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An Operational Semantics including “Volatile”
for Safe Concurrency

John Boyland, University of Wisconsin–Milwaukee, USA

In this paper, we define a novel “write-key” operational semantics for a kernel lan-
guage with fork-join parallelism, synchronization and “volatile” fields. We prove that
programs that never suffer write-key errors are exactly those that are “data race free”
and also those that are “correctly synchronized” in the Java memory model. This
3-way equivalence is proved using Twelf.

1 INTRODUCTION

This work is motivated by the desire to define a type system for a Java-like language
to prevent data races. Data races are intrinsically a multi-threaded issue. However
a scalable type system or program analysis analyzes each method body separately,
using invariants and annotations to ensure that interactions follow desired patterns.
It is well known that deadlock can be prevented by requiring that mutexes be ac-
quired in strictly increasing order. Here we show how we can characterize programs
without data races in a similar way, that is without explicitly needing to refer to
multiple threads.

There are different understandings of what a data race is. At an intuitive level, a
data race occurs when an execution of a multi-threaded program leads to the point
where two conflicting accesses in two different threads occur “at the same time.”
Two accesses are conflicting if they are to the same object’s field and one of them
is a write. Somewhat more precisely, the current Java memory model (JMM) [17]
defines a “happens before” partial order; a program is correctly synchronized if in
all sequentially consistent executions, two conflicting accesses are always ordered by
“happens before.” Reading and writing of “volatile” fields affect the “happens be-
fore” order and thus whether a program is correctly synchronized. Reasoning about
data races (simultaneous conflicting accesses) or about “happens before” explicitly
involve reasoning about multiple threads at once.

This paper makes the following contributions:

• It defines a simple imperative language with Java-style (re-entrant) monitors,
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AN OPERATIONAL SEMANTICS INCLUDING “VOLATILE” FOR SAFE CONCURRENCY

volatile fields and fork-join parallelism. A novel aspect of the operational
semantics is that the running program uses “write keys” to simulate the “hap-
pens before” relation.

• The paper defines that a program is data-race free if no execution has a “write-
key error” in which a thread attempts to access a (non-volatile) field for which
it does not possess the write key.

• It is proved that this characterization is equivalent both to the intuitive con-
cept of lack of “simultaneous” conflicting accesses, and to the JMM-inspired
definition of “happens before”-ordered accesses. The proof is mechanically
checked in Twelf’s metalogic [19].

A corollary to the last contribution is that the two earlier conceptions of data-race
freedom are equivalent. A similar result was proved by Boehm and Adve [3] for a
generic system without dynamic allocation of objects or threads. We extend the
proof to handle dynamic allocation, and also have a mechanically-checked proof.

The advantage of the “write-key error” conception for data races is that write-
key errors are detected (and can be prevented) thread locally. In other words, if
a type system can ensure for each thread that it always possesses the write keys
for the (non-volatile) fields that it accesses and that it has exclusive access to fields
it writes, then the entire program is thread safe. Moreover, since a write-key error
causes a thread to get stuck in our semantics, then if a type system enjoys “progress”
and “preservation” over the operational semantics, then per force the type system
will also prevent race conditions.

2 BACKGROUND ON THE CURRENT JAVA MEMORY MODEL

This section briefly describes multi-threading primitives in Java and the “happens
before” relation of the current Java Memory Model.

In Java, a new thread can be started which executes a given run method; we call
this a fork action. At the other end, one may wait for a thread t to complete execution
by executing t.join(); this is a join action. Thread mutual exclusion is effected
by “synchronizing” on an object o. At the source-code level, this is expressed as
synchronized (o) { body }. The runtime system ensures that two separate threads
that both synchronize on the same object (playing the role of a mutex ) mutually
exclude each other’s “body” instructions. When a synchronized block is executed,
it first attempts to acquire the mutex, blocking if some other thread is currently
executing a synchronized block on the same object. Once acquisition is successful,
the body is executed after which the mutex is released. Synchronized statements
in Java are “re-entrant” in that if a synchronization block is nested dynamically
within another synchronization block on the same object, the inner synchronization
succeeds immediately.
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2 BACKGROUND ON THE CURRENT JAVA MEMORY MODEL

Fields in Java may be declared as “volatile.” This designation may be seen as a
declaration that these fields may be read and written “simultaneously” by multiple
threads. More importantly, accesses to volatile fields (denoted readv and writev)
constrain the memory model.

A memory model is a contract between the programmer on the one hand and
the compiler and the runtime system on the other hand. The most informative
model for programmers is a “sequentially consistent” model that indicates that
execution will always be consistent with a system in which the thread interleaving
of instructions ensures that each instruction fully executes before the next starts.
Sequential consistency however is very limiting for a compiler. Consider the following
situation where two threads are executing in parallel, x and y represent shared
mutable locations and rn represent unshared locations:

Initially x = y = 0

x = 1 r2 = y

y = 2 r1 = x

In a sequentially consistent execution, no interleaving of the threads could result in
r1 = 0, r2 = 2. If we restricted compilers to preserve sequential consistency, then
a compiler would not be permitted to reorder the two write actions in the left thread
because this could lead to a final result where r1 = 0, r2 = 2. Such a restriction
thus prevents almost all reorderings, even here, where the assignments x = 1 and y

= 2 have no data dependencies.

For such reasons, most memory models only guarantee sequential consistency for
fields declared “volatile.” For other fields, threads must use mutual exclusion tech-
niques. The (intuitive) guarantee for normal (non-volatile) fields is that if a program
is data-race free, that is, if no sequentially consistent execution ever exhibits a “race
condition” for a normal field, then that program will enjoy sequentially consistent
semantics. A race condition is when one thread is ready to write an object’s field
when another thread is ready to read or write the same object’s field. If a program
could exhibit a race condition under a sequentially consistent semantics, then most
memory models usually do not guarantee a sequentially consistent semantics. In the
small example given above, there is a race condition. Thus a compiler is justified if
it wishes to reorder the statements, even though this reordering violates sequential
consistency.

In the current Java memory model (JMM) [17], the guarantee is expressed in a
different way. First, a “synchronizes with” relation is defined:

1. A release action synchronizes with an acquire action on the same object;

2. A writev action synchronizes with a readv action on the same object’s field;

3. A fork action synchronizes with the first action in the spawned thread;

4. The last action in a thread synchronizes with a join action on that thread.
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Additionally the default initialization of a field (with null for reference types) syn-
chronizes with all actions in all threads.

Then the “happens before” partial order is defined as the transitive closure of
(1) the intra-thread execution order and (2) the “synchronizes with” relation over
actions already ordered by the execution.

Specifically of interest to the present paper, the JMM defines what it means to
be “correctly synchronized”:

A program is correctly synchronized if and only if in all sequentially
consistent executions, all conflicting accesses to non-volatile variables
are ordered by “happens-before” edges.

The JMM (and variations [20]) guarantees that a correctly synchronized program
will observe sequentially consistent semantics. The definition of “correctly synchro-
nized” seems rather different from the definition of “data race free,” but as proved
in Sect. 6, the definitions are equivalent for our small concurrent language.

3 EXAMPLE

Figure 1 declares a node class. The surface syntax resembles Java, but method
bodies contain expressions, not statements. For instance, getNext() returns the
next field. The count method shows another difference: since the language omits
dynamic dispatch for simplicity, one can call methods on null references. In the body,
one may test for null. In this way, we can model so-called “static” methods. The
copy method performs a deep copy; nap does a destructive append; add1 extends
the list by one node. The Node class has mutable state and thus cannot be safely
used in a concurrent program without additional restrictions.

We now define several different classes wrapping a node list with the same inter-
face: an inc method that adds to the list and a get method that counts the size of
the current list. The first implementation, Race (Fig. 2), does nothing to protect the
list. The main program forks off a thread that calls inc and get and then proceeds
to do the same calls in its own thread. Lacking synchronization, the call t.inc()
in one thread conflicts with t.inc() or t.get() in the other.

The traditional technique (“standard practice”) for protecting mutable state is to
designate a protecting object for each piece of mutable state (one object may protect
many others) and ensure that all accesses to the state occur dynamically only within
a synchronization on the protecting object. For example, see class Traditional in
Fig. 3; the bodies of the methods get() and inc() include synchronizations around
the access of the mutable state.

If get() calls are frequent and updates very infrequent, one can do better with a
less-known pattern using volatile variables. Figure 4 shows how a volatile field can
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3 EXAMPLE

class Node {

Node next;

Node(Node n) { next = n; }

Node getNext() { next; }

int count() {

if this == null then 0

else 1 + next.count();

}

Node copy() {

if this == null then null

else new Node(next.copy());

}

Node nap(Node n) {

if this == null then n

else (next = next.nap(n);

this);

}

void add1() {

this.nap(new Node(null));

}

}

Figure 1: A simple node class.

class Race {

Node nodes;

Race() { }

int get() {

nodes.count();

}

void inc() {

nodes = nodes.add1();

}

}

class Main {

void main() {

let t = new Race() in

( fork { t.inc(); t.get(); }

t.inc(); t.get() );

}

}

Figure 2: A class with an unprotected
field; and a test harness.

class Traditional {

Node nodes;

int get() {

synch (this) do

nodes.count();

}

void inc() {

synch (this) do

nodes = nodes.add1();

}

}

Figure 3: Traditional approach.

class UsingVolatile {

volatile Node nodes;

int get() {

nodes.count();

}

void inc() {

synch (this) do

nodes = nodes.copy().add1();

}

}

Figure 4: Using volatility.
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e ::= expression term:
o literal reference
x program variable
new (f) allocation
e.f field read
e.f:=e field write
let x=e in e local
if c then e else e conditional
while c do e loop
m(e) procedure call
fork e fork a thread
join e get thread result
synch e do e synchronization
hold o do e . . . in execution
e1;e2

∆
= let =e1 in e2

c ::= conditional term:
true true
not c negation
c and c conjunction
e == e equality

false
∆
= not true

c or c′
∆
=

not(not c and not c′)

t ::= e | c term
d ::= m(x) = e procedure definition
g ::= d;...;d program

Figure 5: Syntax.

substitute for synchronization. The reading method can simply access the nodes di-
rectly using a volatile field read, and then traverse the list without synchronization.
The incrementing method copies the structure before modifying it, to avoid interfer-
ing with get calls. Furthermore, inc is synchronized to ensure that two increments
are not carried out in parallel (to preserve “atomicity” [10], an important concept
beyond the scope of this paper). We permit interleaving of get() and inc() calls
since the inc() method never updates state the get() method can see, except for
the volatile field.

4 OPERATIONAL SEMANTICS

This section defines the syntax and dynamic semantics of the paper’s kernel concur-
rent language. The set of all fields is F . A subset FV ⊆ F are “volatile” and one
field in this subset (Lock ∈ FV ) holds the state of the mutex associated with each
object.

Syntax

Figure 5 gives the syntax. For simplicity, we omit primitive types and arithmetic
operators. Expressions include literal object references (natural numbers) and uses
of local variables. We omit classes: instead a new object is allocated with a given
set of fields. Fields of objects can be read or written. The “let,” “if” and “while”
constructs are conventional. Procedure calls are included, but not dynamic dispatch
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null
∆
= 0

f
∆
= this.f

f=e
∆
= this.f:=e

e0.m(e)
∆
= m(e0,e)

new C(e)
∆
= C(new (Lock,fields(C)),e)

C(τ x) {e; }
∆
= C(this,x) = (e;this)

C() {}
∆
= C(this) = this

τ m(τ x) {e; }
∆
= m(this,x) = e

class C {τ f d } ∆
= d

Figure 6: Translating surface syntax to underlying language

because the details would obscure the emphasis of this work.

The concurrency-related terms are fork-join terms (fork creates a new thread
and starts it; and join waits for it to terminate) and synchronization (synch and
hold). A hold expression is used to indicate that this thread is currently executing
a synch statement. Programs do not include hold expressions; they arise during
evaluation.

The examples in the previous section use a surface syntax with classes, methods
and types. Figure 6 shows one way in which these features can be stripped out: we
first see that the null pointer is represented by zero; read and writes of “this” fields
in method bodies are made explicit; method calls are converted into procedure calls;
“new” calls are converted into calls to a procedure (named by the class) on an object
allocated with a lock field and the other fields of the class; the constructor declaration
itself is converted into a procedure with additional formal parameter this; method
declarations are similarly converted into procedure declarations. The last line of
Fig. 6 simply says we retain only the procedure declarations converted from the
constructors and methods in the program. We assume no duplicate name clashes,
that all and only fields marked volatile are in the set FV and that fields(C) (used
to translate surface new expressions) includes all fields declared in class C before the
translation.

Semantics

This section defines the small-step operational semantics. Novel here is the use of
“write keys.” Write keys allow us to separate the notion of “happens before” from
considering the execution of multiple threads and instead look at a single thread
at a time. A (possibly new) write key (a natural number) is generated whenever
a normal field is written. This field is added to the knowledge of the thread that
performed the write. Knowledge is monotonically non-decreasing. Write keys are
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passed from one thread to another during synchronization actions indirectly through
memory. In this way, if a write in one thread happens before the read in the other
thread, the read is guaranteed to have the necessary key.

The main evaluation relation (µ; θ;κ) −→
g

(µ′; θ′;κ′) relates triples:

µ maps a location (pair of object reference and field name (o, f)) to a pair (W, o′)
of a set of write keys and a value. For a normal field, W = {w}, where w is
the key from the most recent write; for a volatile field, W is the set of keys
from all threads having written it.

θ maps a thread identifier (object reference) to the expression that the thread is
currently executing.

κ maps a thread identifier to its set of known write keys.

The following notations are used for map update, where © may be any operation:

f [x 7→ v](x′) =

{
v if x = x′

f(x) otherwise
f [x

©7→ v] = f [x 7→ f(x) © v]

Evaluation proceeds using Eval (see Fig. 7): a thread is chosen non-deterministically

and evaluates one step. Here T [.] defines the evaluation context. Here (µ; θ;κ; t)
p−→
g

(µ′; θ′;κ′; t′) states that thread p in program g makes progress by converting t into
t′ while side-effecting µ, θ and κ.

For explanatory reasons, the evaluation rules are presented in two groups. The
first group of evaluation rules (Fig. 7) are those that have no side-effects. A pro-
cedure call uses rule E-Call once all the parameters are evaluated: we find a
procedure in the program with the correct number of arguments and replace the
call with the procedure body, substituting the parameters. A let-bound variable
is substituted in the body once its value is ready. An if with a constant boolean
is evaluated by choosing the appropriate branch. A while loop is converted imme-
diately into an if. Conditions use short-circuit evaluation (E-AndFalse). Object
equality uses equality on the (natural number) literals.

Figure 8 includes the remaining evaluation rules. As mentioned previously, nor-
mal fields are associated with a write key that indicates what knowledge is needed
to read the field. When a new expression is encountered, all of the fields are ini-
tialized with null using a write key (0) that all threads know. (This follows the
JMM—default initialization synchronizes with the first action in every thread.) Ev-
ery object is allocated with a mutex (special field Lock).

Field reads and writes of non-volatile fields (E-Read, E-Write) require that
the thread has knowledge of the write that produced the value: w ∈ κ(p). For a
write, an arbitrary write key w′ is used to label the new write. In general, this
may be one that no thread is yet aware of. Using such a key would cause the Race
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T[•] ::= • | T[•].f | T[•].f := e | o.f := T[•] | m(o,T[•],e)
| let x=T[•] in e | if T[•] then e else e | synch T[•] do e
| hold o do T[•] | T[•] and c | not T[•] | T[•] == e | o == T[•]

Eval

θp = T[t] (µ; θ;κ; t)
p−→
g

(µ′; θ′;κ′; t′)

(µ; θ;κ) −→
g

(µ′; θ′[p 7→ T[t′]];κ′)

E-Call
g = ...; m(x) = e; ... |x| = |o|

(µ; θ;κ;m(o))
p−→
g

(µ; θ;κ; [x 7→ o]e)

E-Let

(µ; θ;κ; let x = o1 in e2)
p−→
g

(µ; θ;κ; [x 7→ o1]e2)

E-If

(µ; θ;κ; if c then etrue else efalse)
p−→
g

(µ; θ;κ; ec)

E-While

(µ; θ;κ; while c do e)
p−→
g

(µ; θ;κ; if c then e; while c do e else 0)

E-NotNotTrue

(µ; θ;κ; not false)
p−→
g

(µ; θ;κ; true)
E-AndTrue

(µ; θ;κ; true and c)
p−→
g

(µ; θ;κ; c)

E-AndFalse

(µ; θ;κ; false and c)
p−→
g

(µ; θ;κ; false)

E-EqualTrue

o = o′

(µ; θ;κ; o==o′)
p−→
g

(µ; θ;κ; true)

E-EqualFalse

o 6= o′

(µ; θ;κ; o==o′)
p−→
g

(µ; θ;κ; false)

Figure 7: Non-concurrency-related evaluation rules.

program in earlier Fig. 2 to get stuck when the second increment executes. The new
key is then placed in this thread’s knowledge.

One way in which knowledge of writes can be transmitted is through volatile fields
(E-ReadV, E-WriteV). Writing a volatile field adds the thread’s knowledge κ(p)
to the memory with the written value. When the volatile field is read, the reading
thread picks up this knowledge. This follows the JMM rule that says that writing a
volatile field synchronizes with all following reads.

For E-Fork, the new thread gets the knowledge of the “forker.” This corre-
sponds to the JMM rule that a fork synchronizes with the first action in the new
thread. An object is allocated to represent the thread. In E-Join, this thread can
only progress if the other thread has finished execution (down to a value). It gets a
copy of all the thread’s knowledge. This follows from the JMM’s rule that the final
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E-New
f0 = Lock (o,Lock) /∈ Dom(µ) fi distinct

(µ; θ;κ; new (f1,...,fn))
p−→
g

(µ[(o, fi) 7→ ({0} , 0) | 0 ≤ i ≤ n]; θ;κ; o)

E-Read
µ(o, f) = ({w} , o′)
w ∈ κ(p) f 6∈ FV

(µ; θ;κ; o.f)
p−→
g

(µ; θ;κ; o′)

E-Write
µ(o, f) = ({w} , )

w ∈ κ(p) f 6∈ FV w′ arbitrary

µ′ = µ[(o, f) 7→ ({w′} , o′)] κ′ = κ[p
∪7→ {w′}]

(µ; θ;κ; o.f:=o′)
p−→
g

(µ′; θ;κ′; o′)

E-ReadV
µ(o, f) = (W, o′) Lock 6= f ∈ FV

κ′ = κ[p
∪7→ W ]

(µ; θ;κ; o.f)
p−→
g

(µ; θ;κ′; o′)

E-WriteV
µ(o, f) = (W, ) Lock 6= f ∈ FV

µ′ = µ[(o, f) 7→ (W ∪ κ(p), o′)]

(µ; θ;κ; o.f:=o′)
p−→
g

(µ′; θ;κ; o′)

E-Fork
(p′,Lock) /∈ Dom(µ)

(µ; θ;κ; fork e)
p−→
g

(µ[(p′,Lock) 7→ ({0} , 0)]; θ[p′ 7→ e];κ[p′ 7→ κ(p)]; p′)

E-Join
θ(p′) = o

(µ; θ;κ; join p′)
p−→
g

(µ; θ;κ[p
∪7→ κ(p′)]; o)

E-Re-Enter
µ(o,Lock) = (∅, p)

(µ; θ;κ; synch o do e)
p−→
g

(µ; θ;κ; e)

E-Acquire

µ(o,Lock) = (W, 0) W 6= ∅
µ′ = µ[(o,Lock) 7→ (∅, p)] κ′ = κ[p

∪7→ W ]

(µ; θ;κ; synch o do e)
p−→
g

(µ′; θ;κ′; hold o do e)

E-Release
µ(o,Lock) = (∅, p)

µ′ = µ[(o,Lock) 7→ (κ(p), 0)]

(µ; θ;κ; hold o do o′)
p−→
g

(µ′; θ;κ; o′)

Figure 8: Remaining evaluation rules.

action in a thread synchronizes with a thread that “joins” it.

During synchronization, the lock’s value is replaced with the number of the
acquiring thread, and the knowledge is replaced by the empty set. In E-Re-Enter,
if we synchronize on a lock that this thread already has acquired, the body is simply
executed without any effect on the lock. This last rule corresponds to Java’s re-
entrant monitors; here, we avoid the need to count multiple entrances because the
evaluation rule drops the release action as well as the acquire action.

If the lock is not held by any thread (E-Acquire), the lock field is assigned the
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5 ANALYSIS

number of this thread, and we get the keys from the lock. The lock’s knowledge
(which must not be empty) is cleared to indicate that the lock has been acquired.
The synchronization block is then converted into a hold block. When the body has
finished evaluation (E-Release), the lock is given the knowledge of the current
thread. This knowledge is thus made available for the next thread which acquires
the lock. These rules again follow from the JMM.

The semantics defined here is sequentially consistent, but if a thread lacks the
necessary write key, it gets stuck. Thus if the program has race conditions, it may
get stuck (but does not necessarily get stuck, for instance if an old key is chosen by
E-Write). A type system for this language that enjoys progress and preservation
for all executions will prevent this. We have designed a type system [21] based
on fractional permissions [6, 7] that we believe will achieve this goal, but space
precludes including it here.

5 ANALYSIS

In this section, we go back to the example programs and show how they fare using
the operational semantics defined in the previous section. Execution starts by calling
the main procedure in thread 0, which starts with no knowledge except write key 0.
More formally, we start execution in a special state I = (µ0; θ0;κ0):

µ0 = [(0,Lock) 7→ ({0} , 0)]

θ0 = [0 7→ main()]

κ0 = [0 7→ {0}]

At the beginning, there is only one allocated object, that for the “null” reference.
It has no (normal) fields, and its lock is currently unacquired. For mathematical
convenience, the “null object” is used for the initial thread as well. Of course in
a realistic system, there would be no such object, and the initial thread would be
non-null. We use an object for null because our formalization of new allocates any
free location, and we want to make sure it never allocates null.

Figure 9 shows a possible evaluation of the code in Figs. 1 and 2 in which
execution gets stuck. In this example, the main thread proceeds along calling inc

until we reach θ16 just after field 1.nodes is assigned using a write key 88, not known
to thread 2. Thread 2 can proceed one step as seen in θ17, but cannot progress further
because the only write key it knows is the initial key, 0, that it received when it was
forked by thread 1 (as seen in θ5). Eventually thread 0 will complete and execution
will be stuck. (The astute reader may notice that our low-level formalism doesn’t
actually support integer addition. It can only be hoped that this deficiency does not
detract too much from the example.)

The evaluation is not guaranteed to get stuck. For instance if when defining µ5,
we had reused write key 0, there would be no problem. But, because of the possibility
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(µ0, θ0, κ0)
−→
g

(µ0, θ1, κ0) where θ1 = θ0[0 7→ let t = Race(new(nodes)) in ...]

−→
g

(µ1; θ2;κ0) where µ1 = µ0[(1,Lock) 7→ ({0} , 0), (1, nodes) 7→ ({0} , 0)],

θ2 = θ1[0 7→ let t = Race(1) in ...]
−→
g

(µ1, θ3, κ0) where θ3 = θ2[0 7→ let t = 1 in ...]

−→
g

(µ1, θ4, κ0) where θ4 = θ3[0 7→ fork{inc(1);get(1)};inc(1);get(1)]

−→
g

(µ2; θ5;κ1) where µ2 = µ1[[(2,Lock) 7→ ({0} , 0)]],

θ5 = θ4[0 7→ 2;inc(1);get(1)][2 7→ inc(1);get(1)]
κ1 = κ0[2 7→ {0}]

−→
g

(µ2, θ6, κ1) where θ6 = θ5[0 7→ inc(1);get(1)]

−→
g

(µ2, θ7, κ1) where θ7 = θ6[0 7→ 1.nodes:=add1(1.nodes);get(1)]

−→
g

(µ2, θ8, κ1) where θ8 = θ7[0 7→ 1.nodes:=add1(0);get(1)]

−→
g

(µ2, θ9, κ1) where θ9 = θ8[0 7→ 1.nodes:=nap(0,Node(new ...));get(1)]

−→
g

(µ3; θ10;κ1) where µ3 = µ2[(3,Lock) 7→ ({0} , 0), (3, next) 7→ ({0} , 0)],

θ10 = θ9[0 7→ 1.nodes:=nap(0,Node(3,0));get(1)]
−→
g

(µ3, θ11, κ1) where θ11 = θ10[0 7→ 1.nodes:=nap(0,3.next:=0;3);get(1)]

−→
g

(µ4; θ12;κ2) where µ4 = µ3[(3, next) 7→ ({42} , 0)],

θ12 = θ11[0 7→ 1.nodes:=nap(0,0;3);get(1)]
κ2 = κ1[0 7→ {0, 42}]

−→
g

(µ4, θ13, κ2) where θ13 = θ12[0 7→ 1.nodes:=nap(0,3);get(1)]

−→
g

(µ4, θ14, κ2) where θ14 = θ13[0 7→ 1.nodes:=if0==0then3else...;get(1)]

−→
g

(µ4, θ15, κ2) where θ15 = θ14[0 7→ 1.nodes:=3;get(1)]

−→
g

(µ5; θ16;κ3) where µ5 = µ4[(1, nodes) 7→ ({88} , 3)],

θ16 = θ15[0 7→ 3;get(1)]
κ3 = κ2[0 7→ {0, 42, 88}]

−→
g

(µ5, θ17, κ3) where θ17 = θ16[2 7→ 1.nodes:=add1(1.nodes);get(1)]

...

Figure 9: Sample Execution of Race Program (Figs. 1 and 2).

of an execution getting stuck, a type system for which progress and preservation were
proved could not accept this program.

With traditional synchronization, the second thread would be unable to execute
its procedure body while the left inc() is executing. Then, when the body is finally
entered, the second thread gets knowledge of the write key used to update the field.
(This explanation assumes that the original thread acquired the lock first. Should
the second thread acquire the lock first, an analogous explanation can be given.)
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(µ2; θ6;κ1)
−→
g

(µ2, θ7, κ1) where θ7 = θ6[0 7→ synch 1 do 1.nodes:=...;get(1)]

−→
g

(µ3; θ8;κ2) where µ3 = µ2[(1,Lock) 7→ ({} , 0)],

θ8 = θ7[0 7→ hold 1 do 1.nodes:=...;get(1)]
κ2 = κ1[0 7→ {0}]

...
−→
g

(µ3, θ11, κ2) where θ11 = θ10[0 7→ hold 1 do 1.nodes:=add1(0);get(1)]

−→
g

(µ3, θ12, κ2) where θ12 = θ11[0 7→ hold 1 do 1.nodes:=nap(...);get(1)]

...
−→
g

(µ4, θ18, κ3) where θ18 = θ17[0 7→ hold 1 do 1.nodes:=3; get(1)]

−→
g

(µ5; θ19;κ3) where µ5 = µ4[(1, nodes) 7→ ({0, 42} , 3)],

θ19 = θ18[0 7→ hold 1 do 3; get(1)]
−→
g

(µ6; θ20;κ3) where µ6 = µ5[(1,Lock) 7→ ({0, 42} , 0)],

θ20 = θ19[0 7→ 3; get(1)]
−→
g

(µ6, θ21, κ3) where θ21 = θ20[0 7→ get(1)]

−→
g

(µ6, θ22, κ3) where θ22 = θ21[2 7→ synch 1 do 1.nodes:=...;get(1)]

...
−→
g

(µ9; θ34;κ4) where µ9 = µ8[(1, nodes) 7→ ({0, 42, 25} , 4)],

θ34 = θ33[2 7→ hold 1 do 4; get(1)]
−→
g

(µ10; θ35;κ4) where µ10 = µ9[(1,Lock) 7→ ({0, 42, 25} , 0)],

θ35 = θ34[2 7→ 4; get(1)]
−→
g

(µ10, θ36, κ4) where θ36 = θ35[2 7→ get(1)]

−→
g

(µ10, θ37, κ4) where θ37 = θ36[0 7→ count(1.nodes)]

−→
g

(µ10, θ38, κ4) where θ38 = θ37[0 7→ count(4)]

κ4 = κ4[0 7→ {0, 42, 25} , 0]

Figure 10: Sample execution using volatile (Figs. 1 and 4)

Figure 10 shows a sample execution of the code with class UsingVolatile re-
placing Race. The mutual exclusion prevents the two inc calls from running in
parallel. The execution in the figure assumes that the original thread first calls inc
and then the second thread. Then it assumes that the first thread calls get. (If this
call had happened before thread 2 wrote 1.nodes, it would get the old value of the
list.) When it reads the volatile field 1.nodes at step θ38, rule E-ReadV gives to
thread 0 the knowledge (25) of the node added by thread 2 and so execution pro-
ceeds. Indeed in all possible interleavings, a thread will always have the knowledge
it needs to read the fields it accesses. In other words, the code is thread-safe.
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6 EQUIVALENCE

Programs that execute in our operational semantics without ever blocking because
of missing write keys are “correctly synchronized” according to (our variant) of the
Java Memory Model and to the traditional definition of “race free.” In other words,
we show a three-way equivalence.

Formalism

In order to prove equivalence, we need to formally define the aspects we are showing
equivalent. To start with, we restrict programs so that they do not include arbitrary
object reference constants:

Definition 6.1 A program g is valid if every declaration m(x̄) = e in g has no
instance of a literal object reference except the null reference 0.

If a program had access to an unallocated reference, we would lose the ability
to reorder an allocation in one thread with an access in another thread that “acci-
dentally” uses the newly allocated reference. The inability to reorder would falsify
Theorem 6.8.

We formalize what it means for there to be a write key error in a program:

Definition 6.2 A program g = d has a write key error if for some execution I
∗−→
g

(µ, θ, κ) a read or write access on a non-volatile field o.f is ready to execute in thread
p (θ(p) = T[o.f:=o′] or θ(p) = T[o.f ], where f 6∈ FV ), and the thread does not
have the required write key: (µ(o, f) = ({w} , ) and w 6∈ κ(p)).

Next, we formalize what it means to have a “race condition”: a write access to
a field happens at the “same time” as a read or write access to the same field, and
that field is not volatile. We start off by defining what “conflicting accesses” are:

Definition 6.3 Two terms t1 and t2 are conflicting accesses of a non-volatile field
o.f (f 6∈ Fv) if one of them is a write to this field (ti = o.f:=o′) and the other is a
write (t3−i = o.f:=o′′) or a read (t3−i = o.f) of the same field.

Definition 6.4 A program g exhibits a race condition if there is some execution
I
∗−→
g

(µ, θ, κ) such that for two threads p1 6= p2 we have θ(pi) = T [ti] and t1, t2 are

conflicting accesses.

Before we can define what it means to be “correctly synchronized,” we must
define an “action” and the “happens-before” relation for actions:
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Definition 6.5 An action λ is an instance of the evaluation relation (µ; θ;κ; t)
p−→
g

(µ′; θ′;κ′; t′). An evaluation sequence I
∗−→
g

(µ, θ, κ) induces a sequence of the actions

above the line for each instance of Eval: λ1, λ2, . . . , λn. This is called an execution.

Definition 6.6 Given an execution λ1, . . . , λn, we define a happens-before (written
i < j) relation on the subset of natural numbers {1, . . . , n}. It is the smallest
transitive relation that includes the following pairs:

1. i < j if i < j and λi is an instance of E-Release and λj is an instance of
E-Acquire on the same object.

2. i < j if i < j and λi is an instance of E-WriteV and λj is an instance of
E-ReadV on the same field of the same object.

3. i < j if i < j and λi =
p−→
g

and λj =
p−→
g

.

4. i < j if i < j and λi = (µ; θ;κ; fork t)
p−→
g

(µ′; θ′;κ′; q) and λj =
q−→
g

.

5. i < j if i < j and λi =
q−→
g

and λj = (µ; θ;κ; join q)
p−→
g

(µ′; θ′;κ′; t).

It can be easily shown that < is a partial order compatible with <.

The initial acquisition of a lock does not induce any extra “happens-before”
edges. This definition of “happens-before” closely follows the JMM, but is simplified
in several ways. The greatest difference is that we assume a sequentially consistent
semantics, whereas a “valid” execution in the JMM can “commit” writes before they
happen in program order. The JMM also has a particular semantics of “final” fields
that we do not model.

Our final definition for correctly synchronized also follows the style of the JMM:

Definition 6.7 A program g is correctly synchronized if for any execution of g:
λ1, . . . , λn and any i for which λi is an instance of E-Write and any j for which
λj is an instance of E-Read or E-Write for the same field, then either i < j or
j < i.

It might seem that because our operational semantics detects race conditions, the
conflicting access would never execute and thus could not demonstrate an incorrect
synchronization, but because write keys are arbitrary, the write could use 0 and thus
enable execution. The semantics does not ensure that all executions of a program
with race conditions will get stuck, just that there will be some execution that does.

We now show the three-way equivalence between the three conceptions of race-
freedom:
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Theorem 6.8 The following statements about a valid program g are equivalent:

1. g exhibits a race condition;

2. g has a write key error;

3. g is incorrectly synchronized.

Proof (Sketch)

(1)⇒ (2): Suppose we have a program with a race condition. Starting with the
execution state that exhibits the race condition, we choose to evaluate the write first.
If this write cannot execute because of a missing write key, we are done. Otherwise
we choose a new write key not known by the other thread, and we now have a write
key error.

(2) ⇒ (3): We prove the contrapositive: if the program is correctly synchro-
nized, there will be no write-key error. This is because if there is a happens-before
connection between two actions, the thread knowledge of the second will include
that produced by the first, and thus the second access will succeed. The connec-
tion between write key knowledge and happens-before follows from the fact that the
knowledge never decreases (the first case for happens-before) and the other cases
for happens-before involve the reader/acquirer getting all the write keys left by the
writer.

(3) ⇒ (1): Suppose we have an incorrectly synchronized program, in which the
code of the first action λi is a write executed in thread p and the second action λj
is an access executed in thread q. (The case that λi is a read and λj is a write is
analogous.)

If the actions are already consecutive, we have the required race condition in
the state just before the first executed. Otherwise, we consider how evaluation
actions can be reordered (between different threads, never within a thread) to get the
accesses adjacent. We partition the intervening actions into those that happen before
j and those which do not. The second must include action i, from the definition
of incorrect synchronization. We find the last action λ∗ in the second group. It
cannot be “happens before” any in the first group, or a transitive happens-before
relation would exist putting it in the first group. Now we reorder it step-by-step
with all later actions until it is after λj. If λ∗ was λi, then the last reordering would
have resulted in the required race condition. Otherwise, now that it is after λj we
have reduced the number of intervening instructions. This process must terminate
at some point.

2
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Twelf Realization

See http://www.cs.uwm.edu/~boyland/papers/simple-concur.html for how to
download the Twelf proof.

7 EXTENSIONS

Extending the simple language here to full Java is almost entirely just a matter
of complex but uninteresting details. Static fields and static synchronization can
be modeled using instance fields and instance synchronization of singleton objects.
Types, primitive values and dynamic dispatch have no effect on concurrency.

The Thread class includes a number of deprecated methods that permit one
thread to suspend or terminate another. These we can omit from the formalism.
Other methods such as holdsLock can be implemented without affecting the proof
substantially, because they only apply to the current thread.

Java’s wait/notify system would require substantive changes to the formalism.
When a thread calls wait, it first releases the object’s lock, then it waits to be
“notified” and then it waits to re-acquire the lock. The lock release and acquisition
lead to the corresponding standard happens-before relations. Another missing piece
is thread interruption (and the corresponding interrupted exception). My guess is
that the proof could be modified to handle wait and interruption.

On the other hand, Java 5 adds a new concurrency library, some of whose primi-
tives (such as compare-and-swap and “fences”) have unclear effects on the “happens
before” relation. Timing issues would also be difficult to model and handle in proofs,
since the proofs rely on the ability to swap unrelated thread computations.

8 RELATED WORK

A precursor to the JMM by Manson and Pugh [16] defined a semantics in which
write keys were generated at writes and threads kept track of all writes known to
them. Unlike the present work, it requires all write keys to be distinct, the knowledge
includes the values written as well as the write key, and it does not require reads
or writes to have knowledge of the “current” write. Indeed it does not even assume
there is a single value for every field: a field read can pick up the value of any
previous write not known to be overwritten.

The current Java memory model is much more complex than what is modeled
here. In particular it gives semantics for programs that are not properly synchro-
nized. Aspinall and Ševč́ık [1] formally prove the main guarantee—that correctly
synchronized programs will have a sequentially consistent semantics (whereas the
work described here assumes sequential consistency). The initialization of reference
fields causes some concern which we avoid by using a universally known write key
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for initialization. Saraswat provides a variant model that abstracts and generalizes
some of the concepts found in the JMM and other memory models [20].

Boehm and Adve [3] describe the proposed C++ memory model. Here the se-
mantics of programs that are not correctly synchronized is left undefined. This gives
much more freedom to the compiler writer. They prove that the informal idea of
race conditions coincides with the more formal definition of incorrect synchroniza-
tion. Here we add to this result through a mechnically checked proof for a richer
language (with conditionals and procedures). More importantly, we show that the
correspondence between the two concepts holds even in the presence of dynamic
allocation, as long as programs are not permitted to manufacture object identifiers
(i.e. no casts from int to pointers.) This condition is not true in C++, and thus it
seems that the correspondence Boehm and Adve prove would not hold for full C++.

Cenciarelli, Knapp and Sibilio [9] give a vastly different semantics of some aspects
of the Java Memory Model based on configuration structures. As with the papers
just reviewed, it handles programs with data races, not just properly synchronized
ones, and does not assume sequential consistency.

Type systems have been proposed that prevent race conditions and sometimes
deadlocks in concurrent programming languages. Flanagan and Abadi [11, 12] define
two separate type systems for avoiding races, both of which are accompanied by
operational semantics. One is based on Gordon and Hankin’s concurrent object
calculus [14] in which mutable objects are represented in the syntax as concurrent
processes. The other uses a conventional store. Neither semantics directly detects
race conditions, nor includes “volatile.” In either case, a race condition is defined
as the (global) possibility that a write could occur at the same time as a read of
the same field. (In one system [12], two “simultaneous” reads are also considered a
race.) The type system maintains certain invariants that are shown to prevent data
races.

Later work (such as Flanagan and Freund [13], Greenhouse [15] and Boyapati and
Rinard [5, 4]) omit formal specification of operational semantics, implicitly following
the same approach just outlined. Volatile fields, if they are handled at all, are simply
regarded as loopholes in the type system.

Permandla and Boyapati [18] define a small-step semantics for a subset of Java
virtual machine language (JVML) including synchronization (but not volatile fields)
and show that well-typed programs are free of concurrency errors. The semantics
however enforces an ownership model and uses method annotations that indicate
required locking state. The operational semantics is not independent of the type
system.

Guava [2] uses a type system to prevent races in a dialect of Java. Guava per-
mits reader/reader parallelism, but omits volatiles. Guava is defined by (informally
described) compilation to Java byte-code. Guava is intended as a practical program-
ming language rather than as a minimal concurrent language.

Brookes [8] gives the semantics of a concurrent program by defining its set of
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“action traces.” Roughly this means that all possible interleavings are considered. A
race condition in which a write to mutable state is directly interleaved with another
access to the same state is “catastrophic,” in that this particular trace immediately
aborts. The semantics omits “volatile.”

9 CONCLUSIONS

This paper defines an operational semantics of volatile fields that enables a type
system to reason compositionally about them. It uses write keys to detect threading
violations. It shows that write-key errors occur if and only if the program may
exhibit a race condition, if and only if it is not correctly synchronized.
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