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Resource Usage Protocols for Iterators
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We discuss usage protocols for iterator objects that prevent concurrent modifications of
the underlying collection while iterators are in progress. We formalize these protocols
in Java-like object interfaces, enriched with separation logic contracts. We present
examples of iterator clients and proofs that they adhere to the iterator protocol, as well
as examples of iterator implementations and proofs that they implement the iterator
interface.

1 Introduction

Objects are often meant to be used according to certain protocols. In many cases, such
protocols impose temporal constraints on the order of method calls. A simple example
are protocols for output streams that impose that clients do not write to streams after the
streams have been closed. Whereas object interfaces in typed object-oriented languages
formally specify type signatures, they typically do not formalize such object usage pro-
tocols. To improve on this, researchers have recently spent considerable efforts on de-
signing formal specification and verification systems for object usage protocols. Some
of these systems are based on classical program logics, using ghost variables [PBB+04]
and temporal logic extensions [TH02]. The problem with these specification techniques
is that static verification of protocol adherence is difficult because of aliasing. So-called
typestate systems have focused on automatic static checkability. In order to deal with the
aliasing problem, these systems employ linear type-and-effect systems [DF01, DF04] and
ideas from linear logic [BA07].

While in simple cases usage protocols only constrain method call order, more sophis-
ticated objects need more intricate temporal constraints. A prominent example are iterator
objects, as featured in languages like Java or C]. An iterator usage protocol is meant to en-
sure that iterator calls for retrieving the next collection element always successfully return
a new element. Furthermore, an iterator call to remove the last retrieved element should
indeed remove this element, and not perhaps an element that has been retrieved much ear-
lier in the iteration. In order to make such guarantees, usage protocols for iterators must
prevent so-called concurrent modifications of the underlying collection: while an iterator
is in progress, the collection should not get modified by other actions that interleave with
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RESOURCE USAGE PROTOCOLS FOR ITERATORS

interface Collection {
Iterator iterator();

}

interface Iterator {
boolean hasNext();
Object next();
void remove();

} readyFor
Remove
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Figure 1: Basic iterator protocol

the iteration1. If concurrent modifications were not prevented, then the above mentioned
guarantees could get violated by concurrently removing collection elements (in the ex-
treme case, concurrently clearing the collection entirely). Thus, an iterator usage protocol
must prevent concurrent modifications.

There is another reason why it is desirable to constrain concurrent collection access
through iterators: often iterators temporarily break collection invariants. Consider, for
instance, a list of point objects that represents a polygon. Such a list satisfies the invariant
that any two lines connecting adjacent points do not cross. It is likely that an iterator over
the point list that moves the polygon breaks this invariant temporarily: lines connecting
points that have already been moved may cross lines connecting points that have not yet
been moved. In such inconsistent intermediate states, methods that assume a consistent
collection should not access the collection. The iterator protocols presented in this paper
specify such dynamic access policies abstractly.

Figure 1 represents a usage protocol for iterators as a state machine. The protocol
prevents concurrent modifications and runtime exceptions due to iteration beyond the
end of the collection. We now explain the protocol: Following the permission interpre-
tation of separation logic, each piece of heap space is associated with an unforgeable
permission to access this space2. Such permissions are abstract entities; they are not
represented or checked at runtime, and are only used in static verification rules. Ac-
cording to our protocol, when an iterator over collection c gets created, the caller of
c.iterator() temporarily abandons the access permission for c. Iteration is then gov-
erned by a three-state protocol. The solid state transitions in the picture are associated
with method calls. For instance, in the ready-state the method it.hasNext() can be
called an arbitrary number of times. When it.hasNext() returns true, the iterator client
has the option to either move to the readyForNext-state or stay in the ready-state. Once
in the readyForNext-state, the iterator client may call it.next(). Note that the proto-
col enforces that it.next() can only be called after it.hasNext() has returned true at
least once. This policy prevents runtime exceptions due to iterations beyond the end of

1Such interleaving actions may execute in the same thread as the iterator.
2We use the words permission, access right, access ticket interchangeably.
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the collection (NoSuchElementException in Java). Calling it.next() takes the iterator
client into the readyForRemove-state, and furthermore gives the client permission to ac-
cess the space that is associated with the returned collection element. There are two ways
to go on from the readyForRemove-state: either remove the previously returned element
from the collection by calling it.remove() (in this case the access right for the removed
element stays with the client), or abandon the access right for the previously returned ele-
ment. The latter state transition is not associated with a method call or any other concrete
runtime event, and for that reason we have represented it in the picture by a dashed arrow.
At runtime, this dashed state transition “happens” somewhere between the last access to
the state of the previously returned collection element, and the first concrete event that
is enabled in the ready-state or in a state that can be reached from the ready-state by a
sequence of dashed transitions.

We now express this protocol as a contract in our specification language [HH08a],
which is based on intuitionistic separation logic [IO01, Rey02, PB05]. Compared to stan-
dard presentations of separation logic, a peculiarity of [HH08a] is that we define logical
consequence proof-theoretically, using a natural deduction calculus that is common to
the (affine) logic of bunched implication (BI) [OP99] and (affine) linear logic [Gir87].
Our specification language has just one implication, namely -* (called magic wand, sep-
arating implication or resource implication in BI, and linear implication in linear logic).
Compared to full BI, having just one implication has the advantage that it simplifies the
natural deduction rules, because no bunched contexts are needed. The usual intuitive in-
terpretations of the linear logic operators (as for instance explained in [Wad93], and as
we explain below) are sound with respect to the Kripke resource semantics of separa-
tion logic. In particular, we can soundly represent state transitions by linear implications,
as advocated by [Gir95] in Section 1.1.4. We find that the linear logic interpretation of
the logical connectives very intuitively relates to the so-called “permission-reading” of
separation logic.

Here is the Iterator interface that formalizes Figure 1:

interface Collection {

//@ req this.space; ens result.ready;
Iterator/*@<this>@*/ iterator();

}

interface Iterator/*@<Collection iteratee>@*/ {

//@ pred ready;
//@ pred readyForNext;
//@ pred readyForRemove<Object element>;

//@ axiom ready -* iteratee.space;
//@ axiom (fa Object e)(readyForRemove<e> * e.space -* ready);

//@ req ready; ens ready & (result -* readyForNext);
boolean hasNext();

//@ req readyForNext; ens readyForRemove<result> * result.space;
Object next();
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//@ req readyForRemove<Object>; ens ready;
void remove();

}

This interface declares three heap predicates ready, readyForNext and readyForRemove.
Interface implementations must define these predicates in terms of concrete separation
logic formulas. The predicate definitions must be such that the two class axioms are
tautologically true, and that the methods satisfy their contracts (after replacing abstract
predicate symbols in method contracts by concrete predicate definitions). In method con-
tracts, the keyword req indicates the beginning of the precondition (aka requires-clause),
and the keyword ens the beginning of the postcondition (aka ensures-clause). Each class
extends a generic predicate space, which has a default definition in the Object class.
This predicate should define the heap space that is associated with an object — often
consisting of the object fields only, but in the case of collections sometimes also includ-
ing the object spaces of the collection elements. Reference types and predicates may be
parametrized by values. For instance, the Iterator class is parametrized by the collec-
tion, and the readyForRemove predicate is parametrized by the collection element that is
ready to be removed. Parameters of types and predicates are logical variables, i.e., in con-
trast to program variables they are immutable. The resource conjunction F * G expresses
that both resources F and G are independently available: using either of these resources
leaves the other one intact. The &-operator represents choice. If F & G holds, then F and
G are available, but are interdependent: using either one of them destroys the other, too.
The &-operator can represent non-deterministic state transitions. This is exhibited in the
postcondition of hasNext(), which says that one can either stay in the ready state, or
move on to the readyForNext state if the result of hasNext() was true. The resource
implication F -*G grants the right to consume F yielding G in return. For instance, the
first axiom in the Iterator interface says that one can always leave the ready state and
in return get the full access permission on the underlying collection back. The second
axiom says that one can always leave the state readyForRemove<e> and in return get
into the ready state, provided one also abandons the permission to access the heap space
associated with element e. Note how state transitions are directly represented by linear
implications -*. Boolean expressions e are treated as copyable resources, i.e., they satisfy
e -* (e * e). An example of a boolean expression is the result-variable in hasNext()’s
postcondition3.

The basic iterator protocol above has several shortcomings: it does not support mul-
tiple read-only iterators over the same collection, it does not support unrestricted access
to immutable collection elements4, and it does not support collections where the element
access rights stay with the elements rather than being governed by the collection. In the

3For separation logic experts, we note that each -* in the iterator interface can equivalently be repre-
sented by⇒: in the postcondition of hasNext() because the antecedent is pure, and in the axioms because
in intuitionistic separation logic true |= F ⇒ G iff true |= F -* G. In the definition of the Iterator
predicates (see Figure 9 and the definition of diff on page 70), however, we use a true resource implication.

4We mean persistent immutability. By persistently immutable state, we mean state that stays immutable
forever. In contrast, state that is associated with a fractional permission is temporarily immutable and may
turn mutable again later.
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remainder of this paper, we refine the basic protocol to address these shortcomings.

2 A Variant of Separation Logic for Java

We sketch our system from [HH08a, HHH08], which is based on intuitionistic separation
logic.

We distinguish between values and specification values. The former include inte-
gers n, booleans b and read-only variables x. The latter, in addition, include fractional
permissions [Boy03], which may occur in contracts and as type arguments, but not in
executable code.

n ∈ Int (integers) b ∈ Bool (booleans) x ∈ Var (logical variables)
v ∈ Val ::= b | n | x (values)
π ∈ SpecVal ::= v | 1 | split(π) (specification values)
Derived form: π

2n
∆= splitn(π)

Fractional permissions are binary fractions (i.e., fractions of the form 1
2n where n≥ 0)

in the interval (0,1]5. Fractional permissions have type perm. Predicates and types may
be parametrized by fractional permissions. As usual [BOCP05], fractional permissions
are arguments of the points-to predicate, in order to govern access rights : v. f π7→ e asserts
that v. f contains e and grants π-access to the field v. f . Writing the field requires 1-access,
and reading it requires π-access for some π . The verification system ensures that, at each
point in time, the sum of all fractional permissions for the same heap location is at most
1. As a result, the system prevents read-write and write-write conflicts, while permitting
concurrent reads. The key for flexibly enforcing this global invariant is the split-merge
law6:

v. f π7→ e *-* (v. f
π/27−→ e * v. f

π/27−→ e)

Interfaces and classes can declare predicates. Semantically, these are predicates over
heaps with at least one additional argument of type Object — the receiver. Predicates can
be extended in subclasses in order to account for extended object state. Semantically, a
predicate extension for predicate P defined in class C gets *-conjoined with the predicate
extensions for P in C’s superclasses.

P ∈ PredId κ ∈ Pred ::= P | P@C

The qualified predicate v.P@C<π̄> represents the conjunction of all predicate extensions
for P in C’s superclasses, up to and including C. The unqualified predicate v.P<π̄> is
equivalent to v.P@C<π̄>, where C is v’s dynamic class. Our structured way of extending

5Most articles on fractional permissions use arbitrary fractions in the interval (0,1]. We use binary
fractions and the split/merge law in order to avoid full rational arithmetic. Note that this way we can still
split permissions into arbitrary numbers of permissions. For instance, we can split a 1-permission into three
read-only permissions, namely one 1

2 -permission and two 1
4 -permissions.

6 *-* is bi-directional resource implication, and defined as a derived form on the following page.
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predicates facilitates modular verification (preventing re-verification of inherited meth-
ods), and is inspired by the so-called “stack of class frames” [DF04, BDF+04].

Expressions are built from values and read-write variables, using a set of operators
that includes standard relational and logical operators, and an operator C isclassof v
that returns true iff C is v’s dynamic class.

op ∈ Op ⊇ {==,!=,!,&,|} ∪ {C isclassof |C ∈ ClassId} (boolean operators)

` ∈ RdWrVar (stack variables) e ∈ Exp ::= π | ` | op(ē) (expressions)

Formulas are built from boolean expressions, the points-to predicate and defined predi-
cates, using a small set of logical operators.

lop ∈ {*,-*,&} (logical operators) qt ∈ {ex,fa} (quantifiers)

F ∈ Formula ::= e | v. f π7→ e | v.κ<π̄> | F lop F | (qt T x)(F) (logical formulas)

v. f π7→ T ∆= (ex T x)(v. f π7→ x)
v.κ<π̄,T, π̄ ′>

∆= (ex T x)(v.κ<π̄,x, π̄ ′>)
F *-*G ∆= (F -*G) & (G -*F)

F ispartof G ∆= G -* (F * (F -*G))

Appendix A presents a typed variant of the standard natural deduction rules for (affine)
linear logic (see, e.g., [Wad93] for a natural deduction presentation of linear logic). These
are also the standard rules of the logic of bunched implication (BI) [OP99], as the natural
deduction rules for linear logic and BI coincide for our restricted set of logical operators.
Furthermore, the appendix presents axioms that capture specific properties of our partic-
ular model, namely typed heaps with subclassing and extensible abstract predicates. The
appendix also presents Hoare rules for a small command language. These are standard
separation logic rules, although we omit some structural rules that we do not need. The
semantic interpretation of our formula language is standard and detailed in our techni-
cal report [HH08b]. There we also prove the soundness of the axioms with respect to
the semantic model, as well as soundness of the Hoare rules: verified programs are par-
tially correct, data-race free and never dereference null. For this paper (and perhaps for
type-state protocols in general) the proof rules presented in the appendix are sufficient,
although not complete with respect to the semantic model.

We assume that the Object class contains a default declaration of the space-predicate,
as shown at the top of Figure 2. This predicate is meant to be extended in subclasses.
Note that the axiom in Object imposes a constraint on the way subclasses may extend
the space-predicate. In the axiom, we have omitted a leading universal quantifier over p.
By convention, free variables in class axioms that are not bound by class parameters are
universally quantified in front of the axiom. The axiom says that we can split/merge the
space-predicate based on its permission parameter, just like points-to. This is not sat-
isfied by all formulas (e.g., usually not satisfied by formulas that contain disjunctions or
existentials with multiple witnesses), but is for instance satisfied by formulas of the shape
space<p> = this. f1

p7→ T1 * · · · * this. fn
p7→ Tn. In technical terms, sufficient criteria

for predicates to satisfy a split/merge-axiom is that their defining formulas are “precise”
or “supported” in the sense of [OYR04].
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class Object {

//@ pred space<perm p> = true;

//@ axiom space<p> *-* (space<p/2> * space<p/2>);

}

final class MutableInteger {

private int x;

//@ pred space<perm p> = x
p7−→ int;

//@ ens space<1>;

public MutableInteger(int x) { this.x = x; }

//@ <perm p> req space<p>; ens space<p>;

public int get() { return x; }

//@ req space<1>; ens space<1>;

void set(int x) { this.x = x; }

}

final class Integer {

private int x;

//@ pred space<perm p> = (ex perm q)(x
q7−→ int);

//@ axiom (fa perm p,q)(space<p> *-* space<q>);

//@ <perm p> ens space<p>;

public Integer(int x) { this.x = x; }

//@ <perm p> req space<p>; ens space<p>;

public int get() { return x; }

}

Figure 2: The Object class, and classes for mutable and immutable integer objects

Figure 2 also presents classes for mutable and immutable integer objects, which we
will use in examples throughout this paper. In MutableInteger, we define the space-
predicate as the points-to predicate to the object’s int-field. The class axiom in Object

trivially holds by the split/merge for points-to (see page 2 or axiom (Ax Split/Merge) on
page 80). For immutable Integer objects, we encode immutability by existentially quan-
tifying over a fractional permission — a standard encoding of immutability in terms of
fractional permissions. Using the split/merge law and the natural deduction rules for exis-
tentials, one can show that (ex perm q)(x

q7−→ int) is equivalent to (ex perm q)(x
q7−→

int) * (ex perm q)(x
q7−→ int). As a result, the access permission for the heap space

associated with immutable Integers is copyable. This is captured by the class axiom in
Integer, which allows to replace v.space<p> by v.space<q> for immutable Integers v
and any permission p and q. In method contracts, note that we explicitly quantify over
auxiliary variables, enclosing quantifiers in angle brackets in front of method declarations
(analogously to type parameters in Java).

3 Iterator Protocols

Protocol 1 — Permission-parametrized Iterator Type

Our first protocol parametrizes the Iterator interface by a fractional permission:

interface Collection {

//@ req space<1> * e.space<1>; ens space<1>;
void add(Object e);
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//@ <perm p> req space<p>; ens result.ready;
Iterator/*@<p,this>@*/ iterator();

}

interface Iterator/*@<perm p, Collection iteratee>@*/ {

//@ pred ready;
//@ pred readyForNext;
//@ pred readyForRemove<Object element>;

//@ axiom ready -* iteratee.space<p>;
//@ axiom readyForRemove<e> * e.space<p> -* ready;

//@ req ready; ens ready & (result -* readyForNext);
boolean hasNext();

//@ req readyForNext; ens readyForRemove<result> * result.space<p>;
Object next();

//@ req readyForRemove<Object> * p==1; ens ready;
void remove();

}

To obtain the interface for a read-write iterator, one instantiates the permission parameter
by 1. To obtain the interface for a read-only iterator, one instantiates the permission
parameter by a fraction that is not known to be 1. Note that remove() can only be called
on read-write iterators, because p==1 is part of the precondition for remove().

Figure 3 shows proof outlines for several clients of this interface (see the Hoare
rules on page 80 for reference). The first client creates a read-write iterator it of type
Iterator<1,c> over a collection c of mutable integer objects. The client then resets a
collection element to 42 and removes another collection element. As a minor detail, note
the application of (Ax Null) after the declaration of y. This axiom says that predicates
with null-receivers (e.g., null.space<1>) are equivalent to true, by definition. In the
example, the axiom applies because variable y is initialized with its default value null7.
(Ax Null) turns out quite convenient in proofs. Intuitively, (Ax Null) is sound because no
false facts can be derived from predicates with null-receivers. In particular, such predi-
cates cannot be opened, because axiom (Ax Open/Close) only applies to predicates with
non-null receivers (more specifically, to predicates whose receiver is this).

The second client in Figure 3 creates two read-only iterators it1 and it2 of type
Iterator<1/2,c> over a single collection c of mutable integer objects. Neither it1 nor
it2 can mutate or remove collection elements, but they can both retrieve and read ele-
ments. The third client creates an iterator it of type Iterator<1,c> over a collection
of immutable integer objects. While the iteration is in progress, the immutable Integer

object zero is accessed both through a direct reference to zero and through the iter-
ator it. This is facilitated by the axiom in the Integer class, which is used to convert
zero.space<1/2> to zero.space<1>. Note that for collections over mutable integer ob-
jects, the proof system forbids accessing collection elements directly while a read-write

7Our operational semantics (omitted in this paper) automatically initializes local variables with default
values, which is convenient but not essential.
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iterator is in progress.

We remark that the use of class axioms is not essential for expressing this protocol.
Class axioms can be avoided by enriching the postconditions of Collection.iterator()
and Iterator.next(). For instance, we could avoid the second class axiom if we “*-
conjoined” this axiom with the postcondition of next():

//@ req readyForNext;
//@ ens readyForRemove<result> * result.space<p>
//@ * (result.space<p> * readyForRemove<result> -* ready);
Object next();

Technically, the enriched postcondition is slightly weaker than the class axiom, because
class axioms can be used arbitrarily often whereas postconditions can only be used once.
However, this does not seem to restrict practical iterator clients because the class axiom
is not meant to be used more often than next() is called.

Protocol 2 — Supporting Shallow Collections

In Protocol 1, access to mutable collection elements is governed by the collection. This
may sometimes be inappropriate. Consider, for instance, a collection that represents a
registry of mutable elements. Here, a good architecture may let the collection handle the
adding and removing of elements, while leaving the element access rights with the client
who registered the element.

For the sake of discussion, let’s call collections that do not have access to their el-
ements shallow collections, and collections that govern access to their elements deep
collections. It is likely that most of the time even shallow collections need access to part
of their elements’ states—for instance the key in case of map entries. To safely share
element state between a collection and its clients, the shared state (e.g., the key of a map
entry) has to be immutable. We therefore introduce a second predicate ispace in the
Object class to represent the immutable part of an object space. This is shown in Fig-
ure 4, together with a MapEntry class, where the key-field constitutes the immutable part
and the val-field the mutable part. An axiom in the Object class formalizes that the
immutable space is copyable.

In order to have a uniform type for deep and shallow collections, we parametrize the
collection type by a boolean flag isdeep. When we instantiate this flag by true, we
obtain a deep collection. Instantiating isdeep by false results in a shallow collection
where the access rights to mutable parts of collection elements remain with the elements.

interface Collection/*@<boolean isdeep>@*/ {

//@ req space<1> * e.ispace * (isdeep -* e.space<1>); ens space<1>;
void add(Object e);

//@ <perm p> req space<p>; ens result.ready;
Iterator/*@<p,isdeep,this>@*/ iterator();

}
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Read-write iterator:
Collection c = new List();

{ c.space<1> }

MutableInteger i0 = new MutableInteger(0);

{ i0.space<1> * c.space<1> }

c.add(i0);

{ c.space<1> }

MutableInteger i1 = new MutableInteger(1);

c.add(i1);

{ c.space<1> }

Iterator<1,c> it = c.iterator();

{ it.ready }

if ( it.hasNext() ) {

{ it.readyForNext }

MutableInteger x = (MutableInteger) it.next();

{ it.readyForRemove<x> * x.space<1> }

x.set(42);

{ it.readyForRemove<x> * x.space<1> }

{ it.ready } (by Iterator axiom)

} { it.ready }

MutableInteger y;

{ it.ready * y.space<1> } (using (Ax Null))
if ( it.hasNext() ) {

{ it.readyForNext * y.space<1> }

y = (MutableInteger) it.next();

{ it.readyForRemove<y> * y.space<1> }

it.remove();

{ it.ready * y.space<1> }

} { it.ready * y.space<1> }

{ c.space<1> * y.space<1> } (by Iterator axiom)

Concurrent read-only iterators:
Collection c = new List();

{ c.space<1> }

MutableInteger i = new MutableInteger(0);

{ i.space<1> * c.space<1> }

c.add(i);

{ c.space<1> }

{ c.space<1/2> * c.space<1/2> } (by Object axiom)

Iterator<1/2,c> it1 = c.iterator();

{ it1.ready * c.space<1/2> }

Iterator<1/2,c> it2 = c.iterator();

{ it1.ready * it2.ready }

if ( it1.hasNext() & it2.hasNext() ) {

{ it1.readyForNext * it2.readyForNext }

MutableInteger x1 = (MutableInteger) it1.next();

MutableInteger x2 = (MutableInteger) it2.next();

{ it1.readyForRemove<x1> * x1.space<1/2> *

it2.readyForRemove<x2> * x2.space<1/2> }

x1.get(); x2.get();

{ it1.readyForRemove<x1> * x1.space<1/2> *

it2.readyForRemove<x2> * x2.space<1/2> }

{ it1.ready * it2.ready } (by Iterator axiom)

} { it1.ready * it2.ready }

{ c.space<1/2> * c.space<1/2> } (by Iterator axiom)

{ c.space<1> } (by Object axiom)

Iterator over a collection of immutable elements:
Collection c = new List();

{ c.space<1> }

Integer zero = new Integer(0);

{ c.space<1> * zero.space<1> }

{ c.space<1> * zero.space<1/2> * zero.space<1/2> } (by Object axiom)

{ c.space<1> * zero.space<1> * zero.space<1> } (by Integer axiom)

c.add(zero);

{ c.space<1> * zero.space<1> }

Iterator<1,c> it = c.iterator();

{ it.ready * zero.space<1> }

Integer x;

{ it.ready * zero.space<1> * x.space<1> } (using (Ax Null))
if ( it.hasNext() ) {

{ it.readyForNext * zero.space<1> * x.space<1> }

x = (Integer) it.next();

{ it.readyForRemove<x> * zero.space<1> * x.space<1> }

x.get(); zero.get();

{ it.readyForRemove<x> * zero.space<1> * x.space<1> }

{ it.ready * zero.space<1> * x.space<1> } (by Iterator axiom)

} { it.ready * zero.space<1> * x.space<1> }

{ c.space<1> * zero.space<1> * x.space<1> } (by Iterator axiom)

Figure 3: Instances of Protocol 1
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class Object {

//@ pred space<perm p> = true; // mutable part

//@ axiom space<p> *-* (space<p/2> * space<p/2>);

//@ pred ispace = true; // immutable part

//@ axiom ispace -* (ispace * ispace);

}

final class MapEntry {

private int key; private int val;

//@ pred ispace = (ex perm p)(key
p7−→ int);

//@ pred space<perm p> = val
p7−→ int

//@ ens ispace * space<1>;

public MapEntry(int key, int val) { this.key = key; this.val = val; }

//@ req ispace;

public getKey() { return key; }

//@ <perm p> req space<p>; ens space<p>;

public getVal() { return val; }

//@ req space<1>; ens space<1>;

public setVal(int x) { val = x; }

}

Figure 4: Partitioning the Object space into mutable and immutable part

Note that c.add(e) only consumes the access right for e if isdeep==true.

The iterator protocol associated with a deep collection (as obtained by instantiating the
parameter isdeep of the Iterator type to true) is essentially identical to Protocol 1.
For shallow collections (obtained by instantiating isdeep to false), iterators are never
allowed to access the mutable part of element states through iterators:

interface
Iterator/*@<perm p, boolean isdeep, Collection<isdeep> iteratee>@*/ {

//@ pred ready;
//@ pred readyForNext;
//@ pred readyForRemove<Object element>;

//@ axiom ready -* iteratee.space<p>;
//@ axiom readyForRemove<e> * (isdeep -* e.space<p>) -* ready;

//@ req ready; ens ready & (result -* readyForNext);
boolean hasNext();

//@ req readyForNext;
//@ ens readyForRemove<result> * result.ispace
//@ * (isdeep -* result.space<p>);
Object next();

//@ req readyForRemove<Object> * p==1; ens ready;
void remove();

}

Figure 5 shows a client that creates a shallow collection c of map entries, and an it-
erator over c. The collection has type Collection<false> and the iterator has type
Iterator<1,false,c>. The client mutates the value of one of the map entries e through
a direct reference to e, while simultaneously removing e from the collection through the
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Collection<false> c = new List<false>();

{ c.space<1> }

MapEntry e = new MapEntry(0,42);

{ c.space<1> * e.space<1> * e.ispace }

{ c.space<1> * e.space<1> * e.ispace * e.ispace } (by Object axiom for ispace)

c.add(e)

{ c.space<1> * e.space<1> * e.ispace }

Iterator<1,false,c> it = c.iterator();

{ it.ready * e.space<1> * e.ispace }

if ( it.hasNext() ) {

{ it.readyForNext * e.space<1> * e.ispace }

MapEntry x = (MapEntry) it.next();

{ it.readyForRemove<x> * x.ispace * e.space<1> * e.ispace }

e.getKey(); e.setVal(21);

if (x.getKey() == 0) { it.remove(); }

{ it.ready * x.ispace * e.space<1> * e.ispace }

} { it.ready * e.space<1> * e.ispace }

{ c.space<1> * e.space<1> * e.ispace }

Figure 5: An instance of Protocol 2: a shallow iterator

iterator.

Protocol 3 — Permission-parametrized Iterator States

A slightly more flexible protocol parametrizes the iterator states instead of the iterator
type. With this parametrization, we can postulate the following additional iterator axiom:

iteratee.space<1/2> * ready<1/2> -* ready<1>

This axiom allows converting a read-only iterator to a read-write iterator when other con-
current read-only iterators have terminated. Such a policy is somewhat closer to the policy
that Java’s library implementations of iterators enforce dynamically.

interface Collection {

//@ <perm p> req space<p>; ens result.ready<p>;
Iterator/*@<this>@*/ iterator(); }

interface Iterator/*@<Collection iteratee>@*/ {

//@ pred ready<perm p>;
//@ pred readyForNext<perm p>;
//@ pred readyForRemove<perm p, Object element>;

//@ axiom ready<p> -* iteratee.space<p>;
//@ axiom readyForRemove<p,e> * e.space<p> -* ready<p>;
//@ axiom iteratee.space<1/2> * ready<1/2> -* ready<1>;

//@ <perm p>
//@ req ready<p>; ens ready<p> & (result -* readyForNext<p>);
boolean hasNext();

//@ <perm p>
//@ req readyForNext<p>; ens readyForRemove<p,result> * result.space<p>;
Object next();

//@ req readyForRemove<1,Object>; ens ready<1>;
void remove(); }
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Collection c = . . .
{ c.space<1> }

{ c.space<1/2> * c.space<1/2> } (by Object axiom)

Iterator<c> it1 = c.iterator();

{ it1.ready<1/2> * c.space<1/2> }

Iterator<c> it2 = c.iterator();

{ it1.ready<1/2> * it2.ready<1/2> }

if ( it1.hasNext() & it2.hasNext() ) {

{ it1.readyForNext<1/2> * it2.readyForNext<1/2> }

MutableInteger x1 = (MutableInteger) it1.next();

MutableInteger x2 = (MutableInteger) it2.next();

{ it1.readyForRemove<1/2,x1> * x1.space<1/2> *

it2.readyForRemove<1/2,x2> * x2.space<1/2> }

x1.get(); x2.get();

{ it1.readyForRemove<1/2,x1> * x1.space<1/2> *

it2.readyForRemove<1/2,x2> * x2.space<1/2> }

{ it1.ready<1/2> * it2.ready<1/2> } (by Iterator axiom)

} { it1.ready<1/2> * it2.ready<1/2> }

{ c.space<1/2> * it2.ready<1/2> } (by Iterator axiom)

{ it2.ready<1> } (by the third Iterator axiom)

if ( it2.hasNext() ) {

{ it2.readyForNext<1> }

MutableInteger x = (MutableInteger) it2.next();

{ it2.readyForRemove<1,x> * x.space<1> }

x.set(42);

{ it2.readyForRemove<1,x> * x.space<1> }

{ it2.ready<1> } (by Iterator axiom)

} { it2.ready<1> }

{ c.space<1> } (by Iterator axiom)

Figure 6: An Instance of Protocol 3

Like in Protocol 2, we could add a boolean flag as a type parameter in order to support
iterators over shallow collections, which we have omitted for simplicity.

Figure 6 shows a client that creates two concurrent read-only iterators it1 and it2

over a collection c. After it1 stops iterating, it2 starts removing and mutating collection
elements. Note that, in the third iterator axiom, we have chosen the constant fraction 1/2

instead of stating a similar axiom that uses a permission variable8. This does not mean
that the the protocol only works for two concurrent read-only iterators. The choice of 1/2
merely imposes a certain discipline on the order in which axioms are applied in program
proofs. If, for instance, we want to verify a client with three concurrent read-only iterators
it1, it2 and it3, the third of which becomes read-write after it1 and it2 stop iterating,
the program proof needs to assign the fraction 1/2 to it3. Then, when it1 and it2 are
in state ready<1/4> and it3 is in state ready<1/2>, we can first apply the first iterator
axiom to it1 and it2 in order to obtain c.space<1/4> * c.space<1/4>, then apply
the split/merge axiom in Object to obtain c.space<1/2>, and finally apply the third
iterator axiom to obtain it3.ready<1>.

8In the proof of the iterator implementation, we make use of the fact that we formulate the axiom for 1
2 .

See proof of Lemma 6.
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final class Node {

/*@ spec public @*/ Object val;

/*@ spec public @*/ Node next;

//@ spec public pred space<perm p> =

//@ valspace<p,this> * nextspace<p,this>;

//@ <perm p> req val.space<p> * next.space<p>; ens space<p>;

Node(Object val, Node next) { val = val; next = next; }

//@ req val<1, >; ens val<1, val>;

public void setVal(Object val) { val = val; }

//@ req next<1, >; ens next<1, next>;

public void setNext(Node next) { next = next; }

//@ <perm p, Object x> req val<p,x>; ens val<p,x> * result==x;

public Object getVal() { return val; }

//@ <perm p, Node x> req next<p,x>; ens next<p,x> * result==x;

public Node getNext() { return next; }

}

Figure 7: The Node class

4 Iterator Implementations

We provide linked list implementations for Protocols 1 and 3, and sketch the proofs that
the implementations satisfy their interfaces. The method implementations are identical in
both cases, but the predicate definitions differ. We omit the implementation of Protocol 2,
because its proof is not essentially different from Protocol 1, but heavier in notation.

The Node class9 is shown in Figure 7. It makes use of the spec public modifier for
fields and predicates, which is syntactic sugar:

• Declaring a field f spec public introduces a predicate f<p,x>, where p is the
access permission for this field and x is the value contained in f :

spec public T f ; ∆=
T f ;
pred f<perm p,T x>=this. f

p7→ x;
axiom f<p,x> *-* this. f

p7→ x;

• Declaring a predicate spec public exports its definition as an axiom. For predicate
definitions in class C extending D:

spec public pred P<T̄ x̄>=F ; ∆=
pred P<T̄ x̄>=F ;
axiom P@C<x̄> *-* (F * P@D<x̄>);

In the definition of the space-predicate in Node, we use helper predicates valspace<p,x>
and nextspace<p,x>. These predicates are defined in Figure 8, together with other helper
predicates. The figure associates each helper predicate with a picture and a separation
logic formula. The separation logic formula is the official definition, but is really just a
textual representation of the depicted heap space.

9For Protocol 2, Node would need to be parametrized by a boolean flag isdeep.
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Legend:
o non-null object o
o possibly-null object o

o
f field o. f

o o.space

o object reference o

valspace<perm p,Node x> :

x

val 
(ex Object o)(x.val<p,o> * o.space<p>)

nextspace<perm p,Node x> :
x
next (ex Node n)(x.next<p,n> * n.space<p>)

tail<perm p,Node x> :

x

x!=null * x.space<p>

tail1<perm p,Node x,Node y> :

yx

x!=null * valspace<p,x> *
x.next<p,y> * y.space<p>

tail2<perm p,Node x,Node y> :

yx

x!=null * valspace<p,x> *
x.next<p,y> * tail<p,y>

tail3<perm p,Node x,Node y,Node z> :

zyx

x!=null * valspace<p,x> * x.next<p,y> * tail1<p,y,z>

tail4<perm p,Node x,Node y,Node z,Object e> :

zyx

e

x!=null * valspace<p,x> * x.next<p,y> * y!=null * y.val<p,e> *
y.next<p,z> * z.space<p>

Figure 8: Helper predicates
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The following abbreviation is also handy. Intuitively, the formula rest(p,x,C) char-
acterizes the heap space difference between x.space<p> (i.e., the heap space associ-
ated with object x down to its dynamic class) and x.space@C<p> (i.e., the heap space
associated with object x down to class C). In particular, we have (x.space@C<p> ∗
rest(p,x,C)) -* x.space<p>, by the linear modus ponens.

rest(p,x,C) ∆= x.space@C<p> -* x.space<p>

Lemma 1

(a) {tail<p,x>}y=x.getNext();{tail1<p,x,y>}
(b) {tail2<p,x,y>}z=y.getNext();{tail3<p,x,y,z>}
(c) {tail3<p,x,y,z>}e=y.getVal();{tail4<p,x,y,z,e> * e.space<p>}
(d) {tail4<1,x,y,z, >}x.setNext(z);{tail1<1,x,z>}

Proof. By Hoare rules. �

Lemma 2

(a) tail1<p,x, > -* x.space<p>
(b) tail1<p,x,y> * y!=null -* tail2<p,x,y>
(c) tail4<p,x,y,z,e> * e.space<p> -* tail3<p,x,y,z>

Proof. By natural deduction rules. �

The following predicate represents the difference between y.space<p> and x.space<p>:

diff<perm p, Object y, Object x> ∆= x.space<p> -* y.space<p>

Lemma 3 x.space<p> * diff<p,y,x> -* y.space<p>

Implementing Interface 1

Figure 9 shows an implementation of the iterator interface for Protocol 1. Iterators have
read/write access to their own fields prev, cur and next, hence the access permission 1
for these fields the predicate definitions. The remainder of the predicate definitions are
best understood when matched with the pictures of the helper predicates (Figure 8). Note
that we have declared the ListIterator class final. Consequently, predicates of the
form v.P@ListIterator<π̄> are equivalent to v.P<π̄>. Our proofs make use of this prop-
erty when establishing abstract predicates in postconditions. If ListIterator were not
final, we would have to qualify predicates in postconditions by the class ListIterator
(unless the precondition requires the same predicate at method entry).

Figure 10 shows the proof outline for next(). We first translate the method body
to a form where intermediate values are assigned to read-only variables, because our
Hoare rules are formulated for such a program representation. The proof for next() is
straightforward given Lemma 1.
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class List implements Collection {

/*@ spec public @*/ Node header;

//@ spec public pred space<perm p> = (ex Node x)(
//@ header<p,x> * tail<p,x>);

//@ ens space<1>;
public List() { header = new Node(null,null); }

//@ <perm p, Node x> req header<p,x>; ens header<p,x> * result==x;
Node getHeader() { return header; } // a helper method

//@ <perm p> req space<p>; ens result.ready;
public Iterator/*@<p,this>@*/ iterator() {

return new ListIterator/*@<p,this>@*/(this);
}

}

final class ListIterator/*@<perm p, Collection iteratee>@*/
implements Iterator/*@<p,iteratee>@*/

{

/*@ spec public @*/ Node next, cur, prev;

//@ pred ready = prev<1,Node> * (ex Node y,z)(
//@ cur<1,y> * next<1,z> * tail1<p,y,z> * diff<p,iteratee,y>);

//@ pred readyForNext = prev<1,Node> * (ex Node y,z)(
//@ cur<1,y> * next<1,z> * tail2<p,y,z> * diff<p,iteratee,y>);

//@ pred readyForRemove<Object e> = (ex Node x,y,z)(
//@ prev<1,x> * cur<1,y> * next<1,z> *
//@ tail4<p,x,y,z,e> * diff<p,iteratee,x>);

//@ req iteratee.space<p> * list==iteratee; ens ready<p>;
ListIterator(List list) {

cur = list.getHeader(); next = cur.getNext();
}

//@ req ready; ens ready & (result -* readyForNext);
public boolean hasNext() {

return next != null;
}

//@ req readyForNext; ens readyForRemove<result> * result.space<p>;
public Object next() {

prev = cur; cur = next; next = next.getNext();
return cur.getVal();

}

//@ req readyForRemove<Object> * p==1; ens ready;
public void remove() {

prev.setNext(next); cur = prev;
}

}

Figure 9: An implementation for Protocol 1
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Expanded method body with pre/postcondition:
{ readyForNext }

i1=cur;
prev=i1;
i2=next;
cur=i2;
i3=next.getNext();
next=i3;
result=i2.getVal();
{ readyForRemove<result> * result.space<p> }

Proof outline:

{ readyForNext }
∴ (by definition of readyForNext@ListIterator)
{ prev<1,Node> * cur<1,y> * next<1,z> * tail2<p,y,z> * diff<p,iteratee,y> }

i1=cur;
{ prev<1,Node> * cur<1,i1> * next<1,z> * tail2<p,i1,z> * diff<p,iteratee,i1> }

prev=i1;
{ prev<1,i1> * cur<1,i1> * next<1,z> * tail2<p,i1,z> * diff<p,iteratee,i1> }

i2=next;
{ prev<1,i1> * cur<1,i1> * next<1,i2> * tail2<p,i1,i2> * diff<p,iteratee,i1> }

cur=i2;
{ prev<1,i1> * cur<1,i2> * next<1,i2> * tail2<p,i1,i2> * diff<p,iteratee,i1> }

i3=next.getNext(); (by Lemma 1(b))
{ prev<1,i1> * cur<1,i2> * next<1,i2> * tail3<p,i1,i2,i3> * diff<p,iteratee,i1> }

next=i3;
{ prev<1,i1> * cur<1,i2> * next<1,i3> * tail3<p,i1,i2,i3> * diff<p,iteratee,i1> }

result=i2.getVal(); (by Lemma 1(c))
{ prev<1,i1> * cur<1,i2> * next<1,i3> * tail4<p,i1,i2,i3,result> *
diff<p,iteratee,i1> * result.space<p> }

∴ (by definition of readyForRemove@ListIterator<result>)
{ result.space<p> * readyForRemove@ListIterator<result> }

∴ (because ListIterator is final)
{ result.space<p> * readyForRemove<p,result> }

Figure 10: Proof outline for next()
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The proofs for hasNext() and remove() are similarly straightforward, given Lem-
mas 1 and 2, and so is the proof of the first iterator axiom. All of these proofs leave the
diff-predicate untouched. The diff-predicate has to be “opened” in the proof of the it-
erator’s constructor (where the predicate is established), and in the proof of the axiom that
represents the dashed state transition from readyForRemove back to ready (where the
third argument of diff gets modified). Part (a) of the following lemma is what is needed
to prove the constructor, and (b) to prove the “readyForRemove-to-ready” axiom.

Lemma 4

(a) c.header<p,h> * h!=null * rest(p,c,List) -* diff<p,c,h>
(b) (tail3<p,x,y,z> * diff<p,c,x>) -* (tail1<p,y,z> * diff<p,c,y>)

Proof. By natural deduction. We provide details for the proof of part (b): By expanding
the definitions of tail3 and space, we obtain the following implications:

tail3<p,x,y,z> -* (valspace<p,x> * x.next<p,y> * tail1<p,y,z>) (1)

(valspace<p,x> * x.next<p,y> * y.space<p>) -* x.space<p> (2)

The following formulas can be verified by natural deduction:

A * (B -* C) * (A -* A′) * (B′ -* B) -* A′ * (B′ -* C) (3)

A * D * (D * B -* C) -* A * (B -* C) (4)

Now suppose that:

tail3<p,x,y,z> * diff<p,c,x>

Recall that diff<p,c,x> is defined as x.space<p> -* c.space<p>. Using (1), (2) and
(3), it follows that:

valspace<p,x> * x.next<p,y> * tail1<p,y,z>
* (valspace<p,x> * x.next<p,y> * y.space<p> -* c.space<p>)

Applying (4), we then obtain:

tail1<p,y,z> * (y.space<p> -* c.space<p>)

But this is equivalent to tail1<p,y,z> * diff<p,c,y>, by definition of diff. �
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Implementing Interface 3

Recall that, whereas Protocol 1 permission-parametrizes the iterator interface, Protocol 3
parametrizes the iterator states instead. The slightly modified parametrization does not
break any of our proofs for the implementation of Protocol 1. However, we need to refine
the predicate definitions in order to be able to prove the the additional iterator axiom:

iteratee.space<1/2> * ready<1/2> -* ready<1> (5)

To this end, we define the following auxiliary combinators:

double(F) ∆= F * F
bump(p,c,y) ∆= p!=1 * c.space<p> -* double(tail<p,y> * diff<p,c,y>)
bump′(p,c,y,z) ∆= p!=1 * c.space<p> -* double(tail1<p,y,z> * diff<p,c,y>)
maybump(F, p,c,y) ∆= (F * diff<p,c,y>) & bump(p,c,y)

Intuitively, the maybump-combinator provides the choice to either keep iterating normally
(first factor), or else pay c.space<p> in order to double the permission p associated with
the iterator (second factor). We define the iterator predicates as follows:

final class ListIterator/*@<Collection iteratee>@*/
implements Iterator/*@<iteratee>@*/

{

private Node next, cur, prev;

//@ pred ready<perm p> = prev<1,Node> * (ex Node y,z)(
//@ cur<1,y> * next<1,z> * maybump(tail1<p,y,z>, p, iteratee, y) );

//@ pred readyForNext<perm p> = prev<1,Node> * (ex Node y,z)(
//@ cur<1,y> * next<1,z> * maybump(tail2<p,y,z>, p, iteratee, y) );

//@ pred readyForRemove<perm p, Object e> = (ex Node x,y,z)(
//@ prev<1,x> * cur<1,y> * next<1,z> *
//@ maybump(tail4<p,x,y,z,e>, p, iteratee, x) );

. . .

}

With these refined predicate definitions, class axiom (5) is readily proven. It is a conse-
quence of Lemma 6 below.

Lemma 5 (tail1<p,y,z> & bump(p,c,y)) -* bump′(p,c,y,z)

Proof. Observe that tail<p,y> implies (ex Node z)(tail1<p,y,z>). The lemma fol-
lows from this observation, using (Ax Share). �
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Lemma 6 c.space<1
2> * maybump(tail1<1

2 ,y,z>,
1
2 , c, y)

-* maybump(tail1<1,y,z>, 1, c, y)

Proof. By substituting the definition of maybump, we need to show:

c.space<1
2
> * ((tail1<1

2
,y,z> * diff<1

2
,c,y>) & bump(1

2 ,c,y))
-* ((tail1<1,y,z> * diff<1,c,y>) & bump(1,c,y))

By Lemma 5, it then suffices to show:

c.space<1
2
> * bump′(1

2 ,c,y,z)
-* ((tail1<1,y,z> * diff<1,c,y>) & bump(1,c,y))

Observe that bump(1,c,y) holds vacuously, because it is defined as an implication whose
antecedent is false. Therefore, it suffices to show:

c.space<1
2
> * bump′(1

2 ,c,y,z)
-* (tail1<1,y,z> * diff<1,c,y>)

Substituting the definition of bump′, it suffices to show:

c.space<1
2
> * (c.space<1

2
> -* double(tail1<1

2
,y,z> * diff<1

2
,c,y>))

-* (tail1<1,y,z> * diff<1,c,y>)

By modus ponens, it then suffices to show:

double(tail1<1
2
,y,z> * diff<1

2
,c,y>)

-* (tail1<1,y,z> * diff<1,c,y>)

This can easily be shown from the definitions of tail1 and diff by splitting and merging
fractions. �

The proofs of next(), hasNext(), remove() and the first iterator axiom are as for Pro-
tocol 1, because these proofs only touch the parts of the predicate definitions that coin-
cide for both protocols. In order to prove the constructor and the “readyForRemove-to-
ready” axiom, we have to modify Lemma 4 appropriately:

Lemma 7

(a) c.header<p,h> * tail<p,h> * rest(p,c,List) -* bump(p,c,h)
(b) maybump(tail3<p,x,y,z>, p, c, x) -* maybump(tail1<p,y,z>, p, c, y)
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Proof. By natural deduction. We sketch details for the proof of part (b): By Lemma 4(b),
it suffices to show the following:

( (tail3<p,x,y,z> * diff<p,c,x>) & bump(p,c,x) ) -* bump(p,c,y)

So suppose:

(tail3<p,x,y,z> * diff<p,c,x>) & bump(p,c,x)

By expanding bump and then tail, and then using axiom (Ax Share), we obtain:

p!=1 * c.space<p> -* double(tail1<p,x,y> * y!=null * diff<p,c,x>)

By similar reasoning as in the proof of Lemma 4(b), we then obtain:

p!=1 * c.space<p> -* double(y.space<p> * y!=null * diff<p,c,y>)

But this is the same as bump(p,c,y), by definitions of tail and bump. �

5 Related Work

Recently, iterators have served as a challenging case study for several verification systems,
namely, separation logic [Par05], higher-order separation logic [Kri06], a linear typestate
system [Bie06, BA07], and a linear type-and-effect system [BRZ07].

Parkinson [Par05] uses iterators as an example. He supports simultaneous read-only
iterators through counting permissions, rather than fractional permissions. He consid-
ers iterators over shallow collections, but unlike us does not consider deep collections as
well. His iterator interface does not have a remove() method, which is particularly in-
teresting for deep collections, because it is important that the collection passes the access
permission for removed elements to the remover. Parkinson’s proof of his iterator imple-
mentation is different from ours: it uses a lemma that is proven inductively, whereas our
proof is based on the natural deduction rules for linear logic without an induction rule.

Krishnaswami [Kri06] presents a protocol for iterators over linked lists using higher-
order separation logic. His collections are shallow and his iterators are read-only. His
protocol allows multiple iterators over a collection and enforces that all active iterators
are abandoned, once a new element is added to the collection. Technically, he achieves
this by parametrizing a (higher-order) predicate by a (first-order) predicate that represents
the state of a collection. Iterators that are created when the underlying collection is in a
certain state P may only be used as long as the collection is still in state P. The add()
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method does not preserve the collection state and hence invalidates all existing iterators.
This is a very elegant solution that makes use of the power of higher-order predicates.

Bierhoff and Aldrich [BA07] present a linear typestate system based on a fragment of
linear logic, which includes multiplicative conjunction, additive conjunction and additive
disjunction. It uses( as a separator between pre- and postconditions (but not as a logi-
cal connective that represents linear implication). Bierhoff and Aldrich use iterators as a
case study for their system [BA07, Bie06]. They support concurrent read-only iterators
through fractional permissions. Their protocols do not not support iterators over deep
collections with mutable collection elements, although [Bie06] supports read-only access
to collection elements that get returned by next(). Our protocol cannot be represented
in their system because their specification language lacks linear implication (needed to
represent the dashed readyForRemove-to-ready transition). Of course, they could add
linear implication to their language. They associate our second dashed transition (the one
that terminates an iteration) with the iterator’s finalize() method, and assume that a
checker would employ program analysis techniques to apply the finalize()-contract
without explicitly calling finalize(). In practice, this has the same effect as our first
iterator axiom. Neither of [BA07, Bie06] presents an iterator implementation, or a map-
ping of iterator state predicates to concrete definitions. To verify iterator implementations,
related verification systems employ recursive predicates and either induction [Par05] or
introduction and elimination rules for linear implication (this article) or both [Kri06]. Re-
cursive predicates, induction and linear implication are not supported by [BA07, Bie06],
and it is thus possible that [BA07, Bie06] is not expressive enough to verify iterator im-
plementations. Of course, it is likely that Bierhoff and Aldrich have deliberately avoided
such features (especially induction) because their system is designed as a lightweight
typestate system, rather than a full-blown program logic. As a minor remark, we point
out that a protocol like our Protocol 3 (on page 66) is not expressible in Bierhoff and
Aldrich’s system, as discussed in [Bie06]. Protocol 3 allows read-only iterators to turn
into read-write iterators when all other concurrent iterators over the same collection have
terminated. This is also allowed by the iterator specifications in [Par05] and [Kri06].

Boyland, Retert and Zhao [BRZ07] informally explain how to apply their linear type
and effect system (an extension of [BR05] with fractional permissions) to specify and
verify iterator protocols. Their system facilitates concurrent read-only iterators through
fractional permissions. The paper does not address iterators over deep collections. In
contrast to [BRZ07]’s Iterator interface, our Iterator interface is parametrized by the
underlying collection. As a result, in our system client methods and classes sometimes
need an auxiliary parameter (in angle brackets). Like us, [BRZ07] use linear implication
to represent the state transition that finalizes an iterator. They represent this linear impli-
cation as an effect on the iterator() method, whereas we choose to represent it as a
class axiom. Their linear implication operator (called “scepter”) has a different semantics
than separation logic’s magic wand, which we use10.

10A formal semantics for their system is presented in [Boy07], where Boyland explains that he wants a
more precise semantics of linear implication. For instance, the following formula is a semantic tautology
both for the magic wand and Boyland’s scepter: x. f 7→ 3 -* y. f 7→ 5 -* (x. f 7→ 3 * y. f 7→ 5). However,
the following formula is a semantic tautology for the magic wand but not for Boyland’s scepter: y. f 7→
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Compared to the related work discussed above, a technical contribution of this arti-
cle is support for iterators over deep collections. None of the protocols above allows
read/write access to collection elements that get returned by next(). Our protocols can
grant read/write access to such collection elements, and keep access to these elements un-
der control by requiring that access permissions get abandoned before the next collection
elements can be retrieved. We do not claim that the other logics cannot, in principle, ex-
press protocols for iterators over deep collections, but rather that other case studies with
iterators did not consider deep collections. In principle, iterator protocols over deep col-
lections are also expressible in separation logic with fractional permissions ([BOCP05]),
as our verification system is essentially a subsystem of separation logic with fractional
permissions. Furthermore, we believe that iterator protocols over deep collections are
expressible in higher-order separation logic (without fractional permissions), using Kr-
ishnaswami’s technique that employs higher-order predicates for read-sharing [Kri06]. As
discussed above, while Bierhoff and Aldrich’s linear typestate system [BA07] is suitable
for verifying iterator clients, it may not be expressive enough to verify iterator imple-
mentations (both over deep and shallow collections), as it lacks recursive predicates and
either induction or linear implication. However, we believe that, if recursive predicates
and linear implication were added to that system and if our class axioms for Iterator
were replaced by richer postconditions as discussed on page 63, then Protocol 1 (page 61)
for deep collections could be expressed and iterator clients and implementations could be
verified in Bierhoff and Aldrich’s system.

Our main motivation for defining logical consequence proof-theoretically was that this
seemed more amenable to automation than a model-theoretical definition. It is therefore
worthwhile discussing and comparing to work on automatic assertion checking for sep-
aration logic and related formalisms: One such line of work is rooted in the Smallfoot
tool [BCO05b, BCO05a], which has been the inspiration for various other research tools
[NDQC07, CDNQ08, DP08, JP08]. Among the latter, [CDNQ08] and [DP08] are par-
ticularly noteworthy here, as they specifically treat object-oriented languages. Smallfoot
restricts logical assertions to a decidable subset of separation logic. It supports a set of
built-in recursive predicates for lists and trees. In order to prove interesting programs,
several inductively proven lemmas are hard-wired into Smallfoot’s checking algorithm,
and are verified by hand in the meta-theory. An attractive aspect of our system is that we
can prove interesting list-manipulating programs without induction or relying on induc-
tively proven meta-lemmas. Being able to avoid induction seems particularly interesting
for automation. In our iterator implementation, the key for avoiding induction is the
use of linear implication. While Smallfoot and its above-mentioned successors do not
support linear implication, Jia and Walker’s Intuitionistic Linear Logic with Constraints
(ILC) does [JW06]. ILC is a verification system based on a linear logic proof theory that
is sound with respect to the separation logic model and, in that respect, is quite similar
to our system. ILC includes a verification condition generator that yields both classical
logic verification conditions (discharged by an SMT solver) and linear logic verification

42 -* y. f 7→ 5 -* (x. f 7→ 3 * y. f 7→ 5). We believe that the latter formula is not provable in our proof
theory either. Technically, Boyland’s semantics for the scepter combines ideas from proof theory and model
theory in a single definition.
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conditions. The latter are currently solved by an interactive linear logic prover, but Jia
and Walker report that research on automation is in progress. They also present a decid-
able sublanguage ILC−, achieving decidability by syntactically restricting linear logic’s
!-modality11. In particular, ILC−disallows formulas of the shape !(F -* G). This means
that our Iterator axioms do not fall into ILC−, as axioms in linear logic are repre-
sented by !-ed formulas (because they can be applied arbitrarily often). As discussed on
page 63, we could avoid axioms in the Iterator interface, but many of our Java axioms
in Appendix A do not fall into ILC− either. Thus, the automation of (fragments of) our
verification system remains interesting future work.

6 Conclusion

We have discussed several Iterator usage protocols that prevent concurrent modifica-
tions of the underlying collection, and have formalized them in a variant of separation
logic. From the point of view of iterator clients these protocols are quite similar to recent
protocols expressed in linear typestate systems [Bie06, BA07], but in addition support
disciplined use of iterators over deep collections, by employing linear implications to
represent state transitions that are not associated with method calls.

Separation logic provides a firm basis for verifying iterator implementations in addi-
tion to iterator clients. Standard soundness results for separation logic imply that veri-
fied programs satisfy certain global safety properties, notably, that verified multithreaded
programs are datarace-free. In particular, concurrent iterations over the same collection
cannot result in dataraces.

We note that verifying adherence to iterator usage protocols seems considerably easier
than verifying iterator implementations (as already remarked by [Kri06]). This is not
surprising, because implementing linked data structures is error prone and certainly much
harder than using iterators in a disciplined way. However, separation logic proofs for
linked data structures are very concrete and closely related to the kinds of pictures that
we all draw when we write pointer programs.

The automation of (fragments of) our verification system remains interesting future
work. We will see how far this can be pushed.

Acknowledgments. We thank the reviewers of this JOT article for their very careful re-
views that lead to many improvements. Furthermore, we thank Marieke Huisman and
Erik Poll for interesting discussions about this work, and the reviewers of the preceding
IWACO article for useful comments.

A Verification Rules
Natural Deduction Rules, Γ; F̄ ` G:

(Id)
Γ ` F̄ ,G : �
Γ; F̄ ,G ` G

(Ax)
Γ ` F Γ ` F : �

Γ; ` F

(* Intro)
Γ; F̄ ` H1 Γ; Ḡ ` H2

Γ; F̄ , Ḡ ` H1 * H2

(* Elim)
Γ; F̄ ` G1 * G2 Γ; Ē,G1,G2 ` H

Γ; F̄ , Ē ` H

(-* Intro)
Γ; F̄ ,G1 ` G2

Γ; F̄ ` G1 -*G2

11The !-modality promotes linear formulas to copyable formulas.
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(-* Elim)
Γ; F̄ ` H1 -*H2 Γ; Ḡ ` H1

Γ; F̄ , Ḡ ` H2

(& Intro)
Γ; F̄ ` G1 Γ; F̄ ` G2

Γ; F̄ ` G1 & G2

(& Elim 1)
Γ; F̄ ` G1 & G2

Γ; F̄ ` G1

(& Elim 2)
Γ; F̄ ` G1 & G2

Γ; F̄ ` G2

(Fa Intro)
x 6∈ F̄ Γ,x : T ; F̄ ` G

Γ; F̄ ` (fa T x)(G)

(Fa Elim)
Γ; F̄ ` (fa T x)(G) Γ ` π : T

Γ; F̄ ` G[π/x]

(Ex Intro)
Γ,x : T ` G : � Γ ` π : T Γ; F̄ ` G[π/x]

Γ; F̄ ` (ex T x)(G)

(Ex Elim) x 6∈ F̄ ,H
Γ; Ē ` (ex T x)(G) Γ,x : T ; F̄ ,G ` H

Γ; Ē, F̄ ` H

Java Axioms, Γ ` F:

(Ax True)

Γ ` true

(Ax False)

Γ ` false -*F

(Ax Pure)

Γ ` (e & F) -* (e * F)

(Ax Subst)
Γ ` e,e′ : T Γ,x : T ` F : �

Γ ` (F [e/x] * e == e′) -*F [e′/x]

(Ax Bool)
Γ |= !e1 | !e2 | e′

Γ ` (e1 * e2) -* e′

(Ax Split/Merge)

Γ ` v. f π7→ e *-* (v. f
π/27−→ e * v. f

π/27−→ e)

(Ax Cl) Γ ` π : t<π̄ ′>
axiom(t<π̄ ′>) = F

Γ ` F [π/this]

(Ax Open/Close) Γ ` this : C<π̄ ′>
pbody(P<π̄>,C<π̄ ′>) = F C<π̄ ′> extends D<π̄ ′′>

Γ ` this.P@C<π̄> *-* (F * this.P@D<π̄>)

(Ax Final)
Γ ` v : C<π̄> C is final

Γ `C isclassof v

(Ax Null)

Γ ` null.κ<π̄>

(Ax Sub Cl)
C � D

Γ ` v.P@D<π̄> ispartof v.P@C<π̄>

(Ax Sub Dyn)

Γ ` v.P@C<π̄> ispartof v.P<π̄>

(Ax Dyn)

Γ ` (v.P@C<π̄> * C isclassof v) -* v.P<π̄>

(Ax Share)
the hole in F [ ] is not to the left of a -*

Γ ` ( v. f π7→ e & F [(ex T x)(v. f π ′7→ x * G)] ) -* F [v. f π ′7→ e * G[e/x]]

where axiom(t<π̄>) ∆= *-conjunction of all axioms in t<π̄> and its supertypes
pbody(P<π̄>,C<π̄ ′>) ∆= F, if F is P<π̄>’s definition in C<π̄ ′> pbody(P<π̄>,C<π̄ ′>) ∆= true, otherwise
F [ ] is a formula with exactly one “hole”: F [ ] ::= [ ] | e | v. f π7→ e | v.κ<π̄> | F [ ] lop F | F lop F [ ] | (qt T x)(F [ ])
F [G] is the formula obtained by filling F [ ]’s hole with formula G (capturing free variables of G)

We assume that, prior to verification, commands have been transformed to a form, where all intermediate values are assigned to
read-only variables (ranged over by x):

c ∈ Cmd ::= hc;c | v
hc ∈HdCmd ::= T ` | x=` | `=v | x=op(v̄) | x=v. f | v. f =v | x=newC<π̄> | x=v.m(v̄) | if(v){c}else{c′}

Hoare Triples, Γ ` {F}c : T{G} and Γ ` {F}hc{G} a Γ′:

(Seq)
Γ ` {F}hc{H} a Γ′ Γ′ ` {H}c : T{G}

Γ ` {F}hc;c : T{G}

(Return)
Γ ` v : T Γ,result : T ` G : �

Γ ` {G[v/result]}v : T{G}

(Frame) RdWrVar(H)∩Modifies(hc) = /0
Γ ` H : � Γ ` {F}hc{G} a Γ′

Γ ` {F * H}hc{G * H} a Γ′

(Con)
Γ;F ` F ′ Γ ` {F ′}hc{G′} a Γ′ Γ′;G′ ` G

Γ ` {F}hc{G} a Γ′

(Aux Var)
Γ,x : T ` {F}hc{G} a Γ′,x : T

Γ ` {(ex T x)(F)}hc{(ex T x)(G)} a Γ′

(Var Dcl)
Γ ` T : �

Γ ` {true}T `{` == default(T )} a Γ, ` : T

(Get Var)
Γ ` ` : T

Γ ` {true}x=`{x == `} a Γ,x : T

(Set Var)
Γ ` v : Γ(`)

Γ ` {true}`=v{` == v} a Γ

(Op)
Γ ` op(v̄) : T

Γ ` {true}x=op(v̄){x == op(v̄)} a Γ,x : T

(Get)
Γ;F ` v. f π7→ w Γ ` v : V W f ∈ fld(V )

Γ ` {F}x=v. f{F * x == w} a Γ,x : W [v/this]

(Set)
Γ ` v : V W f ∈ fld(V ) Γ ` w : W [w/this]

Γ ` {v. f 17→W}v. f =w{v. f 17→ w} a Γ

(New) C<T̄ ȳ> is declared Γ ` π̄ : T̄ [π̄/ȳ]

init = �T f∈fld(C<π̄>)x. f 17→ default(T )

Γ ` {true}x=newC<π̄>{init * C isclassof x} a Γ,x : C<π̄>

(If)
Γ ` v : boolean Γ ` {F * v}c : void{G} Γ ` {F * !v}c′ : void{G}

Γ ` {F}if(v){c}else{c′}{G} a Γ
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(Call)
Γ ` v : V mtype(m,V ) = <T̄ z̄>req F ;ens G; U m(W̄ ȳ) Γ ` π̄ : T̄ [σ ] Γ ` w̄ : W̄ [σ ] σ = (v/this, π̄/z̄, w̄/ȳ)

Γ ` {v!=null * F [σ ]}x=v.m(w̄){G[σ ,x/result]} a Γ,x : U [σ ]
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