set of rules to map the CDM constructs into equivalents in the target
schema. Each rule maps a specific construct, e.g., row type and attribute.

Creating User-Defined Types

To create typed tables for storing data it is necessary to define the underlying object
types as UDTs. Each main class C ∈ CDM is translated into a UDT udt (of type
udType). The name utn of udt takes the same name as that of C, i.e., C.cn, suffixed
by a string ‘ t’, e.g., Emp t. All UDTs, except sub-class types, are defined with a
self-referential attribute, using the ‘ref using varchar(25)’ string, as part of their

VOL 9, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 151

CONVERTING RELATIONAL DATABASES INTO OBJECT-RELATIONAL DATABASES

definition. The tables defined based on those UDTs must then specify that the
identifier of each object uoid is user-generated.

Translating atomic attributes: Each non-FK attribute a ∈ C.Acdm, i.e.,
a.tag 6= (‘FK’ | ‘PF’) is translated into a primitive attribute aut and added to the at-
tribute set Aut of udt. Each aut ∈ Aut retains the same properties from a ∈ C.Acdm,
i.e., an, t and d. The multiplicity m of aut is single-valued.

Translating relationships: CDM relationships are translated and defined among
udts as association, aggregation and inheritance. Each relationship rel ∈ C.Rel is
mapped, based on rel.RelType, into a relationship attribute aut and added into
Aut, or mapped into an inheritance relationship. The name an of the attribute aut

that represents the association/aggregation relationship is generated by concatenat-
ing rel.dirC with attribute names in rel.dirAs, and C.cn with attribute names in
rel.invAs, e.g., dept mgr and emp eno. These strings are then changed by the user
to appropriate relationship names as shown in Figure 2. Object-valued relation-
ships are modeled among rows of UDTs using refs. Collections are used to model
multiple values in a single column of a table as a set of refs/literals identifying
that a column in one table contains another table. Collection types include array
and set (or multiset) in SQL4. As a result of being better for larger, unordered
and frequently changed collections, we use the set construct for translating the M
side of relationships. The multiplicity m of aut is single-valued when rel.c := (0..1
| 1..1), and a collection when rel.c := (0..m | 1..m). CDM inheritance, defined by
rel.RelType := “inherits”, is translated into the target ORDB schema using under
clause in each sub-type/sub-table definition.

• Association: Each relationship rel ∈ C.Rel where rel.RelType := “asso-
ciated with” is translated, in the udt corresponding to C, into an attribute
aut where its type aut.t is a ref or a collection of refs (depending on rel.c),
referencing the type udt′ mapped from the corresponding CDM class C ′. A
ref attribute is constrained to be scoped (i.e., using scope clause) to a spe-
cific table, so that the ref values stored in that attribute points at objects of
the specified table. Each association is defined bidirectionally between its two
types. However, unlike the OODB systems that support ODMG 3.0, neither
SQL4 nor any ORDB products allow user to rely on the system to automat-
ically enforce inverse relationships. The inverse direction of the relationship
is defined in udt′ side. Depending on the cardinalities c of rel and the clas-
sification of associated class C ′.cls, rel is translated into 1:1, 1:M or M:N
relationships as follows:

– rel is mapped into a single-valued attribute aut of ref type in udt, point-
ing to a pre-defined udt′ when rel.c := (0..1 | 1..1).

152 JOURNAL OF OBJECT TECHNOLOGY VOL 9, NO. 2

4 TRANSLATING CDM INTO OBJECT-RELATIONAL SCHEMA

– rel is mapped into a collection-valued attribute aut that contains a col-
lection of refs, pointing to a pre-defined udt′ if rel.c := (0..m | 1..m), i.e.,
set(ref(udt′)).

– rel is mapped into an M:N relationship if C ′.cls := “RRC”. As C ′ par-
ticipates in only two M:1 association relationships with C and another
CDM class C ′′, rel is mapped into a collection-valued attribute aut in-
side udt that contains a collection of refs, pointing to a pre-defined udt′′,
which corresponds C ′′. Similarly, a collection of refs that references udt
is defined inside udt′′ when mapping from the C ′′ side.

• Aggregation: Each relationship rel ∈ C.Rel where rel.RelType := “aggrega-
tes” is translated, in udt mapped from C, into an attribute aut that is typed as
a literal type, representing the CDM class C ′ that participates in a relationship
with C. Depending on c of rel and C ′.cls, rel is translated into multi-valued
attributes or row types.

– If C ′.cls := “MAC”, rel is mapped into a collection of single-valued
attribute aut. The collection is equivalent to the non-FK attribute in
C ′.Acdm.

– If C ′.cls := “CAC”, rel is mapped into an attribute aut typed as a row
type when rel.c := (0..1 | 1..1), or as a collection of rows when rel.c
:= (0..m | 1..m). The attributes of the row type are mapped from the
non-FK attributes in C ′.Acdm.

• Inheritance: Each relationship rel ∈ C.Rel where rel.RelType := “inherits”
is mapped as a single inheritance, where udt, translated from C, inherits all
of the properties of its super-type utd′ using its name, i.e., sut := utd′.utn,
where utd′ corresponds to the super-class C ′. Additional properties of udt are
defined in the usual way. Creating a sub-type under its super-type should be
considered while creating the super-type, by specifying the not final phrase
at the end of the super-type definition, which is final by default. Specifying
not final for a super-type in the create type statement means that other
types can inherit it.

Creating Typed Tables

The creation of typed tables is based on the UDT specifications, which represent
object instances for each row in a table. A typed table Tor (of type tTable) is defined

VOL 9, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 153

CONVERTING RELATIONAL DATABASES INTO OBJECT-RELATIONAL DATABASES

for each declared udt and labeled with the same name as the corresponding CDM
class C, from which its udt has been translated, i.e., without ‘ t’. Because tables
contain objects that can be referenced by other objects, a uoid column is specified
as user-generated OID to facilitate the cyclic referencing among pre-created objects
during data loading. When inserting a tuple in Tor, the uoid can be generated from
PK values of the corresponding RBD table. The PK of each table pk is mapped
from the attributes in C.Acdm, where tag := ‘PK’. However, sub-tables inherit PKs
and uoids from their super-tables. UKs for each table are extracted from the CDM
equivalents and placed in UKor. Sub-tables are created under their super-tables
via stt := C ′.cn, where C ′.cn is the name of corresponding super-class C ′. Given
two UDTs, udt and its sub-type udt′, the table Tor of type udt is created and then
the table T ′

or of type udt′ is created “under” Tor, with which each object in T ′
or is

implicitly represented in Tor.

Example 2: Consider the CDM shown in Table 1, Figure 2 shows the output
SQL4 ORDB schema, which contains UDTs and typed tables. For example, the
type Emp t has been created from the CDM class Emp and then used to create the
Emp table. Non-FK attributes, e.g., ename and eno are mapped normally from the
CDM, whereas other attributes define relationships with other types such as dept

that references the pre-defined Dept t. This attribute is translated from the 1:1 as-
sociation (i.e., 〈“associated with”, Dept, {dno}, 1..1, {dno}〉) between the Emp and
Dept CDM classes, which is defined in the Emp class and given in Table 1. In the
inverse direction, a collection that contains refs of Emp t is defined in the Dept t

type to show that employees are employed by each department. The sets are used to
store a collection of values on the M side of relationships. The Kids class is mapped
as a composite multi-valued attribute inside Emp t using set and row, whereas
the Dept locations class is mapped in Dept t as a simple multi-valued attribute
using set. Typed tables are created to store the actual data. Inheritance relation-
ships among UDTs/tables are defined using the under phrase. Hourly emp t and
Salaried emp t sub-types are mapped from the corresponding CDM classes and de-
fined under the Emp t super-type. The corresponding tables then become sub-tables
of the Emp super-table, inheriting its properties.

5 CONVERTING RELATIONAL DATA INTO ORDB

This section describes the rules for converting RDB data into files as ORDB format.
These files are then used to populate the ORDB schema generated earlier. Having
all files generated, they can be loaded into the ORDB system using a bulk-loading
facility. Applying the rules, the process is performed in two passes to aid establishing
relationships consistently. In the first pass, objects are defined to initialise typed
tables with literal data, whereas the second pass defines relationships among pre-
created objects.

154 JOURNAL OF OBJECT TECHNOLOGY VOL 9, NO. 2

5 CONVERTING RELATIONAL DATA INTO ORDB

create type Emp t as (

ename varchar(20), eno number, bdate date, address varchar(30),

manages ref(Dept t) scope Dept,

supervises set(ref(Emp t)),

hasKids set(row(kname varchar(30), sex char(1))),

projects set(ref(Proj t)),

dept ref(Dept t) scope Dept,

supervisor ref(Emp t) scope Emp) not final

ref using varchar(25);

create table Emp of Emp t

constraint Emp pk primary key(eno), ref is uoid user generated;

create type Hourly emp t under Emp t (pay scale number) final;

create table Hourly emp of Hourly emp t under Emp;

create type Salaried emp t under Emp t (salary number) final;

create table Salaried emp of Salaried emp t under Emp;

create type Dept t as (

dname varchar(20), dno number, startd date,

locations set(varchar(25)),

employees set(ref(Emp t)),

controls set(ref(Proj t)),

manager ref(Emp t) scope Emp)

ref using varchar(25);

create table Dept of Dept t

constraint Dept pk primary key(dno), ref is uoid user generated;

create type Proj t as (

pname varchar(20), pnum number, plocation varchar(20),

employees set(ref(Emp t)),

controledBy ref(Dept t) scope Dept)

ref using varchar(25);

create table Proj of Proj t

constraint Proj pk primary key(pnum), ref is uoid user generated;

Figure 2: Sample output SQL4 ORDB schema

Data Conversion Functions

We assume the following functions to be used during the process of data conversion.

• PKa(C), FKa(C) and NFKa(C) are functions which return respectively the
PK, FK and non-FK attribute names of a CDM class C.

• CL(C) is a function which returns the classLeaves list, containing all sub-class
names of a super-class C ordered from bottom to top.

• getCond(C, classLeaves) is a function which returns an SQL where condition
cond, which is added to the queries used in RDB data retrieval to exclude
from a super-class RDB table T (corresponding to C where C.cls := (“SST”
| “SSC”)), all rows that are members in its sub-class tables. Sub-class names
are stored in classLeaves list. Through cond, the non-inherited RDB tuples
in T are extracted and converted into the target database. The cond is ‘Nil’
by default.

• CH(C) is a function which returns the classHierarchy list, containing all
super-class names of a sub-class C ordered from top to bottom. During the

VOL 9, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 155

CONVERTING RELATIONAL DATABASES INTO OBJECT-RELATIONAL DATABASES

generation of data of a typed sub-table Tor corresponding to C, data from
each RDB table corresponding to each of its top level super-classes are also
retrieved to be converted into the target format and added into each of the
Tor objects being defined or updated.

Initialising Typed Tables

Data from each RDB table T corresponding to a main and concrete class C in the
CDM (i.e., C.abs := false and C.cls 6= (“MAC” | “CAC” | “RRC”) are extracted
and converted in order to populate the corresponding typed table Tor. However,
data from T , where C.cls 6= (“MAC” | “CAC” | “RRC”) are converted as part
of the establishment of aggregation and association relationships. Converted data
are then loaded into a file named with C.cn. In the first pass, each target object
Obj of Tor is generated by defining its user-defined object identifier uoid and its
structure objStruct, consisting of literal-based data. When uoid and objStruct are
constructed, a DDL statement (using the insert operator) is written to the file,
defining Obj. Object-valued relationships of Obj are initialised in the second pass.

Literal-based atomic attributes: An SQL query that satisfies a particular con-
dition cond is designed in order to retrieve PK data (using PKa(C)) and non-FK
attributes (using NFKa(C)) data from T and stores the results in SetResult table.
Then, from each tuple t ∈ SetResult, an uoid is generated for each Obj by con-
catenating C.cn with the data values of the PK of C in t, i.e., t(PKa(C)); thus the
value of uoid is guaranteed to be unique for each object, e.g., ‘salaried emp54321’.
SQL4 allows self-referential attributes that can be user-defined as an identifier and
specified as part of the type definition of the referenced table. When the typed table
is created, uoid is specified as an additional column which stores the value of uoid
for each object in the table. The uoid can then be used in establishing relationships.
The data of the non-FK attributes of C in t, i.e., t(NFKa(C)) are converted to
become the new ORDB atomic data of Obj and are assigned to objStruct.

Literal-based collections: For each CDM aggregation relationship rel ∈ C.Rel
between C and a component class C ′, where rel.RelType := “aggregates” and C ′.cls
:= (“MAC” | “CAC”), the object Obj being initialised is appended with literal-based
collection data. Tuples of non-FK attributes in RDB table T ′, corresponding to C ′

are retrieved (using NFKa(C ′)), where the set of relationship attribute(s) dirAs of
rel in T ′ is equal to the PK value(s) of each tuple t retrieved from the parent table
T , i.e., t(PKa(C)). The retrieved data are then restructured into ORDB format
as a data collection dataColl. The attribute values in dataColl are generated from
the non-FK tuples of C ′ (using NFKa(C ′)) as normal scalar attributes. The multi-
valued attributes data are generated when C ′.cls := “MAC”, whereas row type
data are generated when C ′.cls := “CAC”. The dataColl is returned as a string
which represents a collection, i.e., ‘set(’+dataColl+‘)’ when rel.c := (0..m | 1..m),

156 JOURNAL OF OBJECT TECHNOLOGY VOL 9, NO. 2

5 CONVERTING RELATIONAL DATA INTO ORDB

or as a single-valued attribute/row otherwise. The dataColl is then assigned to
a corresponding relationship attribute and appended to objStruct of Obj being
defined.

Inheritance among objects: If class C is a sub-class, where C.cls := “SUB” (or
C.cls := “SSC” if C.abs := false), then the corresponding ORDB sub-table Tor is
initialised with its own data from the corresponding RDB table T , in the normal way
for defining objects. In addition, data from the super-table(s) related to data from T
are converted and initialised through Tor; thus realising the inheritance relationship.
Each object in Tor is populated by its literal and object-valued data and all of its
top-level super-classes which have their names stored in the classHierarchy list.

Establishing Relationships

After literal data have been generated, the second pass in the conversion process
is to assign uoids of pre-created objects to their relationship attributes. For each
CDM relationship rel defined in class C, where rel ∈ C.Rel and rel.RelType := “as-
sociated with”, data are retrieved from the RDB tables T corresponding to C and
T ′ corresponding to C ′ related to C. This is to initialize the relationship attribute
defined in Tor, which is equivalent to rel defined in C. This is performed by a pro-
jection on selected attributes (i.e., PKa(C) and rel.invAs), from T and storing the
result in ResultSet table. The uoid of each object being updated is extracted from
the PK data of C of each tuple t stored in ResultSet, i.e., t(PKa(C)). The iden-
tifiers t uoids of target objects, related to the object being updated, are extracted
and stored in a list, called t uoidList. The t uoids in t uoidList are constructed
from one of the following:

1. From the tuples of a set of relationship attribute(s) rel.invAs retrieved from T
corresponds to C when the relationship values are available in T , i.e., rel.invAs
⊆ FKa(C). This means that T contains the FK attributes data that represent
the relationship,

2. From the tuples extracted by a projection on the PK (extracted using PKa(C ′))
of the RDB table T ′ corresponds to a class C ′ related to C, where the set of
relationship attribute(s) rel.dirAs in C equals the PK values retrieved from
T , i.e., t(PKa(C)), or

3. From the tuples of a set of relationship attribute(s) rel′′.invAs retrieved from
T ′, corresponding to C ′, when C ′.cls := “RRC”. The rel′′ is a CDM rela-
tionship that C ′ participates in with another class C ′′, where rel′ is the other
relationship that C ′ participates in with C and rel′.dirC := C.cn.

VOL 9, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 157

CONVERTING RELATIONAL DATABASES INTO OBJECT-RELATIONAL DATABASES

Example 3: Consider the CDM shown in Table 1 and RDB data in Figure 1, Fig-
ure 3 shows the target ORDB object converted from the tuple of the employee “Wal-
lace”. The tuple identified by ID 54321 is extracted from the sub-class Salaried emp

RDB table. Figure 3(a) shows a sample of ORDB SQL4 statement generated for
initialising the ORDB object, whereas Figure 3(b) shows the statements for updat-
ing the defined object with its relationships. Data and relationships inherited from
the super-class Emp’s object are shown.

(a)
insert into Salaried emp values (Salaried emp t(‘salaried emp54321’, ‘Wallace’, 54321,

‘1931-06-20’, ‘91 St James Gate NE1 4BB’, null, null, set(row(‘Scott’, ‘M’)), null,

null, null, 43000);

(b)
update Salaried emp set manages = ‘dept2’, projects = set(‘proj4’,‘proj5’), dept =

‘dept2’, supervisor = ‘salaried emp86655’ where uoid = ‘salaried emp54321’;

Figure 3: Output ORDB SQL4 object definition

6 EXPERIMENTAL STUDY

To demonstrate the effectiveness and validity of our method, a prototype has been
developed, realizing its algorithms. The algorithms were implemented using Java
1.5 and Oracle 11g. We setup experiments to evaluate our approach by examining
the differences between source RDB and the ORBD generated by the prototype.
The method has been evaluated according to the query results provided by the
database system, i.e., Oracle 11g. A set of queries has been designed to observe any
differences in the query results between the source RDB and the target ORDB. The
experiments were run on a PC with Pentium IV 3.2 GHz CPU and 1024 MB RAM
operated under Windows XP Professional. This section presents two sets of queries
applied on the RDB shown in Figure 1 and the equivalent ORDB generated by the
prototype. Table 2 shows the description, the RDB and ORDB versions, and the
result of each query.

Description Relational query Object-relational query Result

Find the name of depart-
ment 3

select dname from Dept where dno = 3; select dname from Dept where dno = 3; Finance

Find salaried employees in
department 2 who make
50000 or more per year

select e.ename from Emp e,

Salaried emp s where e.dno = 2 and

e.eno = s.eno and s.salary >= 50000;

select s.ename from Salaried emp s

where s.dept.dno = 2 and s.salary

>= 50000;

Borg

Find all employees work-
ing in the Accounts de-
partment

select e.eno, e.ename from Emp e, Dept

d where e.dno = d.dno and d.dname =

‘Accounts’;

select s.column value.eno,

s.column value.ename from Dept d,

table(d.employees) s where d.dname =

‘Accounts’;

34534 Scott

68844 Ali

Find all employees who
have kids named Alice and
Michael

select e.ename from Emp e, Kids d1,

Kids d2 where e.eno = d1.eno and e.eno

= d2.eno and d1.kname = ‘Alice’ and

d2.kname = ‘Michael’;

select h.ename from Hourly emp h,

table(h.hasKids) d1, table(h.hasKids)

d2 where d1.kname = ‘Alice’ and

d2.kname = ‘Michael’;

Smith

Display a list of project
names that involve an em-
ployee called Smith

select pname from Proj p, Works on w,

Emp e where e.eno = w.eno and w.pno =

p.pnum and e.ename = ‘Smith’;

select pname from Proj p,

table(p.employees) e where

e.column value.ename= ‘Smith’;

Way Station 1

Way Station 2

Table 2: Results of the queries

When the results have been evaluated, the approach described here is shown to
be feasible, efficient and correct as the queries return identical results. The target
ORDB is generated without loss or redundancy of data. Moreover, many semantics

158 JOURNAL OF OBJECT TECHNOLOGY VOL 9, NO. 2

7 CONCLUSION

have been converted from RDB into the ORDB, e.g., association, aggregation and
inheritance. Update operations (i.e., insert, delete and update) are applied on the
databases, which show that integrity constraints in the RDB are preserved in the
target ORDB. However, referential integrity on refs that are in nested tables in
ORDB is not guaranteed because Oracle does not have a mechanism to do so.
This integrity could be preserved, e.g., using triggers once the migration process
is completed. In addition, the correctness and applicability of the CDM and the
migration algorithms are also tested by checking and comparing the target schemas
resulting from the prototype and those generated by existing manual-based mapping
techniques. Further details on this can be found in [10, 12].

7 CONCLUSION

This paper contributes a solution to the problem of migrating RDBs into ORDBs.
The solution is superior to existing work as it generates the ORDB, including the
schema and data, and it exploits the range of powerful features provided by SQL4.
A prototype has been developed to realize the solution, and evaluated by comparing
query results from the input and output databases. We have designed experiments
that involve running queries on an existing RDB and the target ORDB generated
by the prototype. We have analysed the query results obtained from both databases
and found that both sets of results were identical. Therefore, we conclude that
the source and target databases are equivalent. Moreover, the results obtained
demonstrate that the solution, conceptually and practically, is feasible, efficient and
correct.

REFERENCES

[1] Arora, G., Belden, E. and Iyer, C.: Oracle Database Application Developer’s
Guide - Object-Relational Features, 10g Release 2 (10.2), Part Number B14260-
01. Oracle Corporation, 2005.

[2] Carey, M., Florescu, D., Ives, Z., Lu, Y., Shanmugasundaram, J., Shekita, E. and
Subramanian, S.: XPERANTO: Publishing Object-Relational Data as XML.
WebDB, pp. 105–110, 2000.

[3] Eessaar, E.: Whole-Part Relationships in the Object-Relational Databases. In
WSEAS, Athens, Greece, pp. 1263-1268, 2006.

[4] Eisenberg, A. and Melton, J.: SQL:1999, Formerly Known as SQL3. SIGMOD
Record, vol. 28(1), pp. 131–138, 1999.

[5] Funderburk, J., Kiernan, G., Shanmugasundaram, J., Shekita, E. and Wei, C.:
XTABLES: Bridging Relational Technology and XML. IBM Systems Journal,
vol. 41(4), pp. 616–641, 2002.

VOL 9, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 159

CONVERTING RELATIONAL DATABASES INTO OBJECT-RELATIONAL DATABASES

[6] Kim, W.: Introduction to Object-Oriented Databases. MIT Press, Cambridge,
MA, USA, 1991.

[7] Grant, E. S., Chennamaneni, R. and Reza, H.: Towards Analyzing UML Class
Diagram Models to Object-Relational Database Systems Transformations. In
Databases and Applications, pp. 129–134, 2006.

[8] Marcos, E., Vela, B., and Cavero, J. M.: Extending UML for Object-Relational
Database Design. In 4th Int. Conf. on the Unified Modeling Language, vol. 2185,
pp. 225–239, 2001.

[9] Marcos, E., Vela, B. and Cavero, J. M.: A Methodological Approach for Object-
Relational Database Design using UML. Soft. and Syst. Modeling, vol. 2, pp.
59–75, 2003.

[10] Maatuk, A., Ali, M. A. and Rossiter, N.: An Integrated Approach to Relational
Database Migration. In IC-ICT ’08, pp. 1–6, Bannu, Pakistan, 2008.

[11] Maatuk, A., Ali, M. A. and Rossiter, N.: Semantic Enrichment: The First
Phase of Relational Database Migration. In CIS2E ’08, 6pp, Bridgeport, USA,
2008.

[12] Maatuk, A., Ali, M. A. and Rossiter, N.: Migrating Relational Databases into
Object-based/XML Databases: An Evaluation. Tech. Report, School of Comput-
ing, Engineering and Information Sciences, Northumbria University, UK, 2008.

[13] Mok, W. Y. and Paper, D. P.: On Transformations from UML Models to
Object-Relational Databases. In HICSS, 2001.

[14] Mok, W. Y.: Designing Nesting Structures of User-defined Types in Object-
Relational Databases. Info. Soft. Tech., vol. 49(9-10), USA, 2007.

[15] Pardede, E., Rahayu, J. W. and Taniar D.: Mapping Methods and Query for
Aggregation and Association in Object-Relational Database using Collection.
ITCC, vol. 1, pp. 539-, 2004.

[16] Pardede, E., Rahayu, J. W. and Taniar, D.: New SQL Standard for Object-
Relational Database Applications. In SIIT, pp. 191–203, 2003.

[17] Soutou, C.: Modeling Relationships in Object-Relational Databases. Data
Knowl. Eng., vol. 36(1), pp. 79–107, 2001.

[18] Stonebraker, J. M., Brown, P. and Moore, D.: Object-Relational DBMSs:
The Next Great Wave and Object-Relational DBMSs: Tracking the Next Great
Wave, Morgan Publishers, 1999.

[19] Urban, S. D., Dietrich, S. W. and Tapia, P.: Succeeding with Object Databases:
Mapping UML Diagrams to Object-Relational Schemas in Oracle 8. John Wiley
and Sons, Ltd, pp. 29–51, 2001.

160 JOURNAL OF OBJECT TECHNOLOGY VOL 9, NO. 2

7 CONCLUSION

[20] Urban, S. D. and Dietrich, S. W.: Using UML Class Diagrams for A compar-
ative Analysis of Relational, Object-Oriented, and Object-Relational Database
Mappings. In SIGCSE ’03, ACM Press, New York, NY, USA, pp. 21–25, 2003.

[21] Takahashi, T. and Keller, A. M.: Implementation of Object View Query on a
Relational Database. In Data and Knowl. Syst. for Manuf. and Eng., 1994.

ABOUT THE AUTHORS

Dr. Abdelsalam Maatuk is a lecturer at Faculty of Science,
Department of Computer, Omar Al-Mukhtar University, Libya. He
received his Ph.D. in 2009 from Northumbria University, UK. His
research interest include schema integration, database migration and
reverse engineering. He can be reached at ammaatuk@yahoo.com.

Dr. M. Akhtar Ali is a senior lecturer at School of Comput-
ing, Engineering and Information Sciences, Northumbria University,
Newcastle, UK. In 2003 he received his Ph.D. from Manchester Uni-
versity. He is interested in self-tuning of databases for high perfor-
mance. He can be reached at akhtar.ali@northumbria.ac.uk.

Dr. Nick Rossiter is a reader at School of Computing, Engineering
and Information Sciences, Northumbria University, Newcastle, UK.
He is interested in interoperability of information systems. He can
be reached at nick.rossiter@northumbria.ac.uk.

VOL 9, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 161

mailto:ammaatuk@yahoo.com
mailto:akhtar.ali@northumbria.ac.uk
mailto:nick.rossiter@northumbria.ac.uk

