
JOURNAL OF OBJECT TECHNOLOGY 
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2008 

 
Vol. 7, No. 7, September-August 2008 

 
 
 
 

R. Senthil, D. S. Kushwaha & A. K. Misra : “An Extended Component Model and its evaluation for 
Reliability & Quality”, in Journal of Object Technology, vol. 7, no. 7, September - October, pp. 
109-129 http://www.jot.fm/issues/issue_2008_09/article4/  

An Extended Component Model and 
its Evaluation for Reliability & Quality 
R. Senthil, D. S. Kushwaha, and A. K. Misra 
CSED, MNNIT, Allahabad, India 

Abstract 
The main focus of this research is on Component Based Software Engineering (CBSE) and 
reliable generic connectors for the software components. An attempt has been made to describe 
n-tier architecture; in particular, data access architecture in a component based application. 
Having established this, an attempt has also been made to evaluate it against the external and 
internal quality factors. The work tries to establish that enhanced component model (ECM) is a 
reliable model. It also makes an attempt to express how data access objects (DAO) in the DAO 
layer interacts with the business-tier and data source in achieving reliable, reusable, robust and 
scalable component model by implementing Data Adapter interface. To establish these results, a 
case study has been carried out and it is found that the application so developed is scalable and 
robust as one can migrate from one data source to another using this quality model. 

Keywords: software components, composition, pattern, encapsulation, component-based 
software engineering, interfaces. 

1 INTRODUCTION 

Component based Software Engineering focuses on software components and generic 
connectors that compose them into one unit. A component model needs to define the 
following things: (i) what components are, i.e. their syntax and semantics; and (ii) how to 
compose these components, i.e. the semantics of their composition [Lau 05]. A 
component[Souza99] is a coherent package of software implementation that (a) can be 
independently developed and delivered, (b) has explicit and well-specified interfaces for 
the services it provides, (c) has explicit and well-specified interfaces for services it 
expects from others, and (d) can be composed with other components, perhaps 
customizing some of their properties, without modifying the components themselves. 
Objects or port-connector type architectural units are used as components in the current 
component models.The composition mechanisms in such models have method-calls and 
port-to-port connections. Nevertheless, these models do not define a proper theory for 
composition. It is trusted that encapsulation and compositionality are key concepts for 
such a theory. 



 
AN EXTENDED COMPONENT MODEL AND ITS EVALUATION FOR RELIABILITY & QUALITY 

 
 
 
 

110 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 7 

There are various industrial component models [Lau 05] namely: CORBA CM, MS 
COM, .NET and Enterprise Java Beans [Micro01]. CORBA CM is a flat model and it 
does not support hierarchical composition of components. In current software component 
models, components are typically objects as in object oriented languages, and port-
connector type architectural units, with method calls and ADL (architecture description 
languages [Garla96]) connectors as composition mechanisms respectively. 

These component models does not support these standard semantics. Many 
researchers have proposed different definitions for components and few have been 
enumerated here. 

According to Szyperski [Szype02]:“A software component is a unit of composition 
with contractually specified interfaces and explicit context dependencies only. A software 
component can be deployed independently and is subject to composition by third parties.” 

Component is defined by Meyer [Russe03] as: 
“A component is a software element (modular unit) satisfying the following 

conditions: 
1. It can be used by other software elements, its ‘clients’. 
2. It possesses an official usage description, which is sufficient for a client author to 

use. 
3. It is not tied to any fixed set of clients.” 

In both the above definitions, the component composition is not fairly defined in the 
above definitions, the definition for a component model given in Heineman and Councill 
[Heine01] looks more appropriate: 

“A component is a software element that conforms to a component model and can be 
independently deployed and composed without modification according to a composition 
standard.” 

Nevertheless, there is a commonly accepted abstract view of what a component is, 
viz. a software unit that contains (i) code for performing services, and (ii) an interface for 
accessing these services (Fig. 1(a)). To provide its services, a component may require 
some services. 

Though the concept of encapsulation is defined in many component models, 
component composition is a challenging concept in developing a component model. 
Connectors are used to compose two components and also play a vital role to take 
advantage of reusability. Before the enhanced component model is specified using DAO 
(Data Access Object) with Data Adapter interface in data-tier architecture [Senth07], the 
value of the proposed work is clarified by specifying the advantages of connectors. 
Connectors [Baele01] help to localize information about interactions of components in a 
system such that information is no longer spread over all communicating components and 
is easier to change and maintain. It also provides natural support for components with 
incompatible packaging (a connector that mediates a communication among components 
can accommodate incompatibilities of their interfaces). This is also needed to support 
dynamic changes in system connectivity (relations among components are not hard-coded 



 
 
 
 
 
 

VOL. 7, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 111 

in the code of the components) and software component adaptations. It enables high-level 
intentions of time, reliability, ordering, performance etc. to be specified and checked. 
Hence the component based software engineering demands requirements like reusability, 
compatibility and flexibility that are satisfied when connectors are used to compose 
components. Using these concepts, an attempt has been made to present a software 
component model in which the Data Access architecture has the Data Access Object 
implemented with Data Adapter interface. 

An enhanced software component model is proposed for a n-tier architecture that 
enables to migrate from one data source to another. The UML’s definition of component 
is broad enough [Parris99] to address classic object models, such as COM+, CORBA, 
and Enterprise Java Beans, as well as alternative object models, perhaps involving 
dynamic Web pages, database tables, and executables using proprietary communication 
mechanisms. The formal model for a software component and its use in the n-tier 
architecture is discussed briefly under related work followed by the proposed Enhanced 
Component Model (ECM). Having established this, an attempt has also been made to 
evaluate it against the external and internal quality factors which are described in the next 
section. 

2 SOFTWARE COMPONENTS AND INTERFACES 

Overview 

The component interfaces play an important role primarily because of the following 
reasons: 

1. The user view on a component is usually referred as a black-box view. An access 
point of a component is referred as a component interface. Therefore, a 
component is encapsulated. 

2. Compositionality requires that every component (composed and primitive) may 
be a subcomponent of an arbitrary composite component except itself. 

Components and their interfaces are represented in general UML meta-model [Ivers07]. 
A component is shown as a rectangle with a keyword <<component>>. Optionally, 

in the right hand corner a component icon can be displayed. A component icon is a 
rectangle with two smaller rectangles jutting out from the left-hand side. This symbol is a 
visual stereotype and has the component name. Components can be labeled with a 
stereotype. There are a number of standard stereotypes, ex: <<entity>>, <<subsystem>>. 
A component defines its behavior in terms of provided and required interfaces. 

Example: A Grep subtype of Filter is defined. The component instance is shown as 
an anonymous instance of the Grep subtype, and its structure and behavior matches that 
of the Grep subtype in figure 1. 



 
AN EXTENDED COMPONENT MODEL AND ITS EVALUATION FOR RELIABILITY & QUALITY 

 
 
 
 

112 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 7 

 
Fig. 1 omponent &Connector Types 

An interface is the definition of a collection of one or more operations. It provides only 
the operations but not the implementation. Implementation is normally provided by a 
class/ component. In complex systems, the physical implementation is provided by a 
group of classes rather than a single class. 

Interface may be shown using a rectangle symbol with a keyword <<interface>> 
preceding the name Rectangle can be expanded to show details for displaying the full 
signature. Interfaces can be provided or required. The services in a Component can be 
accessed with the help of interfaces. 

A provided interface characterizes services that the component offers to its 
environment. It is modeled using a ball, labeled with the name, attached by a solid line to 
the component. A required interface characterizes services that the component expects 
from its environment. It is modeled using a socket, labeled with the name, attached by a 
solid line to the component which is shown in figure 2. 

 

 
Fig. 2 Component with their provided and required interface 

Composition Operators 

A component can be composed with another component using composition operator. The 
composition operator that we use here is connector. A Connector [Baele01] is a 
communication connection between two components, linking a required interface of a 
component to a provided interface of another component. Connectors can be developed 
by composing a number of simple connectors and components (a kind of middleware-like 
component) into a more complex high-level connector. In analogy with components, a 
distinction can be made between connector blueprints and instances, as well as between 



 
 
 
 
 
 

VOL. 7, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 113 

connector specification, design and implementation. The connection between interfaces 
of components is the responsibility of the component system. The set of properties 
attached to a connector depends on the application domain of the component system. 

3 EXTERNAL & INTERNAL QUALITY FACTORS 

ISO/IEC 9126-1:2001 defines a model for software product quality that categorizes 
software quality attributes into six characteristics: functionality, usability, efficiency, 
maintainability and portability. These characteristics are further divided into sub-
characteristics. The quality model [Manty04] for external and internal quality is 
illustrated in figure 3. This model is interpreted for CBSE under the six major properties 
as: 

 
Fig. 3 Quality Model for external and internal quality 

• Functionality: This characteristic express the ability of a component to provide 
the required services, when used under specified conditions; 

• Reliability: This characteristics express the ability of the component to maintain a 
specified level of performance, when used under specified conditions; 

• Usability: This characteristic express the ability of a component to be understood, 
learned, used, configured, and executed, when used under specified conditions; 

• Efficiency : This characteristic express the ability of a component to provide 
appropriate performance, relative to the amount of resources used; 

• Maintainability: This characteristic describes the ability of a component to be 
modified; later and 

• Portability: This characteristic is defined as the ability of a component to be 
transferred from one environment to another. 



 
AN EXTENDED COMPONENT MODEL AND ITS EVALUATION FOR RELIABILITY & QUALITY 

 
 
 
 

114 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 7 

4 RELATED WORK 

Various researches have been carried out on Component Model and its interfaces by 
[Micro01], [Bottc03], [Merz 06] and [Matid04]. Most of these focus on viewing 
persistent information and facilitates implementations of data stores into application 
servers but have not paid much attention to the increase in code efficiency and reduction 
in complexity of development cycle. A brief description of the existing model is given in 
the following section. 

The EJB Component Model 

An Enterprise Java Bean [Micro01] is a deployable component controlled by an 
application server’s container. An Entity Bean(EB) is a persistent, distributed object and 
consists among other things of a Home Object, an EJB Object, and an entity bean 
instance. As an entity bean is also a component, the client will never call any of its 
methods directly, only indirectly through the EJB object, which itself manages the service 
interactions and delegates the call to the associated entity bean instance. 

There are two possible ways to persist an EB: either using container managed 
persistence (CMP) or bean managed persistence (BMP). Using CMP, the persistent object 
description is declared in the bean’s deployment descriptor. The container then generates 
the backend-specific code at deployment time. Using BMP, persistence management 
code (for example, using JDBC) has to be written in the bean manually. Figure 4 shows 
the principal constituents of an entity bean (EB) in its interaction with a client. 

 
Fig. 4 Exemplification of the EJB 2.0 component model 



 
 
 
 
 
 

VOL. 7, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 115 

An Entity Bean[Bottc03] can only be tested inside its operational environment, namely 
the application server’s container. This alone increases the amount of work in deployment 
and has a complicated debugging processes, besides the overhead needed for coding a 
component. This work have not paid much attention to minimizing complexity in the 
development cycle. 

JDO Component Model 

JDO (Java Data Objects) [Russe03] API provides a standard approach for achieving 
object persistence in Java technology. The high-level JDO API is designed to provide a 
transparent interface for developers to store data, without having to learn a new data 
access language (such as SQL) for each type of persistent data storage. JDO[Merz 06] 
can be implemented using a low-level API (such as JDBC) to store data. It enables 
developers to write Java code that transparently accesses the underlying data store, 
without using database-specific code. 

The two main objectives of the JDO architecture, which is shown in Figure 4, are to 
provide Java application developers a transparent Java technology-centric view of 
persistent information and to enable pluggable implementations of data stores into 
application servers. 

JDO Class Types 

There are three types of classes in JDO:  
• Persistence-capable. 
• Persistence-aware. 
• Normal. 

The JDO Programming Model 

JDO defines two types of interfaces: the JDO API (in the javax.jdo package) and the JDO 

 
Fig. 3 JDO Architecture 



 
AN EXTENDED COMPONENT MODEL AND ITS EVALUATION FOR RELIABILITY & QUALITY 

 
 
 
 

116 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 7 

service provider interface (SPI) (in the javax.jdo.spi package). The JDO API is for 
application developers, and the JDO SPI is for container providers and JDO vendors. 

An application has two primary interfaces to JDO: 
PersistenceManagerFactory represents the point of access that application developers 

use to obtain an instance of PersistenceManager. Instances of this interface can be 
configured and serialized for later use. However, once the first PersistenceManager is 
obtained from the PersistenceManagerFactory, the factory can no longer be configured. 
One could use the following code to obtain a PersistenceManagerFactory: 

// set some properties for the JDO implementation and data 
store 

Properties props = new Properties(); 
props.put(...); 
// get a PersistenceManagerFactory 
PersistenceManagerFactory pmf= 

JDOHelper.getPersistenceManagerFactory(props); 

PersistenceManager is the primary interface for JDO-aware application components. It 
provides methods to make an object persistent, as well as retrieving persistent objects and 
removing them from persistent storage.You can use the following code to obtain a 
PersistenceManager: 

PersistenceManager pm = pmf.getPersistenceManager(); 

Once a PersistenceManager is obtained, an application can perform tasks such as making 
an object persistent, retrieving an object from persistence, deleting an object from 
persistence, updating an object, and so on. 

The benefits of using JDO are the portability, transparent database access, Ease of 
use, High performance, Integration with EJB. Applications can take advantage of EJB 
features such as remote message processing, automatic distributed transaction 
coordination, and security throughout the enterprise. 

The disadvantage of the JDO API is that it is not always consistent. Also, 
specification development progresses slowly. The JDO code is unsafe and difficult to 
maintain by hand. These disadvantages are overcome with the help of DAO 
implementing Data Adapter interface. The DAO is consistent in data interface. 

DAO Component Model 

Many real-world enterprise applications need to use persistent data at some point. For 
many applications, persistent storage is implemented with different mechanisms, and 
there are marked differences in the APIs used to access these different persistent storage 
mechanisms. Other applications may need to access data that resides on separate systems 

The DAO (Data Access Object) pattern [Matid04] defines the following classes: 
• Client - represents the data client, which requires access to the data source to 

obtain, modify and store data, in our case this is the business object. 
• AbstractDAO - represents the interface which the ConcreteDAO implements, 

providing such an interface assures that the Client, by programming to the 



 
 
 
 
 
 

VOL. 7, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 117 

interface, remains intact when the ConcreteDAO is replaced with another 
implementation which implements this interface. 

• ConcreteDAO - represents the key object of this pattern, it abstracts the 
underlying data access implementation for the Client, providing transparent access 
to the data source. 

• DataSource - represents a data source implementation. A data source could be a 
database such as an RDBMS, OODBMS, XML repository, flat file system or 
another system (legacy/mainframe). 

• ValueObject (TransferObject) - represents a data carrier object, which 
encapsulates all data read or transferred to the data source, rather then populating 
the client with data directly from the ConcreteDAO, This object is being used to 
achieve low coupling between the client and the data source. The Class diagram 
for the DAO pattern given in [Matid04] is in the figure 4. 

In figure 4, only Data Access Object is being used to abstract and encapsulate all access 
to the data source. The DAO [Matid04] implements the access mechanism required to 
work with the data source. The DAO completely hides the data access implementation 
details from its clients. 

Because the interface exposed by the DAO to clients does not change when the 
underlying data source implementation changes, this pattern allows the DAO to adapt to 
different storage schemes without affecting its clients or business components. 
Essentially, the DAO acts as an adapter between the business component and the data 
source. This is depicted in the existing software component model. 

 

 
Fig. 4 DAO Pattern – Class Diagram 

The performance of the component based software is arrived at by doing Unit test 
[Cheon02] for the Data Access Object at a test instant t0. Figure 5 and Figure 6 shows 
how the Data Access Object acts as a connector between the business logic tier and the 
data tier of the n-tier architecture. The code for the above two models is tested with the 
help of JUnit framework [Frame07]. Unit testing is being done using this framework in 
order to check for code complexity and the resulting efficiency of the code. For the same 



 
AN EXTENDED COMPONENT MODEL AND ITS EVALUATION FOR RELIABILITY & QUALITY 

 
 
 
 

118 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 7 

problem written in object-oriented language carries lower cognitive complexity 
[Kushwa06] as compared to the program written in a procedural language. Since the case 
study has been implemented in Java [Micro05] which is an object-oriented language, the 
complexity of the code is reduced. It is hypothesized that an overly complex code (i.e. an 
unstructured code with low cohesion) will be difficult to maintain and is likely to be 
unreliable. In order to create software, our design decisions, cognition, metacognition, 
learning process and problem comprehensibility should be able to guide us to create 
software such that overall complexity [Kushw06] is reduced. The most efficient way to 
deal with developing reliable software for large systems is by creating smaller modules. 
This is accomplished in the proposed model by having Data Access Object implementing 
Data Adapter interface in the following section. 

 
Fig. 5 Existing Software Component Model 

5 ENHANCED COMPONENT MODEL (ECM) 

The proposed ECM model [Senth07] tries to develop a software component model 
especially the data access architecture using UML. The different UML notations 
[Ivers07] used to land at the model have been introduced in the earlier sections.  

The DAO [Matid04] implements the access mechanism required to work with the 
data source by implementing Data Adapter Interface. The data source could be a 
persistent store like an RDBMS, a repository like an LDAP database. Usage of DAO with 



 
 
 
 
 
 

VOL. 7, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 119 

Data Adapter interface leads to portability among several database vendors. The business 
component that relies on the DAO uses the simpler interface exposed by the DAO for its 
clients and it completely hides the data access implementation details from its clients. 
Because the interface exposed by the DAO to clients does not change when the 
underlying data source implementation changes, it is found that this pattern allows the 
DAO to adapt to different storage schemes without affecting its clients or business 
components. Essentially, the DAO acts as an adapter between the business component 
and the data source and hence all DAO classes has been declared as a generic connector 
package. This is depicted in Figure 6. 

Data Adapter interface definition: 

The Data Adapter interface(DAI) which is implemented by the DAO, has the following 
methods in the proposed Enhanced Component Model: 

public interface DataAdapter { 
 // Returns the name of this data adapter 
 public String getName(); 
 // Returns the type of data handled by this data adapter 
 public String getType(); 
 // Returns a list of all operations supported by this data 

adapter 
 public IOOperation [] getSupportedOperations(); 
 // For initialization, like opening files or database 

connections. 
 public void init(); 
} 

In the above interface, the first method getName() returns the name of the database which 
is currently being used by the class implementing this interface. The return type for this 
method is of type String. The second method getType() returns the type of data handled 
by the class implementing this interface. When this interface is implemented by the class 
in which DAO pattern [Matid04] is used, the code complexity and code efficiency of the 
application is verified and finally, one is able to arrive at the performance of the 
component based software that is engineered to be efficient and less complex. This model 
is shown in figure 6. The models in figure 6 and figure 5 are evaluated for the 
performance in terms of efficiency of the code and complexity of the code. Also the 
dependencies between objects in the data access object layer of the proposed model is 
less i.e. there exists loose coupling between objects by introducing DAO layer. It is also 
found that it is possible to migrate across several data sources. So the application 
developed using this model is scalable and robust. The application code is reusable as a 
result of which there is a reduced time to market. 



 
AN EXTENDED COMPONENT MODEL AND ITS EVALUATION FOR RELIABILITY & QUALITY 

 
 
 
 

120 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 7 

 
Fig. 6 Enhanced Component Model (ECM) 

Performance of the Enhanced Component Model (ECM) 

Complex software application solutions have several data sources. A case study has been 
carried out on course registration manager which has extended the classes involved in 
data access with Data Access Object [Matid04] in order to corroborate the proposed 
model. The classes for data access in course registration manager extend Data Access 
Object and implements Data Adapter interface. The performance of the component based 
software is instituted by doing Unit test for the Data Access Object at a test instant t0. The 
number of success and failure cases is noted at instance t0. At another test instance t1, 
Unit test is performed on the Data Access Object that implements Data Adapter. The 
performance of the software is assessed in terms of code efficiency. The code is tested for 
its efficiency by doing Unit testing. Unit testing is done with the junit [Frame07] 
framework. A sample code has been taken to perform unit testing [Cheon02]. Ant 
[Kushwa06], a Java-based build tool has been used to compile the java classes and 
perform unit testing. The java source code is compiled and assembled using Ant. Ant 
integrates tightly with the JUnit [Frame07] test framework for XP-style unit testing. 

Ant uses XML files called build files to describe how to build, test, and deploy an 
application. Using XML enables developers to edit files directly, or in any XML editor, 
and facilitates parsing the build file at run time. 



 
 
 
 
 
 

VOL. 7, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 121 

The source files are located in ‘src’ folder of the sample application for the model in 
figure 5. Now, on entering the command ant from the root folder where the application 
resides, the java source files Simple.java, SimpleDAO.java and 
SimpleDAOTestCase.java gets compiled and class files are generated for execution. 

To test this code, the Hypersonic SQL database has been employed. Then, the 
command ant test [Kushwa06] has been used that results in the generation of unit test 
report. It is observed that at test instance t0, the time taken for the execution of test cases 
in the DAO is 0.109 seconds. At a later test instance t1, the time taken for the execution of 
test cases for the DAO that implements DataAdapter interface is 0.094 seconds. As the 
same code was tested with mySQL and postGRESQL databases, it is found that the test 
report yielded the results that are in table 1. It is observed from table 1 “As the time taken 
for the execution of test cases decreases, the code efficiency increases”. It is also found 
that it is possible to migrate across several data sources. So the application developed 
using this model is scalable and robust. The application code is reusable as a result of 
which there is a reduced time to market. Thus it can be found that the code efficiency of 
the component-based software is inversely proportional to the execution time for the test 
cases, with the introduction of DataAdapter interface in Data Access Object. 

 
Table1: Results comparing proposed model with existing one 

Also it is found from the results that implementing DataAdapter interface with Data 
Access Object in these three sample databases leads to reduction in execution time which 
is due to consistency of our proposed model. The Chart in figure 7 shows an increase in 
efficiency of the code through the implementation of DataAdapter interface with Data 
Access Object. 



 
AN EXTENDED COMPONENT MODEL AND ITS EVALUATION FOR RELIABILITY & QUALITY 

 
 
 
 

122 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 7 

 
Fig. 7 Graph Showing the Performance of ECM Model 

When the unit test is carried out on all the DAOs in the DAO layer, it has been able to 
ascertain that there is an increase in code efficiency and reduction in code complexity as 
the Data Adapter interface is implemented by DAOs. It is inferred that there will be data 
consistency because there is a reduction in execution time of test cases for all DAOs 
implementing the interface under discussion. 

The next section has carried out a case study to establish the performance of the 
proposed model. 

6 CASE STUDY 

In order to validate the proposed model, a case study has been performed on Course 
Registration Manager. The requirement scenario for this case study is taken from the 
Dean Academics of a Technical Educational Institution. The case study comprises of a 
user interface component, meant for course management. The JSP component is used for 
this purpose. 

The components in the middle-tier include courses, register, membership, class and 
schedule.These are considered as business objects in the implementation of the design. 
The components that lie between middle-tier and database-tier are CoursesDAO, 
RegisterDAO, MembershipDAO and ClassDAO. The Data Access Objects are the core 
j2ee patterns [Alur ] which are used to encapsulate the client and middle-tier from that of 
the database. It means that it is possible to migrate from one database to another. The 
figure 6 above is the general component model as it is possible to migrate from one 
database to another database because DataAdapter interface is separated from 
implementation. This model is mapped to this case study “Course Registration Manager” 
which is shown in figure 8. 



 
 
 
 
 
 

VOL. 7, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 123 

 

Validation of the Results 

The classes for data access to view courses and add new courses in course registration 
manager are BaseDAO, CoursesDAO, CoursesDAOTestCase and Course. The validation 
considers two different instances of time t0 and t1. At t0, the CoursesDAO class extends 
BaseDAO. The performance of the component based software is arrived at by doing Unit 
test[Cheon02] for the CoursesDAO class that extends BaseDAO at a test instant t0. The 
number of runs, number of success and failure cases is noted at instance t0. At another 
test instance t1, Unit test is performed for the class that extends Data Access Object and 
implements Data Adapter interface. 

The number of success and failure cases is noted at this instant. Unit testing is done 
with the junit [Frame07] framework. After configuring the system by giving the proper 
classpath for these testing tools, the code is tested for its efficiency using Unit testing as 
discussed in the previous section. 

 
Fig. 8 Architecture Map of Course Registration Manager 

Ant uses XML files called build files to describe how to build, test, and deploy an 
application. Using XML enables developers to edit files directly, or in any XML editor, 
and facilitates parsing the build file at run time. The XML file build.xml below is used to 
build and test the code for the database My SQL Server. The source files are located in 
‘src’ folder of the sample application. Now, on entering the command ant, the java source 
files Course.java, CoursesDAO.java and CoursesDAOTestCase.java gets compiled and 
class files are generated for execution. 

In the next step, the command ant test [Kushwa06] results in the generation of unit 
test report. At test instance t0, the time taken for the execution of the test cases is 2.312 
sec. At time t1, the class CoursesDAO that implements DataAdapter interface is tested for 



 
AN EXTENDED COMPONENT MODEL AND ITS EVALUATION FOR RELIABILITY & QUALITY 

 
 
 
 

124 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 7 

code efficiency and the time taken for the execution of the test cases is 0.734 sec. When 
the same code was tested with hypersonic SQL and postGRESQL databases, the results 
were generated as in table 2. The Unit test performed on CoursesDAO in the two cases 
that has been undertaken and finally results could be arrived as in Table 2. It can be seen 
that the execution time decreases substantially when an application is implemented where 
DAO implements DAI. The chart in figure 9 shows the performance of the ECM Model. 

 
Table 2 Results that compares the proposed ECM with existing one for the case study 

 

 
Fig. 9 Graph Showing the Performance of ECM Model 

The Unit test conducted on RegisterDAO, MembershipDAO and ClassDAO results in the 
same effect like increase in code efficiency, reduction in code complexity and 
consistency in data interface. 

7 VALIDATION OF ECM FOR EXTERNAL AND INTERNAL 
QUALITY FACTORS 

In the ECM Model, a layer of DAOs along with the Data Adapter interface makes it 
easier for an application to migrate to a different database implementation. The business 
objects have no knowledge of the underlying data implementation. Thus, the migration 
involves changes only to the DAO layer. Hence we can infer that the application 
developed using the ECM Model is portable across several database vendors. The 



 
 
 
 
 
 

VOL. 7, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 125 

external quality of the component model is apparent. Database migration is possible 
without any changes in business logic. Alterations are needed only in the data access 
logic of the DAO layer. Therefore, the DAO layer of the ECM model is adaptable which 
projects the component model’s internal quality. 

Since the DAO code that implements Data Adapter interface can be unit tested on 
the client, the ECM model is testable and thus it is evident that the internal quality of 
testability adheres to the component model. The use of data access objects at the database 
level in the component model allows multiple data sources to utilize the same logic 
without any re-coding. Therefore, the ECM Model is compliant with multiple data 
sources which reveals that the code developed out of the model is maintainable. Hence 
the internal qualities of maintainability namely testability and compliance holds good for 
the component model under discussion. 

Efficiency is an external quality of component [Cheon02]. Time behaviour and 
resource utilization are internal qualities of component. As the execution time of test 
cases in DAO that implements Data Adapter interface decreases with respect to the one 
with only DAO, the code efficiency increases and thus the code complexity is reduced. 
With the implementation of Data Adapter interface with DAO class, all DAO methods 
must relinquish control of acquired database resources like connection, statements, and 
result sets. This control is accomplished even by a novice programmer. Hence, we infer 
that the ECM model is efficient. 

The ability of the software(developed from ECM model), systems and business 
processes to work together to accomplish a common task such as accessing data from 
several database vendors is called operability / portability of the system. As it is possible 
to migrate across several data sources, the model is portable. When a component uses a 
vendor-specific API, it is locked into that vendor's product line. Since the ECM model 
has the DAO layer which provides a layer of indirection that isolates vendor-specific 
code in a class or several classes, where it can easily be replaced if necessary or desirable, 
it is usable and hence the quality of usability holds true. 

With data persistence as the key element of the ECM Model, it is found that there is 
a lot of maturity in the component model. For a system developed using ECM Model, it 
works with performance degradation when the system fails. Also the DAO layer of the 
Model is compliant with several database vendors. Hence the Model is reliable. 

All the required services from the business-tier such as creation, retrieval, updation 
and deletion operations are provided by the services in the data-access logic of the DAO 
layer which, in turn, does all the operations accomplished with that of the database. 
Hence the DAO layer of the ECM model has all the services that can be provided to the 
business-tier with the help of database. Therefore the internal quality namely suitability 
holds true. 

Usage of ECM Model to retrieve records across several database vendors leads to 
data accuracy. There is an improved functionality in the ECM model in which a DAO is 
used to provide CRUD-type functionality for abstracting a database from business logic. 
CRUD is an acronym commonly used in the database world that stands for: (1) Creating 



 
AN EXTENDED COMPONENT MODEL AND ITS EVALUATION FOR RELIABILITY & QUALITY 

 
 
 
 

126 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 7 

new records in the database (2) Reading records from the database (3) Updating records 
in the database (4) Deleting records in the database. Apart from this, it is possible to 
know the name of the database and the type of data supported by that database. 

 
Fig. 10 External and Internal Qualities for ECM Model 

Since the ECM model enables to migrate across several database vendors, it is 
established that the model is compliant. Thus, there is an improved functionality which is 
an external quality of component model. The quality attributes that are applicable to 
ECM Model were identified from figure 1. They are given in figure 10. 

8 RESULTS, CONCLUSION AND FUTURE WORK 

This research makes an attempt to establish and validate ECM. An attempt has also been 
made to evaluate ECM model against the external and internal quality attributes. To 
establish the same, a case study named "Course Registration Manager" was undertaken. 

Because the interface exposed by the DAO to clients does not change when the 
underlying data source implementation changes, this pattern allows the DAO to adapt to 
different storage schemes without affecting its clients or business components. 

The functional requirements of the ECM model are validated with the help of 
execution time of the test cases and thereby it is concluded that code efficiency is 
increased and the code complexity is reduced by mapping the ECM model onto the 
course registration manager. The analysis is provided on an abstract level with no focus 
on concrete component model characteristics. The component composition is being 
achieved through the usage of Core J2EE Design Patterns Data Access Object 
implementing Data Adapter interface in this paper. Most of the requirements needed for a 
component model are met in the ECM model. 

The non-functional requirements (quality characteristics) of the ECM model were 
evaluated against the external and internal quality factors as put forward by ISO/ CE2 
9126-1:2001 in this work and it is found that the proposed ECM satisfies most of the 
attributes of the Quality factors. 



 
 
 
 
 
 

VOL. 7, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 127 

In future, an attempt shall also be made so that few functional and all of the non-
functional requirements for a component model shall be satisfied through aspect-oriented 
component based software engineering. 

REFERENCES 

[Garla96] M.Shawand D.Garlan. Software Architecture: Perspectives on an Emerging 
Discipline. Prentice Hall, 1996. 

[Parris99] Allen Parrish, Component Based Software Engineering: A Broad Based Model 
is needed, Brandon Dixon, David Hale in International Workshop on 
Component- Based Software Engineering proceedings, May 17th-18th 1999, 
pp. 43-46. 

[Souza99] Desmond F. D’ Souza, Alan Cameron Wills, Objects, Components and 
Frameworks with UML, The Catalysis Approach, Addison-Wesley, 1999. 

[Baele01] Stefan Van Baelen, Software Development Process for Real-Time Embedded 
Software Systems, Information Technology for European Advancement, Dec. 
2001. 

[Heine01] G.T. Heineman and W.T. Councill, editors. Component-Based Software 
Engineering: Putting the Pieces Together. Addison-Wesley, 2001. 

[Micro01] Sun Microsystems: Enterprise JavaBeans Specification, Version 2.0. Palo 
Alto, 2001. 

[Cheon02] Yoonsik Cheon and Gary T. Leavens, A Simple and Practical Approach 
toUnit Testing: The JML and JUnit Way, In Proceedings of the 16th 
European Conference on Object-Oriented Programming, Lecture Notes In 
Computer Science; Vol. 2374, 2002, pp. 231 - 255. 

[Szype02] C. Szyperski, D. Gruntz, and S. Murer. Component Software: Beyond Object-
Oriented Programming. Addison-Wesley, second edition, 2002. 

[Bottc03] Stefan Böttcher and Robert Hoeppe, Do We Need Components for Persistent 
Data Storage in the Java 2 Enterprise Environment?, NetObjectDays 2002, 
Vol. 2591, 2003, pp. 152–165. 

[Green03] Greenwich, Java Development with Ant, Manning, 2003. 

[Meyer03] B. Meyer. The grand challenge of trusted components. In Proc. ICSE 2003, 
IEEE, 2003, pp. 660–667. 

[Russe03] C.Russell. Java Data Objects(JDO) Specification JSR-12. Sun Microsystems, 
2003.  



 
AN EXTENDED COMPONENT MODEL AND ITS EVALUATION FOR RELIABILITY & QUALITY 

 
 
 
 

128 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 7 

[Manty04] Annukka Mantyniemi, Minna Pikkarainen and Anne Taulavuori, A 
Framework for Off-The-Shelf. Software Component Development and 
Maintenance Processes. Espoo 2004. VTT Publications. 525, 2004, pp. 88-89. 

[Matid04] Danijel Matid,Dino Butorac and Hrvoje Kegalj, Data Access Architecture in 
Object Oriented Applications Using Design Patterns, IEEE MELECON 2004, 
May12-15, 2004, Dubrovnik, Croatia. 

[KiuL05] Kung-KiuLau, MarioOrnaghi and ZhengWang, A Software Component Model 
and its Preliminary Formalisation, FMCO 2005, Oct. 2005, pp. 1-21.  

[Lau 05] K.K.Lau and Z.Wang. A taxonomy of software component models. In Proc. 31st 
Euromicro Conference, IEEE Computer Society Press, Sep. 2005, pp. 88–95. 

[Micro05] Sun Microsystems, Java, Version 2.0, 2005. 

[Kushw06] D.S.Kushwaha and Misra A. K, "Cognitive Software Development Process 
and Associated Metrics -- A Framework", In Proceeding of the 5th IEEE 
International Conference on Cognitive Informatics (ICCI'06), 2006. 

[Kuhwa06] D.S.Kushwaha, R. K. Singh and A. K. Misra, CICM: A Robust Method to 
Measure Cognitive Complexity of Procedural and Object-Oriented Programs, 
WSEAS Transactions on Computers, Vol. 5, no. 10, Oct 2006, pp.2348-2355. 

[Merz 06] Matthias Merz and Markus Aleksy, Using JDO Secure to Introduce Role-
Based Permissions to Java Data Objects-Based Applications, DEXA, Lecture 
Notes in Computer Science, Vol. 4080, 2006, pp. 449-458. 

[Frame07] JUnit Framework, http://junit.sourceforge.net/, a Testing Tool, March 2007. 

[Ivers07] James Ivers, Paul Clements, David Garlan, Robert Nord, Bradley Schmerl, 
Jaime Rodrigo, Oviedo Silva, “Documenting Component and Connector 
Views with UML 2.0, Technical report, Carnegie Mellon University, 2007. 

[Senth07] R. Senthil, D. S. Kushwaha, A. K. Misra, An Improved Component Model for 
Component Based Software Engineering, ACM SIGSOFT, Software 
Engineering Notes, Vol. 32, no. 4, Jul 2007 (To Appear).  

[AlurWeb] Deepak Alur, John Crupi, Dan Malks, Core J2EE Design Pattern: Best 
Practices and Design Strategies, Java 2 Platform Enterprise Edition Series. 
Sun Microsystems. 



 
 
 
 
 
 

VOL. 7, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 129 

About the authors 
Dr. D.S.Kushwaha received his Doctorate Degree In Computer 
Science & Engineering from Motilal Nehru National Institute of 
Technology, Allahabad, India in the year 2007 under the guidance of 
Dr.A.K.Misra. He is presently working with the same Institute as 
Assistant Professor in the department of Computer Science & 
Engineering. His research interests include areas in Software 

Engineering, Data Mining, Cognitive Sciences, Object Oriented Technologies and Data 
Structures. He can be reached at dharkush@yahoo.com 
 

Dr.A.K.Misra received his Doctorate Degree In Computer Science & 
Engineering from Motilal Nehru National Institute of Technology, 
Allahabad, India in the year 1990. He is presently working with the 
same Institute as Professor in the department of Computer Science & 
Engineering. His research interests include areas in Software 
Engineering, Programming Methodology, Artificial Intelligence, Data 

Mining, Cognitive Sciences, Object Oriented Technologies and Data Structures. He has 
over 60 International publications in various Conferences & Journals. He can be reached 
at arun_kmisra@hotmail.com 
 
R. Senthil, CSED, MNNIT, Allahabad, India can be reached at sentil77@gmail.com 


