
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2008

Vol. 7, No. 8, November-December 2008

Dave Thomas, “Real Men Do JavaScript! - Programming the World in a Browser”, in Journal
of Object Technology, vol. 7 no. 8, November-December 2008, pp. 35-39
http://www.jot.fm/issues/issue_2008_11/column3/

Real Men Do JavaScript!
Programming the World in a Browser

By Dave Thomas

JAVASCRIPT – THE PERVASIVE DYNAMIC APPLICATION
LANGUAGE

JavaScript is the most widely used dynamic language in the world and is becoming
increasingly important as an application programming language. While many hard
core developers are still in denial, Web 2.0 application developers from small and
large companies are developing increasingly complex applications that run close to
the user.

Flex is a popular and productive tool for building rich client web applications
which are scripted using ActionScript, a dialect of standard ECMAScript.
Increasingly RESTful protocols leverage the JavaScript Object Notation (JSON) a
simple concise portable object serialization format. Rhino enables JS to be run on the
server side for applications compiling JS to the JVM. There is even a version of the
popular Rails framework called Jails. For the near term, JS dominance and major
applications will be on the client such as GoogleApps and Thinkature.

Recent announcements of more robust and significantly higher performance
runtimes, including Google V8, Mozilla SpiderMonkey and TraceMonkey, Safari
SquirrelFish and MS Jscript for the dynamic language run-time (DLR), are moving
JavaScript far from being just a way to spiff up your web page to being both a fun and
serious programming language. Google V8 is designed to support large applications
such as Gmail. The MS Volta research project compiles the CLR directly to JS to
allow MS CLR applications to run in any browser without requiring even the DLR.
Competitors are rushing to show that they have the best performing engine. These
efforts show how seriously the major players see the language as a platform for the
future.

JAVASCRIPT IS A REAL LANGUAGE

In JavaScript “The Wrrld’s Most Misunderstood Programming Language” Doug
Crockford articulates the major features of JS. In his recent book [1] he provides a
balanced perspective of the good and the bad of JavaScript. JS in many ways

THE LEGACY AND LIABILITY OF OBJECT TECHNOLOGY – THE DARK SIDE OF OO

36 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 8.

resembles Scheme1, the clean lexically scoped dialect of Lisp, which is still widely
taught in top CS programs. It has first class functions, lists and lexical closures, the
key functional building blocks, although it lacks the continuations and tail recursion
that are important to many functional programmers.

In the spirit of dynamic languages like Smalltalk, Ruby and Python, the values
rather than the variables are strongly typed. Unlike these languages, however, objects
are cloned from prototypes rather than instantiated as instances of classes in the spirit
of the pioneering prototype based language Self. Prototypes can have state
(properties) and behavior (methods) modified on the fly. In this regard, JS is much
more dynamic than its class based cousins. It is still very straight forward to do class
based OO programming in JS and there are patterns and libraries for applications
where this is appropriate. JS has a basic but sufficient set of base classes.
Unfortunately, there is no explicit mechanism for dealing with name scopes so this
means developers have to provide their own name space management. It isn’t that it
isn’t possible to write packaged code, rather that there are problems when one
includes code from a large number of sources where one can get name conflicts,
especially for selectors.

Like most OO languages, input and output is done through a library, which for
the browser is the DOM. While the language isn’t without its share of small but
irritating syntactic and semantic anomalies, it is more than good enough for serious
web work. JS has been plagued by the DOM2 and the associated browser dependence
and defect levels. Fortunately, browser standardization and improved test suites for
HTML, CSS and DOM practices have significantly improved cross browser
programming though it is still frustrating at times.

ECMAScript - The JavaScript Language Standard

Standards are an important way to ensure portability of programs. Recently, the
ECMAScript (ES) 3.1 and 4 efforts were merged with the near term focus on the
delivery of the more modest ES 3.1 standard. ES 3.1, expected out in 2009, is being
designed to ensure that existing web pages don’t break.

Major features tentatively approved include:
• Getter/Setter properties with both syntactic support in Object literals and

programmatic support via new property definition functions
• The ability to query and set property attributes such as “readonly” and

“dontdelete”
• The ability to “seal” objects in order to prevent modifications or additions to

their properties
• Ability to query the prototype of an object
• Function to create an object with a specified prototype
• The ability to use previous reserved words as the names of object properties

and to access them using “dot notation”
• Array-like indexing for access to individual string characters

1Unfortunately current implementations don’t guarantee optimization of tail recursive calls but there is
also nothing in the language standard which prevents these optimizations.
2 Dumb in Dutch, the Damn DOM to many

VOL. 7, NO.8. JOURNAL OF OBJECT TECHNOLOGY 37

• Built-in support for JSON
• The “array extra” functions first introduced in Mozilla’s implementations and

subsequently widely copied by others
• A function to trim whitespace from strings
• Support for parsing and creating ISO format date strings
• Ability to query the declared name of a function
• The ability to “bind” the “this” value or arguments of a function object to

specific values
• The ability for a programmer to opt-in to using a “cautious/strict” subset of the

language that performs additional error check and restricts use of some error
prone or insecure features of “ES3”

• Numerous specification bug fixes and clarifications intended to improve
interoperability among implementations

ES 4 was very ambitious and advocated the addition of a lot of complex Java-like
machinery such as manifest types, generics etc. which have already proved difficult
for professional Java developers. One hopes that the ES efforts beyond 3.1 will focus
on small critical issues like proper name spaces and reducing language ambiguities
rather than complicating the language. It is important to note that many issues such as
the DOM, security, and potentially even name spaces are at least in part outside the
scope of the ES language standard.

SERIOUS PROGRAMMING IN JAVASCRIPT

One of the major factors limiting developers was a lack of the industrial strength
programming environments they had come to love. It is important to know that early
JS developers assembled a toolkit that is still in wide spread use today. JSLint and
JSUnit are two notable stalwarts in this toolkit. Agilists may even argue that the lack
of tools forced JS developers to apply test first programming3 rather than leaning on
their IDE and its debugger. While there has been a lack of good tools for many years,
this has been improving substantially of late. Eclipse based tools such as Adobe Flex
Builder, JSDT, MyEclipse etc., and MS Visual Studio provide IDE support for
developers.

Since the arrival of Google Mail and Ajax there are some good libraries such as
DoJo, jQuery and more recently the highly polished EXT JS library. These libraries
provide for Class OO programming; support for XML/HTML; support for Ajax
XMLHttp, REST or, JSON; UI widgets and numerous utilities for common tasks.
Prototype + Script.aculo.us, DoJo, jQuery, MochiKit, YUI and Ext JS etc. eliminate
the need for building such things oneself. OpenAjax has over a hundred members
collaborating to harmonize libraries and their component models.

Occasionally disconnected operation is one of the major challenges for browser
based applications, which have been until recently dependent on an always available
Internet connection. Mobile applications in particular are constantly disconnecting
and connecting. Gears is a first attempt by Google to enable simple web programming

3 “Debugging Sucks, Testing Rocks” http://googletesting.blogspot.com/

THE LEGACY AND LIABILITY OF OBJECT TECHNOLOGY – THE DARK SIDE OF OO

38 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 8.

on the client using an embedded web server and SQL DB. Microsoft and others are
working on more elaborate Sync frameworks which would enable syncing application
and server data.

Sun Lively - Using JavaScript as a Real Programming Language
Lively is billed as a WebOS implemented in JavaScript. Lively leverages the

impressive Etoys Squeak and Morphic graphic framework to deliver applications on a
JS + SVG platform. It provides an open live programming experience in which the
running code can be edited on the fly. Unlike traditional web pages, lively pages
require no cryptic coding CSS or HTML; rather they are live JS programs. Lively
includes a Squeak style IDE and an interface to CVS for team development.
Independent of whether one likes the back to the future IDE, this large application
seems like an amazing engineering feat for those who have been burned by even a
small amount of JS. The authors’ account [2] of building Lively in JS provides a
glimpse at how one can approach a large JS effort with a small team and the
challenges of JS.

GOOGLE OPEN SOURCE V8 CHALLENGES THE INDUSTRY

With V8 Google has thrown down the gauntlet to the major platform and VM
vendors, challenging them to improve their offerings. For many years industrial
strength dynamic VM technology has been proprietary to major corporations such as
IBM, MS and Sun. Google V8 will be developed in the open under a BSD license
ensuring that researchers, hobbyists and competitors can watch and benefit from the
V8 code base. Of particular interest to dynamic language advocates are the
engineering design decisions which strongly support JS as a dynamic language. The
benchmarks in particular bring smiles to the faces of many savvy Smalltalk
developers.

APPLICATION DEVELOPERS – TIME TO TOOL UP FOR JS

JavaScript, like most commercially successful languages, has lots of gotchas and
irritations; it definitely isn’t perfect but it is certainly good enough for serious client
side web application development. We anticipate that it won’t be long until a server
side application engine running V8 appears, allowing JS developers to use their
language anywhere in the cloud. Professional Developers and Educators alike need
stop sticking out their tongues and embrace the ubiquitous dynamic language. It can
be both fun and productive! For fun try programming webapps your iPhone in JS and
you may soon be twittering your friends.

VOL. 7, NO.8. JOURNAL OF OBJECT TECHNOLOGY 39

REFERENCES

[1] Douglas Crockford, JavaScript: The Good Parts, O’Reilly

[2] Tommi Mikkonen and Antero Taivalsaari, Using JavaScript as a Real Programm-
ing Language

About the author

Dave Thomas is cofounder/chairman of Bedarra Research Labs
(www.bedarra.com), www.Online-Learning.com and the Open
Augment Consortium (www.openaugment.org) and a founding
director of the Agile Alliance (www.agilealliance.com). He is an
adjunct research professor at Carleton University, Canada and the
University of Queensland, Australia. Dave is the founder and past

CEO of Object Technology International (www.oti.com) creator of the Eclipse IDE
Platform, IBM VisualAge for Smalltalk, for Java, and MicroEdition for embedded
systems. Contact him at dave@bedarra.com or www.davethomas.net.

