
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2009

Vol. 8, No. 2, March-April 2009

Richard Wiener: “WCF: A Case Study Involving a Distributed Client/Server Game”, in Journal of
Object Technology, vol. 8, no. 2, March-April 2009, pp. 71-90
http://www.jot.fm/issues/issue_2009_03/column6/

WCF: A Case Study Involving a
Distributed Client/Server Game

Richard Wiener

1 BACKGROUND

Windows Communication Foundation (WCF) is a software development kit developed
by Microsoft as part of .NET 3.0. It provides a flexible and powerful implementation of
industry standards defined by IBM, Sun, BEA and Microsoft and defines a service-
oriented architecture for communication among machines using various communication
protocols.

WCF provides a basis for SOA – service-oriented architecture. This paradigm differs
from traditional OOP in which tight encapsulation of data is encouraged and supported by
classes. With SOA utilizes loosely coupled services. Each service defines a contract to
the entities that consume it. It is generally difficult to implement a single interface across
many platforms and languages because of the nature of distributed systems. It is essential
to implement the interfaces in a generic manner.

Some of the benefits of SOA messaging include: (1) cross-platform integration in
which each platform works with its native data types, (2) asynchronous “fire and forget”
communication without the client and server having to wait for each other, (3) Security
provided by messages containing a security context involving authentication and
authorization.

Prior to WCF, Microsoft supported distributed computation first with Component
Object Model (COM) followed by DCOM (Distributed Component Object Model) and
later .NET Remoting and XML services. WCF integrates all of these into unified
software development platform.

2 THE CASE STUDY

Given the broad capability of WCF one could define dozens of interesting applications,
each illustrating different aspects of WCF. These would include web-based services,
communication through an intranet and process to process communication within the
same computer and many combinations of the above.

WCF: A CASE STUDY INVOLVING A DISTRIBUTED CLIENT/SERVER GAME

72 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 2.

The case-study presented in this paper focuses on a simple Windows Form client-
server intranet distributed game in which communication (messages) originate from the
client and are directed at the server which then returns information to the client. A TCP
connection will be used to provide the protocol for communication between the client and
server computers on the same local area network. The relative simplicity of this
application (although as you will see this application is non-trivial) underscores the fact
that the goal of this paper is not to demonstrate the breadth and depth of WCF capability
(it would take a much more complex and larger enterprise application to achieve this), but
to demonstrate how a GUI-based host (server) can support one or more clients (also GUI-
based) using SOA in conjunction with OOP and WCF.

The distributed game that will be defined is based on the classic game of Battleship.
The paper and pencil game was first produced as a commercial game in the 1930s. In this
version, the client computer contains a rectangular grid with many cells. The user selects
cells with the mouse (up to 10 at any given time) and then clicks the “Fire” button to hit
the server’s grid with shells at the exact locations specified on the client computer’s grid.
The goal is to destroy the ships on the server’s grid. A ship is destroyed when all its cells
are hit.

The server player starts the game with eight ships. Two giant battleships, two
cruisers and four smaller PT boats comprise the armada on the server’s grid. The goal is
for the client to destroy all eight ships on the server with as few shots as possible. To
make things more challenging for the client (the shooter), the person managing the server
grid (the eight ships) may move the ships subject to some constraints as the game
progresses. It is assumed that the client player cannot see the server player’s screen
during the game.

Each time the “Fire” button is clicked by the client player, the points selected by the
client player must be transmitted to the server computer. Small black colored rectangles
are used on the server grid to indicate the location of the shots fired by the client.
Whenever a “hit” occurs in one of the server player’s ships, an explosion sound is
generated on the server computer and a red-colored “X” is painted onto the black
rectangle that specifies the location of the shell. This red-colored “X” stays with the ship
whenever it is moved. When all the ship’s cells have been hit (contain red-colored X’s),
the ship is destroyed.

When the client player clicks a cell, a small red rectangle is shown. If the shell hits a
server ship the cell remains red otherwise if a miss, the cell turns blue. This provides the
client player with visual feedback. Of course the server player can move her ships around
during game subject to constraints.

The constraints that govern the movement of server ships are the following:
1. No two server ships can overlap (share any cells).
2. A server ship cannot move past the natural boundaries of the grid.
3. A server ship cannot move if any of its cells in the new position cover a grid

location that has been previously fired at. This suggest that it becomes

VOL. 8, NO. 2. JOURNAL OF OBJECT TECHNOLOGY 73

increasingly difficult for the server player to move her ships as the game
progresses since a greater number of grid locations will have been fired at.

When the game begins (both the server and client have launched their respective
applications), each GUI looks as follows:

WCF: A CASE STUDY INVOLVING A DISTRIBUTED CLIENT/SERVER GAME

74 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 2.

Once the client has established communication with the server (might take 20 seconds),
the client application looks like:

VOL. 8, NO. 2. JOURNAL OF OBJECT TECHNOLOGY 75

The name of the server computer is provided as the right-most field in a TextBox control.
The server determines its own name and does not need user input for this.

After three shots have been fired by the client, two of which are hits and one miss,
the server and client screens look like:

WCF: A CASE STUDY INVOLVING A DISTRIBUTED CLIENT/SERVER GAME

76 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 2.

Of course in a real game the server player would have moved her ships from their default
initial positions in order to elude the client player.

One final set of screen shots taken partway through a game show typical
configurations of the server and client GUI’s:

VOL. 8, NO. 2. JOURNAL OF OBJECT TECHNOLOGY 77

In this game, partially completed, there have been 29 shots fired with only 10 hits scored.
These are shown with the red X’s on the server grid. The red colored rectangles on the

WCF: A CASE STUDY INVOLVING A DISTRIBUTED CLIENT/SERVER GAME

78 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 2.

client grid show where hits occurred. In many cases the hit server ship was moved after
the hit occurred.

So playing the game is actually fun for both the client player and the server player. It
is also fun building the client and server applications and connecting them using WCF.

An outline of many of the essential elements of the implementation of this
client/server game is presented in the next several sections.

3 CONSTRUCTION OF CLIENT AND SERVER APPLICATIONS

We first examine the server host. The code for creating this host is embedded in the usual
Program.cs file that normally one does not edit or tamper with. The code for this class
Program follows:
Listing 1 – Class Program that Contains the Service Host

using System;
using System.Collections.Generic;
using System.Linq;
using System.Windows.Forms;
using System.ServiceModel ;
using System.ServiceModel.Description;

namespace Battleship {
 static class Program {
 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 [STAThread]
 static void Main() {
 String machineName = Environment.MachineName;
 Application.EnableVisualStyles();
 Application.SetCompatibleTextRenderingDefault(false);

 ServiceHost serviceHost = new
 ServiceHost(typeof(BattleshipUI),
 new Uri("net.tcp://" + machineName +
 ":8000/Battleship/BattleshipUI"));

 NetTcpBinding tcpBinding = new NetTcpBinding();

 serviceHost.AddServiceEndpoint(
 typeof(IBattleshipServices),
 tcpBinding, "net.tcp://" + machineName +
 ":8000/BattleshipUI");

 serviceHost.Open();
 Application.Run(new BattleshipUI());
 serviceHost.Close();
 }

VOL. 8, NO. 2. JOURNAL OF OBJECT TECHNOLOGY 79

 }
}

The reference System.ServiceModel.dll must be added to the Battleship project in order
for the WCF bindings to be recognized. The namespaces System.ServiceModel and
System.ServiceModel.Description are also used in order to allow unqualified access to
the class names NetTcpBinding and ServiceHost.
The features salient to creating the host programmatically are given by this portion of the
code above:

ServiceHost serviceHost = new
 ServiceHost(typeof(BattleshipUI),
 new Uri("net.tcp://" + machineName +
 ":8000/Battleship/BattleshipUI"));

NetTcpBinding tcpBinding = new NetTcpBinding();

serviceHost.AddServiceEndpoint(
 typeof(IBattleshipServices),
 tcpBinding, "net.tcp://" + machineName +
 ":8000/BattleshipUI");

serviceHost.Open();

The class name BattleshipUI (the GUI class) is specified in the ServiceHost constructor.
The “net.tcp” binding followed by the machine name and port 8000 is used as part of the
endpoint specification in the ServiceHost constructor. The machineName string is
obtained from the static property MachineName in class Environment. The method
AddServiceHost is invoked on the serviceHost object using the typeof operator on the
IBattleshipServices interface. This interface specifies the service contract that the client
application utilizes as well as the callback contract that the server application uses to send
information back to the client.

Listing 2 presents the details of the IBattleshipServices interface.

Listing 2 – Interface IBattleshipServices

namespace Battleship {

 [ServiceContract(SessionMode=SessionMode.Required,
 CallbackContract=typeof(ICallbackServices))]
 public interface IBattleshipServices {
 [OperationContract(IsOneWay = true)]
 void ShootAt(Point pt);
 }

WCF: A CASE STUDY INVOLVING A DISTRIBUTED CLIENT/SERVER GAME

80 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 2.

 public interface ICallbackServices {
 [OperationContract(IsOneWay = true)]
 void Results(int remainingShips, int shotsFired,
 int totalHits, int lastHits);
 [OperationContract(IsOneWay = true)]
 void ScoreHit(Point pt);
 [OperationContract(IsOneWay = true)]
 void GameOver();
 }
}

Numerous attributes (meta-data information embedded between rectangular brackets)
decorate the interface. Only a single operation service contract, ShootAt, is specified. A
point object must be passed from the client to the server (the location where the shell
explodes).

Three operation service contracts are specified as callback message signatures in
which the server can inform the client application about the number of remaining ships,
total number of shots fired, total number of hits and last number of hits (on the last firing
by the client against the server). That is all taken care of in the operation callback
signature for Results. The ScoreHit callback operation contract provides the basis for
communicating the location of a hit to the client. Finally, the GameOver callback
operation contract allows the server to inform the client that the game is over because all
ships have been destroyed.

On the other end of the system, Listing 3 shows how the client application connects
to the server application. Listing 3 presents the code activated by the client player
clicking the InitializeBtn button.

Listing 3 – Button handler for the Initialize button

private void InitializeBtn_Click(object sender, EventArgs e) {
 InitializeBtn.Enabled = false;
 serverMachineName = serverMachineNameTextBox.Text;
 EndpointAddress ep = new
 EndpointAddress("net.tcp://" + serverMachineName +
 ":8000/Battleship/BattleshipUI");
 this.Text = "Fire At Ships Application - Establishing
 Communication With Server";
 DuplexChannelFactory<IBattleshipServices> factory =
 new DuplexChannelFactory<IBattleshipServices>(
 new FireAtShipsUI(), new NetTcpBinding(), ep);
 // This allows a client computer with different user name and
 // password to login to the server/
 // The USER_NAME_STRING and PASSWORD_STRING
 // must be replaced with actual string names
 factory.Credentials.Windows.ClientCredential =
 new NetworkCredential(USER_NAME_STRING, PASSWORD_STRING);
 proxy = factory.CreateChannel();
 proxy.ShootAt(new Point(-1, -1));
 // Other code not related to the WCF communication
}

VOL. 8, NO. 2. JOURNAL OF OBJECT TECHNOLOGY 81

A “blank” shot at Point(-1, 1) is done to cement the communication along the path
provided. A DuplexChannelFactory is used to establish two-way communication. The
endpoint address requires the name of the server computer. This is given as part of the
user interface (a TextBox) in the FireAtShipsUI class. The DuplexChannelFactory
constructor specifies a base type of IBattleshipServices, the communication protocol
(NetTcpBinding) and the endpoint address of the server. When the client user clicks the
InitializeBtn button it is assumed that the server host has been activated.

Listing 4 contains all the details of the important client GUI class FireAtShipsUI.

Listing 4 – Class FireAtShipsUI

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.ServiceModel;
using System.ServiceModel.Description;
using System.ServiceModel.Channels;
using Battleship;
using System.Threading;
using System.Net;

namespace FireAtShip {

 [ServiceContract(SessionMode = SessionMode.Required,
 CallbackContract = typeof(ICallbackServices))]
 public interface IBattleshipServices {
 [OperationContract(IsOneWay = true)]
 void ShootAt(Point pt);
 }

 [ServiceContract(SessionMode = SessionMode.Required,
 CallbackContract = typeof(ICallbackServices))]
 public interface ICallbackServices {
 [OperationContract(IsOneWay = true)]
 void Results(int remainingShips,
 int shotsFired, int totalHits, int lastHits);
 [OperationContract(IsOneWay = true)]
 void ScoreHit(Point pt);
 [OperationContract(IsOneWay = true)]
 void GameOver();
 }

 public delegate void LabelUpdate();
 public delegate void TextUpdate(TextBox textbox,
 String someValue);

 [CallbackBehavior(UseSynchronizationContext = false)]
 public partial class FireAtShipsUI : Form,

WCF: A CASE STUDY INVOLVING A DISTRIBUTED CLIENT/SERVER GAME

82 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 2.

 ICallbackServices {

 // Fields
 private Graphics g;
 private IBattleshipServices proxy;
 private List<Point> fireAt = new List<Point>();
 private Thread timer;
 private int numberShots;
 private String serverMachineName;

 public FireAtShipsUI() {
 InitializeComponent();
 g = this.panel.CreateGraphics();
 FireBtn.Enabled = false;
 gameOverLbl.Visible = false;
 }

 private void UpdateStatus() {
 while (true) {
 try {
 Thread.Sleep(1000);
 AssignToTextBox(totalHitsTextBox, "" +
 Global.totalHits);
 AssignToTextBox(remainingShipsTextBox, "" +
 Global.remainingShips);
 AssignToTextBox(lastHitsTextBox, "" +
 Global.hits);
 AssignToTextBox(totalShotsFiredTextBox, "" +
 Global.shotsFired);
 foreach (Point pt in Global.hitsScored) {
 g.FillRectangle(new SolidBrush(Color.Red),
 pt.X, pt.Y, 20, 20);
 }
 if (Global.GAME_OVER) {
 MakeLabelVisible();
 }
 } catch (Exception) { }
 }
 }

 private void MakeLabelVisible() {
 if (!this.InvokeRequired) {
 gameOverLbl.Visible = true;
 FireBtn.Enabled = false;
 } else {
 Object[] parameters = { };
 this.Invoke(new LabelUpdate(MakeLabelVisible),
 parameters);
 }
 }

 private void AssignToTextBox(TextBox textbox,
 String someValue) {
 if (!this.InvokeRequired) {
 textbox.Text = someValue;

VOL. 8, NO. 2. JOURNAL OF OBJECT TECHNOLOGY 83

 } else {
 Object[] parameters = { textbox, someValue };
 this.Invoke(new TextUpdate(AssignToTextBox),
 parameters);
 }
 }

 public void Results(int remainingShips, int shotsFired,
 int totalHits, int lastHits) {
 Global.totalHits = totalHits;
 Global.shotsFired = shotsFired;
 Global.hits = lastHits;
 Global.remainingShips = remainingShips;
 }

 public void GameOver() {
 Global.GAME_OVER = true;
 }

 public void ScoreHit(Point pt) {
 Global.hitsScored.Add(pt);
 }

 private void InitializeGrid() {
 for (int x = 0; x < 40; x++) {
 g.DrawLine(new Pen(Color.Black, 1),
 x * 20, 0, x * 20, 575);
 }
 for (int y = 0; y < 30; y++) {
 g.DrawLine(new Pen(Color.Black, 1), 0,
 y * 20, 800, y * 20);
 }
 }

 private void InitializeBtn_Click(object sender,
 EventArgs e) {
 // Code presented in Listing 3
 this.Text = "Fire At Ships Application";
 InitializeGrid();
 timer = new Thread(new ThreadStart(UpdateStatus));
 timer.IsBackground = true;
 timer.Start();
 FireBtn.Enabled = true;
 }

 private void FireBtn_Click(object sender, EventArgs e) {
 lock (fireAt) {
 foreach (Point pt in fireAt) {
 // Communication with server
 proxy.ShootAt(pt);
 g.FillRectangle(new SolidBrush(Color.Blue),
 pt.X, pt.Y, 20, 20);
 }
 fireAt.Clear();
 numberShots = 0;

WCF: A CASE STUDY INVOLVING A DISTRIBUTED CLIENT/SERVER GAME

84 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 2.

 }
 }

 private void panel_MouseDown(object sender,
 MouseEventArgs e) {
 if (numberShots < 10) {
 int x = e.X / 20 * 20;
 int y = e.Y / 20 * 20;
 g.FillRectangle(new SolidBrush(Color.Red),
 x, y, 20, 20);
 lock (fireAt) {
 fireAt.Add(new Point(x, y));
 }
 numberShots++;
 }
 }
 }
}

The first observation is that the interface for IBattleshipServices must be included in the
client application (here it is done inline in the file that contains class FireAtShipsUI.

An UpdateStatus thread is launched (see the UpdateStatus method above). Every
second it grabs static information contained in a class Global and uses this information to
update text fields in the class. In order to avoid cross-thread updates of the GUI (from
thread UpdateStatus to the main GUI thread), two delegates (LabelUpdate and
TextUpdate) are defined. So, for example, to update the textbox with someValue, first the
else clause in the if-else construct will be executed. This in turn will cause a recursive
invocation of the AssignToTextBox method which will directly update the desired text
box. But it will do so from within the main GUI thread thus avoiding the dreaded cross-
thread exception or cross-thread flaky behavior from occurring. The same strategy is used
when the label that announces the end of the game is made visible.

When the server informs the client through the ScoreHit method that a hit has
occurred on the client grid, this information is immediately passed to the static hits List
contained in class Global.

Listing 5 presents the code for class Global.
Listing 5 – Class Global

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Battleship;
using System.Drawing;
using System.ServiceModel;

namespace FireAtShip {

 public class Global {
 public static int totalHits;
 public static int hits;

VOL. 8, NO. 2. JOURNAL OF OBJECT TECHNOLOGY 85

 public static int remainingShips;
 public static int shotsFired;
 public static List<Point> hitsScored =
 new List<Point>();
 public static bool GAME_OVER;
 }
}

The server application is more complex than the client. It needs to provide the player the
ability to move ships with the mouse within the constraints stated earlier. It needs to
determine whether a shell hits or misses a ship and then must inform the client of the
outcome.

Classes BattleshipUI (the server GUI class), Assets (containing the business model
behind the GUI class) and Ship (another business class that fires events) from the basis of
the server application.

Listing 6 presents the two delegate types that are used to provide event firing and
communication between the business model and listener (GUI class) class.

Listing 6 – Delegate Classes to support Server Application

namespace Battleship {

 public delegate void EraseOldShipAction(Point pt,
 int width, int height);

 public delegate void DrawNewShipAction(Point pt,
 int width, int height, Color color, List<Point> hits);

}

Several important methods from class Ship are shown in Listing 7.

Listing 7 – Several important methods from class Ship

 public void MoveShip(Point newPt) {
 Point oldPt = location;
 // Erase old ship
 FireEraseShape(oldPt, width, height);

 this.Location = newPt;
 List<Point> movedHits = new List<Point>();
 foreach (Point pt in Hits) {
 movedHits.Add(new Point(pt.X + newPt.X - oldPt.X,
 pt.Y + newPt.Y - oldPt.Y));
 }
 hits.Clear();
 foreach (Point p in movedHits) {
 hits.Add(p);

WCF: A CASE STUDY INVOLVING A DISTRIBUTED CLIENT/SERVER GAME

86 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 2.

 }
 FireDrawShape(newPt, width, height, color, Hits);
 hasMoved = true;
}

public void FireEraseShape(Point oldPt, int width,
 int height) {
 if (erase != null) {
 erase(oldPt, width, height);
 }
}

public void FireDrawShape(Point newPt, int width,
 int height, Color color, List<Point> hits) {
 if (draw != null) {
 draw(newPt, width, height, color, hits);
 }
}

The events draw and erase are fired within the methods FireEraseShape and
FireDrawShape respectively. These events are registered with listener methods within the
BattleshipUI GUI class.

Two important and interesting methods within class Assets are presented.

Listing 8 – Two important methods from class Assets

public bool NoCollisionWithOtherShipsAndBoundary(
 Ship selectedShip, int x, int y) {
 // Iterate over points in selectedShip
 int rows = selectedShip.Height / 20;
 int cols = selectedShip.Width / 20;
 for (int xPos = x; xPos < x + cols * 20; xPos += 20) {
 for (int yPos = y; yPos < y + rows * 20; yPos += 20) {
 if (PointInShip(new Point(xPos, yPos)) != null &&
 PointInShip(new Point(xPos, yPos)) != selectedShip ||
 xPos < 1 || xPos > 39 * 20 || yPos <= 0 ||
 yPos >= 29 * 20 ||
 Global.fireAt.Contains(new Point(xPos, yPos))) {
 return false;
 }
 }
 }
 return true;
 }

public Ship PointInShip(Point pt) {
 for (int index = 0; index < 8; index++) {
 if (ships[index] != null) { // ship has not been destroyed
 int shipX = ships[index].Location.X;
 int shipY = ships[index].Location.Y;
 int shipWidth = ships[index].Width;
 int shipHeight = ships[index].Height;

VOL. 8, NO. 2. JOURNAL OF OBJECT TECHNOLOGY 87

 if (pt.X >= shipX && pt.X < shipX + shipWidth &&
 pt.Y >= shipY && pt.Y < shipY + shipHeight) {
 return ships[index];
 }
 }
 }
 return null; // pt not contained within any ship
}

Listing 9 presents the UpdateStatus thread that is launched within the BattleshipUI class.
Like its counterpart in the client application, it updates the server GUI every second and
sends important information back to the client.

Listing 9 – UpdateStatus Thread

private void UpdateStatus() {

 int hits = 0;
 List<Point> scoreHits = new List<Point>();
 while (true) {
 canMove = true;
 Thread.Sleep(2000);
 canMove = false;
 ICallbackServices callback = null;
 if (Global.fireAt.Count > 0 && !mouseDown) {
 lock (Global.fireAt) {
 hits = 0;
 foreach (Point pt in Global.fireAt) {
 Ship ship = assets.PointInShip(pt);
 if (ship == null) {
 DrawShape(pt, 20, 20, Color.Black, null);
 }
 if (ship != null && !ship.Hits.Contains(pt)) {
 scoreHits.Add(pt);
 callback =
 Global.context.GetCallbackChannel<ICallbackServices>();
 callback.ScoreHit(pt);
 hits++;
 totalHits++;
 ship.Hits.Add(pt);
 ship.FireDrawShape(pt, 20, 20,
 Color.Black, ship.Hits);
 // Executes explosion
 player.Play();
 Thread.Sleep(2000);
 if (ship.Hits.Count == ship.HitCapacity) {
 shipsRemaining--;
 if (shipsRemaining == 0) {
 callback.GameOver();
 }
 }
 callback.Results(shipsRemaining,
 Global.shotsFired, totalHits, hits);

WCF: A CASE STUDY INVOLVING A DISTRIBUTED CLIENT/SERVER GAME

88 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 2.

 } else {
 callback =
Global.context.GetCallbackChannel<ICallbackServices>();
 callback.Results(shipsRemaining,
 Global.shotsFired, totalHits, hits);
 }
 }
 // Additional code that updates text boxes

Several invocations of callbacks to the client are evident in the UpdateStatus thread.
Some mouse handling event code that allows the server player to move a ship is

presented in Listing 10.

Listing 10 – Mouse handling code to move ships

private void panel_MouseDown(object sender, MouseEventArgs e) {
 mouseDown = true;
 oldPt = new Point(e.X, e.Y);
}

private void panel_MouseUp(object sender, MouseEventArgs e) {
 if (canMove) {
 Ship selectedShip = assets.PointInShip(oldPt);
 int x = e.X / 20 * 20;
 int y = e.Y / 20 * 20;
 if (selectedShip != null &&
 assets.NoCollisionWithOtherShipsAndBoundary(
 selectedShip, x, y)) {
 selectedShip.MoveShip(new Point(x, y));
 DisplayHits();
 }
 mouseDown = false;
 }
}

private void DisplayHits() {
 lock (Global.fireAt) {
 if (assets != null) {
 InitializeGrid();
 foreach (Point pt in Global.fireAt) {
 g.FillRectangle(new SolidBrush(Color.Black),
 pt.X, pt.Y, 20, 20);
 }
 assets.DisplayShips();
 }
 }
}

Class Global that contains much of the important status information that is updated every
second is given in Listing 11.

VOL. 8, NO. 2. JOURNAL OF OBJECT TECHNOLOGY 89

Listing 11 – Class Global

namespace Battleship {

 public class Global {
 public static List<Point> fireAt = new List<Point>();
 public static OperationContext context;
 public static int shotsFired;
 }
}

4 CONCLUSIONS

Although some of the coding details have been omitted because of space constraints and
because they are not interesting, it should be evident that WCF provides an excellent
basis for client -> server -> client communication governed by service contracts and
client callback contracts. These integrate nicely into a “normal” Winform application
structure as shown above. The most challenging aspects of the development process for
the client and server applications was getting the client application to handshake with and
see the server application and later getting the server application to successfully talk back
to the client application. This took many attempts and required consulting several WCF
books and web postings (this is the first serious WCF application written by the author).
It was important to use the

if (!this.InvokeRequired) {
} else {
}

mechanism (used in both the client and server applications) for updating GUI controls
since in both cases a UpdateStatus thread was used to trigger the GUI control updates.
Without using this programming pattern either unexpected behavior would occur or no
updates would be posted to the GUI controls. It was critically important to use the
DuplexChannelFactory class in the client to facilitate two-way communication.

Another important concern was ensuring that the global data was appropriately
locked when accessing or modifying its contents. It was important to block the server
player from moving while hits were being recorded in the UpdateStatus thread on the
server. This is accomplished using the field canMove in class BattleshipUI.

Hopefully some of the details of the distributed computing game presented above
will be helpful to those learning WCF.

WCF: A CASE STUDY INVOLVING A DISTRIBUTED CLIENT/SERVER GAME

90 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 2.

About the author
Richard Wiener is Chair of Computer Science at the University of
Colorado at Colorado Springs. He is also the Editor-in-Chief of JOT
and former Editor-in-Chief of the Journal of Object Oriented
Programming. In addition to University work, Dr. Wiener has authored
or co-authored 22 books and works actively as a consultant and
software contractor whenever the possibility arises. His latest book,

published by Thomson, Course Technology in April 2006, is entitled Modern Software
Development Using C#/.NET.

