
JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2009

Vol. 8, No. 1, January – February 2009

John D. Mc Gregor: “Modeling Software”, in Journal of Object Technology, vol. 8, no. 1, January
– February 2009, pp. 7-22 http://www.jot.fm/issues/issue_2009_01/column1/

Modeling Software
John D. McGregor, Clemson University and Luminary Software LLC, U.S.A.

Abstract
A model is built when the complexity of something we are building exceeds our ability to
internalize it. Most commercial software products fit that definition. A number of
modeling languages have emerged to support software development methods that are
guided mainly by models of the product being built. In this issue of Strategic Software
Engineering I will consider some of these languages, but more importantly, I will
consider how they can be made more effective by integrating models from several
languages.

1 INTRODUCTION

I was having a discussion the other day with some automotive domain people. They were
considering how to overcome the problems of building the amount of software needed in
a vehicle. Software is anticipated to go from being 4.5% of the value of a car to some
13% in the next few years [Mercer 01].

One of the problems they are facing is the difficulty of managing software
development down the supply chain and across the functional divisions within the
company.The automotive industry has a very hierarchical supplier structure. Tier N
suppliers aggregate assets from Tier N+1 suppliers. The depth of the hierarchy imposes
an additional communication burden. Automotive engineers have formalisms for
communicating with suppliers about hard goods but less so about software. Specifications
passed down to suppliers need to be sufficiently expressive to ensure accurate
communication.

There are increasing numbers of interactions between subsystems of the vehicle. The
braking system and the navigation system talk to keep the vehicle on track. Many other
interactions occur and these cut across organizational boundaries in the enterprise.
Devoting separate networks to subsystems does not solve the problem since the
subsystems must interact at some level. Managing the interactions calls for an explicit
model of the interactions.

Automotive engineers have built models and various types of prototypes for many
years and they have mature tools such as Simulink[Math 08]. Model-driven development
(MDD) of software is a more recent phenomenon but it is maturing at a rapid rate. I

8 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 1

believe that many of the problems faced in automotive software can be addressed by
adequate modeling and model management. In this issue of Strategic Software
Engineering I will explore a particular perspective on MDD.

A model is an abstraction of some entity. A model is created by eliminating some
details and exposing properties of the entity that are of interest so that those properties
can be analyzed. Multiple models may be created for an entity, each focusing on a
different property.

For example, an architectural model of a software-intensive product abstracts away
the details of implementation. What remains is the fundamental structure of the product.
We can deduce many things from this structure including the performance of specific
features and the maintainability of the system as a whole. Other models, such as a
requirements model, will be built for this same product.

Each model is based on a specific viewpoint, such as that of a requirements analyst or
a tester. Each of the models presents a particular view from that viewpoint. For example,
the tester might only be interested in the product requirements for input and output to
facilitate the development of system test cases.

Each modeling language defines several diagram types. A diagram type provides a
specific view on the entity. For the types of models we will be discussing, a model is
composed of multiple diagrams, each of which is an instance of a diagram type. For
example, a single design model will usually have multiple diagrams in which types are
defined, several diagrams of the stateful behavior of the objects in the system and several
different diagrams mapping the design to hardware.

There must be some well-defined mapping between the model and reality, which in
our world means between the model and compilable source code. Models may be
interpreted by humans who then write the code or the model interpretation may rest in
patterns that are automatically applied to generate code. The ability to map the model to
different “realities”, such as different platforms, is what makes modeling so powerful.

My primary interest for this column is modeling as a verb, but I will also briefly
address modeling as an adjective. I am going to first describe relevant portions of three
modeling languages, each of which I have discussed before and each of which is too large
to fully cover here. Then I will describe an approach that integrates the languages into an
effective modeling environment.

2 THREE LANGUAGES

Improved techniques such as metamodels and profiles have led to a large number of
modeling languages being defined in recent years. Technologies such as that provided by
the Topcased project generate context-sensitive editors from a basic grammar [Topcased
08]. Each has its advantages and disadvantages. Each typically is defined for a specific
purpose. Unfortunately, sooner or later, someone uses the language for a purpose other
than the intended. The mismatch between purpose and practice oftens reduces the

VOL. 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 9

effectiveness of the models built with the language and leads someone to question the
quality of the language. Usually the ineffectiveness is simply attributed to defects in the
language rather than the mis-user.

The three languages described in this section are each intended for a specific purpose.
Yet, for each there are examples where the modeling language was used in ways not
anticipated. Each of these languages is used by a community, has proven effective for its
intended purpose, and is widely used.

SysML

The System Modeling Language (SysML) was developed by the Object Management
Group (OMG) in cooperation with the International Council on Systems Engineering
(INCOSE) to support the systems engineering process [SysML 08]. The language was
developed as a profile of UML with extensions. It is currently being refined into a second
version.

The systems engineer begins the definition of a system by considering the total set of
requirements for the system. This encompasses both hardware and software. The engineer
captures the system requirements using a requirements diagram, like the one shown in
Figure 1. The systems engineer then allocates those requirements to hardware and
software using a block diagram, illustrated in Figure 2. Finally the systems engineer
develops a use case diagram, shown in Figure 3, to elaborate the software requirements.

• Requirements diagram – The requirements diagram is the gateway into the
SysML model. Requirements that appear in this diagram can also appear in other
SysML diagrams as a way to link the problem and solution spaces. The
requirements diagram notation provides a means to show the relationships among
requirements including constraints. The SysML standard identifies relationships
that “enable the modeler to relate requirements to other requirements as well as to
other model elements. These include relationships for defining a requirements
hierarchy, deriving requirements, satisfying requirements, verifying requirements,
and refining requirements. [SysML 08]” Figure 1 shows one original and one
derived requirement. It also shows how a constraint is attached to a requirement
and how traceability is established between a test case and the requirement it
verifies. These relationships are one way to establish traceability.

• Block diagram – The block diagram presents blocks that can represent hardware
or software or even a combined hardware/software unit. This diagram is used to
show features and relationships at a high-level. This diagram is used to allow the
systems engineer to separate the responsibilities of the hardware team from the
software team. Figure 2 shows two blocks. One represents the hardware for a
vending machine and the other represents the software for that machine. The
arrow between the two blocks shows that there is a dependency of the software on
the hardware upon which it runs.

• Use case diagram – A use case describes a specific use of the system by a
particular actor, i.e., some outside stimulus. The use case diagram represents a
fully factored model. That is, use cases are decomposed to find pieces that can be

10 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 1

reused in multiple use cases. The use case fragments are then composed into use
cases using the “extends” and “includes” relationships but with redundancy
eliminated. Figure 3 shows examples of these relationships for the vending
example

Figure 1 SysML Requirements Diagram

Figure 2 SysML block diagram

VOL. 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 11

Figure 3 Use case diagram

AADL

The Architecture Analysis and Design Language (AADL) has been developed as a
standard of the Society for Automotive Engineers (SAE) [AADL 08]. As the name
implies the language is intended as an architecture description language. The language is
extensible and facilitates domain specific definitions.

AADL has text, graphic, and XML-based representations. Figure 4 shows some basic
symbols that occur in a graphical AADL model. What is not shown in the graphical
model are the properties that are the basis for analysis algorithms. Shown in Table 1 is the
text representation of the specification of a thread from the CurrencyAcceptor system in
the vending machine example. The properties section of the implementation definition
defines a number of properties that influence the execution.

These property definitions are a key factor in using the architectural model for
analysis. The “DispatchProtocol” property describes the manner in which the thread will
operate and send out events. The connectors in the figure show flows of events within the
system. These flows are the basis for the performance analysis of architectures.

12 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 1

Figure 4 AADL System diagram

Table 1 AADL Text Example

thread CoinPublisher
 features
 acceptNotify: in event port;
end CoinPublisher;

thread implementation CoinPublisher.impl
 calls(u: subprogram updateTotal;);
 properties

 Compute_Execution_Time => 30ms .. 40ms;
 Dispatch_Protocol => (Sporadic);
 annex behavior {**
 compute(5ms);
 compute(10ms);
 compute(15ms);
 raise(availableContent);
 **};
end CoinPublisher.impl;

VOL. 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 13

UML

The Unified Modeling Language (UML) was developed as a standard by the Object
Management Group (OMG) [UML 08]. The language was intended as a design language,
but it has been used to model at all levels of software development including architecture.
In fact some authors even make the mistake of saying that UML stands for Universal
Modeling Language instead of Unified Modeling Language. OMG has repeatedly
modified UML in this more general direction.

UML is an object-oriented modeling language and as such is most expressive when
defining object types (classes), instantiating concrete objects, and describing the
interactions of objects. Objects can represent concrete or conceptual entities and the
relationships supported by UML are sufficiently general to model knowledge in a
domain. UML also provides diagram types, sequence and activity diagrams, to model the
interaction and behavior of the objects.

Portions of a UML class diagram, see Figure 5, and a state diagram, see Figure 7, are
shown just as brief reminders of the structure of these diagrams. The class diagram
provides a static, definitional, view of concepts and their relationships. The state diagram
specifies the sequence of events that direct the execution. Figure 6 shows a sequence
diagram that is used to illustrate a sequence of interactions.

Figure 5 UML class diagram

14 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 1

Figure 6 User interface

Figure 7 State diagram for vending machine

VOL. 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 15

Summary

These languages share a number of characteristics but differ in significant ways. SysML
is most expressive when providing high-level, system-wide models. AADL is most
expressive when used to define structural and behavioral aspects of a system at the
architectural level of detail. UML is most expressive when illustrating design concepts.

The most effective model-driven development process will be one that uses each
language to its best advantage. This is made feasible by yet another class of language:
transformation languages. QVT-based languages (Query-View-Transformation) such as
ATL allow a development organization to pass models from one activity to another along
a process thread, transforming the model from one language to another as needed [QVT
08].

3 COMPREHENSIVE MODEL DRIVEN PROCESS

The modeling languages described in the previous example provide capabilities that can
be used in a variety of ways in software development. In this section I will describe two
different arrangements of development activities that use these languages to model the
system under development.

Simple

The simple software development example involves the use of SysML and UML for the
phases shown in the activity diagram in Figure 8. (The simplest approach would use only
UML but I think that the value of SysML for defining the different platforms for which
even software-only products are destined is worth the effort of using two languages.) In
this process system development begins with requirements elicitation and analysis using
the SysML requirements diagram. The requirements are allocated to hardware and
software blocks and the software development process attacks the software requirements.
Then an architecture and detailed design are defined and finally code is developed.

The requirements model seeks to capture the initial information provided by
stakeholders and then to transform that information into a more actionable form. The
SysML requirements diagram is used for the elicitation of requirements for our system.
The requirements are analyzed to produce a set of use cases which are captured in a use
case diagram. During the analysis activity linkages are established via the relationships to
ensure traceability from later stages back to the earlier stages.

The main work is seen in the UML swimlane of the activity diagram. The use cases
from the previous phase are input to the architecture definition activity. The architecture
representation will be simple, since UML does not have native elements for architecture
description. The Detailed Design will be quite complete since this is the area in which
UML excels. From the design a program skeleton will be generated but much code will
then be written by hand and tested manually.

16 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 1

Figure 8 The Simple Modeling Process

Elaborated

The Elaborated development process adds steps to provide additional analysis activities at
the architecture level, see Figure 9. In this thread the UML modeling is prefaced by a
deeper level of behavior modeling using AADL. There are a number of analysis
algorithms and tools that work on AADL models.

The OSATE toolkit developed at the Software Engineering Institute (SEI) provides a
basic set of analyses for AADL models [AADL 08]. These analyses include semantic
checks, flow latency analysis, and others. Since the OSATE toolkit are Eclipse plugins,
additional plugins have been developed by others that interact with the OSATE plugins to
perform a variety of analyses.

A primary feature that supports these activities is the ability to create user-defined
properties. An analysis can be defined and the appropriate properties added to the model.
Properties such as integrity and security are quantified in a variety of schemes to support
the analysis algorithms.

The addition of these properties and constraints in the architecture model provides
additional information that changes the nature of the UML model. This is reflected in the
more complete code generation. Code is customized rather than needing “from scratch”
authoring. Testing is still needed but many of the defects found in testing in the first
process will now be found during the architecture analysis earlier in the life cycle.

This high-level process addresses many concerns. The architecture design process
includes designing a failure management architecture and provides a means of addressing
a number of non-functional attributes such as security and reliability. Using a language
such as AADL also provides for accurate simulation of executions of finished products
using the architectural model. This provides early warning of difficulties.

VOL. 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 17

Figure 9 Elaborated Modeling Process

Variation on a theme

Developing an architectural model that has sufficient detail to support complete code
generation is a resource intensive process. In this process variation, the simulation phase
produces information that is used by humans to improve the UML model, see Figure 10.
This results in less effort for a one-off product development effort. In a product line
organization the process in Figure 9 is less effort since the transformation must be carried
out multiple times and the effort required to automat is paid back many times over.

In this variation, instead of a QVT transform from the AADL model to the UML
model, the information is carried by a human. The model can probably be developed
more quickly this way but it can not easily be modified without the human being in the
loop. In the previous process the architecture model will take longer to produce but
modifications to products can be handled much more quickly.

18 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 1

Figure 10 Detailed Analysis and Human Intervention

4 NON-FUNCTIONAL ATTRIBUTES

The non-functional qualities of a system have become of more interest particularly from a
management perspective. Here are a couple of attributes that are important in large scale
development.

Traceability

Assets created during development are handed off many times from one developer to
another or from one team to another. It is often necessary to be able to verify that what is
being passed on by a process is correctly derived from what served as input to the
derivation process.

The usual example is ensuring that the functionality of the product matches its
original requirements. The succession of models and transformations serves as a supply
chain within the development process. This makes it easier to trace the origin of any
product feature and to identify its implementation.

Compatibility

For models to be a means of communication they must be easy to hand around. For the
process threads discussed earlier to be effective, a model developed in one language must

VOL. 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 19

be easily transformed into the other languages. Both of these problems are addressed
through the use of meta-models.

A meta-model (essentially a model of models) provides a basic definition of model
elements. Using the same meta-model, as in the case of SysML and UML, makes it very
easy to move between the languages. Currently efforts are underway to align the meta-
models used for AADL and UML. Basing design tools on the concept of a meta-model
provides the ability to generate tools such as editors and syntax checkers automatically.
Each team can continue to use the tools they are acustomed to.

5 DOMAIN SPECIFIC ISSUES

Automotive engineers have identified a series of issues that need to be addressed
[Pretschner 07]. Below I take that list and point to work that is attacking the particular
issue.

• Languages, models and techniques for requirement engineering supporting
structured specifications of multi-functional heterogeneous systems, and feature
interactions. The SysML and UML include specific support for requirements
engineering. SysML begins “earlier” in the process by address system
requirements that may include some hardware requirements and then provides for
dividing the requirements between the hardware and software. [Albinet 07]

• Logical/technical architectures (functional decomposition of a system into
functional components, HW mapping/partitioning). Disentanglement of logical
and technical architectures. The AADL and the architecture documentation
standards provide graphical and textual notations that can represent many
different facets of the architecture. The ISO 1471 architecture documentation
standard provides a context for organizing AADL diagrams to provide a clean
separation between the logical and technical architectures. [Bass 98] [Feiler 06]
[Clements 02]

• Seamless/traceable design methodologies at different levels of abstraction. In the
previous section I have described how seamless and traceable designs can be
created using a family of languages with well-defined transformations between
each stage of modeling. [Burch 01]

• Comprehensive cost models. A number of different software development cost
models have been defined. Their use has been limited by the fact that to be
effective they must be baselined within a company before they are sufficiently
accurate. [Clements 05]

• Design and coding practices for portable reusable code. SysML, AADL, and
UML can represent patterns at the analysis, architecture, and design levels. These
patterns represent reuse at a higher level than source code. [Schmidt 95]

• Security of communication (intrusion). AADL provides a “property” mechanism
that has been used to define a security analysis technique. Many other security

20 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 1

models and analysis algorithms could be defined in the language and toolset.
[Feiler 07] [Paige 08]

• Reliability estimates. The same AADL property mechanism is used to provide
reliability estimates. By estimating these attribute values during architecture
design, the fundamental structures can be altered to enhance the attribute at an
early stage. [Feiler 07]

• Quality assurance. The very act of modeling enhances the quality of a system.
Modeling provides an opportunity to identify problems at a high-level when they
are cheap and easy to fix. [Rech 08]

• Failure management (diagnosis, recovery, graceful degradations, …). The AADL
standard includes an annex devoted to developing an error model that supports
specifying failure paths, etc. [Rugina 07] [Ermagan 07]

6 SUMMARY

There are numerous modeling languages that are useful in developing a software-
intensive product. Using each for the purpose for which it is best suited provides a more
satisfactory process than forcing a single language to work in all situations. The processes
that I have outlined are a bare bones description of what should happen. Each shows
ways that modeling is integrated into the software development process.

Many of the issues plaguing the automotive, and other, industries are managerial
issues. Modeling does not solve these issues but it can be an integral part of a solution.
Models, written in the languages I have presented here, will improve communication in
the vertical supply chain and across the breadth of the corporation. Adopting, adapting,
and deploying these techniques will have a truly strategic impact on the organization.

7 ACKNOWLEDGEMENTS

I want to thank Dr. Paul Venhovens, BMW Endowed Chair in Systems Integration at
Clemson University, for his review and comments,

REFERENCES

[AADL 08] Architecture Analysis and Design Language, http://www.aadl.info/, 2008.

[Albinet 07] A. Albinet, J-L. Boulanger, H. Dubois, M-A. Peraldi-Frati, Y. Sorel, and Q-
D. Van. Model-based Methodology for Requirements Traceability in
Embedded Systems, http://www-
rocq.inria.fr/syndex/pub/ecmda07/ecmda07.pdf.

VOL. 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 21

[Bass 98] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice,
Addison-Wesley, 1998.

[Burch 01] Jerry R. Burch, Roberto Passerone, Alberto Sangiovanni-Vincentelli. "Using
Multiple Levels of Abstractions in Embedded Software Design". Proceedings
of the first International Workshop on Embedded Software, October, 2001.

[Clements 05] Paul Clements, John D. McGregor, and Sholom G. Cohen. The Structured
Intuitive Model for Product Line Economics (SIMPLE), Software
Engineering Institute, CMU/SEI-2005-TR-003.

[Clements 02] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers,
Reed Little, Robert Nord, and Judith Stafford. Documenting Software
Architectures: Views and Beyond, Addison-Wesley, 2002.

[Ermagan 07] Ermagan, V.; Krueger, I.; Menarini, M.; Mizutani, J.-i.; Oguchi, K.; Weir,
D. Towards Model-Based Failure-Management for Automotive Software,
Fourth International Workshop on Software Engineering for Automotive
Systems, 2007.

[Feiler 06] Peter H. Feiler, David P. Gluch, and John J. Hudak. The Architecture Analysis
& Design Language (AADL): An Introduction, CMU/SEI-2006-TN-011,
2006.

[Feiler 07] Peter Feiler and Ana Rugina. Dependability Modeling with the Architecture
Analysis & Design Language (AADL), CMU/SEI-2007-TN-043, 2007.

[Feiler 07b] Peter Feiler and Jörgen Hansson. Flow Latency Analysis with the
Architecture Analysis and Design Language (AADL), CMU/SEI-2007-TN-
010, 2007.

[Math 08] Mathworks, www.mathworks.com/simulink, 2008.

[McGregor 08] John D. McGregor. Mix and Match, Vol. 7, No. 6, July-August 2008.

[McGregor 04] John D. McGregor. Factors in Engineering Strategically Significant
Software Development Methods, OOPSLA Workshop on Method
Engineering, 2004.

[McGregor 96] John D. McGregor and Anu Kare. "Testing Object-Oriented
Components,” Proceedings of the 17th International Conference on Testing
Computer Software, June 1996.

[Mercer 01] Mercer Consulting. Automobile Technology 2010: Technological Changes
to the Automobile and Their Consequences for Manufacturers, Component
Suppliers and Equipment Manufacturers, 2001.

[Paige 08] Richard F. Paige, Louis M. Rose, Xiaocheng Ge, Dimitrios S. Kolovos, and
Phillip J. Brooke. Automated Safety Analysis for Domain-Specific
Languages, Proc. Workshop on Non-Functional System Properties in Domain
Specific Modeling Languages, 2008.

22 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 1

[Pretschner 07] Alexander Pretschner, Manfred Broy, Ingolf H. Krüger, Thomas Stauner.
Software Engineering for Automotive Systems: A Roadmap, Future of
Software Engineering(FOSE'07).

[QVT 08] QVT, http://www.omg.org/docs/formal/08-04-03.pdf, 2008.

[Rech 08] Jorg Rech, Christian Bunse. Model-Driven Software Development: Integrating
Quality Assurance, Idea Group Inc (IGI), 2008.

[Rugina 07] Ana-Elena Rugina, Karama Kanoun and Mohamed Kaâniche. A System
Dependability Modeling Framework Using AADL and GSPNs, Architecting
Dependable Systems IV, 2007.

[Schmidt 95] Douglas C. Schmidt. Experience Using Design Patterns to Develop

Reuseable Object-Oriented Communication Software, Communications of the ACM, v.
38, n. 4, 1995.

[SEI 08] Software Engineering Institute, www.sei.cmu.edu/productlines, 2008.

[SYSML 08] SysML, www.omg.org, 2008.

[Tinidad 08] P. Trinidad, D. Benavides, A. Dura´n, A. Ruiz-Corte´s, M. Toro. Automated
error analysis for the agilization of feature modeling, The Journal of Systems
and Software 81 (2008) 883–896.

[Topcased 08] Topcased, http://www.topcased.org, 2008.

[UML 08] Unified Modeling Language, http://www.omg.org, 2008.

About the author
Dr. John D. McGregor is an associate professor of computer science at Clemson
University, a visiting scientist at the Software Engineering Institute, and a partner in
Luminary Software, a software engineering consulting firm. His research interests
include software product lines and component-base software engineering. His latest book
is A Practical Guide to Testing Object-Oriented Software (Addison-Wesley 2001).
Contact him at johnmc@lumsoft.com.

