
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2009

Vol. 8, No. 1, January-February 2009

Douglas A. Lyon, Nishanth Vincent “INTERACTIVE Embedded FACE RECOGNITION”, in
Journal of Object Technology, vol. 8. no. 1, January-February 2009 pp. 23-53
http://www.jot.fm/issues/issue_2009_01/column2/

INTERACTIVE Embedded FACE
RECOGNITION

By Douglas Lyon and Nishanth Vincent

Abstract
This paper describes the design and construction of a prototype for embedded face
detection and recognition algorithms. The test-bed is called the PITS (Portable
Interactive Terrorist Identification System). It makes use of a hand-held device
called the Sharp Zaurus. The embedded device has a processor, camera, color
display, and wireless networking. This system is different from existing systems
because of its embedded nature and its’ use of Java technologies. The embedded
device performs both detection and recognition. We present a skin color approach in
the YCbCr color space for fast and accurate skin detection. We then process this
image using a combination of morphological operators and elliptical shape of faces
to segment faces from the other skin colored regions. An eigenface algorithm
processes the segmented faces and matches the face to a face database.

1 INTRODUCTION

Face detection locates and segments face regions in cluttered images. It has numerous
applications in areas like surveillance and security control systems, content-based
image retrieval, video conferencing and intelligent human-computer interfaces. Some
of the current face-recognition systems assume that faces are isolated in a scene. We
do not make that assumption. Our system segments faces in cluttered images [2].

With a portable system, we can ask the user to pose for the face identification
task. This can simplify the face-detection algorithm. In addition to creating a more
cooperative target, we can interact with the system in order to improve and monitor its
detection. The task of face detection is seemingly trivial for the human brain, yet it
remains a challenging and difficult problem to enable a computer /mobile phone/PDA
to do face detection. The human face changes with respect to internal factors like
facial expression, beard, mustache, glasses, etc. is sensitive to external factors like
scale, lighting conditions, and contrast between face, background and orientation of
face. Thus, face detection remains an open problem. Many researchers have proposed
different methods for addressing the problem of face detection. Face detection is
classified into feature-based and image-based techniques. The feature-based
techniques use edge information, skin color, motion, symmetry, feature analysis,
snakes, deformable templates and point distribution. Image-based techniques include
neural networks, linear subspace methods, like eigen faces [1], fisher faces etc. The
problem of face detection in still images is more challenging and difficult when

INTERACTIVE EMBEDDED FACE RECOGNITION

24 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 1

compared to the problem of face detection in video, since motion information can lead
to probable regions where faces could be located.

1.1 Problem definition

We are given an input scene and a suspect database. The goal is to find a set of
possible candidates, subject to the constraint that we are able to match the faces from
the scene in an interactive time on embedded hardware.

1.2 Motivation

Face detection plays an important role in today’s world. It has many real-world
applications like human/computer interface, surveillance, authentication and video
indexing.

Interactive Face Recognition (IFR) can benefit the areas of: Law Enforcement,
Airport Security, Access Control, Driver's Licenses & Passports, Homeland Defense,
Customs & Immigration and Scene Analysis. The following paragraphs detail each of
these topics, in turn.

Law Enforcement: Today's law enforcement agencies are looking for innovative
technologies to help them stay one step ahead of the world's ever-advancing terrorists.

Airport Security: IFR can enhance security efforts already underway at most
airports and other major transportation hubs (seaports, train stations, etc.). This
includes the identification of known terrorists before they get onto an airplane or into
a secure location.

Access Control: IFR can enhance security efforts considerably. Biometric
identification ensures that a person is who they claim to be, eliminating any worry of
someone using illicitly obtained keys or access cards.

Driver's Licenses & Passports: IFR can leverage the existing identification
infrastructure. This includes, using existing photo databases and the existing
enrollment technology (e.g. cameras and capture stations); and integrate with terrorist
watch lists, including regional, national, and international "most-wanted" databases.

Homeland Defense: IFR can help in the war on terrorism, enhancing security
efforts. This includes scanning passengers at ports of entry; integrating with CCTV
cameras for "out-of-the-ordinary" surveillance of buildings and facilities; and more.

Customs & Immigration: New laws require advanced submission of manifests
from planes and ships arriving from abroad; this should enable the system to assist in
identification of individuals who should, and should not be there.

1.3 Approach

We define the face segmentation problem as: given a scene that may contain one or
more faces, create sub-images that crop out individual faces. After face segmentation,
the device enters the face identification mode.

VOL. 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 25

(small)
Suspect database

Face
Data Base

Feature
Data Base

Face
Segmentation

Feature
Extraction

classifier

matches

GUI
Displays possible
candidates for selection

Fig 1.3 Face Identification System

Human skin is hard to detect in uncontrolled settings and remains an open problem
[6]. Many approaches to face detection are only applicable to static images assumed
to contain a single face in a particular part of the image. Additional assumptions are
placed on pose, lighting, and facial expression. When confronted with a scene
containing an unknown number of faces, at unknown locations, they are prone to high
false detection rates and computational inefficiency. Real-world images have many
sources of corruption (noise, background activity, and lighting variation) where
objects of interest, such as people, may only appear at low resolution. An earlier
generation of such a system has already been used for the purpose of flower
identification by [7, 8].

2 LITERATURE SURVEY

Face detection is impacted by lot of external and internal factors that affect the
detection. Even if a subject's face is stored in the database, a disguise or even a minor
change in appearance, like wearing sunglasses or wearing or growing a mustache can
often fool the system. Even an unusual facial expression can confuse the software.
Facial identifiers often cannot distinguish twins. Different illuminations deform faces
significantly. There are several algorithms available in the literature that can solve this
problem. A survey on face detection with more than 150 references appears in [29].
There are two categories of algorithms in face detection, a feature-based approach
[13] and an image-based approach [4].

A feature-based approach requires prior information of the face. It makes an
explicit use of facial features include color, shape and component features.

Image-based approach does direct classification without any face knowledge
derivation and analysis. It incorporates facial features implicitly into the system
through training. Once skin color based face detection algorithm claims an accuracy
of 95.18% [2]. Another face detection algorithm uses color images in the presence of
varying lighting conditions as well as complex backgrounds. The method detects skin
regions over the entire image, and then generates face candidates based on the spatial
arrangement of these skin patches. The algorithm constructs eye, mouth, and

INTERACTIVE EMBEDDED FACE RECOGNITION

26 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 1

boundary by using a transfer of color space from RGB to YCbCr maps for verifying
each face candidate [13].

Edge-detection algorithms
Edge detection detects outlines of an object and boundaries between objects and the
background in the image. The Roberts algorithm performs is an edge detection using a
two dimensional spatial gradient convolution. It detects horizontal and vertical edges
[19].

The Sobel edge detector is similar to the Roberts algorithm. Both former and the
latter use two kernels to determine edges running in different directions. The main
difference is the kernels that each of these operator uses to obtain these initial images.
Roberts kernels are designed to detect edges that run along the vertical axis of 45
degrees and the axis of 135 degrees whereas the Sobel kernels are more apt to detect
edges along the horizontal axis and vertical axis [19]
Template matching algorithms
Cross correlation is a template-matching algorithm that estimates the correlation
between two shapes that have a similar orientation and scale. Consider two series x(i)
and y(i) where i=0,1,2...N-1. The cross correlation r at delay d is defined as

Where mx and my are the means of the corresponding series. If the above is computed
for all delays d=0, 1, 2,.. N-1 then it results in a cross correlation series of twice the
length as the original series.

There is the issue of what to do when the index into the series is less than 0 or greater
than or equal to the number of points. (i-d < 0 or i-d >= N) The most common
approaches are to either ignore these points or assuming the series x and y are zero for
i < 0 and i >= N. In many signal processing applications the series is assumed to be
circular in which case the out of range indexes are "wrapped" back within range, i.e.:
x(-1) = x(N-1), x(N+5) = x(5) etc.

The range of delays d and thus the length of the cross correlation series can be
less than N, for example the aim may be to test correlation at short delays only. The
denominator in the expression above serves to normalize the correlation coefficients
such that -1 <= r(d) <= 1, the bounds indicating maximum correlation and 0
indicating no correlation. A high negative correlation indicates a high correlation but
have the inverse of one of the series but of the inverse of one of the series. It is quite
robust to noise, and can be normalized to allow pattern matching independent of
brightness and offset in the images [3].

The cross-correlation algorithm to be of limited utility because of its assumption
on geometric scale and orientation of the templates.

VOL. 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 27

Gray-scale algorithms
This gray-scale algorithm was suggested by Yang and Huang [33], who observed that
when the resolution of a face image is reduced gradually either by sub sampling or
averaging, macroscopic features of the face will disappear and that at low resolution,
face region will become uniform.

Image based algorithms
• Statistical approach
• Neural networks[4]

Many commercial applications of face recognition are also available such as security
system, criminal identification, and film processing. Like face detection face
recognition can also be categorized into three types, a feature-based approach, a
holistic approach and a hybrid approach.

Feature-based Approach
In feature-based methods, local features such as eyes, nose, and lips are segmented
which is then used as an input data for structural classifier. Hidden Markov model and
dynamic link architecture fall under this category.

Holistic Approach
In holistic methods, the face as a whole is taken as input data. One of the main
algorithms that fall under this category is the eigenface method

Eigenface method is based on the implementation of Principal Component
Analysis (PCA) over images. In this method, the features of the studied images are
obtained by looking for the maximum deviation of each image from the mean image.
This variance is obtained by getting the eigenvectors of the covariance matrix of all
the images. The eigenface space is obtained by applying the eigenface method to the
training images. Later, the training images are projected into the eigenface space.
Next, the test image is projected into this new space and the distance of the projected
test image to the training images is used to classify the test image [1]. Other examples
of holistic methods are fisherfaces and support vector machines [1] [16] [17].

Hybrid Approach
The idea of this method comes from how human vision system sees both face and
local features (includes nose, lips and eyes). Some of the examples in hybrid approach
are modular eigenfaces and component-based methods [6].

Even though there is a wide range of algorithms available for both face detection
and recognition. Tuning these algorithms on to our embedded system will be a real
challenge [5].

3 HARDWARE AND SOFTWARE

The IFR system is a stand-alone GUI implementation on the Sharp Zaurus SL-6000L.
The Zaurus is provided with a 400MHz processor, 64 MB RAM, and Compact Flash
and Serial Device ports. It is equipped with a Sharp CE-AG06 camera attachment,

INTERACTIVE EMBEDDED FACE RECOGNITION

28 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 1

which is inserted into the Compact Flash port. The operating system is embedded
Linux with Personal Java support. All code was written to Personal Java
specifications. The code was migrated from a laptop to the Zaurus. In addition to that,
the embedded device is provided with color display, wireless networking card and a
QWERTY keyboard.

Fig 3-1 Sharp Zaurus and camera

Fig 3-2 GUI for Zaurus

4 EXPERIMENTS ON IMAGES

The Sharp Zaurus SL-6000L is provided with CE-AG06 camera attachment is
inserted into the Compact Flash port which allows direct capture of images. The
source code for the camera is in C so we call the executable at runtime using java.

VOL. 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 29

There is a scan option in our GUI menu which will load the image that is being
recently captured. The source code for calling the executable is given below.

Figure 4-1. The Interface

 private void camera() {

 try {

Runtime.getRuntime ().

 exec ("/home/QtPalmtop/bin/./sq_camera");

 } catch (IOException ioe) {

 ioe.printStackTrace ();

 }

 }

4.1 Face Detection

The first stage in face detection is to perform skin detection. Skin detection can be
performed in a number of color models. To name a few are RGB, YCbCr, HSV, YIQ,
YUV, CIE, XYZ, etc. An efficient skin detection algorithm is one that should be able
to cover all the skin colors like black, brown, white, etc. and should account for
varying lighting conditions. Experiments were performed in YIQ and YCbCr color
models to find out the robust skin color model.

4.2 YIQ Color Model

YIQ color model belongs to the family of television transmission color models. This
color model is defined by the National Television Systems Committee (NTSC). This
color space is used in televisions in the United States. The main advantages of this
format is that grayscale information is separated from color data, so the same signal
can be used for both color and black and white sets. In this color model, image data
consists of three components: luminance (Y) which represents grayscale information,
while hue (I) and saturation (Q) represents the color information. The following
conversion is used to segment the RGB image into Y, I and Q components. Fig 4.2.1
shows the conversion of a RGB color model in to a YIQ color model and Fig 4.2.2
shows the skin threshold in the YIQ color model.

INTERACTIVE EMBEDDED FACE RECOGNITION

30 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 1

 (1)

Fig 4.2-1 RGB YIQ Fig 4.2-2 Skin threshold in YIQ

The thresholds are selected by repeated experimentations. We have arrived at the
following code:

 if ((Y[x][y] < 223) &&

 (Y[x][y] > 44) &&

 (I[x][y] < 0) &&

 (I[x][y] > 64)

)

 setPixel(x, y, 255);

 else

 setPixel(x, y, 0);

 }

4.3 YCbCr Color Model

YCbCr color model also belongs to the family of television transmission color models.
In this color model, the luminance component is separated from the color
components. Component (Y) represents luminance, and chrominance information is
stored as two color-difference components. Color component Cb represent the
difference between the blue component and a reference value and the color
component Cr represents the difference between the red component and a reference
value. The following conversion is used to segment the RGB image into Y, Cb and Cr
components:

(2)

Among all the color models found, YCbCr seems to be better for skin detection since
the Colors in YCbCr are specified in terms of luminance (Y channel) and chrominance

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

128
128
16

081.0419.05.0
5.0331.0169.0

114.0587.0299.0

B
G
R

C
C
Y

r

b

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

B
G
R

Q
I
Y

311.0523.0212.0
322.0274.0596.0

114.0587.0299.0

VOL. 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 31

(Cb and Cr channels). The main advantage of converting the image from RGB color
model to the YCbCr color model is the influence of luminance can be removed during
our image processing. We deal only with Cb and Cr components to perform skin
detection. From analysis, we found that the Cb and Cr components give a good
indication on whether a pixel is part of the skin or not. . Fig 4.3-1 shows the
conversion of a RGB color model in to a YCbCr color model. Fig 4.3-2 shows the
skin threshold in the YCbCr color model

Fig 4.3-1 RGB YCbCr Fig 4.3-2 Skin threshold in YCbCr

The thresholds are selected by repeated experimentations. We have arrived at the
following code

 if ((Cb[x][y] < 173) &&

 (Cb[x][y] > 133) &&

 (Cr[x][y] < 127) &&

 (Cr[x][y] > 77)

)

 setPixel(x, y, 255);

 else

 setPixel(x, y, 0);

 }

From the above figures, we found that YCbCr color model is more efficient that YIQ
color model for skin detection.

4.4 Binary Image Processing

Depending on the Cb and Cr threshold values a binary image is obtained with the skin
regions masked in white and the non skin regions masked in black. This mask is
further refined through morphological operators. The two basic morphological
operators used are erosion and dilation.

Erosion is defined as a morphological operator which is usually applied to binary
images. It is used to erode away the boundaries of regions of foreground pixels. Thus
the areas of foreground pixels shrink in size, and holes within those areas become
larger [18] [22]. Equation 3 defines the basic morphological operator erosion on sets
A and B

INTERACTIVE EMBEDDED FACE RECOGNITION

32 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 1

 (3)
Dilation is defined as a morphological operator, which is usually applied to binary
images. The basic effect of the operator on a binary image is to gradually enlarge the
boundaries of regions of foreground pixels [18] [22]. Equation 4 defines the basic
morphological operator dilation on sets A and B

 (4)
The image is first eroded to eliminate small background objects and separate
individual faces.

This eroded image is then dilated to refill gaps within the faces. The blobs that
are elliptical in shape are termed as faces while the other blobs are rejected.

Fig 4.4-1 Eroded Image Fig 4.4-2 Dilated Image

4.5 Blob detection

We used an open GL blob detection library. This library designed for finding 'blobs'
in an image, i.e. areas whose luminosity is above or below a particular value. In our
case it is just a binary image (black and white). It computes their edges and their
bounding box. This library does not perform blob tracking; it only tries to find all
blobs in each frame it was fed with.

Blobs in the image which are elliptical in shape are detected as faces. The blob
detection algorithm draws a rectangle around those blobs by calculating information
such as position and center.

VOL. 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 33

Fig 4.5-1 Blob detected Image.

4.6 Face Recognition

Principal component analysis (PCA), also known as Karthunen-Loéve's transform, is
a well-known face recognition algorithm [1]. It is mainly useful in expressing the data
in such a way that will highlight their similarities and differences. Since patterns in
data can be hard to find in data of high dimension, where the luxury of graphical
representation is not available, PCA is a powerful tool for analyzing data.

A small database is created with images. Each of these images are m pixels high
and n pixels wide For each image in the database an image vector is created and are
put in a matrix form which gives a start point for PCA. Covariance is found from the
matrix of images and from the covariance the eigenvectors are found for the original
set of images. The way this algorithm works is by treating face recognition as a "two-
dimensional recognition problem, taking advantage of the fact that faces are normally
upright and thus may be described by a small set of 2-D characteristics views. Face
images are projected onto a feature space ('face space') that best encodes the variation
among known face images. The face space is defined by the eigenfaces, which are the
eigenvectors of the set of faces; they do not necessarily correspond to isolated features
such as eyes, ears, and noses. So when a new image is passed from the blob detected
image, the algorithm measures the difference between the new image and the original
images, not along the original axes, but along the new axes derived from the PCA
analysis [18] [36].

Fig 4.6.1 Face Recognized Image

INTERACTIVE EMBEDDED FACE RECOGNITION

34 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 1

4.7 Analysis

Face detection was tried on different complex images. The algorithm works fairly
well in detecting faces. The performance of the algorithm in detecting faces is above
85%. Few of the images that were tried are shown below. Fig 4.7.1, fig 4.7.4 and fig
4.7.9 show the input images fed in to the GUI. Fig 4.7.8 shows the database used for
face recognition. Fig 4.7.2, fig 4.7.5 and fig 4.7.10 show’s the image after skin
segmentation and binary image processing. Fig 4.7.3, fig 4.7.6 and fig 4.7.11 show’s
the face detected image. Fig 4.7.7 and fig 4.7.12 show’s the face recognized image.
The performance of recognizing 50x60 face images using PCA is approximately 76%.

Fig. 4.7-1 Input image

Fig. 4.7-2 Skin detected image

VOL. 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 35

Fig. 4.7-3 Face detected image

Fig. 4.7-4 Input image Fig. 4.7-5 skin detection

Fig 4.7-6 Face detection Fig 4.7-7 Face recognition

INTERACTIVE EMBEDDED FACE RECOGNITION

36 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 1

Fig 4.7.8 Face Recognition database created in the Zaurus.

Fig 4.7-9 Input image Fig 4.7-10 skin detection

Fig 4.7-11 Face detection

Fig 4.7-12 Face recognition

VOL. 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 37

5 CONCLUSION

This paper shows an interactive face recognition algorithm on an embedded device.
The device performs both face detection and recognition for color images. Face
detection is performed in the YCbCr color space to provide a fast and accurate
detection. The performance of the algorithm in detecting faces is over 85% correct.
Face recognition is performed using PCA and the performance is found to be
approximately 76% accurate. Our work is novel in that we are able to match the faces
from the scene in an interactive time and that our algorithm is able to run on the given
embedded hardware. Our future work will focus on improving the efficiency of the
algorithm. Finally, we conclude saying that the Interactive Face Recognition device is
a test bed for embedded face recognition research. As such, it contributes toward
building a general infrastructure for research into embedded vision, further benefiting
society.

REFERENCES

[1] M. Turk, A. Pentland. ”Eigenfaces for Recognition”. Journal of Cognitive
Neuroscience. Vol 3, No. 1. 71-86, 1991.

[2] Sanjay Kr. Singh1, D. S. Chauhan2, Mayank Vatsa3, Richa Singh, A Robust Skin
Color Based Face Detection Algorithm, Department of Computer Science
and Engineering Institute of Engineering and Technolog JaIpur - 222002,
India. Tamkang Journal of Scienceand Engineering, Vol. 6, No. 4, pp.
227-234 (2003)

[3] Paul Bourke, Autocorrelation - 2D Pattern Identification
http://astronomy.swin.edu.au/~pbourke/other/correlate/

[4] Boehme, H.-J., Brakensiek, A., Braumann, U.-D., Krabbes, M., andGross, H.-M.
Visually-Based Human-Machine Interaction in a Neural Architecture. In
SOAVE`97 - Selbstorganisation von adaptivem Verhalten, pages 166-175.
VDI Verlag, 1997. http://citeseer.nj.nec.com/125077.html

[5] J. Sobottka and I. Pittas. Segmentation and tracking of faces in color images. In
Proceedings of the Second International Conference on Automatic Face
and Gesture Recognition, vol. 4, pages 236-- 241, IEEE June 1996.

[6] Wang, C., and Brandstein, M.S., “A hybrid real-time face tracking system” Proc.
ICASSP 1998, Seattle, WA, May, 1998, pps. 3636-3740

[7] G. Nagy, J. Zou, “Interactive Visual Pattern Recognition”, Proc. Int. Conf. Pattern
Recognition XIV, vol. 2, pp. 478-481, Quebec City, 2002.

[8] Arthur Evans, John Sikorski, Patricia Thomas, Sung-Hyuk Cha, Charles Tappert,
Computer Assisted Visual Interactive Recognition (CAVIAR) Technology,

IEEE transactions on Electro Information Technology, pages 1-6, May
2005

INTERACTIVE EMBEDDED FACE RECOGNITION

38 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 1

[9] Renaud S´eguier, A vary fast adaptive face detection system, Institute of
Electronics and Telecommunications of Rennes Sup´elec, Avenue de la
Boulaie, 35511 Cesson-S´evign´e, France, Proceeding
http://www.actapress.com/Content_Of_Proceeding.aspx?ProceedingID=2
83Visualization, Imaging, and Image Processing 452-456, April 2004

[10] Peng Wang, Qiang Ji, Multi-View Face Detection under Complex Scene based
on Combined SVMs, Department of Electrical, Computer and System.
Engineering, Rensselaer Polytechnic Institute, Troy, NY, , IEEE
transactions on Pattern Recognition, vol. 4, pages 179-182, Aug. 2004

[11] Minsick Park, Chang Woo Park, and Mignon Park], Algorithms for Detecting
Human Faces Based on Convex hull, Yonsei University, Seoul, Korea,
Optics Express, vol. 10, Issue 6, p.274

[12.] H.-Y. S. Li, Y. Qiao, and D. Psaltis, "Optical network for real time face
recognition," Applied Optics 32(26), pp. 5026--5035, 1993.

[13] Rein-Lien Hsuy, Student Member, IEEE, Mohamed Abdel Mottalebz, Member,
IEEE, Anil K. Jain, Fellow, IEEE, Face Detection in Color Images , IEEE
transactions on pattern analysis and machine intelligence, vol.24, no.5,
may 2002

[14] Jianke Zhu, Mang Vai and Peng Un Mak, Face Recognition, a Kernel PCA
Approach, Department of Electrical and Electronics Engineering, Faculty
of Science & Technology, University of Macau, Macau SAR, China,
Chinese Conference on Medicine and Biology (CMBE’03) at Wuxi, P. R.
China, Oct. 24-26, 2003.

[15] [Terence, Rahul, Mathew, Shumeet] Terence Sim, Rahul Sukthankar, Mathew
Mulin, Shumeet Baluja, Memory Based Face Recognition for Visitor
Identification, The Robotics Institute, Carnegie Mellon Univ., Pittsburgh,
PA, Proceedings of International Conference on Automatic Face and
Gesture Recognition, 2000

 [16] FernandoDe La Torre, Michael J.Black 2003 . Internatioal Conference on
Computer Vision (ICCV’2001), Vancouver, Canada, July 2001. IEEE
2001

[17] Turk and Pentland, Face Recognition Using Eigenfaces, Method Eigenfaces”,
IEEE CH2983-5/91, pp 586-591.

[18] Douglas Lyon. Image Processing in Java, Prentice Hall, Upper Saddle River, NJ.
1998.

[19] Matthew T. Rubino, Edge Detection Algorithms, http://www.ccs.neu.edu/home/
mtrubs/html/EdgeDetection.html

[20] A. Pentland, B. Moghaddam, T. Starner, View-Based and Modular Eigenspaces
for Face Recognition, Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 21-23 June 1994, Seattle, Washington,
USA, pp. 84-91

[21] Liang Wang, Tieniu Tan, Weiming Hu, Face Tracking Using Motion-Guided
Dynamic Template Matching, National Laboratory of Pattern

VOL. 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 39

Recognition. Institute of Automation, Chinese Academy of Sciences,
Beijing, P. R. China, 100080, 5th Asian Conference on Computer Vision,
23--25 January 2002, pages 1--6, Melbourne, Australia.

[22] Douglas Lyon, The DocJava Home Page, http://www.docjava.com.

[23] “The Imperion Threading System” by Douglas A. Lyon, Journal of Object
Technology, 2004 Vol. 3, No. 7, July-August 2004
http://www.jot.fm/issues/issue_2004_07/column5/

[24] “Project Imperion: New Semantics, Facade and Command Design Patterns for
Swing”, by Douglas A. Lyon, Journal of Object Technology, vol. 3, no. 5,
May-June 2004, pp. 51-64, http://www.jot.fm/issues/issue_2004_05/
column6/

[25] Asynchronous RMI for CentiJ”, by Douglas A. Lyon, Journal of Object
Technology. - vol. 3, no. 3, March-April 2004, pp. 49-64,
http://www.jot.fm/issues/issue_2004_03/column5/

[26] “On the use of a Visual Cortical Sub-band Model for Interactive Heuristic Edge
Detection”, by Douglas A. Lyon, International Journal of Pattern
Recognition & Artificial Intelligence (IJPRAI), Vol. 18, No. 4 (2004),
pages 583-606.

[27] Java for Programmers, Prentice Hall, Englewood Cliffs, NJ, 2004.

[28] “Building Bridges: Legacy Code Reuse in the Modern Enterprise”, By Douglas
A. Lyon and Christopher L. Huntley, Computer, May, 2002, pp. 102-103.

[29] McKenna, S.J.[Stephen J.], Jabri, S.[Sumer], Duric, Z.[Zoran], Rosenfeld,
A.[Azriel], Wechsler, H.[Harry], Tracking Groups of People,CVIU(80),
No. 1, October 2000, pp. 42-56.

[30.] Jeffrey M. Gilbert and Woody Yang. A real-time face recognition system using
custom VLSI hardware. In IEEE Workshop on Computer Architectures
for Machine Perception, pages 58-66, December 1993.
http://citeseer.nj.nec.com/gilbert93realtime.html

[31.] A. Pentland, B. Moghaddam, T. Starner, O. Oliyide, and M. Turk. View-Based
and Modular Eigenspaces for Face Recognition. Technical Report 245,
http://citeseer.nj.nec.com/pentland94viewbased.html, M.I.T Media Lab,
1993.

[32] H. Schneiderman, “Learning Statistical Structure for Object Detection”,
Computer Analysis of Images and Patterns (CAIP), 2003, Springer-
Verlag, August, 2003.

[33] Yang and Huang 1994. “Human face detection in a complex background.”
Pattern Recognition, Vol 27, pp53-63

[34] Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of
simple features. In CVPR, 2001, http://citeseer.nj.nec.com/
viola01rapid.html

[35] Angela Jarvis, http://www.forensic-evidence.com/site/ID/facialrecog.html

INTERACTIVE EMBEDDED FACE RECOGNITION

40 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 1

[36] Konrad Rzeszutek, http://darnok.com/projects/face-recognition

APPENDIX A
YIQ Color Model

public class Yiq extends FloatPlane {

// Matrix used for conversion from RGB to YIQ

 double A[][] = {

 {0.2989, 0.5866, 0.1144},

 {0.5959, -0.2741, -0.3218},

 {0.2113, -0.5227, 0.3113}

 };

//Constructor that takes an image

 public Yiq(Image img) {

 super(img);

 }

// Mat3 is a math utility class for processing 3X3
matrices

 Mat3 rgbn2yiqMat = new Mat3(A);

//Method used to convert RGB to YIQ color space

 public void fromRgb() {

 convertSpaceYiq(rgbn2yiqMat);

 System.out.println("yiq");

 rgbn2yiqMat.print();

 }

/*Method that is used for skin detection in the YIQ color
*space

* if ((44 < Y < 223) && (0 < I < 64))

* then we have skin

*/

 public void skinChromaKey() {

 for (int x = 0; x < r.length; x++)

 for (int y = 0; y < r[0].length; y++) {

 if (

 (r[x][y] < 223) &&

 (r[x][y] > 44) &&

 (g[x][y] > 0) &&

 (g[x][y] < 64)

)

 setPixel(x, y, 255);

 else

VOL. 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 41

 setPixel(x, y, 0);

 }

 }

//Method used to set pixel to binary in an image

 public void setPixel(int x, int y, int v) {

 r[x][y] = v;

 g[x][y] = v;

 b[x][y] = v;

 }

}

YCbCr Color Model
public class Ycbcr extends FloatPlane{

//Matrix used for conversion from RGB to YCbCr

 double A[][] = {

 {0.299, 0.587, 0.114},

 {-0.16874, -0.33126, 0.50000},

 {0.50000, -0.41869, -0.08131}

 };

// Mat3 is a math utility class for processing 3X3
matrices

 Mat3 rgb2yuvMat = new Mat3(A);

//Constructor that takes an image

public Ycbcr(Image img) {

 super(img);

 }

//Method used to convert RGB to YCbCr color space

 public void fromRgb() {

 convertSpace(rgb2yuvMat);

 System.out.println("ycbcr");

 rgb2yuvMat.print();

 }

//Method used for skin detection in the YIQ color
//space

 public void skinChromaKey() {

 for (int x = 0; x < r.length; x++)

 for (int y = 0; y < r[0].length; y++) {

 if (

(b[x][y] < 173) &&

INTERACTIVE EMBEDDED FACE RECOGNITION

42 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 1

(b[x][y] > 133) &&

(g[x][y] < 127) &&

(g[x][y] > 77)

)

 setPixel(x, y, 255);

 else

 setPixel(x, y, 0);

 }

 }

//Method used to set pixel to binary in an image

 public void setPixel(int x, int y, int v) {

 r[x][y] = v;

 g[x][y] = v;

 b[x][y] = v;

 }

}

Morphological Operators
public class MorphUtils {

//Method to perform dilation in an image whose
functionality is to

//is to gradually enlarge the boundaries of regions of
foreground

//pixels

 public static short[][] dilate(short f[][], float k[][])
{

 int uc = k.length / 2;

 int vc = k[0].length / 2;

 int w = f.length;

 int h = f[0].length;

 short o[][] = new short[w][h];

 short sum;

 for (int x = uc; x < w - uc; x++) {

 for (int y = vc; y < h - vc; y++) {

 sum = 0;

 for (int v = -vc; v <= vc; v++)

 for (int u = -uc; u <= uc; u++)

 if (k[u + uc][v + vc] == 1)

 if (f[x - u][y - v] > sum)

sum = f[x - u][y - v];

 o[x][y] = sum;

 }

VOL. 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 43

 }

 return o;

 }

//Method to perform erosion in an image whose functionality
is

//to erode away the boundaries of regions of foreground
pixels.

//Thus the areas of foreground pixels shrink in size and
holes

//within those areas become larger.

 public short[][] erode(short f[][], float k[][]) {

 int uc = k.length / 2;

 int vc = k[0].length / 2;

 int w = f.length;

 int h = f[0].length;

 short o[][] = new short[w][h];

 short sum = 0;

 for (int x = uc; x < w - uc; x++) {

 for (int y = vc; y < h - vc; y++) {

 sum = 255;

 for (int v = -vc; v <= vc; v++)

 for (int u = -uc; u <= uc; u++)

 if (k[u + uc][v + vc] == 1)

 if (f[x - u][y - v] < sum)

sum = f[x - u][y - v];

 o[x][y] = sum;

 }

 }

 return o;

 }

}

}

Face Detection and Face Recognition
public class FaceDetectionFrame extends Frame implements
ActionListener {

//This object is used to display the graphics of the image
on the

//frame

 Display d = new Display();

INTERACTIVE EMBEDDED FACE RECOGNITION

44 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 1

//vectors are declared to get the X-coordinate, Y-
coordinate,

//height and width of the blob

 Vector locationX = new Vector();

 Vector locationY = new Vector();

 Vector imageWidth = new Vector();

 Vector imageHeight = new Vector();

//Blob detection object initialized to find the blobs in
the image

//after processing

 BlobDetection theBlobDetection;

 //constructor that takes two images as argument

 FaceDetectionFrame(Image img, Image image) {

 super("Face Detection");

 this.rawImg = img;

 this.baseImage = image;

 Menu face = new Menu("Face");

 MenuItem mi1 = new MenuItem("Detect");

 mi1.setShortcut(new MenuShortcut(KeyEvent.VK_0));

 mi1.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

faceRecognition();

 }

 }

);

 face.add(mi1);

 MenuBar mb = new MenuBar();

 setMenuBar(mb);

 mb.add(face);

 setSize(240, 320);

 setVisible(true);

 this.add(d);

 face.addActionListener(this);

 addWindowListener(

 new WindowAdapter() {

 public void windowClosing(WindowEvent e) {

 theBlobDetection = null;

 setVisible(false);

VOL. 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 45

 //terminate the program

 }//end windowClosing()

 }//end WindowAdapter

);//end addWindowListener

 }

}

//Method used to detect blobs in the image areas whose
luminosity

//is above or below a particular value. In our case it is
just a

//binary image (black and white). It computes their edges
and

//their bounding box

 public void detectBlob() {

 ImageBean ib = new ImageBean(rawImg);

theBlobDetection = new BlobDetection(ib.getWidth(),
ib.getHeight());

 theBlobDetection.setPosDiscrimination(false);

 // will detect bright areas whose luminosity < 0.38f;

 theBlobDetection.setThreshold(0.38f);

 theBlobDetection.computeBlobs(ib.getPels());

 blobNb = theBlobDetection.getBlobNb();

 rawImg = ib.getImage();

 d. update(this.getGraphics());

 this.add(d);

 setVisible(true);

 repaint();

}

//Method for performing face recognition uses principal
component

//analysis. This algorithm treats face recognition as a
two-

//dimensional recognition problem, taking advantage of the
fact

//that faces are normally upright and thus may be described
by a

//small set of 2-D characterisits views. Face images are
projected

//onto a feature space ('face space') that best encodes the

//variation among known face images. The face space is
defined by

INTERACTIVE EMBEDDED FACE RECOGNITION

46 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 1

//the eigenfaces, which are the eigenvectors of the set of
faces;

public void faceRecognition() {

 try {

 for (int i = 0; i < locationX.size(); i++) {

ImageBean ib = new ImageBean(Integer.parseInt

(String.valueOf(imageWidth.elementAt(i))),

Integer.parseInt(String.valueOf(imageHeight.elementAt(i))))
;

 Image faceDetectedImage = ib.getImage();

ImageBean ib1 = new ImageBean(faceDetectedImage,
baseImage);

ib1.imageRenewed(Integer.parseInt(String.valueOf(locationX.
elementAt(i))),

Integer.parseInt(String.valueOf(locationY.elementAt(i))),

Integer.parseInt(String.valueOf(imageHeight.elementAt(i))),

Integer.parseInt(String.valueOf(imageWidth.elementAt(i))));

ImageBean ib2 = new ImageBean(50, 60);

 Image finalTemp = ib2.getImage();

ImageBean ib3 = new ImageBean(finalTemp ,ib1.getImage());

 ib3.imageReCon();

 try {

EigenFaceCreator creator = new EigenFaceCreator();

creator.readFaceBundles("/usr/mnt.rom/card/faceImages");

String result = creator.checkAgainstNew(ib3.getImage());

System.out.println("Most closly reseambling: "+result+"
with "+creator.DISTANCE+" distance.");

 if(result == null){

new FaceRecognitionFrame(ib3.getImage());

 }

 else

 {

File f = new File("/usr/mnt.rom/card/faceImages/" +
result);

Image faceRecognizedImage = Toolkit.getDefaultToolkit().

 getImage(f.toString());

VOL. 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 47

MediaTracker mediatracker = new MediaTracker(new Canvas());

 mediatracker.addImage(faceRecognizedImage, 1);

 try {

 mediatracker.waitForAll();

 }

 catch (

InterruptedException e1) {

 e1.printStackTrace();

 }

 mediatracker.removeImage(faceRecognizedImage);

 ImageBean ib4 = new ImageBean(240, 200);

ImageBean ib5 = new
ImageBean(ib4.getImage(),ib3.getImage());

ib5.imageAddAndDisplay();

ImageBean ib6 = new
ImageBean(ib5.getImage(),faceRecognizedImage);

ib6.imageAddFinalDisplay();

new FaceRecognitionFrame(ib6.getImage());

 }

 } catch (Exception e) { e.printStackTrace(); }

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

//Override the paint method to display the rawImg on the
same //Canvas object, separated by one row of pixels in the
background //color. Also draws a rectangle around the blob
by calculating //blob information such as position and
center.

 public class Display extends Canvas {

 .

 public void paint(Graphics g) {

 g.drawImage(rawImg, 0, 0, this);

 PGraphics pg = new PGraphics();

 Blob b;

 float eA, eB, eC, eD = 0;

 ImageBean sib = new ImageBean(rawImg);

 for (int n = 0; n < blobNb; n++) {

 b = theBlobDetection.getBlob(n);

 if (b != null) {

INTERACTIVE EMBEDDED FACE RECOGNITION

48 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 1

// Edges

 if (true) {

 pg.strokeWeight(2);

 pg. stroke(0, 255, 0);

 for (int m = 0; m < b.getEdgeNb(); m++) {

eA = b.getEdgeVertexAX(m);

eB = b.getEdgeVertexBX(m);

eC = b.getEdgeVertexAY(m);

eD = b.getEdgeVertexBY(m);

if (eA != 0 && eB != 0 && eC != 0 && eD != 0)

g.setColor(Color.green);

g.drawLine((int) (b.getEdgeVertexAX(m) * sib.getWidth()),
(int) (b.getEdgeVertexAY(m) * sib.getHeight()), (int)
(b.getEdgeVertexBX(m) * sib.getWidth()),

(int) (b.getEdgeVertexBY(m) * sib.getHeight()));

 }

 }

// Blob

pg. strokeWeight(1);

pg. stroke(255, 0, 0);

g.setColor(Color.red);

g.drawRect((int) (b.xMin * sib.getWidth()), (int) (b.yMin *
sib.getHeight()), (int) (b.w * sib.getWidth()), (int) (b.h
* sib.getHeight()));

 }

 }

 }

 }

}

Image Utility
public class ImageBean implements Serializable {

//Initialization of 2D arrays for red, blue and green
component in //an image.

 public short r[][];

 public short g[][];

 public short b[][];

 public short r1[][];

 public short g1[][];

 public short b1[][];

//constructor that takes two images as parameters

VOL. 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 49

public ImageBean(Image img1, Image img2) {

 final Frame f = new Frame();

 int w1 = img1.getWidth(f);

 int h1 = img1.getHeight(f);

 int w2 = img2.getWidth(f);

 int h2 = img2.getHeight(f);

 if (w1 == -1) return;

 r = new short[w1][h1];

 g = new short[w1][h1];

 b = new short[w1][h1];

 r1 = new short[w2][h2];

 g1 = new short[w2][h2];

 b1 = new short[w2][h2];

 pelsToShort(r, g, b,

 getPels(img1,

 w1,

 h1),

 w1, h1);

 pelsToShort(r1, g1, b1,

 getPels(img2,

 w2,

 h2),

 w2, h2);

 }

//Method gets an image from the 2D red, green and blue
arrays

 public static Image getImage(short r[][], short g[][],
short b[][]) {

 int w = r.length;

 int h = r[0].length;

 int pels[] = new int[w * h];

 for (int x = 0; x < w; x++)

 for (int y = 0; y < h; y++)

 pels[x + y * w]

 = 0xFF000000

 | ((0xFF & r[x][y]) << 16)

 | ((0xFF & g[x][y]) << 8)

 | (0xFF & b[x][y]);

 return Toolkit.getDefaultToolkit().createImage(new
MemoryImageSource(w,

INTERACTIVE EMBEDDED FACE RECOGNITION

50 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 1

 h,

 ColorModel.getRGBdefault(),

 pels, 0,

 w));

 }

//method gets pixel array from an image

public int[] getPels(Image img, int width, int height) {

 pels = new int[width * height];

 PixelGrabber grabber =

 new PixelGrabber(img, 0, 0,

 width, height, pels, 0, width);

 try {

 grabber.grabPixels();

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 return pels;

 }

//method converts the pixel array in to 2D array of red,
blue and //green

public void pelsToShort(short r[][], short g[][], short
b[][],

 int[] pels, int width, int height) {

 int i;

 ColorModel cm = getRgbColorModel();

 for (int x = 0; x < width; x++)

 for (int y = 0; y < height; y++) {

 i = x + y * width;

 b[x][y] = (short) cm.getBlue(pels[i]);

 g[x][y] = (short) cm.getGreen(pels[i]);

 r[x][y] = (short) cm.getRed(pels[i]);

 }

 }

//method clips the image to 255 if the rgb value exceeds
255 and //makes it to 0 if it is negative

public void clip(ImageBean ib) {

 int w = ib.getWidth();

 int h = ib.getHeight();

 for (int x = 0; x < w; x++)

 for (int y = 0; y < h; y++) {

VOL. 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 51

 if (r[x][y] > 255) r[x][y] = 255;

 if (g[x][y] > 255) g[x][y] = 255;

 if (b[x][y] > 255) b[x][y] = 255;

 if (r[x][y] < 0) r[x][y] = 0;

 if (g[x][y] < 0) g[x][y] = 0;

 if (b[x][y] < 0) b[x][y] = 0;

 }

 }

//method reconstructs the skin detected image from the
binary //image

 public void SkinReCon() {

 for (int x = 0; x < getWidth(); x++)

 for (int y = 0; y < getHeight(); y++) {

 if (r[x][y] == 255) {

 if (g[x][y] == 255) {

 if (b[x][y] == 255) {

 r[x][y] = r1[x][y];

 g[x][y] = g1[x][y];

 b[x][y] = b1[x][y];

 }

 }

 }

 }

 }

//convert the image to gray scale by taking the average of
the //red, green and blue colors.

 public void gray() {

 for (int x = 0; x < getWidth(); x++)

 for (int y = 0; y < getHeight(); y++) {

 r[x][y] = (short)

 ((r[x][y] + g[x][y] + b[x][y]) / 3);

 g[x][y] = r[x][y];

 b[x][y] = r[x][y];

 }

 }

//method used to negate an image

public void negate() {

 for (int x = 0; x < getWidth(); x++)

 for (int y = 0; y < getHeight(); y++) {

 r[x][y] = (short) (255 - r[x][y]);

INTERACTIVE EMBEDDED FACE RECOGNITION

52 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 1

 g[x][y] = (short) (255 - g[x][y]);

 b[x][y] = (short) (255 - b[x][y]);

 }

 clip(this);

 }

}

//Method used to display the final facerecognized image on
the //frame

public void imageAddFinalDisplay() {

int m = getWidthOne()-1;

 for (int x = getWidth()-1; x > getWidth() -
getWidthOne(); x--) {

 for (int y = 0 ; y < getHeightOne() ; y++){

 r[x][y] = r1[m][y] ;

 g[x][y] = g1[m][y] ;

 b[x][y] = b1[m][y] ;

 }

 m--;

 }

}

//Method tries to invoke the camera in the Zaurus

 private void camera() {

 try {

Runtime.getRuntime ().

 exec ("/home/QtPalmtop/bin/./sq_camera");

 } catch (IOException ioe) {

 ioe.printStackTrace ();

 }

 }

//Getters and Setters declared for r,g and b

public short[][] getR() {

 return r;

 }

 public void setR(short[][] r) {

 this.r = r;

 }

 public short[][] getG() {

 return g;

 }

 public void setG(short[][] g) {

 this.g = g;

VOL. 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 53

 }

 public short[][] getB() {

 return b;

 }

 public void setB(short[][] b) {

 this.b = b;

 }

}

About the author

Douglas A. Lyon (M'89-SM'00) received the Ph.D., M.S. and B.S.
degrees in computer and systems engineering from Rensselaer
Polytechnic Institute (1991, 1985 and 1983). Dr. Lyon has worked at
AT&T Bell Laboratories at Murray Hill, NJ and the Jet Propulsion
Laboratory at the California Institute of Technology, Pasadena, CA.
He is currently the Chairman of the Computer Engineering

Department at Fairfield University, in Fairfield CT, a senior member of the IEEE and
President of DocJava, Inc., a consulting firm in Connecticut. Dr. Lyon has authored or
co-authored three books (Java, Digital Signal Processing, Image Processing in Java
and Java for Programmers). He has authored over 30 journal publications. Email:
lyon@docjava.com. Web: http://www.DocJava.com.

Nishanth Vincent ('03-'06) recieved the M.S. degree in Electrical
and computer engineering from Fairfield University, CT and
received the B.E. degree in Instrumentation and control systems
from Madras University ('99 - '03). Nishanth has worked at Pitney
Bowes as an intern in their Mixed Media Network labs. He is
currently working as a web developer at Zentechinc, in Norwalk CT

email: nishanth.vincent@zentechinc.com

