
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2009

Vol. 8, No. 6, September-October 2009

Richard Wiener: “Ant Colony System Optimization”, vol. 8, no. 6, September-October 2009, pp 39-58
http://www.jot.fm/issues/issue_2009_09/column4/

EDUCATOR’S CORNER

Ant Colony System Optimization

Richard Wiener

Successful heuristic algorithms for solving combinatorial optimization problems have
mimicked processes observed in nature. Two highly successful families of algorithms that do
this are simulated annealing and genetic algorithms. Here, a third family of algorithms, ant
colony optimization is explored and implemented in C#. The test bed for evaluating the
quality of solutions is based on several Traveling Salesperson Problems (TSP) of varying
size using real-world data (Euclidian problems) with known solutions.

Ants form a distributed system and present highly organized social organization. When
an ant searches for food it leaves a chemical trail of pheromones. This trail may be used by
other ants to follow the trail to food.

Suppose an ant were deposited on some randomly chosen city in a TSP problem. Tours
could be generated by this artificial ant as follows: A probability is computed for each of the
possible target cities that the ant can travel to from the source city that it is occupying. This
probability is based on two factors: the distance to the target city (shorter distances provide
higher probability) and the pheromone that has been previously deposited on the edge from
the source to target city. Artificial ants are not allowed to re-visit a city.

The ant system (AS) algorithm works as follows. In AS, m artificial ants are placed on
random chosen cities. At each tour construction step for ant k, the probability of choosing
city s from city r is:

The heuristic is 1.0 / cost (r, s).

The is the pheromone on the edge r, s.

ANT COLONY SYSTEM OPTIMIZATION

40 JOURNAL OF OBJECT TECHNOLOGY VOL.8, NO. 6.

The value is a number between 2 and 5 and determines how much weight to give the
cost heuristic.

So the smaller the edge cost and higher the pheromone value, the higher the probability
that the ant will go from city r to s.

On each iteration of the simulation, after all the randomly placed ants have constructed
their tours, the pheromone trails are updated. First all the pheromone on each edge is reduced
by a constant factor (evaporation). This helps to ensure exploration and stops premature
convergence to the edges on the best tour so far which at the beginning is probably not a very
good tour. Then each ant deposits pheromone on the edges corresponding to the cities visited
given by the reciprocal of the tour cost. So a poor tour (high tour cost) will result in less
pheromone being deposited than a good tour. The best tour among the m ants is found (best
tour to date). Additional pheromone is deposited based on the best tour to date on the edges
of this best tour (reciprocal of best tour cost). After a user-defined number of iterations, the
best tour cost is reported.

Stagnation seems to be a problem when the Ant System algorithm is applied to problems
of size 100 or more. Convergence to a tour that is typically about 5 to 8 percent above the
known optimum occurs.

As documented in the book Ant Colony Optimization by Marco Dorigo and Thomas
Stutzle (MIT Press, 2004), an improved algorithm called Ant Colony System (ACS) is
presented. This ACS algorithm is based on changes made to the basic Ant System described
above.
Specifically,

1) There is no global evaporation applied to all the edges after each iteration as there is
in the Ant System.

2) When constructing a tour in ACS, with a probability threshold of about 0.9, an ant
chooses its next city by finding the maximum of the pheromone and reciprocal of
distance raised to the beta power products among all cities not yet visited. With
probability 0.1, the Ant System heuristic for choosing the next city is used. The ACS
algorithm is much more aggressive since it favors the maximum rather than making a
random choice.

3) After all ants have completed their tours (one iteration), a global pheromone update is
performed only on the edges associated with the best tour to date (i.e. only the best
ant to date updates pheromone on its edges). The update is performed as a weighted
average of the earlier pheromone for each edge and the reciprocal of the best tour cost
to date. The effect of this is to cause some small evaporation on the edges of the
optimum tour as well as add some additional pheromone to the edges.

4) As each ant moves from city i to j as its tour is being constructed it uses a local trail
updating rule that causes the pheromone on that edge to be decreased. This
encourages more exploration and works against stagnation.

More details of the ACS algorithm may be found on pages 76 to 78 in the book cited above.

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 41

The C# implementation details of this ACS algorithm are presented below along with a
GUI application that outputs the progress of the algorithm and depicts the evolving best tours
graphically. Sample output is also presented.
Listing 1 Class Global

using System;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Drawing;

namespace AntColonyGUI {

 public class Global {
 public static List<int> bestTourSoFar;
 public static Random random = new Random();
 public static int initialTourCost;

 public static Point [] rawData;
 public static int [,] cost;
 public static double[,] heuristic; // Reciprocal of cost
 public static double[,] pheromone;
 public static void Initialize(int n, Graphics g, int [,] c) {
 if (c == null) {
 cost = new int[n + 1, n + 1]; // natural indexing
 for (int row = 1; row <= n; row++) {
 for (int col = row; col <= n; col++) {
 if (row == col) {
 cost[row, col] = 0;
 } else {
 double xDist =
 rawData[row].X - rawData[col].X;
 double yDist =
 rawData[row].Y - rawData[col].Y;
 cost[row, col] =
 (int)(Math.Sqrt(xDist * xDist +
 yDist * yDist) + 0.5);
 cost[col, row] = cost[row, col];
 }
 }
 }
 } else {
 cost = c;
 for (int index = 1; index <= n; index++) {
 cost[index, index] = 0;
 }
 }

ANT COLONY SYSTEM OPTIMIZATION

42 JOURNAL OF OBJECT TECHNOLOGY VOL.8, NO. 6.

 // Obtain shortest city tour using greedy starting at 1
 initialTourCost = 0;
 int numbersCitiesVisited = 1;
 int city = 1;
 List<int> visited = new List<int>();
 visited.Add(0);
 visited.Add(1);
 do {
 // Find shortest distance from city
 double[] distances = new double[n + 1];
 for (int index = 1; index <= n; index++) {
 if (index == city || visited.Contains(index)) {
 distances[index] = Int32.MaxValue;
 } else {
 distances[index] = Global.cost[city, index];
 }
 }
 // Find shortest among distances
 int shortestIndex = 0;
 double shortest = Double.MaxValue;
 for (int index = 1; index <= n; index++) {
 if (distances[index] < shortest) {
 shortestIndex = index;
 shortest = distances[index];
 }
 }
 int previousCity = city;
 city = shortestIndex;
 visited.Add(city);
 numbersCitiesVisited++;
 initialTourCost += cost[previousCity, city];
 } while (visited.Count <= n);
 initialTourCost += cost[city, 1];
 visited.Add(1);

 pheromone = new double[n + 1, n + 1]; // natural indexing
 for (int row = 1; row <= n; row++) {
 for (int col = 1; col <= n; col++) {
 pheromone[row, col] = 1.0 / (n * initialTourCost);
 }
 }

 heuristic = new double[n + 1, n + 1];
 for (int row = 1; row <= n; row++) {
 for (int col = row; col <= n; col++) {
 if (row == col) {
 heuristic[row, col] = Double.MaxValue;
 } else {
 heuristic[row, col] = 1.0 / cost[row, col];
 heuristic[col, row] = heuristic[row, col];
 }

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 43

 }
 }
 }
 }
}

Listing 2 Class Ant

using System;
using System.Collections;
using System.Drawing;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace AntColonyGUI {

 public class Ant {
 // Constants
 private const int ALPHA= 1;
 private const int BETA = 5;
 private const double LOCAL_PHEROMONE_UPDATE = 0.1;

 // Fields
 private List<int> citiesVisited;
 private int startCity;
 private int numberCities;
 private int tourCost;
 private double probabilityThreshold;

 // Constructor
 public Ant(int startingCity, int numberCities, double
 probabilityThreshold) {
 startCity = startingCity;
 this.numberCities = numberCities;
 this.probabilityThreshold = probabilityThreshold;
 citiesVisited = new List<int>();
 tourCost = 0;
 }

 // Commands
 public void ConstructTour() {
 citiesVisited.Add(0); // for natural indexing
 citiesVisited.Add(startCity);
 int previousCity = startCity;
 do {
 int nextCity = AddEdgeFrom(previousCity);
 if (!citiesVisited.Contains(nextCity)) {
 citiesVisited.Add(nextCity);
 }
 tourCost += Global.cost[previousCity, nextCity];

ANT COLONY SYSTEM OPTIMIZATION

44 JOURNAL OF OBJECT TECHNOLOGY VOL.8, NO. 6.

 // Ant colony system local trail update
 Global.pheromone[previousCity, nextCity] =
 (1.0 - LOCAL_PHEROMONE_UPDATE) *
 Global.pheromone[previousCity, nextCity] +
 LOCAL_PHEROMONE_UPDATE *
 (1.0 / (numberCities * Global.initialTourCost));
 previousCity = nextCity;

 } while (citiesVisited.Count <= numberCities);
 tourCost += Global.cost[previousCity, startCity];
 citiesVisited.Add(startCity);
 if (citiesVisited.Count != numberCities + 2) {
 Console.WriteLine("ERROR IN CONSTRUCTING TOUR");
 }
 }

 // Queries
 public int AddEdgeFrom(int city) {
 // Based on modified Ant Colony System heuristic
 double r = Global.random.NextDouble();
 if (r <= probabilityThreshold) {
 double[] arcWeights = new double[numberCities + 1];
 for (int index = 1; index <= numberCities; index++) {
 if (index == city ||
 citiesVisited.Contains(index)) {
 arcWeights[index] = 0.0;
 } else {
 arcWeights[index] = Global.pheromone[city,
 index] *
 Math.Pow(Global.heuristic[city, index], BETA);
 }
 }
 // Get the largest in arcWeights
 double largest = -1.0;
 int largestIndex = 0;
 for (int index = 1; index <= numberCities; index++) {
 if (arcWeights[index] > largest) {
 largest = arcWeights[index];
 largestIndex = index;
 }
 }
 if (arcWeights[largestIndex] == 0.0) {
 // Return the first city not yet visited
 for (int index = 1; index <= numberCities; index++)
{
 if (!citiesVisited.Contains(index)) {
 return index;
 }
 }
 } else {
 return largestIndex;

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 45

 }
 } else { // Same as Ant System heuristic
 double denominator = 0.0;
 for (int index = 1; index <= numberCities; index++) {
 if (index != city &&
 !citiesVisited.Contains(index)) {
 denominator += Global.pheromone[city, index] *
 Math.Pow(Global.heuristic[city, index],
 BETA);
 }
 }
 if (denominator == 0.0) {
 // Return the first city not yet visited
 for (int index = 1;
 index <= numberCities; index++) {
 if (!citiesVisited.Contains(index)) {
 return index;
 }
 }
 }
 // prob of going from city to index
 double[] prob = new double[numberCities + 1];
 for (int index = 1; index <= numberCities; index++) {
 if (index == city ||
 citiesVisited.Contains(index)) {
 prob[index] = 0.0;
 } else {
 prob[index] = Global.pheromone[city, index] *
 Math.Pow(Global.heuristic[city, index],
 BETA) / denominator;
 }
 }
 double rnd = Global.random.NextDouble();
 double sum = 0.0;
 for (int index = 1; index <= numberCities; index++) {
 sum += prob[index];
 if (rnd <= sum && index != city &&
 !citiesVisited.Contains(index)) {
 return index;
 }
 }
 }
 // Unreachable
 return 0;
 }

 // Properties
 public int TourCost {
 get { // Read-only
 return tourCost;
 }
 }

ANT COLONY SYSTEM OPTIMIZATION

46 JOURNAL OF OBJECT TECHNOLOGY VOL.8, NO. 6.

 public List<int> CitiesVisited {
 get {
 return citiesVisited;
 }
 }
 }
}

Listing 3 Class AntColonyGUIApp

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.IO;
using System.Threading;

namespace AntColonyGUI {

 public partial class AntColonyGUIApp : Form {

 // Fields
 private Graphics g;
 private Thread computation;
 private int numberIterations = 20000;
 private const int INTERVAL_REPORT_OUTPUT = 200;
 private const double GLOBAL_PHEROMONE_UPDATE = 0.1;
 private const int NUMBER_ANTS = 10;
 private List<int> bestTour = null;
 private int bestTourCost = Int32.MaxValue;
 private Ant[] ants = new Ant[NUMBER_ANTS + 1];
 private int numberCities;
 private int largestX, largestY; // city coordinates
 private bool stop = false;

 public AntColonyGUIApp() {
 InitializeComponent();
 g = panel.CreateGraphics();
 }

 public void Start(int n, String filename) {
 // Parameters
 numberIterations =
 Convert.ToInt32(iterationsBox.Text.Trim());

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 47

 StreamReader inputStream = new StreamReader(filename);
 int[,] cost = null;
 try {
 // Read input data
 Global.rawData = new Point[n + 1]; // natural indexing
 String delimiterString = " "; // white space
 char[] delimiter = delimiterString.ToCharArray();
 String line = inputStream.ReadLine();
 int city = 1;
 while (line != null) {
 String[] words = line.Split(delimiter);
 double x = Convert.ToDouble(words[1]);
 double y = Convert.ToDouble(words[2]);
 Global.rawData[city] = new Point((int)x, (int)y);
 line = inputStream.ReadLine();
 city++;
 }
 inputStream.Close();
 } catch (Exception) {
 output.AppendText("Error reading input data.\n");
 inputStream.Close();
 return;
 }

 Global.Initialize(n, g, cost);

 // Get largestX and largestY
 largestX = 0;
 largestY = 0;
 for (int index = 1; index <= numberCities; index++) {
 if (Global.rawData[index].X > largestX) {
 largestX = Global.rawData[index].X;
 }
 if (Global.rawData[index].Y > largestY) {
 largestY = Global.rawData[index].Y;
 }
 }

 // Scale the raw data for display purposes
 for (int index = 1; index <= numberCities; index++) {
 Global.rawData[index].X =
 (int)(Global.rawData[index].X * 800.0 / largestX);
 Global.rawData[index].Y =
 (int)(Global.rawData[index].Y * 800.0 / largestY);
 }

 computation = new Thread(new ThreadStart(Compute));
 computation.IsBackground = true;
 computation.Start();
 }

ANT COLONY SYSTEM OPTIMIZATION

48 JOURNAL OF OBJECT TECHNOLOGY VOL.8, NO. 6.

 public void Compute() {
 for (int iteration = 1;
 !stop && iteration <= numberIterations; iteration++) {
 // Reuse ants array by inserting a fresh collection of
 // new ants
 for (int antNumber = 1; antNumber <= NUMBER_ANTS;
 antNumber++) {
 int startingCity =
 lobal.random.Next(numberCities) + 1;
 Ant workerAnt = new Ant(startingCity, numberCities,
 Convert.ToDouble(thresholdBox.Text.Trim()));
 workerAnt.ConstructTour();
 ants[antNumber] = workerAnt;
 }
 for (int antNumber = 1; antNumber <= NUMBER_ANTS;
 antNumber++) {
 if (ants[antNumber].TourCost < bestTourCost) {
 bestTourCost = ants[antNumber].TourCost;
 bestTour = ants[antNumber].CitiesVisited;
 }
 }
 // Only the best ant so far deposits pheromone
 for (int index = 1; index <= numberCities; index++) {
 Global.pheromone[bestTour[index],
 bestTour[index + 1]] =
 (1.0 - GLOBAL_PHEROMONE_UPDATE) *
 Global.pheromone[bestTour[index],
 bestTour[index + 1]] +
 GLOBAL_PHEROMONE_UPDATE * 1.0 /
 estTourCost;
 }
 if (iteration == 1 ||
 iteration % INTERVAL_REPORT_OUTPUT == 0) {
 output.AppendText(
 "\nIteration: " + iteration + ":");
 output.AppendText(
 " Best tour cost: " + bestTourCost + "\n");

 // Apply local optimization
 ThreeOpt();
 output.AppendText(
 "After applying 3-opt local search, Best tour
 cost: " + bestTourCost + "\n");

 if (knownOptimumBox.Text.Trim().Length > 0) {
 int opt =
 Convert.ToInt32(knownOptimumBox.Text.Trim());
 output.AppendText("\tError: " +
 String.Format("{0:f}", 100.0 *
 (bestTourCost - opt) / opt) +
 " percent.\n");

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 49

 }

 // Test to see whether best tour is valid
 for (int index = 1;
 index <= numberCities; index++) {
 if (!bestTour.Contains(index)) {
 output.AppendText(
 " Invalid tour since city " + index +
 " is missing.\n");
 return;
 }
 }
 DrawTour();
 }
 }
 output.AppendText("Best tour: \n");
 foreach (int city in bestTour) {
 if (city != 0) {
 output.AppendText(city + " ");
 }
 }
 // Final check on tour cost
 int sum = 0;
 for (int index = 1; index <= numberCities; index++) {
 sum += Global.cost[bestTour[index],
 bestTour[index + 1]];
 }
 output.AppendText(
 "\nCost for this best tour: " + sum + "\n");
 output.AppendText("\n");
 // Test to see whether best tour is valid
 for (int index = 1; index <= numberCities; index++) {
 if (!bestTour.Contains(index)) {
 output.AppendText(
 "Invalid tour since city " + index + " is
 missing.\n");
 return;
 }
 }
 output.AppendText("All cities present and valid tour.\n");
 }

 private void DrawTour() {
 g.Clear(Color.White);
 for (int index = 1; index <= numberCities; index++) {
 g.DrawEllipse(new Pen(Color.Red, 1),
 new Rectangle(Global.rawData[bestTour[index]],
 g.DrawLine(new Pen(Color.Black, 1),
 Global.rawData[bestTour[index]],
 Global.rawData[bestTour[index + 1]]);
 }

ANT COLONY SYSTEM OPTIMIZATION

50 JOURNAL OF OBJECT TECHNOLOGY VOL.8, NO. 6.

 }

 private void ThreeOpt() {
 int x1 = 0, x2 = 0, x3 = 0, x4 = 0, x5 = 0, x6 = 0;
 int[] xb = new int[numberCities + 2];
 int[] origb = new int[numberCities + 2];

 int x1orig = 0, x2orig = 0, x3orig = 0, x4orig = 0,
 x5orig = 0, x6orig = 0;
 int firstb = 0, secondb = 0, thirdb = 0;

 for (int count = 1; count <= numberCities; count++) {

 // Permute tour
 for (int index = 1; index <= numberCities; index++) {
 bestTour[index] = bestTour[index + 1];
 }
 bestTour[numberCities + 1] = bestTour[1];

 int bestGain = 0;
 int gain1 = 0;
 int gain2 = 0;
 int type2 = 3;
 // See page 445 in
 // Design and Analysis of Algorithms by
 // Levitin (Second Edition), Addison Wesley
 x1 = 1;
 x2 = 2;

 for (int i = 5; i <= numberCities - 2; i++) {
 x5 = i;
 x6 = i + 1;
 for (int k = 3; k <= i - 2; k++) {
 x3 = k;
 x4 = k + 1;

 x1orig = x1;
 x2orig = x2;
 x3orig = x3;
 x4orig = x4;
 x5orig = x5;
 x6orig = x6;

 int first =
 Global.cost[bestTour[x1orig],
 bestTour[x2orig]] +
 Global.cost[bestTour[x3orig],
 bestTour[x4orig]] +
 Global.cost[bestTour[x5orig],
 bestTour[x6orig]];

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 51

 int second = Global.cost[bestTour[x2],
 bestTour[x5]] +
 Global.cost[bestTour[x1],
 bestTour[x4]] +
 Global.cost[bestTour[x3], bestTour[x6]];
 int third = Global.cost[bestTour[x1],
 bestTour[x4]] +
 Global.cost[bestTour[x3], bestTour[x5]] +
 Global.cost[bestTour[x2], bestTour[x6]];
 gain1 = first - second;
 gain2 = first - third;
 if (gain1 > 0 && gain1 >= gain2 &&
 gain1 > bestGain) {
 bestGain = gain1;
 type2 = 1;

 xb[1] = x1;
 xb[2] = x2;
 xb[3] = x3;
 xb[4] = x4;
 xb[5] = x5;
 xb[6] = x6;
 origb[1] = x1orig;
 origb[2] = x2orig;
 origb[3] = x3orig;
 origb[4] = x4orig;
 origb[5] = x5orig;
 origb[6] = x6orig;
 count = 0; // Must start another set of
 // permutations
 firstb = first;
 secondb = second;
 thirdb = third;
 } else if (gain2 > 0 && gain2 > gain1 &&
 gain2 > bestGain) {
 bestGain = gain2;
 type2 = 2;

 xb[1] = x1;
 xb[2] = x2;
 xb[3] = x3;
 xb[4] = x4;
 xb[5] = x5;
 xb[6] = x6;
 origb[1] = x1orig;
 origb[2] = x2orig;
 origb[3] = x3orig;
 origb[4] = x4orig;
 origb[5] = x5orig;
 origb[6] = x6orig;
 count = 0; // Must start another set of
 // permutations

ANT COLONY SYSTEM OPTIMIZATION

52 JOURNAL OF OBJECT TECHNOLOGY VOL.8, NO. 6.

 firstb = first;
 secondb = second;
 thirdb = third;
 }
 }
 }

 if (type2 == 1) {
 // Figure b on page 445 of Levitan’s book

 int[] next = new int[numberCities + 2];
 int[] temp = new int[numberCities + 2];
 int z = 0;
 next[z++] = 0;
 next[z++] = 1;
 next[z++] = xb[4];
 for (int j = 1; j <= origb[5] - origb[4]; j++) {
 next[z++] = xb[4] + j;
 }
 next[z++] = xb[2];
 for (int j = 1; j <= origb[3] - origb[2]; j++) {
 next[z++] = xb[2] + j;
 }
 next[z++] = xb[6];
 for (int j = 1; j <= numberCities - origb[6]; j++)
{
 next[z++] = xb[6] + j;
 }
 next[z++] = 1;

 for (int index = 1;
 index <= numberCities + 1; index++) {
 temp[index] = bestTour[next[index]];
 }

 for (int index = 1;
 index <= numberCities + 1; index++) {
 bestTour[index] = temp[index];
 }

 // Test to see whether best tour is valid
 for (int index = 1;
 index <= numberCities; index++) {
 if (!bestTour.Contains(index)) {
 MessageBox.Show("Invalid tour since city "
 + index + " is missing.\n");
 }
 }

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 53

 bestTourCost = 0;
 for (int index = 1;
 index <= numberCities; index++) {
 bestTourCost += Global.cost[bestTour[index],
 bestTour[index + 1]];
 }
 }

 else if (type2 == 2) {
 // Figure c on page 445 of Levitan’s book

 int[] next = new int[numberCities + 2];
 int[] temp = new int[numberCities + 2];
 int z = 0;
 next[z++] = 0;
 next[z++] = 1;
 nextString += 1 + " ";
 next[z++] = xb[4];
 nextString += xb[4] + " ";
 for (int j = 1; j <= origb[5] - origb[4]; j++) {
 next[z++] = xb[4] + j;
 nextString += (xb[4] + j) + " ";
 }
 next[z++] = xb[3];
 nextString += xb[3] + " ";
 for (int j = 1; j <= origb[3] - origb[2]; j++) {
 next[z++] = xb[3] - j;
 nextString += (xb[3] - j) + " ";
 }
 next[z++] = xb[6];
 nextString += xb[6] + " ";
 for (int j = 1;
 j <= numberCities - origb[6]; j++) {
 next[z++] = xb[6] + j;
 nextString += (xb[6] + j) + " ";
 }
 next[z++] = 1;
 nextString += "1 ";

 for (int index = 1;
 index <= numberCities + 1; index++) {
 temp[index] = bestTour[next[index]];
 }

 for (int index = 1;
 index <= numberCities + 1; index++) {
 bestTour[index] = temp[index];
 }

 // Test to see whether best tour is valid

ANT COLONY SYSTEM OPTIMIZATION

54 JOURNAL OF OBJECT TECHNOLOGY VOL.8, NO. 6.

 for (int index = 1;
 dex <= numberCities; index++) {
 if (!bestTour.Contains(index)) {
 MessageBox.Show("Invalid tour since city "
 + index + " is missing.\n");
 }
 }
 }
 }
 }

 private void startBtn_Click(object sender, EventArgs e) {
 String filename = "";
 try {
 numberCities = Convert.ToInt32(numberCitiesBox.Text);
 filename = inputFilenameBox.Text;
 } catch (Exception) {
 output.AppendText("Error in data input.");
 return;
 }
 Start(numberCities, filename);
 startBtn.Enabled = false;
 iterationsBox.Enabled = false;
 }

 private void panel_Paint(object sender, PaintEventArgs e) {
 DrawTour();
 }

 private void AntColonyGUIApp_FormClosing(object sender,
 FormClosingEventArgs e) {
 stop = true;
 Thread.Sleep(1000);
 }
 }
}

The ThreeOpt method is used every INTERVAL_REPORT_OUTPUT iterations to perform
a local optimization. This ThreeOpt method examines all two-edge exchanges and choices
the best two-edge exchange if one exists resulting in a best tour with lower cost. All possible
two-edge replacements are performed that will lower the best tour cost.

We show sample output for a 51 city problem, 100 city problem and 150 city problem,
each with known optimum solutions.

For the 51 city problem with known optimum of 426, on iteration 600, the ThreeOpt
local optimization brings the best tour from 427 down to its optimum value of 426.

A tour in which edges do not cross is a necessary but not sufficient condition for
optimality. This necessary condition is satisfied for the 51 city problem.

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 55

ANT COLONY SYSTEM OPTIMIZATION

56 JOURNAL OF OBJECT TECHNOLOGY VOL.8, NO. 6.

For the 100 city problem the solution, after 20,000 iterations, is within 0.65 percent of
optimum. Once again lines do not cross in this near optimum solution.

For the 150 city problem, the initial solution is in error by 3.14 percent.

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 57

After 20,000 iterations, the solution is within 1.36 percent of the optimum. The output is:

ANT COLONY SYSTEM OPTIMIZATION

58 JOURNAL OF OBJECT TECHNOLOGY VOL.8, NO. 6.

The Ant Colony System produces results that are superior to those obtained by this author
using either simulated annealing or genetic programming. What is particularly attractive is
the small number of parameters that need to be tuned, especially compared to simulated
annealing.

About the author
Richard Wiener is Chair of Computer Science at the University of
Colorado at Colorado Springs. He is also the Editor-in-Chief of JOT and
former Editor-in-Chief of the Journal of Object Oriented Programming. In
addition to University work, Dr. Wiener has authored or co-authored 22
books and works actively as a consultant and software contractor whenever
the possibility arises. His latest book, published by Thomson, Course
Technology in April 2006, is entitled Modern Software Development Using

C#/.NET.

