"L'JOURNAL OF OBJECT TECHNOLOGY

Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering. ©JOT, 2008

Vol. 9, No. 1, January—February 2010

How Aspect] is Used: An Analysis of Eleven
Aspect]) Programs

Sven Apel, Department of Informatics and Mathematics, University of Passau,
Germany

While it is well-known that crosscutting concerns occur in many software projects, little
is known on how aspect-oriented programming, and in particular AspectJ, have been
used. In this paper, we analyze eleven AspectJ programs by different authors to answer
the questions: which mechanisms are used, to what extent, and for what purpose. We
found the code of these programs to be on average 86 % object-oriented, 12 % basic
crosscutting mechanisms (introductions and method extensions), and 2% advanced
crosscutting mechanisms (homogeneous advice or advanced dynamic advice). Based
on these results we initiate a discussion on the trade-off between expressiveness and
simplicity of languages that support the modularization of crosscutting concerns.

1 INTRODUCTION

While many studies have explored the capabilities of aspect-oriented programming
(AOP) [36] to improve the modularity, customization, and evolution of software [19,
63,18,40,27,26,29], little is known on how AOP has been used. As AspectJ! is the
most widely used AOP language, we want to know which AspectJ mechanisms are
used, to what extent, and for what kinds of crosscutting concerns.

Although the first versions of AspectJ were released over seven years ago and
there have been a large number of downloads of the ajc tool (25,300 downloads of
aspectj-1.6.x.jar and 33,547 downloads of aspectj-1.5.x.jar — status March 2, 2009),
we and others [55] have noted that there are only a few published, non-trivial pro-
grams using AspectJ in open literature. With the help of colleagues, we have been
able to locate eleven different AspectJ programs authored at different universities,
deliberately excluding our own case studies [33,3,39,42]. These programs range in
size from small programs of 1 KLOC to larger programs of almost 130 KLOC.

AspectJ offers a variety of programming mechanisms [35]. Basic crosscutting
mechanisms are simple introductions (a.k.a. inter-type declarations) and method
extensions; advanced crosscutting mechanisms include pieces of advice that advise
whole sets of join points and that are triggered by runtime events [2,4]. But how
often are basic and advanced mechanisms actually used? In this paper, we define
metrics to answer this question.

Our analysis of the eleven AspectJ programs shows on average 86 % of the code

"http://www.eclipse.org/aspectj/

Cite this article as follows: Sven Apel: How Aspect) is Used: An Analysis of Eleven Aspect)
Programs, in Journal of Object Technology, vol. 9, no. 1, January—February 2010, pages
117-142,

http://www.jot.fm /issues/issue_2010_01/article2/

http://www.eclipse.org/aspectj/
http://www.jot.fm/issues/issue_2010_01/article2/

C"#_/ HOW ASPECTJ IS USED: AN ANALYSIS OF ELEVEN ASPECTJ PROGRAMS

is object-oriented, 12 % uses basic crosscutting mechanisms, and 2 % uses advanced
crosscutting mechanisms. This is the first time to our knowledge that a reasonable
number of AspectJ programs has been analyzed and actual percentages reported.

Based on these findings we want to initiate a discussion on the trade-off between
expressiveness and simplicity of languages that support the modularization of cross-
cutting concerns. On the one hand, there are languages like AspectJ that provide a
wide variety of sophisticated language constructs, such as pointcuts and advice, that
allow programmers to modularize concerns that crosscut the dynamic computation
of a program and that affect many join points [45]. On the other hand, there is a
wide variety of languages that support only basic crosscutting mechanisms, such as
traits [22], mixins [25,15], and virtual classes [43,49], which can be used to extend
single classes and methods. These languages are simpler but also less expressive as
they do not support dynamic and homogeneous crosscutting. In current language
design, there seems to be a trade-off between expressiveness and simplicity, which
we will discuss here.

Several researchers have criticized the advanced crosscutting mechanisms of lan-
guages like AspectJ. Mechanisms like pointcuts and advice violate the principle of
information hiding and hamper program comprehension, maintenance, and evolu-
tion [54,1]. Looking at the usage distribution of crosscutting mechanisms in the
analyzed AspectJ programs (12 % basic crosscutting mechanisms and 2 % advanced
crosscutting mechanisms) the question arises whether or not a simpler language
would have been more appropriate — a language that is less expressive, but sufficient
for 98 % of the code of the analyzed programs (86 % object-oriented mechanisms
plus 12% basic crosscutting mechanisms). Recently, there has been an advent of
programming languages that are simpler than AspectJ but still support basic cross-
cutting mechanisms, e.g., Jak [11], FeatureC++ [5], ContextL [31], Scala [49], Ji-
azzi [46], Classbox/J [14], and Jx [48], so that it is worth analyzing and discussing
their relation to languages like AspectJ and their relative benefits and drawbacks.

Furthermore, a significant volume of prior work in the areas of programming
languages [11,5,31,49,46,14,48], generative programming [62,39,58,12,9,8,10], and
software design [52,59,32] has shown that programs can be created largely without
advanced crosscutting mechanisms. The statistics that we report on AspectJ usage
are consistent with this observation and fertilizes the discussion of the trade-off
between language expressiveness and simplicity. We document and discuss these
and other findings in this paper. We begin with a classification of crosscutting
concerns.

2 CLASSIFICATION OF CROSSCUTS

In the literature crosscutting concerns (a.k.a. crosscuts) have been classified along
three dimensions (homogeneous/heterogeneous) [20], (static/dynamic) [47], and (ba-
sic/advanced) [4]. We use an example to illustrate them all.

118 JOURNAL OF OBJECT TECHNOLOGY VOL 9, NO. 1

2 CLASSIFICATION OF CROSSCUTS

© 00~ O Ut W

— =
= o

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

29
30
31
32
33

35
36
37
38
39

package BasicGraph;
class Graph {
Vector nv = new Vector(); Vector ev = new Vector();
Edge add(Node n, Node m) {
Edge e = new Edge(n, m);
nv.add(n); nv.add(m); ev.add(e);
e.weight = new Weight();
return e;
}
Edge add(Node n, Node m, Weight w) {
Edge e = new Edge(n, m);
nv.add(n); nv.add(m); ev.add(e);
e.weight = w; return e;
}
void print() {
for (Edge edge : ev) { edge.print(); }

}

¥

class Edge {
Node a, b;

Color color = new Color();
Weight weight;
Edge(Node _a, Node _b) { a = _a; b = _b; }
void print() {
Color.setDisplayColor(color);
a.print(; b.print();
weight.print();

}

¥

class Node {
int id = 0;

Color color = new Color();
void print() {

Color.setDisplayColor(color);
System.out.print(id);
}
}
class Color { static void setDisplayColor(Color c) { ... } }
class Weight { void print() { ... } }
Figure 1: A simple graph implementation.

An Example

Consider a program that implements a graph data structure (Fig. 1). It consists
of a base program BASICGRAPH plus two features COLOR and WEIGHT, which
crosscut the implementation of BASICGRAPH. BASICGRAPH refers to the graph
implementation without code implementing WEIGHT and COLOR. The code of
COLOR is underlined and black and the code of WEIGHT is slanted and red.

Classifying Crosscuts
Homogeneous and Heterogeneous Crosscuts

A homogeneous crosscut extends a program at multiple join points by adding the
same piece of code at each join point. In our example, the COLOR feature is homo-

VOL 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 119

C"#_/ HOW ASPECTJ IS USED: AN ANALYSIS OF ELEVEN ASPECTJ PROGRAMS

geneous since it introduces the same piece of code to Edge (Lines 21,25) and Node
(Lines 32, 34).

A heterogeneous crosscut extends multiple join points each with a unique piece
of code. The WEIGHT feature is heterogeneous since it extends Graph and Edge at
different join points with different pieces of code (Lines 7,10-14,22, 27).

Static and Dynamic Crosscuts

A static crosscut extends the structure of a program statically, i.e., it adds new
classes and interfaces and injects new fields, methods, and interfaces, etc. Overall,
the features COLOR and WEIGHT introduce 2 classes (Lines 38,39) and inject a
method (Lines 10-14) to Graph and 3 fields (Lines 21,22, 32) to Edge and Node.

A dynamic crosscut affects the runtime control flow of a program and can be
understood and defined in terms of an event-based model [61,47]: a dynamic crosscut
executes additional code when predefined events occur during program execution.
An example construct that implements a dynamic crosscut is an extension of a
method, as we explain shortly. Overall, the features CoLOR and WEIGHT extend
3 methods (Lines 7,25,27,34).

Basic and Advanced Dynamic Crosscuts

The most primitive crosscut in AspectJ is a piece of advice that advises executions
of a single method. Object-oriented languages express such advice as method ex-
tensions via subclassing (virtual classes or mixins), method overriding, and related
mechanisms [43,15,25,11,48,14,23]. Dynamic crosscutting mechanisms in Aspect.J
transcend object-oriented mechanisms when they effect events other than singleton
method executions (e.g., [50,44]). Hence, we distinguish two classes of dynamic
crosscuts, basic dynamic crosscuts and advanced dynamic crosscuts. Basic dynamic
crosscuts:

1. affect executions of a single method,

2. access only runtime variables that are related to a method execution, i.e.,
arguments, result value, and enclosing object instance, and

3. affect a program control flow unconditionally.

All other dynamic crosscuts are advanced. A rule of thumb is that the join points
of basic dynamic crosscuts can be determined statically; the join points of advanced
dynamic crosscuts are determined at runtime. With AspectJ, an advanced dynamic
crosscut is implemented by advanced advice and a basic dynamic crosscut by basic
advice. This distinction helps identify which pieces of advice make use of advanced
AspectJ mechanisms and which pieces merely implement simple method extensions.

120 JOURNAL OF OBJECT TECHNOLOGY VOL 9, NO. 1

3 CODE METRICS

3 CODE METRICS

To see how programmers use AspectJ, we define five metrics that distinguish the
use of aspects in terms of the classifications discussed in the last section. For each
metric, we count the number of lines of code (LOC) for different categories and
determine the fraction of the program’s source for each category.

While using LOC (eliminating blank and comment lines) as a metric might be
controversial (e.g., how are ‘if” statements counted?), we will argue that the yielded
statistics would be no different than, say, using a metric that counts statements.
At the end, we compare just fractions of a program’s code base associated with our
categories. The essential results would remain valid.

Classes, Interfaces, and Aspects (CIA)

With the CIA metric we measure the fraction of classes, interfaces, and aspects of
a program. It tells us whether aspects implement a significant or insignificant part
of the code base (as opposed to classes and interfaces).

We simply traverse all source files included in a given AspectJ project and count
the LOC of aspects, classes, and interfaces. Upfront we eliminate blank lines and
comments.

Heterogeneous and Homogeneous Crosscuts (HHC)

The HHC metric explores to what extent aspects implement heterogeneous and
homogeneous crosscuts. Specifically, we determine the fractions of the LOC associ-
ated with advice and inter-type declarations (introductions) that are heterogeneous
and homogeneous. The HHC metric tells us whether the implemented aspects take
advantage of the advanced pattern-matching mechanisms of AspectJ.

We analyze each piece of advice and inter-type declaration: if its number of join
points is greater than one it is a homogeneous crosscut; otherwise it is heterogeneous.

Code Replication Reduction (CRR)

Homogeneous advice and homogeneous inter-type declarations are useful for reduc-
ing code replication in a program. Suppose an aspect that advises 100 join points
and executes at each join point 10 lines of code encapsulated in one piece of advice.
This aspect would reduce the code base by approximately 990 lines of code. In order
to quantify this benefit, the CRR metric counts the LOC that could be reduced in
an aspect-oriented version compared to an object-oriented equivalent.?

2We do not consider the fact that tangled code in the analyzed programs could be refactored
first using the ‘extract method’ refactoring before using aspects, thus, decreasing the CRR. For a
better comparability, we analyze the programs as they are.

VOL 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 121

C"#_/ HOW ASPECTJ IS USED: AN ANALYSIS OF ELEVEN ASPECTJ PROGRAMS

We multiply the number of LOC of each homogeneous advice and inter-type
declaration with the number of join points it affects (minus one).

Static and Dynamic Crosscuts (SDC)

The SDC metric determines the code fraction associated with static and dynamic
crosscuts. That is, it counts the LOC of inter-type declarations (static crosscut-
ting) and pieces of advice (dynamic crosscutting). Note that heterogeneous and
homogeneous crosscuts can be either static or dynamic. The SDC metric tells us to
what extend aspects crosscut the dynamic computation of a program or the static
structure of a program.

In AspectJ, we calculate the fraction of static and dynamic crosscuts by counting
the LOC associated with inter-type declarations and pieces of advice and comparing
them with the overall code base.

Basic and Advanced Dynamic Crosscuts (BAC)

The BAC metric determines the LOC associated with pieces of basic and advanced
advice. The BAC metric tells us to what extent the aspects of a program take
advantage of the advanced capabilities of AspectJ for dynamic crosscutting. Basic
pieces of advice implement simple method extensions.

In AspectJ, we consider a piece of advice to be advanced if its pointcut involves
more than simply a combination of execution (or call®), target, and args.!

Tool Support

We have developed the AJStats® tool to calculate general statistics such as the
number of LOC of classes, aspects, advice, inter-type declarations, etc. To identify
homogeneous crosscuts and the number of affected join points we have used the
AJDTStats® tool [33]. We are not aware of a tool that identifies advanced advice.
In order to do so, we had to examine the code by hand.

4 CASE STUDIES

We have analyzed a diverse selection of AspectJ programs (see Table 1). The first 7
are small programs (<20 KLOC); the last 4 are larger (> 20 KLOC). In our tables

3 Although the semantics of call is to advise the client side invocations of a method, it can be
implemented as method extension — provided that all calls to the target method are advised.
4execution can be combined with this, within, and withincode.
Shttp://wwwiti.cs.uni-magdeburg.de/iti_db/ajstats/
Shttp://wwwiti.cs.uni-magdeburg.de/iti_db/ajdtstats/

122 JOURNAL OF OBJECT TECHNOLOGY VOL 9, NO. 1

http://wwwiti.cs.uni-magdeburg.de/iti_db/ajstats/
http://wwwiti.cs.uni-magdeburg.de/iti_db/ajdtstats/

4 CASE STUDIES

100%

80% -

60% -

40% -

20% - Oaspect code

object-oriented code

fraction of the overall code base

0% -

Figure 2: Fractions of aspect code and object-oriented code of the overall code base.

and figures, the programs are listed from smallest (Tetris) to largest (Abacus). We
also indicate in Table 1 if the program was developed from scratch (Type S), or if
it was an AOP refactoring of an existing application (Type R).

The percentages that we report are averaged over the individual percentages
of the eleven programs and rounded to the nearest integer, unless a fraction of a
percent is reported. We use a + s to mean average a with standard deviation s.
So 14 £+ 10 % means an average of 14 % was observed with a standard deviation of
10. In certain situations, we will consider only a subset of the eleven programs, e.g.,
large-sized programs only, in order to explore the specific properties of an individual
program or subset of programs.

Note that we do not consider development aspects, i.e., aspects that had been
used during program development and removed before deployment. The reason is
that the aspects are typically not available or no longer exist. Our statistics and
results should be interpreted with this fact in mind. A comparison of development
aspects and aspects actually deployed could be a topic of further research.

Statistics and Interpretation

The raw data that our statistics are based on can be requested from the authors.
We begin with presenting the statistics and subsequently we interpret them.

CIA Metric

Figure 2 shows that aspect code occupies on average 14 + 10 % of a program’s code
base; the bulk are classes and interfaces. Aspects account for more of the code base
in small programs (20 +6 %) than in larger programs (3 +4 %).

VOL 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 123

HOW ASPECTJ IS USED: AN ANALYSIS OF ELEVEN ASPECTJ PROGRAMS

Table 1: Overview of the AspectJ programs analyzed.

Name LOC | Source Description Typée
Tetris 1,030 | Blekinge Inst. Implementation of the popular S
of Technology® | game
OAS 1,623 | Lancaster Online auction system S
University?
Prevayler 3,964 | University of Main memory database system R
Toronto®
AODP 3,995 | University of AspectJ implementation of 23 R
British design patterns
Columbia?
FACET 6,364 | Washington CORBA event channel S
University® implementation
ActiveAspect 6,664 | University of Crosscutting structure S
British presentation tool
Columbiaf
HealthWatcher | 6,949 | Lancaster Web-based information system S
University?
AJHotDraw 22,104 | open source 2D Graphics Framework R
project”
Hypercast 67,260 | University of Protocol for multicast overlay R
Virginia’ networks
AJHSQLDB 75,556 | University of SQL relational database engine R
Passau/
Abacus 129,897 | University of CORBA Middleware R
Toronto® Framework
%http://www.guzzzt.com/coding/aspecttetris.shtml
bThe sources were kindly released by A. Rashid.
Chttp://www.msrg.utoronto.ca/code/RefactoredPrevaylerSystem/
dhttp://www.cs.ubc.ca/ jan/AODPs/
€http://www.cs.wustl.edu/ doc/RandD/PCES/facet/
fThe sources were kindly released by W. Coelho and G. Murphy.
9The sources were kindly released by A. Garcia.
hhttp://sourceforge.net /projects/ajhotdraw/
“The sources were kindly released by Y. Song and K. Sullivan.
Jhttp://sourceforge.net/projects/ajhsqldb/
kThe sources were kindly released by C. Zhang and H.-A. Jacobsen.
!Developed from scratch (S) or refactored an existing program (R)
124 JOURNAL OF OBJECT TECHNOLOGY VOL 9, NO. 1

4 CASE STUDIES

B homogeneous
heterogeneous

Oremaining aspect code

object-oriented code

fraction of the overall code base

Figure 3: Fractions of homogeneous and heterogeneous crosscuts of the overall code
base.

HHC Metric

Figure 3 reveals the fractions of homogeneous and heterogeneous crosscuts. We
found 141% of the code base implements homogeneous advice and homogeneous
inter-type declarations. In contrast, heterogeneous advice and heterogeneous inter-
type declarations occupy a larger fraction 746 %. The remaining 6 % of the total
14 % of aspect code deals with local members in aspects. In general, homogeneous
crosscuts are used infrequently.

Homogeneous advice and homogeneous inter-type declarations occupy a larger
part in small programs (2 £ 1 %) than in larger programs (0.24+0.3%).

CRR Metric

Figure 4 shows the different percentages of code reduction, i.e., cloned code that
was eliminated by homogeneous advice and homogeneous inter-type declarations
(6 +9%). On average, the small programs achieve a slightly larger reduction (7 +8 %)
than larger programs (6 +11%). Notice, the smallest program (Tetris) had no re-
duction, while the second largest program (AJHSQLDB) had the highest 23 %.

SDC Metric

Figure 5 shows the fractions of inter-type declarations (static) and pieces of advice
(dynamic). We found 3 £ 3 % implements inter-type declarations and 5 + 5 % imple-
ments advice. The remaining 6 % of the total 14 % of aspect code deals with local
members in aspects. On average, inter-type declarations and pieces of advice have
been used to similar extents.

Since aspects have been used to a lesser extent in larger programs, also advice
(1£2%) and inter-type declarations (1 42 %) account for a smaller fraction of the

VOL 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 125

HOW ASPECTJ IS USED: AN ANALYSIS OF ELEVEN ASPECTJ PROGRAMS

Ocode reduction
code base without
replication

aseq apod ay} jo uoljoely

w O
pe)
§ g 9
= © 3
—_— o
Q.
g o 8
L w® ©
o 2
o 2 =
Q = O
o 2> £ &
L ¢ T g
3 & E &
c £ & ©
B E O #

Figure 4: Code reduction achieved by aspects.

askeq apo2 ay} jJo uonoely

Figure 5: Fractions of static and dynamic crosscuts of the overall code base.

(7T£5%) accounts for a

-type declarations (444 %).

In smaller programs advice

code base of large programs.

slightly larger fraction that inter

BAC Metric

Figure 6 shows the fractions of basic and advanced advice. We found 14 1% of the

code base implements advanced advice. In contrast, basic advice occupies a larger

fraction of 44+4%. The remaining 9% of the 14 % that aspects occupy deals with

inter-type declarations and local members in aspects.

As with the HCC metric, we observed that advanced advice is used more fre-

0.2+0.3%).

than in larger programs (

1+£1%)

(

quently in small programs

homogeneous advice and homogeneous

Figure 7 depicts the fractions of the code base of the AspectJ programs that ex-

ploit advanced crosscutting mechanisms (i.e.,

Discussion

JOURNAL OF OBJECT TECHNOLOGY VOL 9, NO. 1

126

4 CASE STUDIES

100% -

80% - \

60% -

40% - B advanced advice

basic advice
Oremaining aspect code
object-oriented code

20% -

0% +-=5

fraction of the overall code base

© © & &L
@& F &P
€

Figure 6: Fractions of basic and advance advice of the overall code base.

100%

80% -

60% -

advanced AspectJ
mechanisms

40% +- .

Obasic Aspectd
mechanisms

20% +- . .

object-oriented code

fraction of the overall code base

Figure 7: Fractions of basic Aspect] and advanced AspectJ mechanisms of the
overall code base.

introductions, and advanced advice) and basic crosscutting mechanisms (heteroge-
neous basic advice and heterogeneous introductions). On average, only a minor
fraction of 2+2% of the analyzed code exploits the advanced capabilities of As-
pectJ; 12 9% implements basic aspects, and the remaining 86 % is object-oriented
code.

Our use of percentages of the overall code base does not tell the whole story.
An alternative is to examine the use of advanced AspectJ mechanisms within the
aspect code of a program, which could be argued as the fraction of the program’s
base that has been ‘factored-out’. This too does not tell the whole story, as entire
classes and interfaces may be (a potentially large) part of a concern implementation
that is ignored. Thus, percentages based only on aspect code would provide an over-
estimation. Nevertheless, we show in Figure 8 that even with this overestimation,
only 15£9% of the aspect code accounts for advanced crosscutting mechanisms;
the rest is basic crosscutting mechanisms.

The 6 +£9 % code reduction that we have observed is in line with prior work on

VOL 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 127

C"#_/ HOW ASPECTJ IS USED: AN ANALYSIS OF ELEVEN ASPECTJ PROGRAMS

A AN ERRAn

60% -

o/ |
40% advanced AspectJ

mechanisms

20% -
& Obasic AspectJ

mechanisms

fraction of the overall code base

0%

é\"x\e 0?9 Qé OOQ 0‘2} Qef} é\e} &é o”’%\ \,0<b ,bc}f"
< KGR AS 2 F O & oI
@ .2 S SQ\O Q‘\\Q Q‘% e
Nog Q@’Q}\ v v

Figure 8: Fractions of AspectJ and advanced AspectJ mechanisms of a program’s
aspect code.

clone detection that conjectures that 5-15% of large software projects are clones,
i.e., replicated code fragments [13]. So there might be an untapped potential (further
9%=15%-6 %) of AspectJ to reduce code replication further because not all clones
have been discovered. Also, some clones are not exact matches [7], so 5-15 % may
be an upper bound that aspects can not reach.

5 EXTENDED OBJECT-ORIENTED LANGUAGES

In this section, we illustrate how languages that support only basic crosscutting
mechanisms can be used to implement most of the aspects found in the eleven
Aspect] programs, namely 85 % of all aspect code. We call these languages extended
object-oriented languages since they add only a few new concepts to the standard
repertoire of object-oriented languages. Of course, we could have named them also
basic aspect-oriented languages, although they do not support quantification [24].

Collaborations and Refinements

Like mainstream object-oriented languages, extended object-oriented languages, e.g.,
Jak [11], FeatureC++ [5], ContextL [31], Scala [49], Jiazzi [46], Classbox/J [14], and
Jx [48], provide abstractions like classes, objects, and methods. Additionally, ex-
tended object-oriented languages allow a programmer to extend a given class without
modifying it source code. This is also called the open class pattern [17] and there
is a wide variety of mechanisms to implement this pattern, e.g., traits [22], mix-
ins [25, 15], virtual classes [43,49], nested inheritance [48], refinements [11]. For
simplicity, we call such extensions refinements.

A further crosscutting mechanism of extended object-oriented languages is the
ability to group multiple classes and refinements into an enclosing module. For

128 JOURNAL OF OBJECT TECHNOLOGY VOL 9, NO. 1

© 00~ O Ut W

11
12
13
14
15
16
17
18

5 EXTENDED OBJECT-ORIENTED LANGUAGES

package Weight;
import BasicGraph.Graph; import BasicGraph.Edge;
refine class Graph {
Edge add(Node n, Node m) {
Edge e = original.add(n, m);
e.weight = new Weight(); return e;
}
Edge add(Node n, Node m, Weight w) {
Edge e = new Edge(n, m);
nv.add(n); nv.add(m); ev.add(e);
e.weight = w; return e;
}
}
refine class Edge {
Weight weight;
void print() { original.print(); weight.print(); }
}
class Weight { void print() { ... } }

Figure 9: Implementing WEIGHT with a collaboration module in Classbox/J.

example, with Jx’s nested inheritance we can introduce multiple new classes and
refine multiple existing classes in almost the same way as in with classboxes in
Classbox/J, abstract types in Scala, components in Jiazzi, or layers in ContextL.
For simplicity, we call such an enclosing module a collaboration module, inspired by
the work on collaboration-based design [60,53]. A collaboration module containing
multiple classes and refinements crosscuts several places in a base program, so it is
a basic crosscutting mechanism [53].

The BASICGRAPH program and the WEIGHT feature of Section 2 can be im-
plemented with collaboration modules and refinements. WEIGHT extends BAsIC-
GRAPH at several points by different pieces of code and it extends methods only.
Figure 9 depicts a modular implementation of WEIGHT based on classboxes writ-
ten in Classbox/J. The classbox WEIGHT extends the base program BASICGRAPH.
It introduces the class Weight (Line 16) and extends the imported classes Graph
(Lines 1-11) and Edge (Lines 12-15) by refinements, which are declared by the
keyword refine. These refinements introduce new fields and methods and extend
existing methods. Within a method extension the keyword original refers to the
method that is being refined (Lines 5, 16).

Advanced Aspects

Not all concerns can be compactly expressed just by simple introductions and
method extensions (e.g., by basic crosscutting mechanisms such as collaboration
modules and refinements). Sometimes there is a redundancy in the introductions or
in the method extensions implementing a concern, which makes the crosscut homo-
geneous. Consider the COLOR feature of the BASICGRAPH program of Section 2.
Its representation in Classbox/J is shown in Figure 10.

VOL 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 129

C"#—/ HOW ASPECTJ IS USED: AN ANALYSIS OF ELEVEN ASPECTJ PROGRAMS

© 00~ O Ut W

— =
= o

12
13
14
15
16
17
18

package Color;
import BasicGraph.Node; import BasicGraph.Edge;
interface Colored { ... }
class Color { ... }
refine class Node implements Colored {
Color color = new Color();
void print() {
Color.setDisplayColor(color) ;
original.print () ;
}
¥
refine class Edge implements Colored {
Color color = new Color();
void print() {
Color.setDisplayColor(color);
original.print () ;
}
¥

Figure 10: Implementing COLOR with a collaboration module in Classbox/J.

aspect AddColor {
interface Colored { ... }
declare parents: (Node || Edge) implements Colored;
Color Node.color = new Color();
Color Edge.color = new Color();
before(Colored c) : execution(void print()) &&
this(c) { Color.setDisplayColor(c.color); }
static class Color { ... }

Figure 11: Implementing COLOR with an aspect in AspectJ.

Homogeneous Crosscuts

Note that the print methods of both Node and Edge are extended identically (Fig-
ure 10; Lines 7-10 and 14-17), and also an identical field color is added to each
class (Lines 6 and 13). COLOR could be expressed as an advanced aspect taking ad-
vantage of the advanced pattern-matching mechanisms of AspectJ (see Figure 11).
The aspect AddColor defines an interface Colored (Line 2) and it declares that Node
and Edge implement that interface (Line 3); it introduces a field color (Lines 4-5),
and it advises the execution of the method print of Edge and Node (Lines 6-7); the
class Color is introduced as static inner class (Line 8).

Advanced Dynamic Crosscuts

Occasionally concerns can use dynamic crosscuts, such as a collaboration module
applying a refinement to a class that is dependent on the program control flow,
which is an advanced dynamic crosscut. For example, when implementing a new
feature of our graph example that modifies the routine of printing graph structures
(PRINTHEADER) we can take advantage of the advanced mechanisms of Aspect]
for dynamic crosscutting. Suppose the print methods of the participants of the

130 JOURNAL OF OBJECT TECHNOLOGY VOL 9, NO. 1

Uk W N =

—_
O © 00~ Utk WN

5 EXTENDED OBJECT-ORIENTED LANGUAGES

aspect PrintHeaderAspect {
before() : execution(void print())&&
Icflowbelow (execution(void print())) { header(); }
void header() { System.out.print("header: "); }
¥

Figure 12: Implementing PRINTHEADER with an aspect in AspectJ.

package PrintHeader;
import BasicGraph.Node;
refine class Node {
static int count = 0;
void print() {
if(count == 0) printHeader();
count++; original.print(); count--;
}
void printHeader() { /* ... %/}
}

Figure 13: Implementing PRINTHEADER with a collaboration module in Class-
box/J.

graph implementation call each other (especially, composite nodes that call print
of their inner nodes). To make sure that we do not advise all calls to print, but
only the top-level calls, i.e., calls that do not occur in the dynamic control flow of
other executions of print, we can use the cflowbelow pointcut as a conditional
(Fig. 12).

Figure 13 depicts an excerpt and approximation of the behavior of PRINT-
HEADER implemented using Classbox/J; the complete implementation would be
more complex. Omitting advanced AspectJ mechanisms results in a workaround
(underlined and green) for tracing the control flow and executing the actual exten-
sion conditionally (Lines 6, 7).

While AspectJ code can be more compact, it is debatable whether the result
is easier to understand and maintain [54, 1], especially in situations where few join
points are affected (e.g., compare Figure 12 with Figure 13) [33]. Regardless, we
found that such dynamic crosscuts occur rarely (1 %).

Corroborating Evidence

A review of the eleven Aspect] programs reveals that aspects often extend multiple
objects by multiple pieces of advice and inter-type declarations. In other words, the
extensions an aspect typically makes to a base program are heterogeneous. Further-
more, we have observed that aspects seldom used advanced AspectJ mechanisms
but mainly extended the static program structure by inter-type declarations and
the execution of methods by pieces of basic advice.

Other researchers that examined some of the eleven AspectJ programs came to

VOL 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 131

C"#_/ HOW ASPECTJ IS USED: AN ANALYSIS OF ELEVEN ASPECTJ PROGRAMS

the same conclusion. For example, Liu et al. noted that the aspect refactoring of
Prevalyer corresponds closely to a version written in Jak, a extended object-oriented
language [39]. Also, Xin et al. observed that the Jiazzi version of FACET is close
to the aspect-oriented version [62].

Furthermore, we contacted the developers of the eleven AspectJ programs to
ask about their experience with the occurences and useability of basic and advanced
crosscutting mechanisms and their relationship to mechanisms of collaboration mod-
ules and refinements, as explained above:

e The developer of Abacus (C. Zhang) confirmed that his aspect composition
was driven by superimposition of views (collaboration modules). He extended
existing classes by using AspectJ-style mixins (refinements) and implemented
the methods declared by interfaces.

e The developer of FACET (R. Pratap) answered that he definitely had to think
of collaboration-style extensions while implementing features in FACET.

e The developer of ActiveAspect (W. Coehlo) said that the individual extensions
of classes applied by his aspect were heterogeneous. Generally, he did not think
in terms of crosscutting dynamic computation.

e The developer of AJHotDraw (M. Marin) explained that there are a number
of refactored concerns in AJHotDraw whose implementations consist of classes
with multiple different refinements and that interact in various ways.

e The developer of Prevayler (I. Godil) confirmed that there are aspects that use
basic crosscutting mechanisms and that correspond to collaboration modules,
which is in line with [39].

e K. Sullivan reported that his work on Hypercast was not intended (and did
not) explore the use basic and advanced crosscutting mechanisms, but rather
to take some easy/classical applications of aspects, such as logging, and to use
them to evaluate the notion of ‘obliviousness’.

e The developer of HealthWatcher (S. Soares) was unfamiliar with the concept
of basic and advanced crosscutting mechanisms as well as of the mechanisms
of collaboration modules and refinements. He was unable to say whether his
aspects are related to collaboration modules and refinements or not.

We did not receive responses from the Tetris, OAS, and AJHSQLDB developers.
The majority of responses indicate that the developers noticed the relationship and
resemblance of aspect mechanisms to collaboration modules and refinements in their
work — although not all were aware of the concept or the term.

132 JOURNAL OF OBJECT TECHNOLOGY VOL 9, NO. 1

5 EXTENDED OBJECT-ORIENTED LANGUAGES

Validity Discussions

The statistics of our study should be interpreted with the fact in mind that we limited
our attention to AspectJ. That is, we could not consider development aspects and
other kinds of aspects such as used in container-based AOP.” Furthermore, there
are three validity issues to our study: construct, internal, and external.

Construct

The distinctions between different concern classifications — homogeneous/heteroge-
neous, static/dynamic, and basic/advanced — are both fundamental and well-recog-
nized in the literature [20,19,47,2]. Our use of LOC (eliminating blank and comment
lines) as a metric yielded statistics that would be different than, say, a metric that
counts statements. Although any metric has problems (e.g., how are ‘if’ statements
counted?), the essential result of our paper, namely that advanced and homogeneous
crosscuts are used infrequently in our case studies, would remain valid.

Internal

There are always problems drawing significant conclusions from a small sample
size. This is a problem with any such study with Aspect]: there are only few
published, non-trivial programs using AspectJ in open literature. Moreover, the
eleven programs have been mainly developed for academic purposes. A discussion
in the AOSD.NET mailing list® reveals that there are only a few published industrial
projects that use AspectJ, none of them available for download.

Furthermore, we were unable to contact authors of three of the programs. Even
assuming negative responses, a majority of the authors indicated that they were
aware of resemblance of their aspects with collaboration modules.

Another possible issue is that because the term ‘collaboration’ is overloaded and
the terms ‘basic’ and ‘advanced crosscutting mechanisms’ are unclear, there could
be misunderstandings between the developers and us. To minimize this, we defined
the terms in our correspondences with authors, as explained in the previous sections.

External
We believe our results are representative of AspectJ usage. We explicitly omitted

our own internal case studies, whose statistics are nevertheless consistent with those
we reported [33,3,39,42]. We cite in related work additional corroborating evidence.

"Examples of container-based AOP are JBossAOP (http://jboss.com/products/aop) and
SpringAOP (http://www.springframework.org/).
8http://aosd.net/pipermail/discuss_aosd.net/2007-May/002163.html

VOL 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 133

http://jboss.com/products/aop
http://www.springframework.org/
http://aosd.net/pipermail/discuss_aosd.net/2007-May/002163.html

C"#_/ HOW ASPECTJ IS USED: AN ANALYSIS OF ELEVEN ASPECTJ PROGRAMS

And finally, we and others have been building systems for years by composing col-
laboration modules and refinements without using advanced AspectJ mechanisms;
AspectJ might have helped in the cases where advanced aspects could be used (e.g.,
to reduce code replication). We are aware of only a few such cases in our own code.

The trade-off between language expressiveness and simplicity in software devel-
opment is addressed in the next section.

6 DISCUSSION: EXPRESSIVENESS VS. SIMPLICITY

In the 2% of the code base, where advanced crosscutting mechanisms are used, let us
assume that the use of AspectJ is appropriate. For the remaining 98 %, an extended
object-oriented language is appropriate. The question is, on the one hand, whether
one could not simply use an extended object-oriented language for all crosscutting
concerns, emulating advanced crosscutting mechanisms (2% of the code base) and
accepting a certain amount of boiler plate code and code replication, as explained
in Section 5. On the other hand, one could simply use an (AspectJ-like) aspect-
oriented language for all crosscutting concerns, as it has been done in the eleven
AspectJ programs. Is there a difference between the two options?

We argue that there is indeed a difference. The two options reveal a trade-
off between expressiveness and simplicity of programming languages that support
the modularization of crosscutting concerns. Clearly, AspectJ-like languages are
very powerful and expressive but this comes at a cost. It has been argued that
the advanced crosscutting mechanisms violate the principle of information hiding
and hamper program comprehension, maintenance, and evolution [54,1]. Extended
object-oriented languages are simpler but cannot express all kinds of crosscutting
concern concisely.

We believe that our findings in the analysis of the eleven AspectJ programs can
(re)initiate a discussion on this issue. The result of our study is that only 2% of the
code base have been implemented with advanced crosscutting mechanisms. Is this
fraction worth of using AspectJ and inviting many problems caused by its advanced
mechanisms? Or is this fraction relevant and justifies the use of AspectJ?

A compromise may be to use the basic crosscutting mechanisms of extended
object-oriented languages (collaboration modules and refinements) for heterogeneous
and basic dynamic crosscutting concerns and the advanced crosscutting mechanisms
of aspect-oriented languages (pointcuts and advice) for homogeneous and advanced

dynamic crosscutting concerns? Previous work in support of this position is [56, 6,
38,30,4].

134 JOURNAL OF OBJECT TECHNOLOGY VOL 9, NO. 1

7 RELATED WORK

7 RELATED WORK

Collaborations and Refinements

Although the concept of collaboration modules predates AOP by quite some time [52,
10, 60], mainstream programming languages have been very slow to support them.
AspectJ has filled the vacuum [45]. The weak support of collaboration modules in
aspect and non-aspect mainstream languages has contributed to a general confu-
sion regarding their relationship to, importance to, and frequency in crosscutting
concerns. Nevertheless, several studies demonstrate that extended object-oriented
languages suffice in implementing large applications [10,12,8,9,11, 58].

There are many languages that incorporate the concept of refinements and collab-
orations in its language design, although sometimes called differently, e.g., Jak [11],
FeatureC++ [5], ContextL [31], Scala [49], Jiazzi [46], Classbox/J [14], Jx [48].
While the capabilities and mechanisms of these languages differ considerably, their
aim at aggregating classes that collaborate in modules and extending or overriding
existing classes is very similar. For example, with Jx’s nested inheritance we can
introduce and refine existing classes in almost the same way as in with classboxes
in Classbox/J, abstract types in Scala, components in Jiazzi, or layers in ContextL.

Several approaches even combine collaboration modules and advanced AspectJ
mechanisms to benefit from both worlds, e.g., Relationship Aspects [51], CaesarJ [6],
FeatureC++ [5], Aspectual Collaborations [38], and Object Teams [30], but their
use has not been extensive.

Representative AOP Case Studies

Colyer and Clement refactored an application server using AspectJ (3 homogeneous
and 1 heterogeneous crosscuts) [19]. While the number of aspects is marginal, the
size of the case study is impressively high (millions of LOC). Although they draw
positive conclusions, they admit (but did not explore) a strong relationship of their
aspects to collaboration modules and refinements.

Coady and Kiczales undertook a retroactive study of aspect evolution in the code
of the FreeBSD operating system (200-400 KLOC) [18]. They factored 4 crosscutting
concerns into AspectC aspects; inherent properties of concerns were not explained
in detail.

Lohmann et al. examine the applicability of AspectC++ to embedded systems
(2 homogeneous and 1 heterogeneous crosscuts) [40]. Tesanovic et al. implemented
10 AspectC++ aspects for quality-of-service management in database systems [57];
the aspects implement predominantly heterogeneous and basic dynamic crosscutting
concerns, which is in line with our study.

Lopez-Herrejon et al. analyzed an AspectJ implementation of the AHEAD Tool
Suite [42]. They found 1% of the code base associated with advice; the rest consists

VOL 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 135

C"#_/ HOW ASPECTJ IS USED: AN ANALYSIS OF ELEVEN ASPECTJ PROGRAMS

of introductions. They did not consider advanced advice.

Greenwood et al. conducted a quantitative case study exploring the effects of an
aspectual decomposition on design stability [29]. They implemented 8 crosscuts in
the HealthWatcher system with AspectJ, but they did not say whether these are
basic or advanced. Although they used AspectJ and CaesarJ they did not explore
the relationship of basic and advanced crosscutting mechanisms

Classification Schemes

Alternative classification schemes of aspects and the crosscutting concerns they im-
plement have been proposed in the literature. For example, spectative, regulative,
and invasive aspects [34], harmless and harmful advice [21], or observers and assis-
tants [16], that all classify aspects based on the invasiveness of their effects on the
base program. Our distinction between heterogeneous and homogeneous as well as
static, basic and advanced dynamic is orthogonal to these previous proposals. Our
classification has been shown useful to compare two different lines of research in
programming languages.

AOP Metrics

Zhang and Jacobson use a set of object-oriented metrics to quantify the program
complexity reduction when applying AOP to middleware systems [63]. They show
that refactoring a middleware system (23 KLOC code base) into aspects reduces the
complexity and leads to a code reduction of 2-3 %, which is in line with our results.

Garcia et al. analyzed several aspect-oriented programs (4-7 KLOC code base)
and their object-oriented counterparts [27,37]. They observe that the AOP variants
have fewer lines of code than their object-oriented equivalents (12 % code reduction).

Zhao and Xu propose several metrics for aspect cohesion based on aspect de-
pendency graphs [64]. Gelinas et al. discuss previous work on cohesion metrics and
propose an approach based on dependencies between aspect members [28].

All of the above proposals and case studies take neither the structure of cross-
cutting concerns nor the difference between basic and advanced crosscutting mech-
anisms into account.

Lopez-Herrejon et al. propose a set of code metrics for analyzing the crosscut-
ting structure of aspect-based product lines [41]. They do not consider elementary
crosscuts but analyze crosscutting properties of entire subsystems (features), which
may have a substantial size. Thus, the crosscutting structure of a feature can be
homogeneous, heterogeneous, or any value in between the spectrum of both. They
do not distinguish between basic and advanced dynamic crosscuts.

136 JOURNAL OF OBJECT TECHNOLOGY VOL 9, NO. 1

8 CONCLUSION

8 CONCLUSION

We have analyzed eleven AspectJ programs of different sizes and complexity. We
found that on average 2% of the code base is associated with advanced crosscutting
mechanisms; 12 % is associated with basic crosscutting mechanisms; and 86 % is
object-oriented. These numbers indicate that languages that provide only basic
crosscutting mechanisms are appropriate to implement a large extent of the analyzed
programs. Instead, AspectJ, a more powerful language, has been used. Since voices
have been raised that advanced crosscutting mechanisms, like the ones provided by
AspectJ, may be too powerful, we initiated a discussion on the trade-off between
expressiveness and simplicity. Currently, it is not clear if the advanced crosscutting
mechanisms provided by AspectJ outweigh the problems caused by the violation of
the principle of information hiding. Our studies can help to expedite the academic
discussion and to conduct further case studies on this issue.

ACKNOWLEDGEMENTS

We thank D. Batory, K. Fisler, M. Grechanik, C. Késtner, P. Kim, S. Krishnamurthi,
C. Lengauer, D. Perry, and C.T. Shepherd for their helpful comments on earlier
drafts of this paper. The author’s research is sponsored by the German Science
Foundation (DFG), # AP 206/2-1.

REFERENCES

[1] R. Alexander. The Real Costs of Aspect-Oriented Programming. [IEEE Soft-
ware, 20(6), 2003.

2] S. Apel. The Role of Features and Aspects in Software Development. PhD
thesis, School of Computer Science, University of Magdeburg, 2007.

[3] S. Apel and D. Batory. When to Use Features and Aspects? A Case Study.
In Proc. Int’l. Conf. Generative and Component-Based Software Engineering,
2006.

[4] S. Apel, T. Leich, and G. Saake. Aspectual Feature Modules. IEEE Trans.
Software Engineering, 34(2), 2008.

[5] S. Apel, M. Rosenmiiller, T. Leich, and G. Saake. FeatureC++: On the Sym-
biosis of Feature-Oriented and Aspect-Oriented Programming. In Proc. Int’l.
Conf. Generative and Component-Based Software Engineering, 2005.

6] I. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann. An Overview of Caesar.J.
Trans. Aspect-Oriented Software Development, 1(1), 2006.

VOL 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 137

C"#_/ HOW ASPECTJ IS USED: AN ANALYSIS OF ELEVEN ASPECTJ PROGRAMS

[7]

8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

B. S. Baker. On Finding Duplication and Near-Duplication in Large Software
Systems. In Proc. Work. Conf. Reverse Engineering, 1995.

D. Batory, L. Coglianese, M. Goodwin, and S. Shafer. Creating Reference Ar-
chitectures: An Example from Avionics. In Proc. Int’l. Symp. Software Reuse,
1995.

D. Batory, C. Johnson, B. MacDonald, and D. v. Heeder. Achieving Extensi-
bility Through Product-Lines and Domain-Specific Languages: A Case Study.
ACM Trans. Software Engineering and Methodology, 11(2), 2002.

D. Batory and S. O’'Malley. The Design and Implementation of Hierarchical
Software Systems with Reusable Components. ACM Trans. Software Engineer-
ing and Methodology, 1(4), 1992.

D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling Step-Wise Refinement.
IEEE Trans. Software Engineering, 30(6), 2004.

D. Batory and J. Thomas. P2: A Lightweight DBMS Generator. J. Intell. Inf.
Syst., 9(2), 1997.

I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone Detection
Using Abstract Syntax Trees. In Proc. Int’l. Conf. Software Maintenance, 1998.

A. Bergel, S. Ducasse, and O. Nierstrasz. Classbox/J: Controlling the Scope of
Change in Java. In Proc. Int’l. Conf. Object-Oriented Programming, Systems,
Languages, and Applications, 2005.

G. Bracha and W. R. Cook. Mixin-Based Inheritance. In Proc. Furop. Conf.
Object-Oriented Programming and Int’l. Conf. Object-Oriented Programming,
Systems, Languages, and Applications, 1990.

C. Clifton and G. Leavens. Observers and Assistants: A Proposal for Modular
Aspect-Oriented Reasoning. In Proc. Int’l. Workshop Foundations of Aspect-
Oriented Languages, 2002.

C. Clifton, G. Leavens, C. Chambers, and T. Millstein. MultiJava: Modular
Open Classes and Symmetric Multiple Dispatch for Java. In Proc. Int’l. Conf.
Object-Oriented Programming, Systems, Languages, and Applications, pages
130-145. ACM Press, 2000.

Y. Coady and G. Kiczales. Back to the Future: A Retroactive Study of Aspect
Evolution in Operating System Code. In Proc. Int’l. Conf. Aspect-Oriented
Software Development, 2003.

A. Colyer and A. Clement. Large-Scale AOSD for Middleware. In Proc. Int’l.
Conf. Aspect-Oriented Software Development, 2004.

138

JOURNAL OF OBJECT TECHNOLOGY VOL 9, NO. 1

8 CONCLUSION

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

A. Colyer, A. Rashid, and G. Blair. On the Separation of Concerns in Pro-
gram Families. Technical Report COMP-001-2004, Computing Department,
Lancaster University, 2004.

D. S. Dantas and D. Walker. Harmless Advice. In Proc. Int’l. Symp. Principles
of Programming Languages, 2006.

S. Ducasse, O. Nierstrasz, N. Scharli, R. Wuyts, and A. Black. Traits: A
Mechanism for Fine-Grained Reuse. ACM Trans. Programming Languages and
Systems, 28(2), 2006.

E. Ernst. Higher-Order Hierarchies. In Proc. Europ. Conf. Object-Oriented
Programming, 2003.

R. Filman and D. Friedman. Aspect-Oriented Programming Is Quantification
and Obliviousness. In Aspect-Oriented Software Development, pages 21-35.
Addison-Wesley, 2005.

R. Bruce Findler and M. Flatt. Modular Object-Oriented Programming with
Units and Mixins. In Proc. Int’l. Conf. Functional Programming, 1998.

A. Garcia, C. Sant’Anna, C. Chavez, V. Silva, A. v. Staa, and C. Lucena.
Separation of Concerns in Multi-Agent Systems: An Empirical Study. In Soft-
ware Engineering for Multi-Agent Systems II, Research Issues and Practical
Applications, 2003.

A. Garcia, C. Sant’Anna, E. Figueiredo, U. Kulesza, C. Lucena, and A. v. Staa.
Modularizing Design Patterns with Aspects: A Quantitative Study. In Proc.
Int’l. Conf. Aspect-Oriented Software Development, 2005.

J. F. Gelinas, M. Badri, and L. Badri. A Cohesion Measure for Aspects. J.
Object Technology, 5(7), 2006.

P. Greenwood, T. Bartolomei, E. Figueiredo, M. Dosea, A. Garcia, N. Cacho,
C. Santa-Anna, S. Soares, P. Borba, U. Kulesza, and A. Rashid. On the Impact
of Aspectual Decompositions on Design Stability: An Empirical Study. In Proc.
FEurop. Conf. Object-Oriented Programming, 2007.

S. Herrmann. Object Teams: Improving Modularity for Crosscutting Collabo-
rations. In Proc. Int’l. Net.ObjectDays Conf., 2002.

R. Hirschfeld, P. Costanza, and O. Nierstrasz. Context-Oriented Programming.
J. Object Technology, 7(3), 2008.

R. Johnson and B. Foote. Designing Reusable Classes. J. Object-Oriented
Programming, 1(2), 1988.

C. Kastner, S. Apel, and D. Batory. A Case Study Implementing Features using
Aspect]. In Proc. Int’l. Software Product Line Conf., 2007.

VOL 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 139

C"#_/ HOW ASPECTJ IS USED: AN ANALYSIS OF ELEVEN ASPECTJ PROGRAMS

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

S. Katz. Aspect Categories and Classes of Temporal Properties. Trans. Aspect-
Oriented Software Development, 1(1), 2006.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.
An Overview of AspectJ. In Proc. Europ. Conf. Object-Oriented Programming.
Springer, 2001.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Lo-
ingtier, and J. Irwin. Aspect-Oriented Programming. In Proc. Europ. Conf.
Object-Oriented Programming, 1997.

U. Kulesza, C. Sant’Anna, A. Garcia, R. Coelho, A. v. Staa, and C. Lu-
cena. Quantifying the Effects of Aspect-Oriented Programming: A Maintenance
Study. In Proc. Int’l. Conf. Software Maintenance, 2006.

K. J. Lieberherr, D. Lorenz, and J. Ovlinger. Aspectual Collaborations — Com-
bining Modules and Aspects. Computer J., 46(5), 2003.

J. Liu, D. Batory, and C. Lengauer. Feature-Oriented Refactoring of Legacy
Applications. In Proc. Int’l. Conf. Software Engineering, 2006.

D. Lohmann, F. Scheler, R. Tartler, O. Spinczyk, and W. Schroder-Preikschat.
A Quantitative Analysis of Aspects in the eCos Kernel. In Proc. Int’l. EuroSys
Conf., 2006.

R. Lopez-Herrejon and S. Apel. Measuring and Characterizing Crosscutting in
Aspect-Based Programs: Basic Metrics and Case Studies. In Proc. Int’l. Conf.
Fundamental Approaches to Software Engineering, 2007.

R. Lopez-Herrejon and D. Batory. From Crosscutting Concerns to Product
Lines: A Function Composition Approach. Technical Report TR-06-24, De-
partment of Computer Sciences, The University of Texas at Austin, 2006.

O. L. Madsen and B. Moller-Pedersen. Virtual Classes: A Powerful Mecha-
nism in Object-Oriented Programming. In Proc. Int’l. Conf. Object-Oriented
Programming, Systems, Languages, and Applications, 1989.

H. Masuhara and K. Kawauchi. Dataflow Pointcut in Aspect-Oriented Pro-
gramming. In Proc. Asian Symp. Programming Languages and Systems, 2003.

H. Masuhara and G. Kiczales. Modeling Crosscutting in Aspect-Oriented Mech-
anisms. In Proc. Europ. Conf. Object-Oriented Programming, 2003.

S. McDirmid, M. Flatt, and W. C. Hsieh. Jiazzi: New-Age Components for Old-
Fashioned Java. In Proc. Int’l. Conf. Object-Oriented Programming, Systems,
Languages, and Applications, 2001.

M. Mezini and K. Ostermann. Variability Management with Feature-Oriented
Programming and Aspects. In Proc. Int’l. Symp. Foundations of Software En-
gineering, 2004.

140

JOURNAL OF OBJECT TECHNOLOGY VOL 9, NO. 1

8 CONCLUSION

[48]

[49]

[50]

[51]

[52]

[55]

[56]

[57]

N. Nystrom, S. Chong, and A. C. Myers. Scalable Extensibility via Nested
Inheritance. In Proc. Int’l. Conf. Object-Oriented Programming, Systems, Lan-
guages, and Applications, 2004.

M. Odersky and M. Zenger. Scalable Component Abstractions. In Proc. Int’l.
Conf. Object-Oriented Programming, Systems, Languages, and Applications,
2005.

K. Ostermann, M. Mezini, and C. Bockisch. Expressive Pointcuts for Increased
Modularity. In Proc. Europ. Conf. Object-Oriented Programming, 2005.

D. J. Pearce and J. Noble. Relationship Aspects. In Proc. Int’l. Conf. Aspect-
Oriented Software Development, 2006.

T. Reenskaug, E. Andersen, A. Berre, A. Hurlen, A. Landmark, O. Lehne,
E. Nordhagen, E. Ness-Ulseth, G. Oftedal, A. Skaar, and P. Stenslet. OORASS:
Seamless Support for the Creation and Maintenance of Object-Oriented Sys-
tems. J. Object-Oriented Programming, 5(6), 1992.

Y. Smaragdakis and D. Batory. Mixin Layers: An Object-Oriented Imple-
mentation Technique for Refinements and Collaboration-Based Designs. ACM
Trans. Software Engineering and Methodology, 11(2), 2002.

F. Steimann. The Paradoxical Success of Aspect-Oriented Programming. In
Proc. Int’l. Conf. Object-Oriented Programming, Systems, Languages, and Ap-
plications, 2006.

M. Storzer. Impact Analysis for AspectJ — A Chritical Analysis and Tool-based
Approach to AOP. PhD thesis, School of Computer Science and Mathematics,
University of Passau, 2007.

P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, Jr. N Degrees of Separa-
tion: Multi-Dimensional Separation of Concerns. In Proc. Int’l. Conf. Software
Engineering, 1999.

A. Tesanovic, M. Amirijoo, M. Bjork, and J. Hansson. Empowering Config-
urable QoS Management in Real-Time Systems. In Proc. Int’l. Conf. Aspect-
Oriented Software Development, 2005.

S. Trujillo, D. Batory, and O. Diaz. Feature Refactoring a Multi-Representation
Program into a Product Line. In Proc. Int’l. Conf. Generative and Component-
Based Software Engineering, 2006.

M. VanHilst and D. Notkin. Decoupling Change from Design. In Proc. Int’l.
Symp. Foundations of Software Engineering, 1996.

M. VanHilst and D. Notkin. Using Role Components in Implement
Collaboration-based Designs. In Proc. Int’l. Conf. Object-Oriented Program-
ming, Systems, Languages, and Applications, 1996.

VOL 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 141

C"#—/ HOW ASPECTJ IS USED: AN ANALYSIS OF ELEVEN ASPECTJ PROGRAMS

[61] M. Wand, G. Kiczales, and C. Dutchyn. A Semantics for Advice and Dynamic
Join Points in Aspect-Oriented Programming. ACM Trans. Programming Lan-
guages and Systems, 26(5), 2004.

[62] B. Xin, S. McDirmid, E. Eide, and W. C. Hsieh. A Comparison of Jiazzi
and AspectJ for Feature-Wise Decomposition. Technical Report UUCS-04-001,
School of Computing, The University of Utah, 2004.

[63] C. Zhang and H.-A. Jacobsen. Resolving Feature Convolution in Middleware
Systems. In Proc. Int’l. Conf. Object-Oriented Programming, Systems, Lan-
guages, and Applications, 2004.

[64] J. Zhao and B. Xu. Measuring Aspect Cohesion. In Proc. Int’l. Conf. Funda-
mental Approaches to Software Engineering, 2004.

ABOUT THE AUTHORS

Sven Apel is a post-doctoral associate at the Chair of Program-

ming at the University of Passau, Germany. He received a Ph.D.

in Computer Science from the University of Magdeburg, Germany

in 2007. His research interests include advanced programming

paradigms, software product lines, and algebra for software con-

K struction. He can be reached at apel@uni-passau.de. See also
1 http://www.infosun.fim.uni-passau.de/cl/staff/apel/.

142 JOURNAL OF OBJECT TECHNOLOGY VOL 9, NO. 1

mailto:apel@uni-passau.de
http://www.infosun.fim.uni-passau.de/cl/staff/apel/

