
Vol. 8, No. 1, January–February 2009

Static Slicing of
UML Architectural Models

Jaiprakash T. Lallchandani
R. Mall
Department of Computer Science & Engineering
Indian Institute of Technology Kharagpur
Kharagpur 721302 WB INDIA
{jtl,rajib}@cse.iitkgp.ernet.in

We propose a technique for static slicing of UML models. We first transform a soft-
ware architecture specified using UML into an intermediate representation which we
have named Model Dependency Graph(MDG). MDG combines information available
in various sequence diagrams along with the relevant information available in class
diagrams into an integrated UML model. For a given slicing criterion, our slicing al-
gorithm traverses the constructed MDG to identify the relevant model elements. Our
algorithm’s novelty lies in its computing a slice based on an integrated UML model
as against independently processing separate UML diagrams, and determining the im-
plicit interdependencies among the different model elements distributed across various
UML diagrams. We also briefly discuss a prototype tool named SSUAM(Static Slicer
for UML Architectural Models) which we have developed to implement our algorithm.

1 INTRODUCTION

The architecture of an object-oriented software system defines its high-level design
structure [12]. With the increase in size and complexity of software products, the
importance of architectural design models has been increasing remarkably [2,11]. A
few of the important uses of an architectural design model are evaluation, under-
standing, and testing a design solution. An architectural design model allows an
architect to reason about various system properties at a higher level of abstraction.
Of late, Unified Modeling Language(UML) is widely being used for representing and
constructing the architectural models of software systems. It provides a wide range
of visual artifacts to model different aspects of a system.

Analysis of UML models is a challenge since the information about a system
is distributed across several model views captured through a large number of dia-
grams. Analysis of the impact of a change to one model on other elements therefore
becomes a non-trivial problem. For example, if a method returning a value changes,
then several classes may get affected either due to the variable being used in guard

Cite this article as follows: Jaiprakash T. Lallchandani, R. Mall: Static Slicing of
UML Architectural Models, in Journal of Object Technology, vol. 8, no. 1, January–
February 2009, pages 159–188,
http://www.jot.fm/issues/issues 2009 01/article2

http://www.jot.fm/issues/issues_2009_01/article2

STATIC SLICING OF
UML ARCHITECTURAL MODELS

conditions in various sequence diagrams or because of method calls.

With increase in product sizes and complexities, UML models themselves tend
to become large and complex and may involve thousands of interactions across hun-
dreds of objects. For such large architectures, it becomes exceedingly difficult to
understand and analyze these models. Moreover, it becomes tedious on one hand
and equally valuable on the other to determine the impact of a certain change to one
model element on other model elements. For large architectures, determining the
impact of a change would require taking into account the various types of dependen-
cies that might exist among different model elements. Development of an impact
analysis technique can help understanding, testing, reengineering, maintenance, and
reuse of large software architectures.

In this context, researchers have proposed to use program slicing techniques to
decompose large architectures into manageable portions. This can not only facili-
tate comprehending large architectures, but also help perform impact analysis and
reliability prediction based on architectural models [7, 22, 24]. Besides, architecture
model slicing can also be used to compute various types of metrics to characterize
software architectures.

In the context of software architectures, a slicing technique should take into
account various use cases, classes and their relationships, and objects and their in-
teractions. UML class diagrams describe various relations among classes such as
aggregation, association, composition, and generalization / specialization. On the
other hand, sequence diagrams depict a sequence of actions through which a use
case is realized [3]. Traditional slicing is usually performed solely based on data
and control dependency relationships existing among program statements. How-
ever, to perform architecture slicing, it is necessary to first formulate an appropriate
intermediate representation that can represent different types of dependence rela-
tionships that may exist among classes, sub-classes, methods, and attributes, and
call sequences.

We propose an intermediate representation for software architecture by integrat-
ing various UML diagrams into a single system model. We have named this represen-
tation Model Dependency Graph(MDG). To construct an MDG, we first construct
an intermediate representation for classes called Class Dependency Graph(CDG) for
every UML class diagram. We also construct another intermediate representation
called Sequence Dependency Graph(SDG) for every UML sequence diagram in the
system. Next, we integrate the CDGs and SDGs to construct an MDG.

We have named our proposed algorithm Architectural Model Slicing through
MDG Traversal(AMSMT). Our slicing algorithm is based on traversing [9, 15, 16]
the edges in the MDG for any given slicing criterion. Through MDG traversal,
AMSMT identifies the relevant model elements from an architecture based on the
dependencies among them to compute a static architectural model slice. A novelty of
AMSMT is its computation of a slice based on an integrated UML model. This is in
contrast to the related work where slicing is based on individual UML diagrams, and

160 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 1

2 RELATED WORK

finding the implicit interdependencies among different model elements distributed
across various model diagrams.

The rest of this paper is organized as follows. The next section reviews related
work. Section 3 presents overview of some UML 2.0 concepts relevant to our discus-
sion. Section 4 presents an integrated UML model and a few basic definitions that
have been used in our algorithm. Our intermediate representation MDG is discussed
in Section 5. Section 6 presents our algorithm for computing a static architectural
model slice along with an example to illustrate the working of our algorithm. Section
7 compares our work with related work and Section 8 concludes the paper.

2 RELATED WORK

In this section, we briefly review the reported work on architectural and model slic-
ing. Most of the work reported in the literature address development of techniques
based on slicing the architectural description of a system given in different archi-
tecture description languages(ADLs) such as Aesop, C2, Darwin, Meta-H, Rapide,
UniCon, and Wright [1]. However, the research work on slicing UML architectural
models have scarcely been reported in the literature, though UML is being used as
an ADL [13,14].

Zhao [25] investigated a novel dependence analysis technique, called architecture
dependence analysis, to support software architecture development. Though his
work considered Acme ADL, this approach to architecture dependence analysis was
shown to be independent of any specific ADL.

Zhao introduced a static architecture slicing technique [21], which operates by
removing unrelated components and connectors, and ensures that the behavior of a
sliced system remains unaltered. The work reported by Zhao in [23] is an extension
of his earlier work reported in [21,25] and is based on Wright ADL [1].

Kim introduced an architectural slicing technique called dynamic software ar-
chitecture slicing(DSAS) in [7]. Kim’s work is able to generate a smaller number
of components and connectors in each slice as compared to [21]. This is especially
true in situations where a large number of ports are present and their invocation
can change the values of some variables, or the occurrence of certain events.

Korel et al. [8] present an approach to slicing state-based models, such as EFSMs
(Extended Finite State Machines). They present two types of slicing - deterministic
and non-deterministic slicing. Their approach also includes a slice reduction tech-
nique to reduce the size of a computed EFSM slice. Korel et al. [8] also report a
tool that implements their slicing technique for EFSM models.

Kagdi et al. [4] introduce the concept of model slicing as a means to support
maintenance through the understanding, querying, and analyzing large UML mod-
els. Kagdi et al.construct model slices from UML class models. Their slicing ap-
proach extracts parts of a class diagram in order to construct sub-models from a

VOL 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 161

STATIC SLICING OF
UML ARCHITECTURAL MODELS

given model of a system. However, class models are devoid of explicit behavioral
information and depict only structural behavior.

3 RELEVANT UML 2.0 CONCEPTS

In this section, we present an overview of those aspects of UML 2.0 that are relevant
to our work. We first discuss certain aspects of class diagrams and then discuss
sequence diagrams.

Class Diagrams

A class diagram shows the different classes of a system, their inter-relationships,
the various operations and attributes of the classes. Moreover, a system model may
comprise more than one class diagram. We identify each of the class diagrams by
assigning an arbitrary unique label to it. For example, Consider an example system
model consisting of three class diagrams. These can be labeled as CD1, CD2, and CD3
respectively.

Figure 1(a) shows an example class diagram. It shows that any object of
Composite- Class is composed of one or more ParentClass instances. The as-
sociation relationship is depicted using a line connecting two classes ChildClass2

and CompositeClass, indicating that instance cc will become an instance vari-
able in ChildClass2. Child- Class1 and ChildClass2 are derived from base class
ParentClass through inheritance. A note containing the description ”uses pc 1”
has been shown anchored to method pc method1() in ParentClass. In the rest of
the paper, notes would be used to represent the information related to the usage of
data in the system being modeled.

In UML the attached notes may contain any text, and have no defined semantics.
To be able to automatically process the information present in attached notes, we
need to define certain rules and a suitable semantics for the UML notes. This can
help to identify relevant data dependencies from the text present in the notes. We
define a simple rule for writing notes. The text in the notes can either start with
a word ”uses”, or ”calls”, and the words in the text followed by ”uses” and
”calls” are separated by a comma. We use notes to represent the following types
of information: (i) A method may use one or more class attributes. (ii) A method
may contain calls to one or more class methods.

We now define the semantics of the notes anchored to a method in a UML class
diagram.

1. If the text string representing a note begins with the word ”uses”, then the
rest of the words in the text string represent the class attributes on which the
method is data dependent.

162 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 1

3 RELEVANT UML 2.0 CONCEPTS

2. If the text string representing a note begins with the word ”calls”, then the
rest of the words in the text string represent the methods that are called by
the method anchored with the note.

Figure 1: (a) A generic class diagram (b) A generic sequence diagram

Sequence Diagrams

An interaction represents a communication between two objects. In UML 2.0, the de-
tails of an interaction can be modeled using sequence diagrams, interaction overview
diagrams, communication diagrams, timing diagrams and interaction tables.

A sequence diagram shows how objects interact with each other to achieve a
behavioral goal. Unlike a communication diagram, a sequence diagram shows the
sequence of messages exchanged among the objects on a lifeline. A lifeline in a
sequence diagram shows time as a dimension to represent the order in which inter-
actions occur.

An example of a UML sequence diagram is shown in Figure 1(b). The rectangles
in this diagram depict objects (or lifelines). The object names have been formed
by prefixing their class names with a colon and underlined to show that it applies
to any object of the class. The arrows connecting the objects represent messages;
and are labeled with their names, sequence numbers, and arguments. The name
of a message corresponds to the name of a member function of the receiving class.
The sequence diagram of Figure 1(b) depicts the use of the combined fragments alt
and loop. It shows that the messages numbered 4,5 and 6 form the if-part, and
messages numbered 7 and 8 along with a loop containing an interaction occurrence

VOL 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 163

STATIC SLICING OF
UML ARCHITECTURAL MODELS

labeled ExSeqDia in the lifeline of the anonymous object of CompositeClass are
part of the else part.

We have shown one example sequence diagram. However, a system model may
consist of many sequence diagrams. In such systems, we identify each sequence
diagram by an arbitrary label assigned to it. Also, once a sequence diagram is
assigned a label, it is not changed. Moreover, no two sequence diagrams can be
assigned the same label. As an example, if we consider a system model consisting of
four sequence diagrams, they may be labeled as SD1, SD2, SD3, and SD4 respectively.

4 DEFINITION OF AN INTEGRATED UML MODEL

In this section, we present an overview of an integrated UML model which we have
named Model Dependency Graph(MDG). We first discuss the key elements of MDG,
and then outline the representation of a generic system using MDG. A more detailed
discussion on the relationships among different elements of MDG is given in the next
section.

A class diagram model of an MDG has been shown in Figure 2. It gives an
overview of the elements involved in the structural design of an integrated UML
model. Each instance of an MDG is composed of one or more SDG instances along
with one or more associated CDG instances. In the later subsections, CDG and SDG
have been discussed in more detail along with an example. An instance of a CDG
or an SDG is composed of one or more node types along with one or more edges
representing different dependence types as shown in the class diagram of Figure 2.
We discuss how CDGs and SDGs are integrated to realize an MDG in the next
section.

In the following, we define the different elements of an MDG.

� A class access(CA) node is defined for every class in the UML architectural
model.

� A method access(MA) node is defined for every method of a class.

� An attribute(AT) node is defined for every class attribute.

� A parameter(PR) node is defined for every method parameter specified in a
method signature.

� A return(RT) node is defined for every return parameter specified in a method
signature.

� A predicate class(PC) node is defined for every combined fragment used in a
sequence diagram.

� An interaction(IT) node is defined for every interaction occurrence used in a
sequence diagram.

164 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 1

4 DEFINITION OF AN INTEGRATED UML MODEL

Figure 2: Class diagram for the integrated UML model MDG

A class access(CA) node represents an entry point to reference all the attributes
and methods of a class. A method access(MA) node represents an entry to a class
method. An attribute(AT) node represents an access to the corresponding class
attribute. A CA node is connected to every MA node of a class, and to every AT

node of the class by dependence edges. The formal parameters of a class method
are represented using parameter(PR) nodes while the return values are represented
using return(RT) nodes. An MA node is connected to PR and RT nodes by dependence
edges. Also, an RT node may be connected to an AT node by a dependence edge.

We now discuss how a model of a generic system can be represented using the
different elements of an MDG. Figure 3 presents a generic system defined in terms of
classes, and its representation in the form of an MDG. The generic system consists
of n classes CL(1)...CL(n), and every class has i attributes and m methods. The
MDG of the system can be described as follows:

� The classes are represented by class access(CA) nodes CACL(1) . . . CACL(n).

� The attributes of every class CL(n) are represented by attribute(AT) nodes
AT1 . . . ATi.

� The methods of every class CL(n) are represented by method access(MA) nodes
MA1 . . . MAm.

� The k method parameters 1...k are represented by parameter(PR) nodes
PR1 . . . PRk.

� The return parameters are represented by return(RT) nodes RT1 . . . RTm.

VOL 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 165

STATIC SLICING OF
UML ARCHITECTURAL MODELS

method1(par1 ... park) : ret1
method2(par1 ... park) : ret2

 . . .
methodm(par1 ... park) : retm

CACL(n)AT1
AT2

ATi

MA1
PR1 PRk

RT1

MA2PR1
PRkRT2

MAm
PR1 PRk

RTm

Class-n

attrib1,attrib2 . . . attribi

Model of a
generic system

Class-1

attrib1,attrib2 . . . attribi

method1(par1 ... park) : ret1
method2(par1 ... park) : ret2

 . . .
methodm(par1 ... park) : retm

CACL(1)AT1
AT2

ATi

MA1
PR1 PRk

RT1

MA2PR1
PRkRT2

MAm
PR1 PRk

RTm

Element in a
generic system Element type

Class

Attribute

Method

Method parameter

Return value

Class-n

attribi

methodm

park

retm

Element in
MDG

CACL(n)
ATi
MAm
PRk
RTm

n : Number of classes (System dependent)
i : Number of attributes (Class dependent)
m : Number of methods (Class dependent)
k : Number of method parameters (Method dependent)

Elements of MDG

Figure 3: MDG representation of a generic system

The nodes AT1 . . . ATi and MA1 . . . MAm represent the attributes and methods of
the class CL(n), and all the respective AT and MA nodes are connected to the class
access(CA) node CACL(n) using dependence edges. Similarly, for the nodes PR1 . . . PRk
and RT1 . . . RTm representing the parameters and return values of every method m, all
the related PR and RT nodes are connected to the method access node MAm through
dependence edges.

For the model of the generic system in Figure 3, we consider the following view
pertaining to a software architecture constructed from various UML models.

A software architecture is a collection of system entities, such as use cases, classes,
objects, interactions and scenarios connected to form a system structure. It repre-
sents both the structural as well as the behavioral views of a system. To represent
such UML model of a system as an integrated model MDG, we begin with a discus-
sion on CDG representation in the next subsection. The intermediate architectural
model called CDG for any software system is based on a set of classes given in
the form of UML class diagrams. The CDG represents the different elements of a
class diagram along with the relationships among these elements using dependence
edges. The information present in the CDG is later used to transform a software
architecture into a MDG representation which we discuss in Section 5.

In order to construct the CDG, the classes and all inter-dependencies among

166 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 1

4 DEFINITION OF AN INTEGRATED UML MODEL

these classes are identified from the class diagrams. We assume that a note is
anchored to the methods of a class in a class diagram, capturing the attributes used
by different class methods along with the related method calls.

Class Dependency Graph(CDG)

In this subsection, we define our CDG representation of UML 2.0 class diagrams. A
CDG represents a set of classes and their relationships. In a CDG, classes and their
attributes, methods and their call parameters, together with method return values
are represented as different types of nodes. Several types of dependencies might ex-
ist among the nodes. These would be represented by using appropriate dependence
edges in the CDG. Member dependence edges represent the class memberships of
methods and attributes, while method dependence edges represent the dependence
of the call parameters and return values(if any) on a method. Data dependence edges
represent flow of data among statements of a class method. Data dependencies arise
when the class methods, its parameters and return values directly or indirectly make
use of the class attributes. In addition, data dependence edges also represent the
effect of the calling parameters on the return value of a method. Relationship de-
pendence edges represent how a class is related to another class, or how an instance
of a class is related to the other class instances. It is to be noted that the CDG
intends to represent each class along with its features such that the dependencies
among them get easily identified in the process of slice computation. At the same
time, CDG does not represent class relations in any different way compared to its
corresponding class diagram. For example, the arrow style for representing gener-
alization, aggregation, and composition relations using the relationship dependence
edges in the CDG exactly match the UML notation used to represent these class
relationships. However, the association relation is not represented in the CDG from
its class diagram. An association relation represents classes which are likely to com-
municate with other classes due to a method invocation. The dependency arising
out of such method invocations are already handled from the sequence diagram and
represented using SDG to be discussed in the later subsection.

A CDG contains one class access(CA) node for every class in the class diagram.
The CDG contains one attribute(AT) node for every distinct class attribute, and
one method access(MA) node for every single method of a class. Depending on the
number of attributes and methods for a class, the AT and MA nodes are named by
appending a numeric subscript to the node symbol (AT or MA) that reflects the label
assigned to the class attributes and methods. To model parameter passing to class
methods, each MA node is associated with one or more parameter(PR) nodes. For
every method returning a value, the return value is represented by associating a
return(RT) node with the corresponding MA node. PR and RT nodes are associated
with the MA nodes using the method dependence edges, while the MA and AT nodes
are associated with the CA nodes using member dependence edges.

A CDG captures both the static as well as dynamic dependencies in a system.

VOL 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 167

STATIC SLICING OF
UML ARCHITECTURAL MODELS

CCCA

AT1

PR1

AT1

AT1 AT2 AT3

PCCA

C1CAMA1

RT1

MA1 MA2

C2CA

AT1 AT2

RT2 Generalization

Composition
Aggregation

Relationship
dependence
edges

Member dependence edge

Data dependence edge
Method dependence edge

Types of EdgesXCA Class access node for class X

MAn Method access node for method n

ATn Attribute node for attribute n

PRn Parameter node for parameter n

RTn
Return node for return value of
method n

Types of Nodes

MA1

MA1

RT1

Figure 4: CDG for the example class diagram of Figure 1(a)

The static dependencies do not vary with time, viz. member dependencies, method
dependencies and relationship dependencies. The dynamic dependencies change
with time, and all the data dependencies fall under this category. The dependencies
mentioned for the CDG are present in UML class diagrams in the form of dependence
among classes, and its features. Figure 4 shows the CDG for the example class
diagram of Figure 1(a).

We have already mentioned that each class diagram in the system is assigned
a fixed label. The label assigned to a class diagram gets associated to the corre-
sponding CDG during the process of its construction. If we consider three class
diagrams and identify them as CD1, CD2, and CD3, then their corresponding CDGs
will be identified as CDG1, CDG2, and CDG3 respectively.

An Example CDG

The class diagram of Figure 1(a) contains four classes ParentClass, CompositeClass,
ChildClass1 and ChildClass2. Each of these classes is represented by using class
access nodes CAPC, CACC, CAC1 and CAC2 respectively as shown in the CDG of Figure 4.
To understand how other nodes are added to the CDG, let us consider ChildClass1
of the example class diagram of Figure 1(a). It comprises of three attributes and
two methods which form the features of ChildClass1. The attributes are repre-
sented by the attribute nodes AT1, AT2, and AT3, and the methods are represented
by the method access nodes MA1 and MA2 in the CDG of Figure 4. All these at-
tribute and method access nodes are connected to the class access node CAC1 using
member dependence edges. It can be observed that each method of ChildClass1
has a note anchored to it. The note associated with method cc method1() cap-
tures the data dependency on class attributes cc1 1 and cc1 2 used within the
method body. Moreover, several class attributes may have been used to compute
a method’s return value. Each method has a return value which is represented in
the CDG using the return nodes RT1 and RT2. The return nodes are connected to
the MA nodes using method dependence edges. The class diagram of Figure 1(a)

168 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 1

4 DEFINITION OF AN INTEGRATED UML MODEL

shows that ParentClass has a composition relationship with CompositeClass, and
also classes ChildClass1 and ChildClass2 are derived from ParentClass. These
class relationships are captured using the relationship dependence edges shown in
the CDG of Figure 4.

Some SDG Concepts

We now briefly present our terminology pertaining to predicate class(PC) and in-
teraction(IT) nodes. In the context of a UML 2.0 model, if a combined fragment
has a condition associated with it in the lifeline of an object of a class CL(n) in the
sequence diagram, then the corresponding class access(CA) node CACL(n) in the SDG
of the sequence diagram is represented by a predicate class(PC) node.

The example sequence diagram of Figure 1(b) shows two combined fragments
alt and loop. The condition associated with the alt combined fragment uses the
class attribute cc2 1 while the loop combined fragment uses the class attribute
cc2 2 in the lifeline of the anonymous object of ChildClass2. This adds a predicate
class(PC) node CAC2 as depicted in the SDG of Figure 5.

In the context of a UML 2.0 model, if the lifeline of an object of a class CL(n)
in the sequence diagram contains an interaction occurrence, then this reference to
any sequence diagram using an interaction occurrence is represented as an interac-
tion(IT) node in the SDG of the sequence diagram.

In the example sequence diagram of Figure 1(b), a recursive reference to the same
sequence diagram is made in the lifeline of an anonymous object of CompositeClass
using an interaction occurrence represented as a ref item in the sequence diagram.
This adds an interaction(IT) node in the SDG of Figure 5. The sequence diagram
of Figure 1(b) is named ExSeqDia which is seen from the label assigned to it on the
top. The same label is associated with the ref item of the sequence diagram. As
only one interaction occurrence is used in this sequence diagram, the SDG of Figure
5 depicts an IT node that is labeled IT1 representing the reused sequence diagram
of Figure 1(b).

For slicing the UML architectural models, we need to convert the different UML
sequence diagrams into intermediate representations which we have named Sequence
Dependency Graphs(SDGs). An SDG is used to represent the message exchange
among different objects in a sequence diagram using dependence edges. The infor-
mation present in an SDG along with a CDG is later used to transform a software
architecture into an MDG representation.

Sequence Dependency Graph(SDG)

In this subsection, we define our SDG representation for UML 2.0 sequence dia-
grams. Each sequence diagram of a system is represented as an SDG. An SDG
can depict various scenarios represented in the corresponding sequence diagram. An

VOL 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 169

STATIC SLICING OF
UML ARCHITECTURAL MODELS

SDG can be considered as a dependence graph representing a set of objects and their
interactions. Moreover, in an SDG the nodes are either classes or other sequence
diagrams of the system. However, when an SDG contains a node which represents
another sequence diagram, and that sequence diagram itself is represented as an
SDG, then an SDG becomes a hierarchical diagram in some sense. This helps to
simplify the SDG, whereby a reused sequence diagram(also represented as an SDG)
is represented by a single node termed as an interaction(IT) node in the SDG. The
concept of an IT node prevents the use of a sequence diagram recursively, and re-
stricts the number of SDG nodes to become unbounded. In fact, when an SDG
contains one or more other SDGs, no additional nodes are added from other SDGs
to represent the reused sequence diagrams.

Message dependence edges represent flow of messages among objects. Each mes-
sage dependence edge is annotated with a label. The kth message in a sequence
diagram is represented by I(k) in its SDG. Different types of message dependencies
may exist among the objects. These are represented by different types of depen-
dence edges in the SDG. If a message transfer from an object of one class to an
object of another class involves a method call(implicit or explicit), we represent this
message dependency by a call dependence edge. If a message transfer is a self-call
(a message from an object to one of its own methods), the corresponding message
dependency is also represented by a call dependence edge. When an object instan-
tiates another object, it is also represented as a call dependence edge, because it
involves an implicit call to the constructor method of the class. On the other hand,
a message transfer representing a value return on account of a method invocation
by an object is a message dependency represented as a return dependence edge.
In addition, an interaction between any two objects can involve the use of public
attributes of related system classes. This may arise due to a method invocation
by an object of the involved pair of classes. Moreover, the public attributes used
by the class pair hold a definition-use relationship between them. This possibility
arises when a class attribute with a public scope is used by an object of one class,
but has its definition in another related class. The SDG represents such a message
dependency as an attribute dependence edge. Moreover, in case of an occurrence of a
predicate class(PC) node, all the messages in the combined fragment form a message
dependency, and are represented as a control dependence edge in the SDG. How-
ever, to represent a dependence relation between an IT node and other SDG nodes,
another type of message dependency is used and it is termed as an inter-sequence
dependency. Inter-sequence dependence edges represent a message dependency of a
sequence diagram on another sequence diagram.

An SDG contains a class access(CA) node for every class whose object is used in
the sequence diagram, and additionally may contain interaction(IT) nodes to repre-
sent references to other sequence diagrams. Having identified all the dependencies
that may exist in a sequence diagram, we can represent those in the corresponding
SDG.

An SDG captures various static and dynamic dependencies that may exist in a

170 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 1

4 DEFINITION OF AN INTEGRATED UML MODEL

system. In the SDG, the only static dependencies are due to control dependencies.
The dynamic dependencies change with time, and they include call dependencies, re-
turn dependencies, inter-sequence dependencies, and attribute dependencies. Figure
5 shows the SDG for the example sequence diagram of Figure 1(b).

C2CA

PCCA

CCCA

Control dependence edge

Inter-Sequence Return dependence edge

Call dependence edge
Return dependence edge
Attribute dependence edge

Types of Message Dependence Edges

Inter-Sequence Call dependence edge

XCA Class access node for class X

ITn
Interaction node for a reference
to Sequence Diagram n

Types of Nodes

XCA Class access node for class X
is a Predicate class node

I(1),I(3),
I(5),I(10)

I(7)

I(2),I(4),I(9)

IT1

I(5),I(7)

I(4),I(6),
I(8)

I(7+)

I(8-)

I(7+),I(8-)

I(6)I(8)

Figure 5: SDG for the example sequence diagram of Figure 1(b)

In our discussion on sequence diagrams, we mentioned that each sequence dia-
gram of the system is identified by a unique label. In the process of constructing an
SDG from its corresponding sequence diagram, the label associated with a sequence
diagram is used to label the corresponding SDG. If we consider four sequence dia-
grams and label them as SD1, SD2, SD3, and SD4, then their corresponding SDGs will
be labeled as SDG1, SDG2, SDG3, and SDG4 respectively.

An Example SDG

Consider the sequence diagram shown in Figure 1(b). The sequence diagram uses
objects of classes ChildClass2,ParentClass, and CompositeClass. These classes
are represented using the class access nodes CAC2, CAPC and CACC respectively as
shown in the SDG of Figure 5. The sequence diagram of Figure 1(b) contains two
combined fragments - alt and loop. Both the combined fragments are associated
with the lifeline of ChildClass2 object. All the message transfers which are part of
the combined fragment are controlled by the conditions of the combined fragment.
And that object containing the combined fragment as a part of its lifeline forms a
predicate class(PC) node. The SDG of Figure 5 shows a predicate class node CAC2.
In the same sequence diagram, it recursively refers to itself using the interaction
occurrence ExSeqDia in the lifeline of CompositeClass object, where ExSeqDia is
the label assigned to the referred sequence diagram. This is represented in the SDG
of Figure 5 as an interaction(IT) node labeled as IT1.

In the sequence diagram of Figure 1(b), the first message transfer creates an
object of type CompositeClass. This message transfer involves an implicit call

VOL 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 171

STATIC SLICING OF
UML ARCHITECTURAL MODELS

to the constructor method of CompositeClass. The same is depicted using a
call dependence edge (CAC2, CACC) in the SDG of Figure 5. This message transfer
has an integer k (here k=1) associated with it in the sequence diagram of Figure
1(b). Hence, we represent this call dependence edge with the label I(1). The
other message transfers are labeled I(2),I(3),I(4),I(5),I(7),I(8),I(9), and
I(10), and each represents a call dependence edge in the SDG of Figure 5. A
method cc method1() associated with the message transfer numbered (k+4) re-
turns a value using the message (k+5). This is depicted using the return depen-
dence edge (CAC2, CACC) annotated with label I(k+5)[as k=1, I(k+5)=I(6)] in the
SDG. As mentioned earlier, node CAC2 is a predicate class(PC) node. The message
transfers numbered (k+3),(k+4),(k+5),(k+6), and (k+7) are part of the alt com-
bined fragment associated with object of ChildClass2, while (k+6) and (k+7) are
also part of the combined fragment loop associated with the same object. This
adds a control dependence edge (CACC, CAC2) annotated with labels I(4),I(6),I(8),
and edge (IT1, CAC2) annotated with labels I(7+),I(8-) in the SDG of Figure 5.
The SDG of Figure 5 contains an interactive(IT) node IT1. This is because object
of CompositeClass refers to the sequence diagram ExSeqDia in its lifeline. This
reference is after completion of message transfer numbered (k+6), and before the
initiation of message transfer (k+7). This is depicted by an inter-sequence call de-
pendence edge (IT1, CACC) annotated with label I(7+), and an inter-sequence return
dependence edge (CACC, IT1) annotated with label I(8-) in the SDG of Figure 5.

5 MODEL DEPENDENCY GRAPH(MDG)

MDG represents both structural aspects modeled in various class diagrams as well
as behavioral aspects modeled in sequence diagrams of an architecture. The process
of constructing an MDG involves combining the nodes and edges of various SDGs
along with the information present in different CDGs of a system. This process is
termed as the integration process and is discussed in the next subsection. An MDG
provides an integrated view of all system scenarios.

An MDG can contain all the different types of nodes that exist in the CDGs,
and the SDGs. The CDG and SDG nodes used to construct the MDG have exactly
the same representation as those in CDG and SDG.

Every message dependence represented in an SDG has a pair of object classes,
attribute(s), method(s) and its parameters and return values associated with it. All
such CA, AT, MA, PR and RT nodes that represent these object classes, attribute(s),
method(s) and its parameters and return values are added from a CDG to the MDG.
An IT node is added to the MDG, in case an IT node already exists with a SDG.
Similarly, a PC node is added to the MDG when an SDG possesses a PC node.

The different nodes in an MDG are interconnected using various types of depen-
dence edges as follows:

1. Edges of the MDG that existed either in a CDG or an SDG, and are added

172 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 1

5 MODEL DEPENDENCY GRAPH(MDG)

without any alteration. We represent all such edges in the form of an unaltered
edge.

2. Edges that are added to the MDG after making some alteration to the edges
that existed either in a CDG or an SDG. We represent all such edges in the
form of an altered edge.

For any edge in the MDG, when either the source, or the destination, or both are
changed, then the corresponding edge connecting the changed nodes is termed as an
altered edge. The situations under which the representation of an edge is changed is
explained in the next subsection. Any edge that is not an altered edge automatically
becomes an unaltered edge.

Integration of CDGs and SDGs

We now briefly discuss how CDGs and SDGs can be integrated to construct an MDG.
The process of integrating CDGs and SDGs has schematically been shown in Figure
6. The integration process is carried out over many steps. The exact number of
steps may vary depending on the number of SDGs present in a given UML model.
In Step-1, an arbitrarily selected SDG SDGi along with the information present
in different CDGs is used to construct a partial MDG MDG1. Next, the process
carried out in Step-1 is repeated during Step-2, but on another arbitrarily selected
SDG SDGj. This step also updates MDG1 constructed in previous step, resulting in
a partial MDG MDG2. The same process has to be repeated till all the SDGs have
been considered. For integrating a model with n SDGs, the Step-n will result in
MDGn. The MDGn constructed after n steps is the final MDG obtained at the end of
integration.

We now explain how different dependencies are added to the MDG from the
CDGs and the SDGs. The member, method, and data dependencies from the CDG,
and the control and inter-sequence dependencies from the SDG comprise the unal-
tered edge set. Adding the dependencies represented by various edge types in the
unaltered edge set requires no further explanation, as they are added directly to the
MDG from the CDGs or SDGs without any change. But the edges added to the
MDG from the altered edge set requires a mapping from a pair of nodes in the CDG
or SDG to an appropriate pair of nodes in the MDG. The following cases arise when
an edge from either a CDG or an SDG is represented as an altered edge in a MDG:

1. A call dependence edge (CAfrom class, CAto class) between two CA nodes in an
SDG is altered and represented between CAfrom class and a MA node of CAto class

in the MDG.

2. A return dependence edge (CAfrom class, CAto class) between two CA nodes in an
SDG is altered and represented between CAfrom class and a RT node of CAto class

in the MDG.

VOL 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 173

STATIC SLICING OF
UML ARCHITECTURAL MODELS

Class Diagram mClass Diagram 1 Sequence Diagram n

Software Architectural Model

Sequence Diagram 1

CDG CDGm SDG1 SDG

Integration Step 1

MDGn

1 n

Integration Step n

Integration Process

Random SDG Selector
SDGi

SDGk

MDG1

Integration Step 2 MDG2

SDGj

MDGn-1Integration Step n-1

1 i, j, k n

Figure 6: Integration of CDGs and SDGs into an MDG

3. An attribute dependence edge (CAfrom class, CAto class) between two CA nodes
in an SDG is altered and represented between CAfrom class and a AT node of
CAto class in the MDG.

4. A relationship dependence edge (CAfrom class, CAto class) between two CA nodes
in a CDG is altered based on the type of message dependency between them
in an SDG, and is either represented as a call dependence edge(as in (1)), or
an attribute dependence edge(as in (3)) in an MDG.

We now explain how a message dependence is represented in an MDG. To easily
map between the SDG and the MDG, every message dependence edge represented
by a certain label I(k) in SDG SDGi is represented by a label Ii(k) in the MDG.

Let us consider two SDGs SDG1 and SDG2. Let the message dependence edges
in SDG1 be represented by labels I(1)... I(i), and that in SDG2 be represented
by labels I(1)...I(j). During integration, let us assume that SDG2 has been ar-
bitrarily selected prior to SDG1. That is, Step-1 considers SDG2. The message
dependence edges of SDG2 represented by I(1) . . . I(j) are updated and represented
first with labels I2(1) . . . I2(j) in the MDG. Suppose SDG1 is selected in the next
step of integration. In this case, the message dependence edges in SDG1 represented
by I(1) . . . I(i) are next updated and represented with labels I1(1) . . . I1(i) in the
MDG. Interestingly, irrespective of the order of selection of SDGs, integration always
constructs the same MDG. In the following, we only briefly outline the reasons for
getting the same MDG to conserve space. A detailed proof of this has been reported
in [10].

Suppose a UML architectural model has been represented in the MDG through

174 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 1

5 MODEL DEPENDENCY GRAPH(MDG)

a complete integration process. For every such integration, we consider that CDGs
and SDGs are selected in an arbitrary order. The resulting MDG obtained after
every such integration would always be identical, and all such identical MDGs can
be compared based on the following points:

1. Number of nodes and edges along with their types in the MDG.

Each of the CDGs and SDGs is a graph consisting of a set of nodes and
edges. During the integration process, irrespective of the order of considering
the CDGs and SDGs, the nodes and edges representing the resultant MDG
would always comprise the same number and type of nodes and edges after
completion of all the steps in an integration process.

2. Edges among different nodes representing various dependencies in MDG.

In the integration process, the different dependencies in the CDGs and SDGs
are represented in the MDG. The number of nodes and edges in MDG are
decided based on point (1) above. The integration process would result in
equivalent sets of nodes and edges. This means that the dependencies among
different nodes remain of the same after successive integrations.

3. Naming of the nodes of MDG.

The nodes in MDG have exactly the same representation as the nodes in
CDG and SDG. The representation of IT node in the MDG is an exception.
This is because every IT node represents an interaction occurrence, and every
interaction occurrence has an associated sequence diagram having an assigned
label. The label assigned to a sequence diagram gets associated with the IT

node when it is represented in the MDG. Moreover, once a sequence diagram
is assigned a label, the same label is subsequently assigned to its SDG. This
ensures that the order in which the sequence diagrams are taken up during
the integration process does not change the representation of an IT node in
the MDG. Considering these facts, an IT node represented as ITi in SDGn is
represented as ITni in the MDG to differentiate it from IT nodes associated
with other SDGs.

4. Assigning labels to different dependence edges represented in MDG.

The dependence edges represented in the MDG are based on the dependencies
among SDG nodes and its related CDG nodes. In the process of representing
these dependencies, every dependence edge represented by a certain label I(k)
in SDG SDGi is represented by a label Ii(k) in the MDG as mentioned earlier.
This ensures that, if the steps of the integration process are repeated, they do
not change the labels associated with different dependence edges in the MDG.

VOL 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 175

STATIC SLICING OF
UML ARCHITECTURAL MODELS

An Example MDG

In this section, we explain the construction of the MDG for the example UML
model shown in Figure 1. And, Figure 7 shows the MDG obtained after applying
a complete integration. The integration process uses the CDG and the SDG shown
in Figures 4 and 5 respectively to obtain the MDG.

Let the CDG of Figure 4 be denoted by CDG1, and the SDG of Figure 5 be
denoted by SDG1.

CCCA

AT1

PR1

AT1

PCCA

MA1

C2CA

AT1 AT2 MA1

MA1

RT1

IT11

I (7+)1

I (8-)1

I (7+),1 I (8-)1

I (5),I (7)11

I (4),I (6),I (8)111

I (1),I (10)1

I (2),I (9)1

I (3),I (5)1

I (4)1

1

I (6)1

I (7)1

I (8)1

1

1

Figure 7: MDG representation for the example CDG and SDG of Figures 4 and 5

The CDG1 in Figure 4 has four class access nodes CAPC, CACC, CAC1, and CAC2 but
the SDG SDG1 in Figure 5 uses only three class access nodes CAC2, CACC, and CAPC.
One of the classes ChildClass1 is not represented in SDG SDG1. Therefore, the
corresponding node CAC1 in CDG1 is not represented in the MDG of Figure 7. SDG1
of Figure 5 contains an interaction(IT) node IT1, and has been represented as IT11
in the MDG of Figure 7.

SDG1 of Figure 5 has its call dependence edges annotated with the labels I(1),I(2),
I(3),I(4),I(5),I(7),I(8),I(9), and I(10). The call dependence edge (CAC2, CACC)
has been annotated with the label I(3) in SDG1. It forms an altered edge and is
represented by the call dependence edge (CAC2, MA1) annotated with label I1(3) in the
MDG. Here, MA1 denotes the method access(MA) node for the method cc method1()

of CompositeClass. The other call dependence edges are similarly altered, and
represented in the MDG.

The return dependence edge (CAC2, CACC) in SDG1 of Figure 5 has been annotated
with the label I(6). It is altered and represented as the return dependence edge
(CAC2, RT1) and has been labeled I1(6) in the MDG. Here, RT1 denotes the return(RT)
node representing the return value of method cc method1() of CompositeClass.

It can be seen in the MDG of Figure 7, that all the message dependence edges in
SDG1 have been represented in the MDG with their corresponding labels modified.
We explain it by using an example. Let SDG1 and some other SDGi contain message
dependence edges annotated with labels I(1)...I(8). These message dependence
edges can easily be distinguished after they are represented in the MDG. For SDG1
those edges are represented by the edges I1(1) . . . I1(8) respectively in the MDG,

176 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 1

6 SLICING USING MDG

and so on. For any SDGi, they are represented by Ii(1) . . . Ii(8) in the MDG.

6 SLICING USING MDG

A static slice can be computed by identifying the different architectural elements
and the dependencies among them for an UML model. These selectively identified
architectural elements can comprise classes and their objects, different attributes,
and the method calls. We collectively term these identified architectural elements
as a slice of an architecture. These architectural elements are identified based on a
slicing criterion. In the following, we define a slicing criterion, and its corresponding
computed static slice for an architectural model.

Slicing Criterion - Given the MDG GM of an architecture having a CA node CACL(n)
and an edge with label Ii(k) from that CA node in GM, a slicing criterion is of the
form [CACL(n), Ii(k)]. The slicing criterion represented by [CACL(n), Ii(k)] is said to
involve an object of class CL(n), and a message transfer represented by Ii(k) using
a message dependence edge in the MDG.

Architectural Model Slice - An architectural model slice is defined as the part of
an architecture comprising a set of class objects along with their related attributes
and methods which participate, either directly or indirectly, in a message transfer
represented by Ii(k) based on a slicing criterion [CACL(n), Ii(k)]. The static archi-
tectural model slice is represented by StaticArchModelSlice(CACL(n), Ii(k)), where
[CACL(n), Ii(k)] is the slicing criterion.

For architectural model slicing(discussed in next subsection), our algorithm tra-
verses the edges of the MDG to compute a static slice for a given slicing crite-
rion. During the process of MDG traversal based on the slicing criterion, the slicer
computes and stores the slice in StaticArchModelSlice. At the end of traversal,
StaticArchModelSlice contains the computed slice.

Computation of A Static Slice - Let StaticArchModelSlice(CACL(n1), Ii(k)) be
an static slice for an architectural model with respect to a slicing criterion [CACL(n1), Ii(k)].
Let {(CACL(n1), CACL(n2)),. . . ,(CACL(n1),CACL(nk))} be the set of all dependence edges that
can be traversed from CACL(n1) in the MDG GM for a message transfer represented
using Ii(k). Then, the computation of a static slice can be represented as,

StaticArchModelSlice(CACL(n1), Ii(k)) = {(CACL(n1), CACL(n2))
∪ . . . ∪ (CACL(n1), CACL(nk))}

∪ StaticArchModelSlice(CACL(n2), Ii(k))
∪ . . .∪ StaticArchModelSlice(CACL(nk), Ii(k))

VOL 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 177

STATIC SLICING OF
UML ARCHITECTURAL MODELS

Architectural Model Slicing through MDG Traversal(AMSMT)

We have named our static slicing algorithm Architectural Model Slicing through
MDG Traversal(AMSMT). AMSMT takes a UML architectural model and a slicing
criterion as its input and produces the computed static slice. The operation of our
slicing algorithm can be divided into three main phases: (i) Graph construction (ii)
Integration of graphs into MDG (iii) Traversal of MDG to compute a static slice.

In the first phase, the CDGs and SDGs are constructed from a static analysis of
the UML class and sequence diagrams respectively. The second phase of the algo-
rithm constructs the MDG by integrating the constructed CDGs and SDGs. The
MDG constructed during the second phase is traversed for the given slicing criterion
in the third phase of AMSMT. The traversal of MDG helps to identify different archi-
tectural elements forming the slice. This slice is stored in StaticArchModelSlice,
and can be fetched anytime. This helps AMSMT to save storage space as the same
static slice information is not stored at any other nodes in the MDG.

AMSMT Algorithm

This subsection presents our AMSMT algorithm in pseudo-code form. It assumes
that the class and sequence diagrams are given in XML format.

Algorithm AMSMT
Requires : SetCD = {CD1 . . . CDm}

{* Set of class diagrams, each given in XML *}
SetSD = {SD1 . . . SDn}
{* Set of sequence diagrams, each given in XML *}

Initialization : Graph SetCDG = NULL{*Set of graphs, each representing a
CDG*}

Graph SetSDG = NULL{*Set of graphs, each representing a
SDG*}

Graph MDG = NULL

Input : [CACL(n), Ii(k)] {* Slicing Criterion *}
Output : StaticArchModelSlice(CACL(n), Ii(k))
Phase 1: Static graph construction

for every i < m and CDi ∈ SetCD do

{* Call a procedure for CDG construction *}
CDGi = ConstructCDG(CDi);
SetCDG = SetCDG ∪ CDGi

end for

for every j < n and SDj ∈ SetSD do

{* Call a procedure for SDG construction *}
SDGj = ConstructSDG(SDj);
SetSDG = SetSDG ∪ SDGj

178 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 1

6 SLICING USING MDG

end for

Phase 2 : Integration of graphs into MDG
{* Call a procedure for MDG construction *}

MDG = ConstructMDG(SetCDG, SetSDG);
Phase 3 : Traversal of MDG to compute a static slice

for every dependent node traversed from CACL(n) corresponding to Ii(k) do
TraverseMDG(MDG, Ii(k));
StaticArchModelSlice(CACL(n), Ii(k)) = TrackStaticSlice(MDG, Ii(k));

end for

DisplaySlice(StaticArchModelSlice(CACL(n), Ii(k)));
End AMSMT

After the slicing criterion is given as an input, AMSMT computes the static slice
on a fly by executing Phase 3 of the algorithm.

SetCDG and SetSDG are first initialized to NULL indicating that initially no CDGs
or SDGs exist. The MDG is also initialized to NULL indicating that initially no
nodes or edges exist in the MDG. The loop of Phase 3 traverses the MDG for any
given slicing criterion. This loop calls two other procedures viz., TraverseMDG()
and TrackStaticSlice(). Next, Phase 3 of the algorithm ends with a call to
the procedure DisplaySlice(). A detailed description of the various procedures
called during execution of AMSMT is available in [10], including the pseudo-code
representation. The different procedures called in Phase 2 and 3 of AMSMT perform
the following tasks:

� ConstructMDG() - This procedure implements the steps of the integration
process discussed in the previous section. It takes two parameters viz., a
SetCDG, and SetSDG computed in Phase 1, and constructs the MDG.

� TraverseMDG() - This procedure identifies the dependence edges based on the
slicing criterion and traverses the nodes of the MDG. It takes two parameters
from the given slicing criterion viz., a MDG, and Ii(k) representing a dependence
edge in the MDG. This process of traversing the nodes in the MDG identifies
all the relevant model elements to be included in the static slice.

� TrackStaticSlice() - This procedure tracks the process of static slice com-
putation during MDG traversal. It stores the computed slice using the data
structure StaticArchModelSlice. It takes two parameters similar to the
TraverseMDG() procedure.

� DisplaySlice() - This procedure takes only one parameter representing the
computed static slice viz., StaticArchModelSlice(CACL(class), Ii(k)) and dis-
plays it.

VOL 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 179

STATIC SLICING OF
UML ARCHITECTURAL MODELS

Complexity Analysis of AMSMT

In this subsection, we analyze the space and time complexities of AMSMT. To
conserve space, the detailed proofs for the space and time complexities of AMSMT
are not reported here, and can be found in [10]. However, we briefly discuss a few
important aspects relevant to the complexity of AMSMT.

The space complexity of our proposed AMSMT algorithm is O(T2), where T is the
number of model elements represented as nodes in an MDG. There is no additional
space requirement at run-time, as no new nodes are added to the MDG during the
process of slice computation. However, during phase 3 AMSMT maintains a data
structure StaticArchModelSlice to track the process of slice computation. But the
space needed for StaticArchModelSlice is negligible for nontrivial architectures in
comparison to O(T2) space needed to construct CDGs, SDGs and the MDG in phase
1 and 2 of AMSMT. Therefore, the total space requirement of AMSMT is limited
by O(T2).

In AMSMT, the phase 1 constructs the CDGs and SDGs, and phase 2 constructs
the MDG. The time complexity of each of these phases is O(T), where T is the number
of model elements. After the MDG is constructed, phase 3 traverses the MDG in
O(T) time and computes the static slice. Combining the time required to execute
each of the three phases of AMSMT, the time requirement for AMSMT sums up to
O(3 ∗ T). Hence, the time complexity of AMSMT is of the order of O(T).

We illustrate the working of AMSMT using different examples in the next sub-
section followed by an overview of an implementation of the AMSMT algorithm.

Illustration of Working of AMSMT

We explain the working of our AMSMT algorithm by using the example MDG of
Figure 7 obtained at the end of Phase 2 of the algorithm. We assume that the CDGs
and SDGs of Figures 4 and 5 have already been constructed by applying Phase 1 of
the algorithm.

Let us consider computation of the static architectural model slice for the slicing
criterion [CAC2, I1(7)], [CAPC, I1(7)] and [CAPC, I1(5) . . . I1(7)]. We show the MDG ob-
tained during Phase 3 of AMSMT in Figures 8(a), 8(b), and 9 respectively displaying
the classes, methods, attributes, and interactions contributing to the corresponding
slice. The MDGs of Figures 8 and 9 are identical except for the case that each of
them have different dependence edges highlighted for the particular slicing criterion.

Figure 8(a) shows MDG traversal using the class access(CA) node of ChildClass2
highlighted for the slicing criterion [CAC2, I1(7)]. It depicts the MDG maintained by
the architectural model slicer for the class access node CAC2 denoting ChildClass2.
It only shows the control dependence edge (CAC2, CAC2) highlighted(made thick) to
indicate that it is the only traversed edge. Therefore, the static slice for the slicing
criterion [CAC2, I1(7)] includes a single edge (CAC2, CAC2). This implies that, only the

180 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 1

6 SLICING USING MDG

CCCA

AT1

PR1

AT1

PCCA

MA1

C2CA

AT1 AT2 MA1

MA1

RT1

IT11

I (7+)1

I (8-)1

I (7+),1 I (8-)1

I (5),I (7)11

I (4),I (6),I (8)111

I (1),I (10)1

I (2),I (9)1

I (3),I (5)1

I (4)1

1

I (6)1

I (7)1

I (8)1

1

1
CCCA

AT1

PR1

AT1

PCCA

MA1

C2CA

AT1 AT2 MA1

MA1

RT1

IT11

I (7+)1

I (8-)1

I (7+),1 I (8-)1

I (5),I (7)11

I (4),I (6),I (8)111

I (1),I (10)1

I (2),I (9)1

I (3),I (5)1

I (4)1

1

I (6)1

I (7)1

I (8)1

1

1

(a) (b)

Figure 8: (a) MDG showing static architectural model slice computed for the slicing
criterion [CAC2, I1(7)] during the execution of phase 3 of AMSMT (b) MDG showing
static architectural model slice computed for the slicing criterion [CAPC, I1(7)] during
the execution of phase 3 of AMSMT

object of class ChildClass2 contributes to the slice.

Figure 8(b) shows MDG traversal using the class access(CA) node of ParentClass
highlighted for the slicing criterion [CAPC, I1(7)]. It depicts the MDG maintained by
the architectural model slicer for the class access node CAPC denoting ParentClass.
It shows control dependence (CAC2, CAC2), call dependence (CAC2, MA1), data depen-
dence (MA1, AT1), and member dependence edges (AT1, CAPC), and (MA1, CAPC) high-
lighted indicating the traversed edges. Therefore, the static slice for the slicing
criterion [CAPC, I1(7)] includes all those nodes connected by these edges. This im-
plies that an anonymous object of classes ChildClass2 and ParentClass, method
pc method1() and an attribute pc 1 of class ParentClass contribute to the slice.
This example shows how slicing uncovers the data dependencies on invocation of a
method.

CCCA

AT1

PR1

AT1

PCCA

MA1

C2CA

AT1 AT2 MA1

MA1

RT1

IT11

I (7+)1

I (8-)1

I (7+),1 I (8-)1

I (5),I (7)11

I (4),I (6),I (8)111

I (1),I (10)1

I (2),I (9)1

I (3),I (5)1

I (4)1

1

I (6)1

I (7)1

I (8)1

1

1

Figure 9: MDG showing the static architectural model slice computed for the slicing
criterion [CAPC, I1(5) . . . I1(7)] during the execution of phase 3 of AMSMT

Figure 9 shows the MDG traversal using the class access(CA) node of ParentClass
highlighted for the slicing criterion [CAPC, I1(5) . . . I1(7)]. It shows control depen-
dence (CAC2, CAC2), call dependencies (CAC2, PC(MA1)) and (CAC2, CC(MA1)), data depen-
dencies (PC(MA1), PC(AT1)) and (CC(MA1), PC(AT1)), member dependencies (AT1, CAPC), (MA1, CAPC),

VOL 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 181

STATIC SLICING OF
UML ARCHITECTURAL MODELS

and (MA1, CACC), method dependencies (RT1, MA1) and (PR1, MA1), and the return de-
pendence edge (CAC2, RT1) highlighted to indicate the traversed edges. Therefore,
the static slice for the slicing criterion [CAPC, I1(5) . . . I1(7)] includes those nodes
connected by all these edges. This implies that the anonymous object of classes
ChildClass2, ParentClass and CompositeClass, method pc method1() and an
attribute pc 1 of class ParentClass, and a method cc m- ethod1() of the class
CompositeClass contribute to the slice when we consider the slice computation for
an interaction comprising of messages represented by I(5),I(6) and I(7). This
example shows how the slicing algorithm takes into account various dependencies
for an interaction having more than one message interchange.

Use Case Diagram

Class Diagram 1

Sequence Diagram 1

Sequence Diagram n

UML Architectural Model
 (XML Representation)

Class Diagram m

Parser Module
Architectural information
in various data structures

Graph Construction
ModuleIntegration Module

MDG

GUI
Module

Static Slicer
Module

Static
Architectural
Model Slice

CDGs

SDGs

Slicing
Criterion

Static
Architectural
Model Slice

Slicing
Criterion

CD1

CDm

SD1

SDn

Figure 10: Schematic design of the prototype tool SSUAM

Experimental Studies

In this section, we present an implementation of our AMSMT algorithm. We have
implemented a prototype tool to compute static architectural model slices using
our AMSMT algorithm and have named it SSUAM (Static Slicer for UML Archi-
tectural Models). Our tool can be integrated with many UML model development
tools such as MagicDraw UML [17,18] which can export UML models in XML (Ex-
tensible Markup Language) format. This makes SSUAM independent of any specific
CASE tool. We have implemented our tool using Java and used the Document Ob-
ject Model(DOM) API of Java for parsing XML files. DOM provides a standard
programming interface that is used in a wide variety of modeling environments and
applications. Moreover, XML is increasingly being used for representing different
kinds of model related information that may be stored and used in diverse sys-
tems. Additionally, XML presents the data associated with these UML models as
documents, and the DOM may be used to manage this data.

The schematic design of SSUAM has been shown in Figure 10. The different
components of this design are explained in the following.

182 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 1

6 SLICING USING MDG

Table 1: Average runtime requirements of AMSMT algorithm
Sr. Architecture Number Normal Average Over
No. size of exec. time runtime head

(# classes) objects (in ms) (in ms) (in ms)
1 3 7 40 55 15
2 6 15 52 74 22
3 13 33 85 103 18
4 18 54 112 137 25
5 22 70 145 166 21
6 34 89 178 208 30
7 45 123 220 264 44

SSUAM takes as input a UML architectural model comprising the use-case di-
agram, class and sequence diagrams in XML format. This is parsed by the Parser
Module, which extracts information regarding different classes, their attributes and
methods from the class diagrams. This module also gathers information regard-
ing objects of different classes participating in interactions along with the messages
exchanged among them from the sequence diagrams. The Parser Module then ini-
tializes all the data structures needed to construct the CDGs and SDGs. The Graph
Construction Module constructs a CDG for every class diagram, and an SDG for
every sequence diagram using the information present in the data structures ini-
tialized by the Parser Module. One CDG per class diagram, and one SDG per
sequence diagram are constructed, and added to SetCDG and SetSDG respectively.
This has been represented in the schematic of Figure 10 by CDGs(or SetCDG) and
SDGs(or SetSDG). The Parser Module and the Graph Construction Module together
implement the Phase 1 of AMSMT.

The Integration Module constructs an MDG by using the sets SetCDG and SetSDG.
The sets SetCDG and SetSDG consist of CDGs and SDGs respectively. This module
implements the ConstructMDG() procedure that is executed during Phase 2 of the
AMSMT. Next, based on the specified slicing criterion the Static Slicer Module of
SSUAM traverses the MDG for computation of the static slice.

SSUAM supports a graphical user interface(GUI) for all user interactions such as
specification of slicing criteria, display of computed slice, etc. The Static Slicer Mod-
ule traverses the MDG through the dependence edges based on the specified slicing
criterion and computes a static architectural model slice. During MDG traversal,
AMSMT stores the computed slice in the StaticArchModelSlice data structure.
The GUI Module presents the computed slice through the highlighted dependence
edges on the MDG. Together, the Static Slicer Module and the GUI Module imple-
ment the Phase 3 of AMSMT.

We have conducted several experiments using SSUAM on a number of architec-
tures described using UML and for different slicing criteria. Our prototype imple-
mentation makes the assumption that the information about various attributes used

VOL 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 183

STATIC SLICING OF
UML ARCHITECTURAL MODELS

by a class method are available in notes attached to class diagrams. This information
is used to determine the data dependencies.

A summary of results from our experimental studies has been presented in Tables
1 and 2. Table 1 summarizes the average runtime requirements and overhead costs of
the AMSMT algorithm. From the experimental results, it can be observed that the
average runtime requirement increases sub-linearly with architecture sizes. Figure
11(a) graphically presents this result. The increase in runtime requirement with
class size is possibly due to the increased size of the constructed DOM tree resulting
from parsing the XML representations of the class and sequence diagrams. This
increases the average runtime to execute Phase 1, and subsequently Phase 2 of the
AMSMT. Moreover, any large sized architecture would finally require traversal of a
large MDG during Phase 3 and contribute to increased average runtime of AMSMT.

(a) (b)

Figure 11: (a) Increase in average run time of AMSMT with increase in architecture
size (b) Increase in memory requirement of AMSMT with increase in architecture
size

Table 2 summarizes the memory requirements of the AMSMT algorithm. The
plot of Figure 11(b) shows that the average memory requirement of AMSMT in-
creases almost linearly with architecture size. This can be attributed to the fact
that the architecture size described in terms of number of classes determines the
runtime memory requirement to maintain the CDGs. In addition, the number of
class objects and their interactions determine the runtime memory requirement to
maintain the data structures for SDGs and the MDG. Also, the DOM tree main-
tained in order to construct the CDGs and SDGs incurs memory of the order of its
nodes. And, the number of nodes in a DOM tree depend on the size of an architec-
ture. Typically, the size of each node of a DOM tree is 24 bytes. However, Table 2
does not show the memory(in terms of executable code size) needed for execution
of SSUAM, which for our implementation is 119 KB and remains almost the same
for all cases. Moreover, our technique represents every class using a unique class
access(CA) node in the MDG. This is irrespective of the number of objects of a class
existing across various sequence diagrams. This obviates the necessity to create ad-
ditional nodes in case of repeated instantiation of any architecture classes, and their

184 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 1

7 COMPARISON WITH RELATED WORK

Table 2: Memory requirements of AMSMT algorithm
Sr. Architecture Number Mem. Mem. Total
No. size of (G∗) (S+) Memory

(# classes) objects (in KB) (in KB) (in KB)
1 3 7 4.5 0.6 5.1
2 6 15 8.5 1.2 9.7
3 13 33 17.5 2.6 20.1
4 18 54 28.0 3.6 31.6
5 22 70 36.0 4.4 40.4
6 34 89 45.5 6.8 52.3
7 45 123 62.5 9.0 71.5

G∗ indicates memory needed to maintain all graphs in various data structures,
S+ indicates memory needed to compute and store slice in various data structures

objects. This ensures that the data structures used to maintain an MDG remain
bounded by the number of classes. Taking all these factors into consideration, we
are confident that SSUAM can be used to slice large architectures.

7 COMPARISON WITH RELATED WORK

Architecture slicing of ADL architectural models has been investigated by Stafford
et al. [19, 20], Zhao [21, 23, 26] and Kim [7]. Korel [8] has reported a work on
slicing of state-based models. Those are not directly comparable to our work since
most of those use architecture descriptions using some ADLs, or use some form
of FSMs to consider architectures whereas we consider architectures represented
in UML notation. The architectures used in these techniques do not separately
distinguish between the structural and behavioral aspects of a system. This does
not allow the computed architectural slices to completely uncover the dependencies
existing among different model elements. Kagdi’s [4] work focuses on model slicing
using UML class diagrams. This work also is not directly comparable to our work
since it does not consider any behavioral information from the UML models. In
the absence of any directly comparable work, we compare our method with the
existing architectural and model slicing methods reported for other ADLs and EFSM
architectural models. Our algorithm for static slicing of UML architectural models
incorporates several novelties as compared to other work reported in the literature.
One important novelty is in the computation of a slice based on an integrated
model constructed from several UML diagrams. The computed slice is based on
the dependencies among different model elements that are distributed across various
UML diagrams. Slicing based on an integrated model can correlate the information
present in different model elements and help understand how changing one of them
will have an impact on the rest of the model architecture.

The graph representations used in [21, 23, 25, 26] are based on information flow

VOL 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 185

STATIC SLICING OF
UML ARCHITECTURAL MODELS

while those in [5, 6, 7] are essentially event-based. These representations do not
distinguish among the various control, data, communication or event dependencies
that arise among components and connectors. There is, therefore always a possibility
of computation of an inaccurate slice. Our graph representation is substantially
different from all the other existing techniques and takes care of various model
dependencies with a major focus on identifying data dependencies extractable from
various UML architectural models.

The worst case time requirement and space complexity for the architecture slicing
algorithms reported by Zhao [21,23,25,26] is quadratic in the number of components,
connectors and the attachments. The computation of architecture slice in [5, 6, 7]
is based on filtering of events based on the slicing criterion. The DSAS algorithm
of Kim et al. [5, 6, 7] needs O(N2) space in the worst case and O(N) time to ex-
tract architecture slices, where N is the total number of event occurrences. Note
that N may be unbounded for large systems containing event cycles. Our AMSMT
algorithm has the space complexity of O(T2) and a time complexity of O(T), where
T is the number of model elements represented as nodes in an MDG. AMSMT has
no additional space overhead at run-time as no new nodes are added to the MDG
during the process of slice computation.

Korel et al. [8] compute static model slices of EFSM models and then apply a
slice reduction step after the computation of slice. Kagdi et al. [4] also focus on
model slicing by considering the structural information from UML class diagrams
only, whereas our slicing technique is based on an integrated intermediate model
constructed from various UML diagrams and considers both the structural and the
behavioral information.

8 CONCLUSION

We have presented a slicing technique for UML architectural models. Slicing UML
architectural models is a difficult problem since the model information is distributed
across several diagrams with implicit dependencies among them. We first construct
an intermediate representation called MDG from various architectural model ele-
ments. MDG integrates the structural and behavioral aspects of an architectural
design into a single representation. Our AMSMT algorithm uses the MDG repre-
sentation to compute static slices. Such static slices can be used for studying the
impact of design changes, reliability prediction, understanding large architectures,
etc. We have implemented a prototype architectural slicing tool called SSUAM
based on our AMSMT algorithm. We are now trying to enhance our intermediate
model by integrating the state and activity models into MDG to compute more
accurate slices.

186 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 1

8 CONCLUSION

REFERENCES

[1] Robert John Allen. A formal approach to software architecture. PhD the-
sis, Carnegie Mellon, School of Computer Science, January 1997. Chair-David
Garlan.

[2] Paul Clements, Rick Kazman, and Mark Klein. Evaluating Software Architec-
tures: Methods and Case Studies. SEI Series in Software Eng. Addison Wesley
Professional, October 2002.

[3] Jose Daniel Garca, Jesus Carretero, Jose Mara Perez, Felix Garcia, and
Rosa Filgueira. Specifying use case behavior with interaction mod-
els. Journal of Object Technology, 4(9):143–159, November-December 2005.
http://www.jot.fm/issues/issue 2005 11/article5/.

[4] Huzefa Kagdi, Jonathan I. Maletic, and Andrew Sutton. Context-free slicing
of uml class models. In ICSM ’05: Proceedings of the 21st IEEE International
Conference on Software Maintenance (ICSM’05), pages 635–638, Washington,
DC, USA, 2005. IEEE Computer Society.

[5] Taeho Kim, Yeong-Tae Song, Lawrence Chung, and Dung T. Huynh. Dynamic
software architecture slicing. In COMPSAC ’99: 23rd International Computer
Software and Applications Conference, pages 61–66, Washington, DC, USA,
1999. IEEE Computer Society.

[6] Taeho Kim, Yeong-Tae Song, Lawrence Chung, and Dung T. Huynh. Software
architecture analysis using dynamic slicing. In Proceedings of AoM-IAoM 17th
International Conference on Computer Science, August 1999.

[7] Taeho Kim, Yeong-Tae Song, Lawrence Chung, and Dung T. Huynh. Software
architecture analysis: A dynamic slicing approach. Journal of Computer and
Information Science, 1(2):91–103, 2000.

[8] Bogdan Korel, Inderdeep Singh, Luay Tahat, and Boris Vaysburg. Slicing of
state-based models. In ICSM ’03: Proceedings of the International Conference
on Software Maintenance, pages 34–43, Washington, DC, USA, 2003. IEEE
Computer Society.

[9] Jaiprakash T. Lallchandani and R. Mall. Computation of dynamic slices for
object-oriented concurrent programs. In 12th Asia-Pacific Software Engineering
Conference (APSEC 2005), pages 341–350, Taipei, Taiwan, December 2005.
IEEE Computer Society.

[10] Jaiprakash T. Lallchandani and R. Mall. Static slicing of UML models. Tech-
nical Report IIT-CS07-SE-13, Indian Institute of Technology(IIT), Kharagpur,
West Bengal, India, February 2007.

VOL 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 187

STATIC SLICING OF
UML ARCHITECTURAL MODELS

[11] John McGregor. Complexity, its in the mind of the beholder.
Journal of Object Technology, 5(1):31–37, January-February 2006.
http://www.jot.fm/issues/issue 2006 01/column3.

[12] John D. McGregor. Software architecture. Jour-
nal of Object Technology, 3(5):65–77, May-June 2004.
http://www.jot.fm/issues/issue 2004 05/column7/.

[13] Nenad Medvidovic, David S. Rosenblum, David F. Redmiles, and Jason E. Rob-
bins. Modeling software architectures in the unified modeling language. ACM
Transactions on Software Engineering and Methodology, 11(1):2–57, January
2002.

[14] Nenad Medvidovic and Richard N. Taylor. A classification and comparison
framework for software architecture description languages. IEEE Transactions
on Software Engineering, 26(1):70–93, January 2000. Reprinted in Rational De-
veloper Network: Seminal Papers on Software Architecture. Rational Software
Corporation (July 2001).

[15] G. B. Mund and R. Mall. An efficient interprocedural dynamic slicing method.
Journal of Systems and Software, 79(6):791–806, 2006.

[16] G. B. Mund, R. Mall, and S. Sarkar. An efficient dynamic program slicing
technique. Information & Software Technology, 44(2):123–132, 2002.

[17] Dave Neuendorf. Review of magicdraw uml 11.5 professional edi-
tion. Journal of Object Technology, 5(7):115–118, September-October 2006.
http://www.jot.fm/issues/issue 2006 09/review8.

[18] N.M.Inc. Magicdraw uml v11.6. http://www.magicdraw.com.

[19] J. Stafford, D. Richardson, and A. Wolf. Aladdin: A tool for architecture-
level dependence analysis of software systems. Technical Report CU-CS-858-98,
University of Colorado, Dept. of Computer Science, April 1998.

[20] J. Stafford, A. Wolf, and M. Caporuscio. The application of dependence analysis
to software architecture descriptions. In Lecture Notes in Computer Science,
volume 2804, pages 52–62, 2003.

[21] Jianjun Zhao. Slicing software architectures. Technical Report 97-SE-137,
Information Processing Society of Japan (IPSJ), November 1997.

[22] Jianjun Zhao. A slicing-based approach to extracting reusable software archi-
tectures. In CSMR, pages 215–223, October 2000.

[23] Jianjun Zhao. Applying slicing technique to software architectures. CoRR,
cs.SE/0105008, 2001.

188 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 1

8 CONCLUSION

[24] Jianjun Zhao. On assessing the complexity of software architectures. CoRR,
cs.SE/0105010, 2001.

[25] Jianjun Zhao. Using dependence analysis to support software architecture un-
derstanding. CoRR, cs.SE/0105009, 2001.

[26] Jianjun Zhao, Hongji Yang, Liming Xiang, and Baowen Xu. Architectural Slic-
ing to Support System Evolution. Idea Group Publishing, Hershey, PA, USA,
2005.

ABOUT THE AUTHORS

Jaiprakash T. Lallchandani is a PhD student and a senior re-
search fellow at the Department of Computer Science and Engineer-
ing at Indian Institute of Technology(IIT), Kharagpur, India. He
can be reached at jtl@cse.iitkgp.ernet.in.

R. Mall is currently a professor in the department of Computer Sci-
ence and Engineering, Indian Institute of Technology(IIT), Kharag-
pur, India. He obtained his Ph.D, M.E.,and B.E. degrees from In-
dian Institute of Science(IISc), Bangalore, India. He has published
over 100 refereed research papers and has authored two books. He is
a member of the domain experts board of the International Journal
of Patterns(IJOP). He was the general chair of IEEE Indicon 2004
and program chair for CIT 2005. He was also a program committee
member for a large number of international conferences. His current
research interests include analysis and testing of object-oriented pro-
grams. He can be reached at rajib@cse.iitkgp.ernet.in.

VOL 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 189

mailto:jtl@cse.iitkgp.ernet.in
mailto:rajib@cse.iitkgp.ernet.in

