
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2009

Vol. 8, No. 5, July-August 2009

Douglas A. Lyon: “The Discrete Fourier Transform, Part 2 Radix 2 FFT”, in Journal of Object
Technology, vol. 8. no. 5, July - August 2009 pp. 21-33
http://www.jot.fm/issues/issue_2009_07/column2/

The Discrete Fourier Transform,
Part 2: Radix 2 FFT

By Douglas Lyon

Abstract
This paper is part 2 in a series of papers about the Discrete Fourier Transform
(DFT) and the Inverse Discrete Fourier Transform (IDFT). The focus of this paper is
on a fast implementation of the DFT, called the FFT (Fast Fourier Transform) and
the IFFT (Inverse Fast Fourier Transform). The implementation is based on a well-
known algorithm, called the Radix 2 FFT, and requires that its’ input data be an
integral power of two in length.
Part 3 of this series of papers, demonstrates the computation of the PSD (Power
Spectral Density) and applications of the DFT and IDFT. The applications include
filtering, windowing, pitch shifting and the spectral analysis of re-sampling.

1 THE FFT

Given a sampled waveform

 vj , j ∈ 0...N −1[] (1)

The Continuous Time Fourier Transform (CTFT) is defined by:

 V (f) = F[v(t)] = v(t)e−2π ift dt
−∞

∞

∫ (2).

The DFT is given by:

 Vk =
1
N

e−2π ijk /Nvj
j=0

N −1

∑ (3).

Direct computation of the DFT takes O(N 2) complex multiplications while the FFT
takes O(N log N) complex multiplications. The primary goal of the FFT is to speed
computation of (3).

This paper describes an FFT algorithm known as the decimation-in-time radix-
two FFT algorithm (also known as the Cooley-Tukey algorithm). The Cooley-Tukey
algorithm is probably one of the most widely used of the FFT algorithms. Radix 2
means that the number of samples must be an integral power of two. The decimation
in time means that the algorithm performs a subdivision of the input sequence into its

THE DISCRETE FOURIER TRANSFORM, PART 2 RADIX 2 FFT

22 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 5.

odd and even members. We are able to perform this subdivision as a result of the
Danielson-Lanczos Lemma:

Vk =

1
N

Vk
e +W kVk

o⎡⎣ ⎤⎦ ∀k∈ 0K N −1[] (4)

Proof of the Danielson-Lanczos Lemma:
Let

 W = e−2π i /N and W jk = e−2π ijk / N (5)
so that

 W jk =W jW j (k−1) (6)
Substitute (5) into (3) to obtain

 Vk =
1
N

W jkvj
j=0

N −1

∑ (7).

We separate (7) into its odd and even components by altering how the samples are
indexed:

 Vk =
1
N

W 2 jkv2 j + W 2 j+1()kv2 j+1
j=0

N /2−1

∑
j=0

N /2−1

∑
⎡

⎣
⎢

⎤

⎦
⎥ (8)

Where (8) shows summations operating over the odd and even indices. For example,
if

 j = 0,1,2,3... , (9)

then

 2 j = 0,2,4,6... and 2 j +1 = 1,3,5... . (10)

Factoring the exponents in (8) yields

 Vk =
1
N

W 2 jkv2 j + W 2 jkW kv2 j+1
j=0

N /2−1

∑
j=0

N /2−1

∑
⎡

⎣
⎢

⎤

⎦
⎥ (11)

The W k term in the right most summation is not a function of the index, so that:

 Vk =
1
N

W 2 jkv2 j +W k W 2 jkv2 j+1
j=0

N /2−1

∑
j=0

N /2−1

∑
⎡

⎣
⎢

⎤

⎦
⎥ (12).

To reflect the odd and even summations, (12) is rewritten as

Vk =

1
N

Vk
e +W kVk

o⎡⎣ ⎤⎦ ∀k∈ 0K N −1[] (13).

Q.E.D.
The implications of (13) are that we can divide the sequence into odd and even

numbered samples. Thus the Danielson-Lancoz lemma enables a divide and conquer
algorithm to recursively split the sample sequence in half. The computational result of

VOL. 8, NO. 5. JOURNAL OF OBJECT TECHNOLOGY 23

the Danielson-Lancoz lemma is that the O(N 2) DFT may be computed in
O(N log N) time.

The Danielson-Lancoz lemma shows that a sequence must be divided up into its
odd and even subsets. That these subsets must in-turn be divided into their subsets.
This continues until we have only two members per subset. An illustration of this
subdivision, for N=8, is shown in Figure 1.

0-1-2-3-4-6-7
0-2-4-6
0-4 2-6

1-3-5-7
1-5 3-7

Figure 1 Decimation in time.

It is natural to implement the decimation in time using recursive calls with odd and
even sets. It has been shown, however, that a recursive implementation is six times
slower than a non-recursive implementation [Gonzalez et al.]. Figure 2 shows the
Cooley-Tukey algorithm using bit-reversal in order to decimate in time without
recursion.

N A B C C B A bitr(N)
0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 4
2 0 1 0 0 1 0 2
3 0 1 1 1 1 0 6
4 1 0 0 0 0 1 1
5 1 0 1 1 0 1 5
6 1 1 0 0 1 1 3
7 1 1 1 1 1 1 7

Figure 2. An Example of how to decimate by bit reversal

To arrive at the bit reversal, we implement a Java method in the FFT class:
 int bitr(int j) {
 int ans = 0;
 for (int i = 0; i< nu; i++) {
 ans = (ans <<1) + (j&1);
 j = j>>1;
 }
 return ans;
 }

The bitr method works by linking together two software shift-registers, as shown in
Figure 3.

THE DISCRETE FOURIER TRANSFORM, PART 2 RADIX 2 FFT

24 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 5.

jn jn−1K j1 j0

an an−1K a1 a0

Figure 3. The j and a registers are linked with the + operator.

After the decimation in time is performed, the balance of the computation is
optimization hacks and housekeeping. For example, a simplification results from Vk
being periodic in N so thatVk+N = Vk .

Proof:
Recall that the DFT is given by:

 Vk =
1
N

e−2π ijk /Nvj
j=0

N −1

∑ (14)

so that

 Vk+N =
1
N

e−2π ij (k+N)/Nvj
j=0

N −1

∑ (15)

Expanding the exponents and simplifying using

 Vk+N =
1
N

e−2π ijk /Ne−2π ijN / Nvj
j=0

N −1

∑ (16)

with e−2π ij = cos(−2π j) + isin(−2π j) = 1 yields:

 Vk+N =
1
N

e−2π ijk /Nvj
j=0

N −1

∑ (17)

with Vk+N = Vk (18)

Q.E.D.
In addition, it can be shown that

 W k+N /2 = −W k 0 ≤ k ≤ N / 2 (19)
Proof:
Using

 W = e−2π i / N
So that

 e−2π i(k+N /2)/N = cos(−2π (k + N / 2) / N) + i sin(−2π (k + N / 2) / N)

with

cos(−2π (k + N / 2) / N) = cos(2πk / N + π) = − cos(2πk / N)
sin(−2π (k + N / 2) / N) = sin(2πk / N + π) = −sin(2πk / N)

. (20)

this leads to:

VOL. 8, NO. 5. JOURNAL OF OBJECT TECHNOLOGY 25

 W k+N /2 = −W k 0 ≤ k ≤ N / 2
Q.E.D.
A further efficiency may be had by the use of the recurrence relation

 W jW j (k−1) =W jW jk− j =W jW jkW − j =W jk

 (21).

Proof:

W jk = e−2π ijk /N = cos −2π jk / N()+ isin(−2π jk / N)

W jk = cos −2π jk / N()+ isin(−2π jk / N)

W jk = cos −2π j / N()+ isin(−2π j / N)⎡⎣ ⎤⎦
 ∗ cos −2π j(k −1) / N()+ isin(−2π j(k −1) / N)⎡⎣ ⎤⎦
W jk =W jW j (k−1)

 (22)

Alternative Proof:

 W jW j (k−1) =W jW jk− j =W jW jkW − j =W jk
Q.E.D.
The real and imaginary parts of (22) are given by

 real(z1z2) = x1x2 − y1y2

so that

 Wr
jk =Wr

jWr
j (k−1) −Wi

jWi
j (k−1) (23)

and the imaginary part of (22) is given by:

 imaginary(z1z2) = x1y2 + y1x2

so that

 Wi
jk =Wr

jWi
j (k−1) +Wi

jWr
j (k−1) (24).

Equations (23) and (24) form the basis of the recurrence relationships that enables the
quick computation of the next W jk based on the previousW jk . An implementation of
(24) follows:

1. // (eq 23) and (eq 24)
2. wtemp = Wjk_r;
3. Wjk_r = Wj_r * Wjk_r - Wj_i * Wjk_i;
4. Wjk_i = Wj_r * Wjk_i + Wj_i * wtemp;

Line 2 shows the introduction of wtemp, a temporary variable that facilitates the
computation of the multiplication of the two complex numbers.

THE DISCRETE FOURIER TRANSFORM, PART 2 RADIX 2 FFT

26 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 5.

2 THE FFT CLASS

The grapher package provides a simple interface to make an automatically scaled
graph. Generally only a single method is invoked. This is best shown by the following
example:

public void makeHanning () {
 double window[];
 window = makeHanning(256);
 Graph.graph(window,
 "The Hanning window","f");
 }

Where the “The Hanning window” string appears along the x-axis and “f” appears on
the y-axis. The Graph.graph may be invoked directly because the graph method is
static. Also, it only graphs an array of type double.

2.1. Class Summary

package lyon.audio;
import java.io.*;
import java.awt.*;
import grapher.Graph;
import futils.bench.Timer;
public class FFT extends Frame {
public FFT(int N)
public FFT()
public void graphs()
public void graphs(String t)
public void setTitle(String t)
public static double getMaxValue(double in[])
public static int log2(int n)
public static double[] arrayCopy(double [] in)
public double [] computePSD ()
public double[] dft(double v[])
public double[] idft()
public double [] getReal()
public double [] getImaginary()
public void forwardFFT(double in_r[], double in_i[])
public void reverseFFT(double in_r[], double in_i[])
public void printArray(double[] v,String title)
public void printArrays(String title)
public void printReal(String title)
public static void main(String args[])
public static void timeFFT()
public static void testFFT()
public static void testDFT()
}

2.2. Class Usage

The FFT class maintains internal data arrays that are stored as doubles. These arrays
are private and are used to assist computations. Further, the in-place Cooley-Tukey
algorithm employed for the fast transform is destructive for the original data. The FFT

VOL. 8, NO. 5. JOURNAL OF OBJECT TECHNOLOGY 27

class in the lyon.audio package uses doubles for all computations. This class is for 1-
D (audio) transforms.

Suppose the following variables are predefined:
FFT f;
int N = 8;
double inputArray[];
String title = "My data title";
double aDoubleArray[];
double in_r[];
double in_i[];

To make a new instance of the FFT class, and allocate two internal arrays of double,
each of length N:

f = new FFT(N);

To make a new instance of the FFT class, with no memory allocation:
f = new FFT();

To graph the real and imaginary data arrays:
f.graphs();

To graph the real and imaginary data arrays with a title:
f.graphs(title);

To set the title for the graphs:
f.setTitle(title);

To get the maximum value of an inputArray:
FFT.getMaxValue(inputArray);

To compute the floor of the log of an int to base 2:
int numberOfBits = FFT.log2(N);

To copy an array of double:
aDoubleArray = FFT.arrayCopy(inputArray);

To compute the psd (power spectral density) of the last dft or fft:
aDoubleArray = f.computePSD();

To non-destructively compute the dft of an input array and return the psd:
aDoubleArray = f.dft(inputArray);

DFT, IDFT, FFT and IFFT alter the internal data structures in an instance of the FFT
class. To get the real part of the last transform:

aDoubleArray = f.getReal();

To get the imaginary part of the last transform:
aDoubleArray = f.getImaginary();

To take the idft of the internal data and return the real part:
aDoubleArray = f.idft();

To take the forward fft on two input arrays, destructively:
f.forwardFFT(in_r, in_i);

To take the inverse FFT on two input arrays, destructively
f.reverseFFT(in_r, in_i);

THE DISCRETE FOURIER TRANSFORM, PART 2 RADIX 2 FFT

28 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 5.

To print an array of double, with a title:
f.printArray(aDoubleArray, title);

To print the internal real and imaginary arrays, with a title:
f.printArrays(title);

To print the internal real array, with a title:
f.printReal(title);

To test the DFT, IDFT, FFT and IFFT:
FFT.main();

To time the FFT:
FFT.timeFFT();

To test the FFT:
FFT.testFFT();

To test the DFT:
FFT.testDFT();

2.3. Testing the FFT and IFFT

The FFT class has a static method that permits the testing of the DFT, IDFT, FFT and
IFFT. It also performs timing for a transform of 2048 doubles. To run this test, you
must invoke

FFT.main();

The code for the FFT.main method follows:
 public static void main(String args[]) {
 testDFT();
 timeFFT();
 testFFT();
 }

The test methods are run on an 8 point input array consisting of a linear ramp. This is
to provide a short sequence of input data that can be verified by printing. The timing
is performed on 2048 samples stored in two arrays of 2048 doubles each (real and
imaginary). The output of the main method follows:

Executing DFT on 8 points...
Executing IDFT on 8 points...
j x1[j] re[j] im[j] v[j]
0 0 3.5 0 -3.10862e-15
1 1 -0.5 1.20711 1
2 2 -0.5 0.5 2.00000
3 3 -0.5 0.207107 3
4 4 -0.5 0 4
5 5 -0.500000 -0.207107 5
6 6 -0.500000 -0.5 6
7 7 -0.5 -1.20711 7
fft: bit reversal
Time for 2048point fftTime 0.178000 sec
fft: bit reversal
Time for 2048point ifftTime 0.164000 sec
Starting 1D FFT test...
fft: bit reversal

VOL. 8, NO. 5. JOURNAL OF OBJECT TECHNOLOGY 29

fft: bit reversal
j x1[j] re[j] im[j]v[j]
0 0 3.5 0 0
1 1 -0.5 1.20711 1.00000
2 2 -0.5 0.5 2.00000
3 3 -0.500000 0.207107 3.00000
4 4 -0.5 0 4
5 5 -0.5 -0.207107 5
6 6 -0.5 -0.5 6
7 7 -0.500000 -1.20711 7

The reader will see that the input and output are highly correlated for both the DFT
and FFT. The surprising thing is how accurate these two radically different algorithms
and implementations are. Also, recall that the execution times for the DFT was
benchmarked at 55 seconds. The FFT implementation is run in 0.178 seconds, a 308
times speed up. Keep in mind, at 8000 samples per second, the 2048 samples
represent 0.256 seconds of data. Also, on a limited data rate connection (such as a
28.8 kbps modem) the time to transmit the data is 2048*8 bits /28800 bits/sec = 0.56
seconds. We suggest that many dial-up users experience a slower connection than the
maximum their modem permits. Thus, there is a window of opportunity for devising a
real-time codec (IN JAVA!!) able to perform FFT based compression algorithms. An
algorithm based on transform compress typically takes the original data, performs the
forward transform, selects coefficients, quantizes and then transmits. Data is
recovered by taking the coefficients and performing an inverse transform. Very Low
Bit Rate Voice Compression (VLBRVC) is a rich and growing field that lies beyond
the scope of this paper. See http://www.bdti.com/faq/dsp_faq.htm for an FAQ that
relates to this and other DSP topics.

2.4. Implementing the FFT.testFFT

The following code shows how to use the FFT class to perform a forward and inverse
FFT. The static nature of the testFFT method indicates that invocation may be
performed without making an instance of the FFT class.

Line 3 makes an instance of the FFT class, without performing any allocation for
the internal data structures. Thus the allocation and copying of arrays is performed
outside of the forwardFFT methods. This is due, in part, to the destructive nature of
the in-place Cooley-Tukey FFT algorithm. The trade-off is that the programmer must
keep track of the data that is being processed by the forwardFFT. The alternative is to
automatically copy arrays, perform the in-place forwardFFT, then return the copies.
Our findings indicate that the dynamic allocation of memory (particularly during the
image processing, seen later in this book) can slow performance by up to 100 times!
Thus, the house keeping chores performed by the programmer are warranted by a leap
in performance.

1. public static void testFFT() {
2. System.out.println("Starting 1D FFT test...");
3. FFT f = new FFT();

Line 4 may be altered to any number of samples, N, but a large N will result in a large
printout.

4. int N = 8;
5. int numBits = f.log2(N);

THE DISCRETE FOURIER TRANSFORM, PART 2 RADIX 2 FFT

30 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 5.

Lines 6-8 set up the input data to be a ramp that varies from 0 to N.
6. double x1[] = new double[N];
7. for (int j=0; j<N; j++)
8. x1[j] = j;

Now the housekeeping. The programmer, interested in keeping copies of the original
data, the result of the forward FFT and the result of the inverse FFT, must allocate
four arrays! This is an unusual case, as it requires that all intermediate results be kept
for checking purposes. Normally, production code would not have to keep all
intermediate results.

9. double[] in_r = new double[N];
10. double[] in_i = new double[N];

The in_r and in_i arrays are copies of the input data, with the imaginary component
equal to zero. Real data (like audio data) often has a zero imaginary component. There
are algorithms that can save significant time by taking advantage of the zero
imaginary part of the input data. This requires a different FFT implementation.

11. double[] fftResult_r = new double[N];
12. double[] fftResult_i = new double[N];

13. // copy test signal.
14. in_r = arrayCopy(x1);

Line 14 copies the input data into in_r.
15. f.forwardFFT(in_r, in_i);

Line 15 replaces in_r and in_i with the forward FFT results.
16. // Copy to new array because IFFT will
17. // destroy the FFT results.
18. fftResult_r = arrayCopy(in_r);
19. fftResult_i = arrayCopy(in_i);
20. f.reverseFFT(in_r, in_i);
21. System.out.println("j\tx1[j]\tre[j]\tim[j]\tv[j]");
22. for(int i=0; i<N; i++) {
23. System.out.println(
24. i + "\t" +
25. x1[i] + "\t" +
26. fftResult_r[i] + "\t" +
27. fftResult_i[i] + "\t" +
28. in_r[i]);
29. }

30. }

VOL. 8, NO. 5. JOURNAL OF OBJECT TECHNOLOGY 31

N dft rate fft rate
2 65 25
4 250 65
8 500 64

16 1000 103
32 2000 344
64 2000 821
128 4129 1174
256 1641 2753
512 1561 10894

1024 992 5044
2048 512 32508
4096 260 65016
8192 127 256000
16384 61 207392
32768 30 300624
65536 15 595782

Figure 1. Run Rate of the DFT vs the FFT

Figure 1 shows the rate of the DFT and FFT as a function of array length. The rate is
given in floating point sample, per second, on a T2300 Intel CPU running at 1.66 Ghz
with 504 MB of RAM under JDK 1.5. We ran the benchmarks again in Figure 2

N dft fft
2 286 83
4 444 129
8 889 104

16 1778 485
32 3200 561
64 3556 1085

128 3459 1208
256 3413 2226
512 2498 2860

1024 1513 4146
2048 803 6282
4096 409 4506
8192 204 7628

16384 100 7907
32768 49 5221
65536 25 6369

Figure 2. Run Rate of the DFT vs the FFT

Figure 2. shows Intel Core 2 CPU T7200 @2.00GHz with 1 GB RAM running JVM
1.6.0_07”. We also see a great deal of variation in the benchmarking between the
different JVMs and machines.

THE DISCRETE FOURIER TRANSFORM, PART 2 RADIX 2 FFT

32 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 5.

Figure 3. Comparing FFT vs DFT, Log scale

Figure 3 shows a crossover that exists between the DFT and the FFT. Plotted on a log
scale, as a function of N, for values below 512 samples, the DFT is faster than the
FFT, and should be the preferred means of performing the Fourier transform.

3 SUMMARY

This paper demonstrates that, for small numbers of samples (less than 512) the DFT is
preferred over the FFT. We have also seen a great deal of variation in the performance
of the benchmark, as we change from one JVM to another. Finally, we have created a
new means of measuring the rate of the transform, the number of samples per second
processed. This is of direct concern to those who are interested in real-time processing
of signals as well as those who are interested in faster algorithms.

VOL. 8, NO. 5. JOURNAL OF OBJECT TECHNOLOGY 33

About the author
Douglas A. Lyon (M'89-SM'00) received the Ph.D., M.S. and B.S.
degrees in computer and systems engineering from Rensselaer
Polytechnic Institute (1991, 1985 and 1983). Dr. Lyon has worked at
AT&T Bell Laboratories at Murray Hill, NJ and the Jet Propulsion
Laboratory at the California Institute of Technology, Pasadena, CA.
He is currently the Chairman of the Computer Engineering

Department at Fairfield University, in Fairfield CT, a senior member of the IEEE and
President of DocJava, Inc., a consulting firm in Connecticut. Dr. Lyon has authored or
co-authored three books (Java, Digital Signal Processing, Image Processing in Java
and Java for Programmers). He has authored over 40 journal publications. Email:
lyon@docjava.com. Web: http://www.DocJava.com.

