
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2009

Vol. 8, No. 3, May-June 2009

Cédric Bouhours, Hervé Leblanc, Christian Percebois: “Bad smells in design and design
patterns”, in Journal of Object Technology, vol. 8, no. 3, May-June 2009, pp. 43-63
http://www.jot.fm/issues/issue_2009_03/column5/

Bad smells in design
and design patterns

Cédric Bouhours, Hervé Leblanc, and Christian Percebois

Abstract
To give a consistent and more valuable property on models, model-driven processes
should be able to reuse the expert knowledge generally expressed in terms of patterns.
We focus our work on the design stage and on the systematically use of design
patterns. Choose a good design pattern and ensure the correct integration of the
chosen pattern are non trivial for a designer who wants to use them. To help designers,
we propose design inspection in order to detect “bad smells in design” and models
reworking through use of design patterns. The automatic detection and the explanation
of the misconceptions are performed thanks to spoiled patterns. A “spoiled pattern” is a
pattern which allows to instantiate inadequate solutions for a given problem:
requirements are respected, but architecture is improvable.

1 INTRODUCTION

The MDE community, aiming at giving a productive property on models, has proposed a
framework for model-driven processes development. However, to obtain guarantees on
model relevance at the end of each activity, these processes should promote the reuse of
analysis [Fowler97], design [Gamma95], or architectural [Buschmann96] patterns. After
considering that the use of analysis patterns is business domain specific, and that the use
of architectural patterns must be planned before any design stage, we have chosen to
focus our work on the design stage and on design patterns. Design patterns have some
advantages concerning genericity, reusability, and integrability. They are business model
independent, and promote only architectural qualities. Their use must not be necessarily
planned, and thus allow a designer to integrate a design pattern into its object
architecture, at any moment.

A design pattern represents an expert knowledge, validated by the community,
reusable for a type of design problems. For example, the Composite design pattern
represents the optimal solution for structural and compound problems, as to compose
objects, to build tree structures, and to nest objects. This pattern is contained in the GOF
catalog [Gamma95] with its structure, its intent, and some information which allows to
use it under the best condition. This catalog regroups twenty three design patterns which

BAD SMELLS IN DESIGN AND DESING PATTERNS

44 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 3

concern twenty three types of problem. So, during the design stage, through use of this
catalog, designers may be able to use the optimal solution for the problems they want to
design.

However, two troubles arise when the designers want to use the design patterns:
• The designers have to identify what type of problem they design, to choose a good

design pattern. Indeed, the designers have to abstract the problem they design
before identify the type of problem. To facilitate the designer choice, some works
exists to improve design pattern classification [Hasso04] [Diaz87], and to propose
a dedicated pattern knowledge base [Kampffmeyer07]. These works are related to
design problem formalization.

• The designers have to ensure a correct integration of the chosen pattern in a
model. To do so, some works extend the capability of UML notation [France04]
or propose an automatic transformation process which preserves behavior of the
model [Sunyé01]. These works are related to the design pattern formalization.

We have a complementary approach which permits the designers to avoid this choice by
automatically inspecting models. As there are code review activities [Fagan02], we
propose a design review activity, situated after the design stage, which automatically
verifies if there is no known bad design practices in a model. To find model fragments
substitutable with design patterns, our activity automatically parse the model to identify
fragments that are similar computed similarities with a knowledge base of bad design
practices. After a dialog with the designer to verify the intent of the fragment identified, a
refactoring transformation is applied on the model to inject the needed design patterns.
So, the designers do not need to identify design problem; it is the activity which identifies
inadequacies in their model and thus suggests design patterns integrations instead.

The initial part of this paper defines our concepts which initially suppose that a design
pattern is the optimal reusable micro-architecture for a type of problem. In section 2 some
specific definitions are introduced about others architectures which resolve the same
problem leads to the so-called “spoiled pattern”. In section 3, we focus on a design
review activity directed by design patterns. Its originality consists in an automatic
research of the instantiation of spoiled patterns which determines the fragments that may
be substitutable with a design pattern. The whole activity is finally illustrated in section 4
on an example where the aim is to implement a file management system. Our detection
algorithm, based on comparisons of structural similarities, identifies in the corresponding
UML model an alternative fragment of the Composite spoiled pattern which may be
replaced by the suggested design pattern.

2 SPOILED PATTERNS AND ALTERNATIVE FRAGMENTS

In order to encourage the reuse of design patterns in models, we want to identify model
fragments substitutable with patterns in a design. Indeed, we identify the part of the
design where the designer has used another way to solve a design problem which would

VOL. 8, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 45

be better designed with a design pattern. This other way concerns the “spoiled pattern”
concept that underpins our activity.

After the presentation of our work hypotheses, we give the definitions of the concepts
we use. Then we present them on an illustration. We terminate this section with a
comparison of works closely related to ours in particular bad smells and anti-patterns.

Hypotheses

Axiom 1: “A design pattern” is the optimal reusable micro-architecture for a
type of problem.
Corollary 1: Then, for each design problem that is solvable with a design pattern,
“the optimal solution” is the instantiation of the design pattern.

Design patterns are approved solutions, validated by an expert community specialized in
object-oriented design. They are the result of know-how accumulation. Design patterns
are context-free, generic, and thus it is necessary to adapt them to the context of the
problem we want to solve. We name this process an “instantiation”. For us, the optimal
solution comes from the instantiation of the pattern.

We have wittingly chosen to represent a design pattern as a class diagram (inspired
from the structure section of the GOF catalog), only with pattern participants as class
name and inter-classes relations (association and inheritance links). Indeed, since we are
at the design level, we are interested in the architecture of the pattern (classes and
relations between them). As there are too many variants of a pattern that depend on the
problem to solve, a combinatorial explosion of the different possible forms of
instantiations may exist. In this context, our approach is to identify structural similarities
using model comparisons during the preliminary design stage, without dealing with a
detailed implementation which may complicates the identification of the patterns
instantiation.

Some definitions

Definition 1: “An alternative solution” is a valid solution but with a different
architecture compared to the optimal solution.

So, the requirements of the design are respected but the relations inter-classes are
different or/and there is not the whole pattern participants.

Corollary 2: Then, an alternative solution is an inadequate solution for a given
problem, and is substitutable with the instantiation of the concerned pattern.
Definition 2: “A spoiled pattern” is the abstraction of one alternative solution, in
the same manner as a design pattern is the abstraction of optimal solutions. A spoiled
pattern is linked to one and only one design pattern.

A spoiled pattern is comparable to a design pattern in the sense that it is reusable to
produce models which solve problems. There are one or more spoiled patterns for one
design pattern. Structurally, a spoiled pattern is represented at the same level of

BAD SMELLS IN DESIGN AND DESING PATTERNS

46 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 3

granularity as a design pattern allowing us to identify them as design patterns. The
abstraction is the inversion of the instantiation.

Definition 3: “The remarkable properties” of a spoiled pattern are its significant
UML architectural characteristics (associations, generalizations, and composition
links, but neither interfaces nor class semantics).

We have decomposed the remarkable properties into two subsets: the local properties that
characterize individually each class and the global properties which characterize the
classes against each other depending on their inter-relations. This separation allows us to
constitute different levels of filters during the detection, through use of structural
similarity comparisons. The result of the search is a set of fragments identified in the
model analyzed.

Definition 4: “An alternative fragment” is a model fragment such as its remarkable
properties match with the remarkable properties of a spoiled pattern and whose
intent conforms to the corresponding pattern.

This match indicates that there is a structural concordance between an alternative
fragment and the spoiled pattern. This means that classes and inter-class relations defined
by the spoiled pattern have been identified within the alternative fragment. Consequently,
an instantiation of the spoiled pattern on the design problem leads to an alternative
fragment.
A spoiled pattern does not have the entire pattern properties, and is thus spoiled. To note
this degradation, we consider the non achieved properties of the design pattern that come
from the instantiation of the spoiled pattern.

Definition 5: “The pattern properties” of a design pattern are criteria of object-
oriented architecture or software quality factors, partially deduced from the
consequences section of the GoF catalogue and from our study on the design defects
of spoiled patterns. They valorize why the design pattern is the optimal solution for a
problem.

Therefore, an alternative fragment is substitutable with the optimal fragment issued from
the design pattern instantiation.

Definition 6: “An optimal fragment” is the substitution of an alternative fragment by
the instantiation of the corresponding design pattern.
Figure 1 links all our concepts together. This synopsis presents two symmetrical

notions between design patterns and spoiled patterns: an optimal fragment and an optimal
solution share the same concepts in the same design pattern; in the same way, one can
observe that an alternative fragment and an alternative solution have similar aspects with
respect to the same spoiled pattern.

VOL. 8, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 47

Illustration

To illustrate the concepts presented in the previous section, we use the Composite pattern
described by Figure 2. According to [Gamma95], the intent of this pattern is “Compose
objects into tree structures to represent part-whole hierarchies. Composite lets clients
treat individual objects and compositions of objects uniformly”. In following our work
hypothesis, this pattern is the optimal solution to solve structural and compound
problems, more precisely to compose objects, to build tree structures, and to nest objects.
The Composite pattern introduces three participants: an abstract component, a composite,
and a leaf. The abstract component defines the interface for objects in the composition,
defines an interface to manage the composition, and offers a unique access point for the
client; this entity allows the factorization of the composition on composites and leaves.
The composite participant manages the composition relationship and delegates operations
along the tree structure.

Let us consider the following problem extracted from [Gamma95]: “Design a system
enabling to draw a graphic image: A graphic image is composed of lines, rectangles,
texts and images. An image may be composed of other images, lines, rectangles and
texts”. To instantiate the pattern to this problem, we must identify the classes in the

Figure 2: Structure of the Composite design pattern

Component

Leaf

*

Composite

Figure 1: Synopsis of our concepts

Alternative
solution

Optimal
solution

Given
problem

Type of
problem

Instantiation Abstraction

Design
pattern

Optimal
fragment

Alternative
fragment

Spoiled
pattern

Intent conformance
and

Structural concordance

Given
problem

BAD SMELLS IN DESIGN AND DESING PATTERNS

48 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 3

problem with identical responsibilities as the pattern participants. Thus, we obtain an
instantiation of the Composite pattern, and according to our hypothesis, we consider that
Figure 3 represents the optimal solution for the problem.

Figure 4 presents an alternative solution of the previous problem. In this model, we can
locate that an image is composed of other images which could be composed of lines,
rectangles or texts. So, the requirements are respected in terms of objects composition.
The Graphic class is used to assume the factorization of the protocols and to be the
unique access point for the client. However, the fact that Line, Rectangle, and Text are
linked to Image will cause some code modifications in Image if new classes are added
with leaf or composite responsibilities. So, if a new Circle class is added as leaf, the
Image class has to reference the new class. This is not the case in using the design pattern
presented in Figure 3.

To detect the alternative solutions in models with its structural variants, an abstraction
must be done. Indeed, an alternative solution is associated to a problem context, and so
must be abstracted in order to obtain a spoiled pattern. To do so, we will try to identify
the pattern participants in the alternative solution, in doing a model reduction after
marking the responsibility of each class.

The first step of the abstraction process consists in marking each class of the
alternative solution with a name of a pattern participant corresponding to the
responsibilities of the class. The result, resumed by Figure 5, explains a match between
alternative solutions and pattern participants.

Figure 4: One alternative solution

Graphic

ImageLine RectangleText
*

** *

Figure 3: The optimal solution

Image

Graphic

Line RectangleText

*Leaf Composite

Component

VOL. 8, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 49

After the marking, the second step of the abstraction consists in keeping one of each
participant and in transforming them in classes linked in the same manner as in the
alternative solution. So, we obtain a spoiled Composite pattern where the composition is
developed on the Composite class. Figure 6 resumes this step of an abstraction process.

To classify the spoiled patterns, we have quantified their degree of degradation through
use of the patterns properties. Indeed, each spoiled pattern does not use all the whole of
the patterns properties. For the Composite pattern of Figure 2, the maximal factorization
of the composition and the standardization of the protocol, thanks to the inheritance links,
allow us to say that the pattern properties are “decoupling and extensibility” and “uniform
protocol”. As the composition is now recursive and developed on leaf participants, the
main problem for the spoiled Composite pattern presented in Figure 6 is the lost of the
advantages of the “decoupling and extensibility”. However, as there are always the
inheritances links, this spoiled pattern keeps the “uniform protocol”.

Table 1 summarizes the properties with respects to the Composite pattern. The
presence of the corresponding property in the spoiled pattern is represented with
marks, the absence with marks.

Figure 6: A spoiled Composite pattern

Component

CompositeLeaf
*

*

Figure 5: The alternative solution after the mark step

Graphic

ImageLine RectangleText
*

** *

Leaf

Composite

Component

BAD SMELLS IN DESIGN AND DESING PATTERNS

50 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 3

Composite pattern properties Characterization

Maximal factorization of the composition.

Addition or removal of a leaf does not need code
modification.

Decoupling and extensibility

Addition or removal of a composite does not need
code modification.

Uniform protocol on operations of composed
object.

Uniform protocol on composition management.

Uniform protocol

Unique access point for the client.

To detect the spoiled patterns, we use their remarkable properties. The remarkable
properties allow us to do the detection in the same way as a structurally conformant
relationship or as a sub-graph matching that is known to be NP-complete. Due to the
reification of association and generalization links in the UML meta-model, we consider
that we have a specific sub-graph matching problem, since nodes that are not classes are
strongly typed. Moreover our detection algorithm template retrieves a family of sub-
graphs that have the same core sub-graph and treats the case of extraneous links that
change desired semantics. Each spoiled pattern has a specific detection query
automatically completed by an inspection of a dedicated structural property model. Local
remarkable properties serve to mark classes with their possible spoiled pattern
participants in the model to review. Global remarkable properties serve to filter marked
classes and to regroup them into alternative fragments. The reference participant serves to
limit the time complexity of queries. It is chosen according to its local remarkable
property complexity and the other participants use it for the global remarkable properties
specification.

If we consider the spoiled Composite pattern represented in Figure 6, we can see that
the composite participant is the most constrained. So, we define it as the reference
participant. Structurally, we can say that the composite participant has at least two
composition relationships, one to leaf and one that is recursive. Concerning the
component, we notice that it is characterized with two inheritance links from leaf and
from composite. Lastly, the leaf participant is a component of composite. Table 2 presents
the structural properties of the Composite spoiled pattern presented in Figure 6.

Table 1: Qualification of the spoiled Composite design pattern

VOL. 8, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 51

Reference participant Composite

Composite Class with at least two compositions (0..*) with
one recursive and one generalization.

Leaf Class with at least one end of composition
(0..*) and one generalization.

Local properties

Component Class with at least two specializations.

Leaf Subclass of Component linked to the reference
role with a composition (0..*). Global properties

Component Super-class of the reference role and of Leaf.

Our activity uses the spoiled patterns to search for substitutable fragments. To be
effective, we must to be sure that the spoiled patterns large enough entities that people
may grasp. Indeed, as the models analyzed by the activity are designed by people, the
spoiled patterns must be designed by people, too. To do so, we have suggested to some
students without special pattern knowledge to solve some specific design problems. We
have written each problem in using the intent paragraph or the motivation example of the
GOF catalog. Thus, the optimal solution of each problem was the instantiation of the
concerned design pattern, but the students have proposed alternative solutions without the
use of pattern instantiation.

We have realized some different experiments which concern structural and behavioral
design patterns. Our collection hypothesis is that problems we have made for our
experiments are efficiently accurate to imply that the optimal solution is a unique design
pattern. Therefore, when a model result is composed with a pattern that is different to the
pattern solution of the problem, we consider that it is not valid. For example, if the
problem concerns the Composite pattern, a Decorator pattern is not a solution. This
process can take into consideration pattern composition in collecting spoiled patterns for
each problem solved by a precise composition of patterns.

For the structural patterns, we have collected more than three hundred models. One
hundred and fifty of them constituted a real alternative solution of the pattern. Others did
not solve the problem or did not respect the requirements. The validation process is
currently done manually. After the removal of duplications, we have conserved fifteen
models only. They constitute the alternative solution to the pattern for the problems (six
for the Composite pattern, six for the Decorator pattern, and three for the Bridge pattern)
[Bouhours07].

Thus, after the experiments, we have obtained a set of alternative solutions that we
have abstracted to deduce the spoiled patterns. Thus, we have constituted a catalog of bad
design practices classified by design patterns, which contain the identified spoiled
patterns and their valuations that belong to the design pattern’s properties.

Table 2: The structural features of the Composite spoiled pattern

BAD SMELLS IN DESIGN AND DESING PATTERNS

52 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 3

Related concepts

Now, we give a comparison between our main concepts and the software engineering
terms consecrated to patterns. The detection of alternative fragments in a model can
evoke bad smells and the explanation about their defects in referring to design patterns
can evoke anti-patterns.

Alternative fragments and bad smells in design: bad smells in code [Fowler99] are
any symptom in the source code of a program that possibly indicates a deeper design
problem. Especially more, code smells are heuristics to indicate where to refactor, and
what specific refactoring techniques to use. To refactor models is equivalent to refactor
programs but at the model level. In the same manner, bad smells in design is the
equivalent of bad code smells at model level. We consider that alternative fragments are
consolidated design smells. They denote some design problems via the valuation of
pattern properties and are substituable via model refactorings by an optimal solution
which is the instantiation of the associated design pattern.

Spoiled patterns and anti-patterns: there are several definitions of the anti-pattern
concept. For [Dodani06], they are descriptions of bad design practices with properties
and with a refactoring suite. For [Brown98], they are some repeated patterns of action,
process, or structure that initially appear to be beneficial, but produce in fine more bad
consequences than beneficial results, and a refactored solution that is clearly documented,
proven and repeatable. We consider that spoiled patterns are precise design-anti-patterns,
follow the first definition, they are slimmer, more precise, detectable, substitutable and
directly linked to design patterns. In following the second definition, we do not make
hypothesis about their uses in models if not ignorance or oversight about patterns from
the designer.

3 A DESIGN REVIEW ACTIVITY DIRECTED BY DESIGN PATTERNS

Our activity is decomposed into three steps. The first step consists in an automatic
research of instantiation of spoiled patterns. This research is based on structural
concordance with spoiled patterns and determines the model fragments which may be
substitutable with a design pattern.

To detect each alternative fragment in a model, we use a detection query that
conforms to Figure 7. This query is a set of OCL rules [OMG06] based on remarkable
properties. These rules are automatically generated with a plug-in we have developed for
the Neptune platform [Neptune03]. This plug-in analyzes the remarkable properties of the
spoiled patterns.

VOL. 8, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 53

For each UML model, the detection query finds all the possible instantiation of one
spoiled pattern. Each time one applies the detection query of one spoiled pattern
associated to a given GOF pattern, one retrieves all alternative fragments potentially
substitutable with the pattern itself. Therefore, this method is deterministic and the result
is complete for any set of spoiled patterns. According to the taxonomy proposed by
Chikofsky and Cross [Chikofsky90], our detection technique can be connected to a
redocumentation technique so as to permit model restructuring.

Each alternative fragment detected in the model represents propositions of fragments
substitutable with a design pattern. The second step consists in the validation of pattern
integration propositions. These propositions may be large where some fragments may not
be relevant for a substitution. So, to help the designer to filter the fragments, we use an
ontology that formalizes the design patterns and the information we have collected on the
spoiled patterns. This ontology will help the designer to determine if his intent matches
with the intent of the suggested pattern and whether the propositions are needed in the
model to review. The intent of a pattern is represented by the set of design pattern
problems that the pattern solves. To do so, we have extended an existing OWL
[MCGuinness04] ontology [Kampffmeyer07] by addition of our knowledge on spoiled
patterns and their relations with each design pattern along with their intents [Harb09].
Connections with the existing ontology are described in Figure 8.

Figure 7: Meta-model of alternative fragment detection

Alternative fragment

ClassifierParticipant

+isReference
Design pattern

Model to review

Spoiled pattern

corresponds to

1

Local remarkable propertyGlobal remarkable property

1

0..*
1..*

+candidate+mark

0..*0..*

Pattern

1

1..*

characterize

1
+linked to

0..*

Remarkable property

BAD SMELLS IN DESIGN AND DESING PATTERNS

54 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 3

If the designer confirms that the intent of the alternative fragment detected is conforms
with the suggested design pattern, and if he considers that the transformation is suitable,
the last step consists in the integration of the validated propositions into the model. This
integration is done thanks to an automatic model refactoring.

The Figure 9 illustrates our activity.

Pattern integration

[propositions]

Model to review

Designer

Model to review
[improved]

Spoiled patterns

catalog

Integration tool

Alternative fragments

detection

Patterns integration

Validation of
propositions

Pattern integration

Integration trace

Neptune
platform

OWL ontology

step
sequence

IN or OUT
element

for a step

In reference to the Fagan inspection process, we have named our activity a design review
activity. “Software inspection is a method of static testing to verify that software meets its
requirements. It engages the developers and others in a formal process of investigation
that usually detects more defects in the product - and at lower coast - than does machine
testing” [Fagan86]. All products of a software development process can be inspected. An

Figure 9: Our design review activity

Figure 8: Structure of the extended ontology

DesignPattern DPProblem ProblemConcept

constraints

+isSolutionTo

+isSolvedBy 1..*

1..*

+contraints

1..**

Spoiled pattern

Pattern properties

+isReplacedBy

+replace 1

1..*

+hasRules *

1..*

+hasRule

1..*

1..*

VOL. 8, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 55

inspection consists of some participants assigned to a specific role (Moderator, Author,
and Readers/Testers), and a six-step process (planning, overview, preparation, group
inspection, rework, and follow-up). Our activity is executed by the designer of the system
to review but can be improved by others participants: other designers and experts on
design patterns. The core of the process is guided by a prototype that tools our activity.
Planning and overview are general steps. The preparation step consists of a study of the
bad practices catalog. The group inspection consists of an analysis followed by answers
to each question proposed by our system. The rework step is taken into account by an
automatic refactoring. The to-do list is implicitly produced by all occurrences of
alternative fragments founded during the process.

4 ILLUSTRATION ON A “FILE SYSTEM MANAGEMENT” DESIGN

In order to illustrate our approach, we execute the whole activity on an example. It was
found in a subject of an object-oriented programming supervised practical work. It aims
to implement a file management system represented in Figure 10.

The model to review

This static UML model represents a basic architecture for a file system management.
Authors of this model are interested in the presentation of some object concepts:

• Inheritance between classes. A uniform protocol for every FileSystemElement is
encapsulated by a corresponding abstract class. Directories and Files must respect
this protocol via inheritance relationships. We can note that all concrete classes
are derived directly or indirectly from an abstract class. This rule enforces the
emergence of reusable protocols.

• Management of reference and delegation. There are composition links between
container and components. A directory object manages some references to files
and directories objects. A directory object delegates some actions to sub-
directories and files, for example, the getSize() method.

BAD SMELLS IN DESIGN AND DESING PATTERNS

56 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 3

Nevertheless, this model contains a misconception. Although there is a uniform protocol
owned by the class FileSystemElement, the composite links management along a
hierarchical structure is duplicated. Indeed, the Directory class manages independently
links on Files and Directories. Now, we consider two evolution scenarios.

The first is the addition of new terminal types in the tree structure, for example,
symbolic links in UNIX file systems. This evolution requires the management of this new
type of link by the Directory class and then requires code modification and code
duplication in this class.

The second is the addition of new non terminal types in the tree structure, for example
archive files in UNIX or in Java environment. We can consider that an archive file has
the same functionalities as a Directory. This evolution requires a reflexive link on an
archive file class and the duplication of all links that represent composition links in the
tree structure. Moreover directories can contains archive files too, then duplication of
management of composition and code modification is required for the Directory class.

These two scenarios show a decoupling problem (each container manages a part of
the composite structure) and an extensibility limitation (every modification will require
existing code modification for the addition of a new type of terminal or non terminal
element of the composition hierarchy). Therefore, this model can be improved.
Furthermore, when the authors have implemented this model, they realized that there
were defects. They adapted their code to correct them, without changing the design
model.

Figure 10: The model to review

Directory

+open()
+delete()
+getSize(): int
+getAbsolutePath(): String
+add(e: FileSystemElement)
+remove(e: FileSystemElement)
+get(): FileSystemElement[*]
+searchDir(name: String)
+searchFile(name: String)

File

-size: int
-data: byte

+open()
+delete()
+getSize(): int
+getAbsolutePath(): String

FileSystem

+getRoot(): Directory
+setRoot(d: Directory)

FileSystemElement

+delete()
+getSize()
+getAbsolutePath()
+open()

Path

-path: String

+getPath(): String
+getParts(): String[*]

Nameable

-name: String

-getrName(): String

*

-root

-subdirectory

*

FileSystemServices

+search(p: Path): FileSystemElement

Comparable

+compareTo(c: Comparable): int

VOL. 8, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 57

Alternative fragments detection

This step consists in the execution of all queries which correspond at each spoiled pattern
of the catalog. In this example, the query of the Composite spoiled model returns these
match classes:

1. The Directory class is markable with the Composite participant.
2. The File class is markable with the Leaf participant.
3. The FileSystemElement is markable with the Component participant.

This means that we detected an alternative fragment for the Composite pattern because
they have the same structural properties as illustrated by Figure 11.

Validation of propositions

At this step, the designer must verify if the detected fragment has the same intent as the
considered alternative fragment. If this is the case, we have a bad smell in design. Then
the designer must validate or not the substitution of the detected fragment by the
instantiation of the design pattern. To do so, we build questions thanks to SPARQL
[Prud’hommeaux08] queries we have coded. These questions permit to initiate a dialog
with the designer.

The first query retrieves the intent of the design pattern in using the alternative
fragment detected and deals with the designer’s intent according to recursive composition
of FileSystemElement, File, and Directory within the model. The second query retrieves
the pattern properties not present in the spoiled pattern and checks the interest to replace
the alternative fragment {FileSystemElement, File, Directory} by an instantiation of the
Composite pattern.

We can ask the designer the first question: “We have detected in your design an
alternative fragment of the Composite design pattern. Is the fragment
{FileSystemElement, File, Directory} used to compose objects, build a tree structure, and
nest objects?”

Figure 11: Alternative fragment compared to the Composite spoiled pattern

Component

CompositeLeaf
*

*

FileSystemElement

DirectoryFile
*

*

BAD SMELLS IN DESIGN AND DESING PATTERNS

58 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 3

We can note that the intent of {FileSystemElement, File, Directory} is a recursive
composition: “Directories are composed with Files or Directories which are composed
with…”. So the answer to the previous question is positive.

Then we continue the dialog with the designer: “Our analysis shows that you have
problems of “decoupling and extensibility”; your model is unable to satisfy these points:

1. Maximal factorization of the composition.
2. Addition or removal of a leaf does not need code modification.
3. Addition or removal of a composite does not need code modification.

In the injection of the Composite design pattern, you will improve all of these points. Do
you want to refactor the identified fragment {FileSystemElement, File, Directory}?”

As we consider that the model may evolve, it is useful to guarantee that there are
extensibility and decoupling possibilities. Therefore, the fragment must be substituted
with the pattern.

Pattern integration

In this step, the identified fragment is replaced by the suggested design pattern as shown
in the Figure 12 below.

To do so, a suite of simple model refactoring suffices to integrate the pattern.

Figure 12: The model to review improved

Directory
<<Composite>>

+open()
+delete()
+getSize(): int
+getAbsolutePath(): String
+add(e: FileSystemElement)
+remove(e: FileSystemElement)
+get(): FileSystemElement[*]
+searchDir(name: String)
+searchFile(name: String)

File
<<Leaf>>

-size: int
-data: byte

+open()
+delete()
+getSize(): int
+getAbsolutePath(): String

FileSystem

+getRoot(): Directory
+setRoot(d: Directory)

FileSystemElement
<<Component>>

+delete()
+getSize()
+getAbsolutePath()
+open()

Path

-path: String

+getPath(): String
+getParts(): String[*]

Nameable

-name: String

-getrName(): String

-root

-subdirectory *

FileSystemServices

+search(p: Path): FileSystemElement

Comparable

+compareTo(c: Comparable): int

VOL. 8, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 59

Here, it consists of:
1. Remove composition link between Directory and File.
2. Move the end of the recursive composition link from Directory to

FileSystemElement.
These inter-classes refactorings can automatically be deduced with an operation of

differentiation between the alternative model and the pattern structure.
If at a first sight, this transformation may appear as non fundamental in the model, the

implications are substantial at the code level. Every hierarchical traversal method is
simpler to implement, and there is less code to write. Moreover, in case of extensions,
there is no code modification of existing classes. Then, at the design level this
transformation brings about substantial benefits. At the end of the activity, we can
consider that this model is improved. We are in the process to test all activity on more
consistent and valuable models.

5 RELATED WORKS

Currently, a lot of works which concern design patterns exist but at the coding stage.
These works concern code generation to integrate patterns into applications and pattern
reverse engineering to supply miss-traceability design choices. We are centered in
patterns and models driven engineering at the model level. We can identify two topics in
pattern engineering. The first concerns the validation of a good integration of a pattern
within a model. The second concerns the promotion of the use of patterns in models.

The process of a model transformation through use of a design pattern is called
pattern-based refactoring thanks to a “pattern problem specification”, a “pattern solution
specification” and a “transformation specification”. Robert France, et al. [France04],
proposes to validate the pattern integration with a conformance relation between specified
models to their meta-models. Our design review activity contains a pattern integration,
but with less constrained requirements because we modify inter-class relations only.

We experiment Fujaba Tool Suite RE [FUJABA04], which contains a Design-Pattern
Recognition component. This tool allows the detection of design patterns in reverse
engineered design, thanks to a hierarchical sub-pattern catalog. These sub-patterns are
concepts like “isAstractionOf”, “redefineMethod”, etc., which once associated represent
the pattern concept. They specify patterns as graph transformation rules, with respect to
the abstract syntax graph of a source code system, and they use bottom-up/top-down
analysis. Our spoiled patterns are described on inter-class relations only, and are shown
on static class diagrams. We do not need to be as accurate in our description as in their
pattern description. In our design activity, we choose to verify the intent correspondence
with the designer and we do not need the source code. However, we search model
fragments whose inter-classes relations are exactly the same as those of a spoiled pattern.
So, our detection is more constrained than a graph homomorphism used in Fujaba.

BAD SMELLS IN DESIGN AND DESING PATTERNS

60 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 3

Sven Wenzel [Wenzel05] uses a fuzzy-like evaluation mechanism so that it is able to
recognize not only entire patterns but also incomplete instantiations. He researches all
approximate pattern solutions in using proximity percentages. Therefore, we can say that
our catalog is an extension definition of the set of approximate patterns. Moreover, as our
alternative solutions had been built by human, there is a guarantee that these models are
retrievable in a human model.

Kampffmeyer, et al. [Kampffmeyer07] have developed a wizard that enables
designers to efficiently find design patterns applicable for their design problems, during
the design stage. Thanks to an ontology, they classify some problem concepts that allow
to retrieve concerned patterns. Our approach is different especially because we do not
impose on the designer to identify design problems.

El-Boussaidi, et al. [ElBoussaidi08] consider that design problems solvable by design
patterns are sometimes badly-designed, provoking poor solutions to modeling
requirements. To limit that, they propose a semi-automatic tool for marking models using
constraint satisfaction techniques. This tool aims at providing a framework for the
recognition of design problems solved by design patterns and rewrites them according to
the appropriate solutions. Their purpose is close to ours, except that the key element of
their approach is the explicit representation of design problems solved by design patterns.
This representation limits their detection range to precise design and does not allow to
identify all fragments potentially substitutable. Moreover, thanks to our experiments that
allow to constitute a spoiled patterns base that is designable by people, the fragments we
search have been thought once.

6 CONCLUSION AND PERSPECTIVES

In this paper, we propose to detect bad smells in design and to rework models with
adequate design patterns thanks to “spoiled patterns” which are the main concept of our
approach. A spoiled pattern can be used according two viewpoints. The first is an
architectural or macro-structural view composed by links between participant classes of
the spoiled pattern. This view permits us to generate automatically OCL queries that find
possible alternative fragments into a model. The second is a knowledge view composed
by the intent and a valuation of the defects of the spoiled pattern compared to a
corresponding design pattern. This view permits us to validate a fragment as an
instantiation of a design pattern and to explain the misconceptions and the advantages of
using the design pattern with an ontology base. Moreover, spoiled patterns are obtained
by experiments and so designed by people. Thus alternative fragments are more likely to
exist in models designed by people.

We have encapsulated spoiled patterns into a design review activity directed by
design patterns. For prototyping this activity, we have developed an extension of a pattern
oriented ontology and we have implemented a generator of OCL queries using a specific
profile that encode structural particularities of spoiled patterns. This generator can be
reused for retrieving patterns in a model. Finally, we consider that our catalog of spoiled

VOL. 8, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 61

patterns is a natural extension of the GoF catalog in justifying the choice of the design
pattern as the optimal solution for a given problem and in explaining the misconceptions
entailed by the associated spoiled patterns.

To keep the tooling of our activity, we work on some transformation rules to obtain
an automatic pattern integration. A structural comparison between a spoiled pattern and
the corresponding design pattern can be used to obtain a set of structural differences for
each participant. These differences constitute operations once applied on classes to do
structural transformations. To extend the field of our approach, we propose to adapt
remarkable properties on spoiled pattern to behavioral properties.

ACKNOLEDGEMENT

We are grateful to Dr. Ralph Sobek for his precious comments during this paper reading,
and to Dr Guillaume Cabanac for his precious example.

REFERENCES

[Bouhours07] Bouhours C., Leblanc H., Percebois C., “Alternative Models for
Structural Design Patterns”, research report, IRIT/RR--2007-1--FR,
IRIT, december 2007, [w] http://www.irit.fr/recherches/DCL/
MACAO/docs/AlternativeModelsForStructuralDesignPatterns.pdf.

[Brown98] Brown William J., Malveau Raphael C., Mowbray Thomas J.
“AntiPatterns: Refactoring Software, Architectures, and Projects in
Crisis”, 1998.

[Buschmann96] Buschmann F., Meunier R., Rohnert H., Sommerlad P., Stal M.,
“Pattern-Oriented Software Architecture”, John Wiley & Sons,
August 1996.

[Chikofsky90] Chikofsky E. J., Cross J. H., “Reverse engineering and design
recovery: A taxonomy”, in IEEE Software, 7(1), page 13-17,
January 1990.

[Diaz87] P.Diaz, Classification of reusable modules, IEEE Software 4(1),
pp.6-16, 1987.

[Dodani06] Mahesh H. Dodani, “Patterns of Anti-Patterns”, in Journal of
Object Technology, vol. 5, no. 6, July-August 2006, pp. 29-33

[ElBoussaidi08] El-Boussaisi G., Hafedh M., “Detecting Patterns of Poor Design
Solutions Using Constraint Propagation”, in MoDELS, Springer,
2008 , volume 5301, pages 189-203.

BAD SMELLS IN DESIGN AND DESING PATTERNS

62 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 3

[Fagan02] Fagan M., “Design and code inspections to reduce errors in
program development”, Springer-Verlag, New York, Inc., 2002,
pages 575-607.

[Fowler97] Fowler M., “Analysis patterns: reusable objects models”, Addison
Wesley Longman Publishing Co, Inc., 1997.

[Fowler99] Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.
“Refactoring: Improving the Design of Existing Code”, Addison-
Wesley Professional, 1999

[France04] France R. B., Kim D., Ghosh S., Song E., “A UML-Based Pattern
Specification Technique”, in TSE, IEEE Press, 2004, 30, 193-206.

[FUJABA04] FUJABA, From UML to Java and Back Again, [w]
http://wwwcs.uni-paderborn.de/cs/fujaba/projects/reengineering/
index.html

[Gamma95] Gamma E., Helm R., Johnson R., Vlissides J., “Design Patterns:
Elements of Reusable Object-Oriented Software”, Addison Wesley
Professional, 1995.

[Harb09] Dania Harb, Cédric Bouhours, Hervé Leblanc. “Using an ontology
to suggest software design patterns integration”. in First
international workshop on TWOMDE, Toulouse, France, Oct.
2008. Selected as one of best papers of the workshop.
Workshops and Symposia at MoDELS 2008, M.R.V. Chaudron
ed., LNCS, vol. 5421, Springer, 2009

[Hasso04] Sargon Hasso and C. R. Carlson. Linguistics-based Software
Design Patterns Classification. In HICCS, Honolulu, HI, Jan 2004.

[Kampffmeyer07] Kampffmeyer H., Zschaler S., “Finding the Pattern You Need: The
Design Pattern Intent Ontology”, in MoDELS, Springer, 2007,
volume 4735, pages 211-225.

[MCGuinness04] D.L. McGuinness and F. van Harmelen: OWL Web Ontology
Language Overview, 2004.http://www.w3c.org/TR/owl-features/

[Neptune03] NEPTUNE, Nice Environment with a Process and Tools using
Norms - UML, XML and XMI - and Example, [w]
http://neptune.irit.fr, 2003.

[OMG06] Object Management Group., “Object Constraint Language”,
http://www.omg.org/cgi-bin/apps/doc?formal/06-05-01.pdf, 2006.

[Prud’hommeaux08] Prud'hommeaux E., Seaborne: SPARQL Query Language for RDF,
January 2008. http://www.w3.org/TR/rdf-sparql-query/

[Sunyé01] Sunyé G., Pollet D., Traon Y. L. & Jézéquel J., Refactoring UML
models in UML, Springer, 2001, 134-148

VOL. 8, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 63

[Wenzel05] Wenzel S., “Detection of Incomplete Patterns Using FUJABA
Principles”, in 3rd International Fujaba Days : MDD in practice,
2005

About the authors

Cédric BOUHOURS is a PhD student in computer science since 2006
at the University of Toulouse, France. He works on the reuse of the
expert knowledge in MDE processes models. He conceives and tools a
design review activity that allows the verification if design patterns
were forgotten by the designers of a model, and to automatically correct
this situation, with the designers approval. His research interest includes

best practices, development processes and methods, design patterns, and refactoring. He
can be reached at bouhours@irit.fr

Hervé LEBLANC is associate professor of computer science at the
University of Toulouse since 2002. His research interest includes Object
Oriented language and design. He worked on automatic restructuring
class and interface hierarchies thanks to the Galois lattice. He received a
PhD in computer science from University of Montpellier II. His main
research interests are now linked to patterns, refactoring, agile methods

and traceability in MDE processes. He can be reached at leblanc@irit.fr

Christian PERCEBOIS is professor of computer science at the
University of Toulouse since 1992. He worked on Lisp and Prolog
interpreters, garbage collecting for symbolic computations,
asynchronous backtrackable communications in parallel logic
languages, abstract machine construction through operational semantics
refinements, typing in object-oriented programming, and multiset

rewriting techniques in order to coordinate concurrent objects. His main research interests
are now linked to design methodologies and object-oriented modeling approaches. He
can be reached at percebois@irit.fr

