"L'JOURNAL OF OBJECT TECHNOLOGY

Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering. ©JOT, 2008

Vol. 7, No. 6, July—August 2008

Overcoming comprehension barriers in the
AspectJ programming language

Venera Arnaoudova

Laleh Mousavi Eshkevari

Elaheh Safari Sharifabadi

Constantinos Constantinides

Department of Computer Science and Software Engineering,
Concordia University,

1455, De Maisonneuve Blvd. West,

Montréal, Québec, H3G 1M8, Canada

It has now been over a decade since the introduction of Aspect-Oriented Programming
(AOP). As the Aspectd programming language (being one of the notable technologies of
AOP) gains acceptance in industry and academia, its comprehensibility property is an im-
portant factor in determining an eventual wide acceptance by practitioners in development
and maintenance as well as by educators who aim at introducing AOP into their curric-
ula. Our objective is to improve program comprehension by identifying and addressing
potential pitfalls in code which tend to make comprehension not intuitive. In those subtle
places, we observe the behavior of the program to see the degree to which it matches the
expected results. In cases where a conflict occurs, we provide a reasoning to point out
where it would originate from, and a resolution to the conflict where applicable.

1 INTRODUCTION

Separation of concerns and its associated benefits suchodscgde modularity tend to be
one of the objectives of many programming paradigms andulaggs. One such paradigm is
Aspect-Oriented Programming (AOP) which was introducetheéocommunity over a decade
ago Kiczales et al., 1997 Aspect-Oriented Programming is currently supported loyisber

of technologies, perhaps the most notable of which is AsdEatzales et al., 2001 an aspect-
oriented extension to the Java language. With a significatgation of supporting tools and an
increasing community of practitioners and developersAtsgectJ language has influenced the
design dimensions of several other general-purpose aepeated languages, and has provided
the community with a de facto common vocabulary based omitslmguistic constructs.

Over the last decade we have also experienced the worldwimjgtian of AOP approaches
in institutes of higher educatidnin our institution we have included AspectJ in our uppeele
undergraduate and graduate curriculum over the last foanleanic years. Relevant courses
include the assignment of small to medium-scale projeatsiing the adoption of AspectJ
for program development as well as for program maintenarka®. the latter, one common

LA list of academic and industrial institutions is maintairet the following website (last accessed: June 5,
2008): http://dev.eclipse.org/viewcvs/indextech.cgi/asphome/teaching.html

Venera Arnaoudova, Laleh Mousavi Eshkevari, Elaheh Safari Sharifabadi and Constantinos Con-
stantinides: Overcoming comprehension barriers in the AspectJ programming language, in Journal
of Object Technology, vol. 7, no. 6, July—August 2008, pp. 121-142,
http://www.jot.fm/issues/issues_2008_4/

http://dev.eclipse.org/viewcvs/indextech.cgi/aspectj-home/teaching.html
http://www.jot.fm/issues/issue_2008_07/article4/

VL—J OVERCOMING COMPREHENSION BARRIERS IN THE
o ASPECTJ PROGRAMMING LANGUAGE

task includes program comprehension. Another task inslueéengineering of object-oriented
(Java) programs into an aspect-oriented (AspectJ) context

Of particular interest to us is comprehension, especiaitynd maintenance where it consti-
tutes the initial and vital step for any task and tends to aoresa significant proportion of time.
While teaching AspectJ we have realized that in some casesstadding program semantics
may not be obvious for students. The purpose of this artgléhierefore, to understand why
this difficulty exists, to contribute to the comprehensidéispectd programs based on our em-
pirical work by exploring different caséand to encourage people to adopt AspectJ by showing
that some of the unintuitivebehavior originates in the underlying language (Java) hadn-
swers to some questions which seem to be AspectJ-relateloecund in the Java language
specification.

The rest of this article is organized as follows: In Sectibwe provide some necessary
background and in Sectidhwe discuss the problem and motivation behind this resedrch.
Sectiond we describe the subject population and the settings forxqperenents. In Sectioh
we discuss a number of cases, where our investigation hasghat comprehension of AspectJ
programs tends to become difficult. For each case we injitikcribe the intent, followed by
an intuitive solution based on a survey we have conductdd avgroup of students. Next, we
implement and observe the behavior of the programs; in calsese the behavior differs from
the expectations, we provide a reasoning why this is so asclgs guidelines on how one
can achieve the intended behavior. In SecBame discuss related work, and we conclude our
discussion in Sectiof.

2 BACKGROUND

The principle of separation of concerri®grnas, 197Dijkstra, 1976 refers to the realization
of system concepts into separate software units and it imdaimental principle in software
development. The associated benefits include better amalgs understanding of systems,
high readability of modular code, high level of reuse, eadgpaability and good maintainabil-
ity. Despite the success of object-orientation in the éfforachieve separation of concerns,
certain properties cannot be directly mapped in a one-tofashion from the problem domain
to the solution space, and thus cannot be localized in smgldular units. Their implementa-
tion ends up cutting across the inheritance hierarchy ofyts¢eem. Crosscutting concerns (or
“aspects”) include persistence, authentication, synghation, contract checking and logging.
The “crosscutting phenomenon” creates two implicatior)sTHe scattering of a concern over
a number of modular units and 2) The tangling of code of séwenacerns in one unit. As a
result, developers are faced with a number of problems dmatpua low level of cohesion of
modular units, strong coupling between them and difficultiole comprehensibility, resulting
in programs that are more error prone.

2All examples discussed are compiled with the ajc compilergion 1.5.2) and the abc compiler (version
1.2.1).

3The definition of unintuitive here is based on a survey oveugper-level undergraduate and graduate stu-
dents with experience in AOP, enrolled in Computer Sciemzk $oftware Engineering programs at Concordia
University.

122 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 6

3 PROBLEM AND MOTIVATION C}#_I

Aspect-Oriented Programmingiczales et al., 199 Elrad et al., 200[lexplicitly addresses
those concerns by introducing the notion of an aspect defmivhich is a modular unit of de-
composition. Currently there exist many approaches anchtéopies to support AOP. One
notable technology is AspectKiczales et al., 2001 a general-purpose aspect-oriented lan-
guage, which has influenced the design dimensions of sevr@l aspect-oriented languages,
and has provided the community with a common vocabularydasdts own linguistic con-
structs. There are currently two AspectJ compilers, namjefyand abé. In the Aspect] model,
an aspect is a new unit of modularity providing behavior tanserted over functional compo-
nents. This behavior is defined in method-like blocks cadlddiceblocks. However, unlike
a method, an advice block is never explicitly called. Indtatis only implicitly invoked by
an associated construct callep@ntcutexpression. A pointcut expression is a predicate over
well-defined points in the execution of the program whichraferred to agoin points When
the program execution reaches a join point captured by aqdiexpression, the associated
advice block is executed. Even though the specification awel lof granularity of the join
point model differ from one language to another, common paimts in current language spec-
ifications include calls to, and execution of methods andstantors. Most aspect-oriented
languages provide a level of granularity which specifiectyavhen an advice block should
be executed, such as executing before, after, or instedieafdde defined at the associated
join point. Furthermore, several advice blocks may applihtosame join point in which case
advice precedence ruleikignzle et al., 2003Lorenz and Kojarski, 20Q6re applied. In cases
where these advice blocks are defined in the same aspeadpreee of advice execution de-
pends on the type of advice. Fmf or e advice blocks, the one defined first has precedence over
the one following it, that is, it will be executed first. Fafrt er advice blocks, the one defined
last has precedence. Fait er advice having highest precedence means executed lasisds ca
where these advice blocks are defined in different aspesseg@ence can be defined through
thedecl are precedence construct. An aspect definition may also define state andviieha
be introduced into the core functionality. It may also dezla new parent type for an existing
set of types.

3 PROBLEM AND MOTIVATION

In this article we explore some cases, in order to find an egpian why the actual behavior is
as itis, and to find one possible solution for reaching thended goal (where applicable). Our
motivation is to decrease the gap between the semantice tdtiguage and the understanding
of program readers.

When implementing a solution of a problem in a specific prognamg language, we rely
on its semantics in order to predict how the program will vehahen it is executed. While
teaching AspectJ in our institution we observed that mamgesits have difficulties in providing
the result of some AspectJ programs. We then decided to \sgmaeluate and upper-level
undergraduate students in order to understand the cnitaiats in comprehension of AspectJ
semantics. We prepared questionnaires containing preguader different cases and we asked
the participants to provide answers to each program. In@edtwe describe how the survey

4Available athttp://www.eclipse.org/aspectj/
SAvailable athttp://abc.comlab.ox.ac.uk

VOL 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 123

http://www.eclipse.org/aspectj/
http://abc.comlab.ox.ac.uk

VL—J OVERCOMING COMPREHENSION BARRIERS IN THE
o ASPECTJ PROGRAMMING LANGUAGE

Category | Language | Professional | Good | Familiar | Number of
participants

Category 1| Java Y 4
AspectJ Y

Category 2| Java Y 12
AspectJ Y

Category 3| Java Y 19
AspectJ Y

Table 1: Categories of participants based on their knowledge of JavaspedtJ.

was conducted and in Sectibrwe discuss those cases where students had difficulties with.

4 EXPERIMENTS

In this section we describe the subject population for tleegeriments. The group of partici-
pants consists of undergraduate and graduate studento$arhem are employed as industrial
developer® The participants are categorized in three groups as shoiatilel. In the subse-
guent paragraphs we provide a more detailed descriptioaasf group.

Participants in Category 1: They are industrial Java programmers and academic AspectJ
programmers. They are currently enrolled in a graduate tgna3hD) program in Computer
Science/ Software Engineering, engaged in AOP-relateshrel. Four participants fell into
this category.

Participants in Category 2: They are industrial Java programmers. They have good knowl-
edge of AspectJ, since they have completed at least oneecoovsring the principles of sepa-
ration of concerns and AOP. They are currently enrolled inmafergraduate program in Com-
puter Science (3-year program)/ Software Engineeringe@-yrogram). Twelve participants
fell into this category.

Participants in Category 3: These students do not have any industrial experience widn Ja
even though they have enough background in object-origmtegraming (90% of which is
Java) in academia. They were not familiar with AOP/Aspecitthey were introduced to the
principles of separation of concerns, AOP, and Aspecthduwione-term course (13 week; 2.5
hours per week of lectures and 50 minutes per week of tujokiég can therefore consider their
level as “being familiar with AspectJ.” Nineteen partiaipsifell into this category.

The participants were asked to complete a printed questimcontaining 19 questions
by providing the output of the given programs. They were git&spect] Language Quick
Reference” from Colyer et al., 200fand they were free to use any other documentation. The

6In [Penta et al., 20Q%he authors discuss the identification of an appropriakgesti population as still being
an open issue.

124 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 6

5 CASES: INTENT AND BEHAVIOR C}#_I

constraints were as follows: First, the questionnaire khbe completed individually and sec-
ond, it should be completed as a dry run, i.e. with no assist&iom a compiler. There was no
time limitations for responding to the questionnaire.

5 CASES: INTENT AND BEHAVIOR

In this section we describe a number of cases where the pyosisf the AspectJ language do
not seem to be intuitive. The cases are classified into twegoaies, Java and AspectJ, based
on the reason this unexpected behavior originates from.

Java

Since Java is the underlying language of AspectJ, we shatldensurprised from the fact that

it inherits design/implementation decisions from Javaustfor some cases, one should look
for an explanation in the language specification of Javeaerdtian AspectJ. Following are such

examples.

Exact location of “before execution” of constructors

In this example we want to capture the exact location ob#ier e constructor execution join
point. We tend to think that before execution of a constnuiddike before execution of a
method, meaning before the body is explored. Thus, ever ifitst statement of a constructor
is a call to another constructor, the first constructor to &leed should start execution before
any referenced constructors. Consider the following code:

public class C{

Clint x){...}
Clint x, String y){
this(x);

this.y =vy;}}

public class Dem {
public static void main(String[] args){
Cc =newC5, "s");}}

publ i c aspect Tracer {
poi ntcut constructor()
execution(C new..))
bef ore(): constructor()
after():constructor(){

(o)
Y

Based on the above explanation one may expect the followsgtfe

“Advice blocks in all cases display the signature loifsJoi nPoi nt .

VOL 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 125

VL—J OVERCOMING COMPREHENSION BARRIERS IN THE
o ASPECTJ PROGRAMMING LANGUAGE

Before execution(C(int, String))
Bef ore execution(C(int))
After execution(C(int))
After execution(C(int, String))

However, this is not the actual output of the program. In Jthvecompiler treats methods
and constructors differently. The execution of the body obastructor starts after completing
the following steps@osling et al., 200B

1. Evaluation of all arguments.

2. Invocation of another constructor in the same class (lyggthrough steps 1 to 4, fol-
lowed by the execution of its body), should an explicit calrbade through the keyword
this.

3. Invocation of a constructor in the superclass (by goimgubh steps 1 to 4, followed by
the execution of its body), should an implicit or explicitldae made to the superclass
constructor through the keywosdper .

4. Execution of the instance initializers and instancealdé initializers for this class.

Consequently, AspectJ treats methods and constructors sathe manner as Java. Execu-
tion of a method is considered to behen the body of code for an actual method executes”
whereas execution of a constructorwghen the body of code for an actual constructor exe-
cutes, after itg hi s or super constructor calls” [The AspectJ Team, 2006Thus the output
of the above example (with both abc and ajc compilers) is

Bef ore execution(C(int))
After execution(C(int))
Bef ore execution(C(int, String))
After execution(C(int, String))

The above result can be interpreted as follows: the exetofithe constructor being called
starts after the completion of the execution of its innerstarctor (see Figur&). Two of the
participants in Category 1 provided the actual output, windlee of the participants in categories
2 or 3 did.

Counting the creation of objects

In this case our intention is to capture the number of creagdnces of a particular class. The
guestion is “What exactly should be monitored?” and it may k@amore than one possibilities:
monitor the number of calls to constructors; monitor the hanof executions of constructors
or, alternatively, count the number of classes that have @#alized. For this experiment
participants were given all possible alternatives and thieye asked to provide the output of
each alternative. If the provided result corresponds tatiteal number of objects created, we

126 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 6

5 CASES: INTENT AND BEHAVIOR o vL_/

The way we may think it will be...BI The way it is actually___BI
.
:Demo :Demo
| T
c := create(5,"s") | ¢ := create(5,"s")
N . N .
I - 2 7~ 2
Before execution of

new C(5,"s") this(s,"s") : this(5)

T
I
Do |
this(5)
Before execution of

After execution of new C(5,"s")

.~ I
new C(5,"s") After execution of
BTN new C(5,"s") -
/__________';A _<__________‘;.'

T |
I I

~e.
~ .

N

~

| p— |

Figure 1: Sequence diagram - exact location of “before executioods$tructors.

suppose that the participants consider this alternativse gsod possible solution. At the end,
participants were asked to choose the best solution foruhgoge of this case.

Consider the following definitions:

public class Cl {}

public class C2 extends CL{
int x;
String vy;
C2(int x){
super () ;
this.x = x;}
C2(int x, String y){
this(x);
this.y =y;}}

public class Dem {
public static void main(String[] args){
C2 ¢ = new C2(5, "s");}}

Thirty percent of the participants think that usiagcut i on pointcut on thenew keyword is
a good idea since we count the number of objects created.r@sigdts in the following aspect
definition:

public aspect A {
before():
execution(*.new..)) && !'within(A{...}}

VOL 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 127

A,

VZ/—J OVERCOMING COMPREHENSION BARRIERS IN THE
o ASPECTJ PROGRAMMING LANGUAGE

The above pointcut monitors the execution of any construmiitside asped, and results
in three captured join points (with both abc and ajc comp)l&ecause three constructors are
executed@(int, String), C2(int), CL()).

One may argue that in order to be able to count the number ettdxgreated witbxecut i on,
the pointcut definition should be changed to:

before():
execution(*.new(..)) && !'within(A)
&& ! cf | owbel ow(execution(*.new(..))){...}

The above advice block means that we exclude the executimomstructors that are already
in the control flow of other constructors. When we asked thégiyants whether this would
solve the problem fifty percent replied “yes.” By running thhegram however, we still observe
three captured join points (with both abc and ajc compilefid)e reason for this behavior is
that as explained in Sectids the execution of a constructor starts after the executfdhe
nested constructors called with the keywortliss andsuper . This implies that the inner most
constructor will be executed first, and after its executio@ tonstructor that called it, will
start executing and so on. After returning from all nestedstmictors, the body of the initial
constructor (in this case the one called in tlhen method in clas®eno) will start executing.
Thus the pointcut designator

I cf | owbel ow(execution(*.new(..)))

does not affect the captured join points, since there is eowdon of a constructor inside the
execution of another constructor. For example, in Figltiee constructo€2(i nt, String) is
called in themai n method of clas®eno. As the first statement of this constructott Is s(5) ,
the constructo€2(int) will be executed first. Since the first statementCafi nt) is super (),
the constructo€l() will be executed first. After its execution, the rest of thelypof construc-
tor C2(int) will be executed, followed by the execution of the rest of tloely of constructor
C2(int, String). Thus, the control flow below the execution@(i nt, String) does not con-
tain any other constructor execution. This implies thapleg or deleting the previous pointcut
designator does not affect the set of captured join points.

We then proposed an alternative solution, chosen by morefitty percent of the partici-
pants, which is to use the t hi ncode pointcut designator as follows:

execution(*.new(..)) && !'within(A)
&& !'wi thincode(*.new(..)){...}

The above pointcut captures every join point from the codimee outside the code of any
constructor of any class (and not in asp&ctHowever addingui t hi ncode to anexecution
pointcut does not change the set of captured join point (@iier abc or ajc compilers), be-
cause forexecution pointcut, the enclosing code of the method is the methodf.itSéhus,
adding

128 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 6

5 CASES: INTENT AND BEHAVIOR C}#_I

The way it is actually |SI

:Demo

I c := create(5,"s")
L c:C2

super ()
this(5)
|
this(5,"s")
Execution of
C(5,"S") = mmmm====
e - - - - - = - = ===

Figure 2: Sequence diagram - counting number of objects created.

\4

'wi t hi ncode(*.new(..))

to the join point designatagxecution(*. new(..)) is interpreted asexecution of a method
and not inside its body”, op A —p which is always false for any value @f This implies no
captured join points. Thus, capturing the execution of troigsors is not a suitable solution for
this purpose. More than fifty percent of the participantsdveld in another candidate solution
to this question: the use of thei tialization pointcut. This solution is invalid due to the
underlying semantics of AspectJ. In Java, when an objecteated its direct superclass is
initialized first [Gosling et al., 2006 Theinitialization(*.new(..)) pointcut matches two
join points and produces the following output (with both alocl ajc compilers):

initialization(CL())
initialization(C2(int, String))

Another solution may be the following:

public aspect A {
before():
call (*.new(..)) && 'within(A{...}}

The above pointcut monitors any call to any constructorqijdetthe definition of aspesy,
thus one may expect to have three captured join points:

1. In the main method of class Demo (because of the statet@ent= new C2(5, "s");).

2. In the constructo€2(int x, String y) in classC2 because we explicitly call another
constructor of the class in itifi s(x) ;).

VOL 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 129

VZ/—J OVERCOMING COMPREHENSION BARRIERS IN THE
o ASPECTJ PROGRAMMING LANGUAGE

3. In the constructo€2(int x) because we explicitly call the constructor of the supesclas
(super();).

A,

In reality, we have only one captured join point (with botlcamnd ajc compilers). The
captured join point corresponds to the call of the constrruict themai n method of clas®eno.
Even if we explicitly call another constructor within thdlea constructor usinghi s andsuper,
these join points are not captured. We can then concludeteatif all three of them represent
a call to a constructor, there is a difference between ceygftine creation of an object with the
keywordt hi s or super on one hand, and with the keywondw on the other hand, when the
pointcut is based ocal | .

Finally, we can conclude that in order to count the numberbpéds created, one should
monitor the calls to class constructors, usieg keyword, i.e.,

cal I (*.new(..)) & !within(A)

Unfortunately when the participants were asked to chosartbst suitable solution for
counting the number of objects created only one sixth of thkease the above pointcut.

AspectJ

For some other examples, one should search an explanatidinefd®oehavior of AspectJ pro-
grams in the design/implementation decisions behind theeé&td language. In the following
paragraphs we discuss some of these cases.

Library methods
Consider the following code:

public class Dem {
public static void main(String[] args) {
Vector v = new Vector();
v.size();}}

public aspect A {
poi ntcut call VectorSize():
call (public int java.util.Vector.size());
poi ntcut execVectorSize():
execution(public int java.util.Vector.size());
before():call VectorSize(){...}
after():callVectorSize(){...}
before(): execVectorSize(){...}
after():execVectorSize(){...}}

As we define four advice blocks, two third of the participastpected that call and execu-
tion of methodksi ze() of classvect or will be captured, and the following output will observed:

130 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 6

5 CASES: INTENT AND BEHAVIOR o vL_/

C1 F
+antverriddenMethod () tanEnforcedMethod () '_‘_
+anTnheritedMethaod () [}
]
I
C2 <}—— C3
+anCverriddenMethod () +aVeryNewlMethod ()
t+alewMethod ()

Figure 3: Class diagram - tracing methods.

cal | VectorSi ze before call advice
execVect or Si ze before execution advice
execVectorSi ze after execution advice
cal | VectorSize after call advice

The actual result, however (with both abc and ajc compiiers)

cal | VectorSi ze before call advice
cal | VectorSi ze after call advice

One main difference betweenl | andexecuti on pointcuts is thatal | refers to the caller
side (classDeno in this case) whereasxecution refers to callee side (clas&ctor in this
case) Masuhara et al., 2002 The question is then “Why execution of library methods i$ no
captured?”.

In order to explain the difference between expected andrebdebehavior, we need to
consider how advice weaving is done based on static shadows.
Static shadow is a specific place in the source code or bygewbith corresponds to possible
joint points. For each static shadow the back-end Aspecatipider checks if a precompiled
advice can match this shadow. Should this be the case, adak tspecific advice is injected
into the bytecodeHlilsdale and Hugunin, 2094 But if the weaver is not able to modify the
bytecode, then the call to an advice can not be inserted. BasédpectJ Language Guide
execution join point can be advised if the compiler conttbks bytecode for the method or
constructor body in question. Thus, in the previous exanif@eause the weaver does not have
control over the bytecode of the library methods, the exenudfj ava. util . Vector. si ze() is
not captured by the aspect. However, the cajllawa. util . Vect or. si ze() is captured because
a call to the advice is injected in claBsm.

Tracing methods

Our intent in this case is to capture any call and executicangfmethod (with no parameters)
of a given class. Consider the class diagram in Figure

We have defined pointc® EXE _C1() asexecution(* Cl.*()), and pointcuP_CALL_C1()
ascall (* CL.*()). In the same manner we defined six more pointcuts for the ailagses

VOL 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 131

Vlf—d OVERCOMING COMPREHENSION BARRIERS IN THE
= ASPECTJ PROGRAMMING LANGUAGE

and interface as followsP_EXE_C2(), P_CALL_C2(), P_EXE_C3(), P_CALL_C3(), P_EXE_F(),
P_CALL_F(). For each pointcut we have defineded ore advice block. Consider clageno
defined as follows:

public class Denp {
public static void main(String[] args) {
C3 03 = new C3();
03. anOQverriddenMet hod(); }}

Based on the fact that only methadOverri ddenMet hod() is called on objecb3, more
than fifty percent of the participants think that oRI\EXE_C2() andP_CALL_C3() pointcuts will
capture the join point:

e P _CALL_C3() because the call is maded® which is of typeCs.

e P_EXE C2() because&2 is the first parent of3 which contains the method definition.
This results in the following output:

P CALL_C3:

call (void C3.anOverriddenMet hod())
P_EXE C2:

execution(void C2.anOverriddenMet hod())

However, after running the program we obtain the followingli both abc and ajc compil-
ers):

P CALL_CI:

cal | (void C3.anOverriddenMet hod())
P CALL_C2:

cal | (void C3.anOverriddenMet hod())
P CALL_C3:

call (void C3.anOverri ddenMet hod())
P_EXE _Cl:

execution(void C2.anOverriddenMet hod())
P_EXE_C2:

execution(void C2.anOverriddenMet hod())

This result is justified by the fact that for botlal | andexecution pointcuts two factors
must be taken into consideration: type and method deateratHowever, there is a subtle
difference betweenal | andexecut i on with regards to those characteristics:

e For acal | pointcut to match a join point two criteria are important:

— thestatic type of the object involved in the join point should be of type (abs/pe)
of the one involved in the pointcut,

132 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 6

5 CASES: INTENT AND BEHAVIOR C}#_I

— signature of the method involved in the join point shouldsex theclass (or su-
perclass)of the one monitored by the pointcut.

e For anexecuti on pointcut to match a join point two criteria are important:
— the dynamic type of the object involved in the join point should be of type (or
subtype) of the one involved in the pointcut,

— signature of the method involved in the join point shouldseki theclassmonitored
by the pointcut. Note that here superclasses are not checked

Barzilayet al. discussed previously the patterns for matchialg andexecut i on pointcuts
[Barzilay et al., 200but with an early version of AspectJ and are not applicableraore with
the current version. The authors showed that for matchirajlapointcut the method should be
defined in the specific class (inheritance is not a sufficientltion). In the above guidelines
however we explain that inheritance is now enough. Alsopfatching arexecut i on pointcut
the authors explained that the method should be defined oridsdten, whereas we show that
currently a signature is enough.

Applying our guidelines on the above example, we observéaiimving:
1. P.CALL_CI(): call(* CL *()) pointcut capture®3. anOverriddenMet hod() join point
because

e static type ob3 is C3, which “is-a” C1 and
e the signature oéinOverri ddenMet hod() exists in clas€l.

2. P_CALL_C2(): call(* C2.*()) pointcut capture®3. anOverri ddenMet hod() join point
because

e static type ob3 is C3, which “is-a” C2 and
e the signature ofinOverri ddenMet hod() exists in clas€2.

3. P.CALL_C3(): call(* C3.*()) pointcut capture®3. anOverriddenMet hod() join point
because

e static type ob3 is C3, and
¢ the signature oénOver ri ddenMet hod() exists in a superclass 68, which isC2.

4. P_EXE_C1(): execution(* Cl.*()) pointcut captures3. anOverri ddenMet hod() join point
because

e dynamic type 0b3 is C3, which “is-a” C1 and
e the signature ofinOverri ddenMet hod() exists inCL.

5. P_EXE_C2(): execution(* C2.*()) pointcut captures3. anOverri ddenMet hod() join point
because

e dynamic type 0b3 is C3, which “is-a” C2 and

VOL 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 133

VZ/—J OVERCOMING COMPREHENSION BARRIERS IN THE
o ASPECTJ PROGRAMMING LANGUAGE

Table 2: Results of execution, wherds declared a& f = new C3().

Code in Demo Call Execution
f. anEnf or cedMet hod() P_CALL_F: P_EXE C3:
cal I (void F.anEnforcedMet hod()) execution(void C3.anEnforcedMet hod())
P_EXE_F:
execution(void C3.anEnforcedMet hod())

e the signature ofinOverri ddenMet hod() exists inC2.

Applying our guidelines on the example in TaRéwheref is defined as f = new C3()),
we can see that

1. P.CALL_F(): call(* F.*()) pointcut captures. ankEnf or cedMet hod() join point because

e static type of isF, and
¢ the signature ofinEnf or cedMet hod() exists in interface.
2. P_EXE_C3(): execution(* C3.*()) pointcut captures. anknf or cedMet hod() join point
because
e dynamic type of is C3, and
e the signature odinEnf or cedMet hod() exists in clas€s.
3. P_EXE_F(): execution(* F.*()) pointcut captures. anEnf or cedMet hod() join point be-
cause
e dynamic type of is C3, which “is-a” F and
e the signature ofinEnf or cedMet hod() exists in interface.

More examples and results are summarized in T8bl@hereo3 is declared ag€3 03 =
new C3()) and Table4 (whereo23 is declared as2 023 = new C3()).

Our initial intent was to capture one call and one executiorlassbeno since only one
call is made by the user and only one method body is executeokder to reach this goal we
propose one possible solution which is applicable for lbath andexecuti on pointcuts. Thus
we defineP_CALL_C1 as:

call (* CL.*())
&& i f(thisJoinPoint.getSignature().getDeclaringType() == CL.class)

And P_EXE Cl as:

execution(* CL *())
&& i f(thisJoinPoint.getSignature().getDeclaringType() == CL.class)

In the same manner we must define all other pointcuts prelyiaasiressed.

134 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 6

5 CASES: INTENT AND BEHAVIOR

NG
Table 3: Results of execution, whes8 is declared a€3 03 = new C3().
Code in Demo Call Execution
03. aVer yNewivet hod() P_CALL_C3: P_EXE C3:
cal I (void C3.aVeryNewlet hod()) execution(void C3.aVeryNewvet hod())
03. anEnf or cedMet hod() P_CALL_C3: P_EXE C3:
cal I (void C3.anEnforcedMet hod()) execution(void C3.anEnforcedMet hod())
P_CALL_F: P_EXE_F:
cal I (void C3.anEnforcedMet hod()) execution(void C3.anEnforcedMet hod())
03. aNewiVet hod() P_CALL_C2: P_EXE C2:
cal I (void C3.aNewvet hod()) execution(void C2. aNewet hod())
P_CALL_C3:
cal | (void C3.aNewhet hod())
03. anOverri ddenMet hod() P_CALL_CI: P_EXE CI:
cal I (void C3.anOverriddenMet hod()) | execution(void C2.anCverriddenMet hod())
P_CALL_C2: P_EXE_C2:
cal I (void C3.anOverriddenMet hod()) | execution(void C2.anOverriddenhet hod())
P_CALL_C3:
cal I (void C3.anOverriddenMet hod())
03. anl nheri t edMet hod() P_CALL_CI: P_EXE CI:
cal | (void C3.anlnheritedMethod()) execution(void CL.anl nheritedMethod())
P_CALL_C2:
call (void C3.anlnheritedMethod())
P_CALL_C3:
cal I (void C3.anlnheritedMethod())

Table 4: Results of execution, whes3 is declared a€2 023 = new C3().
Code in Demo Call Execution
023. aNewhvet hod() P _CALL_C2: P_EXE_C2:
cal I (void C2. aNewiet hod()) execution(void C2. aNewivet hod())
023. anOverri ddenMet hod() P_CALL_CI: P_EXE CI:
call (void C2.anOverriddenMet hod()) | execution(void C2.anCverriddenMet hod())
P_CALL_C2: P_EXE_C2:
call (void C2.anOverriddenMethod()) | execution(void C2.anOverriddenMet hod())
023. anl nheri t edMet hod() P_CALL_CI: P_EXE CI:
cal I (void C2.anlnheritedMethod()) execution(void CL.anlnheritedMethod())
P CALL_C2:
cal I (void C2.anlnheritedMethod())

VOL 7, NO. 6

JOURNAL OF OBJECT TECHNOLOGY

135

VZ/—J OVERCOMING COMPREHENSION BARRIERS IN THE
o ASPECTJ PROGRAMMING LANGUAGE

Access and modification of instance variables

In this case our goal is to capture accesses and modificatfanstance variables. Consider the
following definitions:

public class Cl {
public int x;}

public class C2 extends CL {}

public class Dem {
public static void main(String[] args) {
C2 0 = new C2()
0. X++; }}

We also define an aspect, which monitors the accesses andicatidins of all instance
variables in both classes:

public aspect Fiel dAccesshodification {
poi nt cut accessor Cl():

get(* CL.*);

poi ntcut accessorC2():
get(* C2.*);

poi ntcut nutatorCl():
set(* ClL.*);

poi ntcut nutatorC2():
set(* C2.%);

after(): accessorCl() {...}

after(): accessorC2(){...}

after(): mutatorCL(){...}

after(): nutatorC2(){...}}

In Java, whenever a class instance is created, memory spatledated for it with room
for all the instance variables declared in the class anchathnce variables declared in each
superclass of the class, including those that may be hid@esling et al., 200b Thus, these
instance variables are accessed and modified when an iastdribe class is manipulated.
Based on this, one third of the participants expected twoucagtjoin points by running the
above example - one for modification and one for access, which

Accessed(accessorC2): get(int C2.x)
Modi fied(mutatorC2): set(int C2.x)

In contrast, for a similar example tespectJ Language Guidgxplains that for get point-
cut where a class does not directly declare a member, theo@imt matches each superclass
up to and including the most specific supertype that doesadethe member. This resumes
in having two join points captured for the access pointcuiie Guide also explains that the
signatures for aet pointcut are derived in an identical manner, which in ouecas! result in
having also two join points captured for modification pourtitc

136 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 6

5 CASES: INTENT AND BEHAVIOR C}#_I

The abc compiler: If the abc compiler follows the semantics defined inAspect] Language
Guide we will expect the following output:

Accessed(accessorCl): get(int Cl.x)
Accessed(accessorC2): get(int C2.x)
Modi fied(mutatorCl): set(int Cl.x)
Modi fied(mutatorC2): set(int C2.x)

This output was predicted by one third of the participantse &bove result was verified by
running the prograf In order to reach our initial intention, which is capturitig number of
real modifications and accesses of the instance vanale need to modify the definitions of
the pointcuts as follows:

public aspect FieldAccesshodification{
poi ntcut accessorCL():
get(* CL.*)
&& i f(thisJoinPoint.getSignature().getDeclaringType() == Cl.class);
poi ntcut accessorC2():
get(* C2.%)
&& i f(thisJoinPoint.getSignature().getDeclaringType() == C2.class);
poi nt cut mutator C1():
set(* CL.*)
&& if(thisJoinPoint.getSignature().getDeclaringType() == Cl.class);
poi ntcut nutatorsC2():
set(* C2.%)
&& i f(thisJoinPoint.getSignature().getDeclaringType() == C2.class);
o}

Thus we observe our original expected behavior, which is:

Accessed(accessorC2): get(int C2.x)
Modi fi ed(mutatorC2): set(int C2.x)

This result corresponds to one access and one modificatiorstaince variable in class
2.

Currently, changing the type of the instance variabl® a user defined type, however,
results in different behavior. We observe one modificationia classCl and one access ®fin
classC2®. The insufficient documentation regarding this behavioy imamisleading and may
decrease the comprehensibility of the language.

8For access and modification of all other primitive types wseste the same behavior.
9The aspect pointcuts do not yet contain the proposed solutio

VOL 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 137

VL—J OVERCOMING COMPREHENSION BARRIERS IN THE
o ASPECTJ PROGRAMMING LANGUAGE

The ajc compiler: The result with the ajc compiler differs from what is expkdhin AspectJ
Language Guidand was expected only by one of the participants. We obshkevéotlowing
output after compiling the program with the ajc compiler:

Accessed(accessorCl): get(int Cl.x)
Modi fied(mutatorCl): set(int C2.x)
Modi fied(mutatorC2): set(int C2.x)

It seems that for primitive types, reasoning about field asée based on the exact class
where the field is defined. For field modification pointcut hegre checking is based on the
class where the field is defined or whose parent has the fieluta@ii The above output seems
to contradict what is specified in tiespectJ Language Guide

The solution previously discussed in Paragraph The abc benipapplicable when using
the ajc compiler and the result is as following:

Accessed(accessorCl): get(int Cl. x)
Modi fied(mutatorC2): set(int C2.x)

The above result is interpreted as one accessiofclassCl, and one modification of in
classC2, which is different from the result previously discusse®aragraph The abc compiler.
Regarding the number of accesses and modifications, the nestdhes with our expectation.
However, there seams to be a conflict between the two corapégarding the place where the
access is performed.

Currently, changing the type of the instance variabl® a user defined type, however,
results in different behavior from the one observed with dbe compiler. We observe one
modification and one accessoboth in clas<Cl.

Overall we think that field access and modification should beudchented better in the
literature in order to improve the understanding of prograaders.

Purpose of initialization

Our intent is to observe the behavior of initialization gout in AspectJ. The result of all above
mentioned cases is that AspectJ follows also Java spemficail herefore, our intuition in
this case is also based on Java specification. In Java, aislas8alized by invoking static
initializers and initializers for static fields of the clad3efore the class is initialized, its direct
superclass is initialized, but not the interfaces implet@érby the class (if any). In the same
manner, the superinterface of an interface does not neeglitotlalized when the subinterface
is initialized [Gosling et al., 200b Consider the class diagram on Figdrand the following
definitions:

138 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 6

5 CASES: INTENT AND BEHAVIOR C}#_I

Class1 Interface1

[T

Class2 |- - {>{Interface?

Figure 4: Class diagram - purpose of initialization.

public class Demo {
public static void main(String[] args){
Interface2 ¢c= new Cass2();}}

public aspect A {
pointcut P_Init():
initialization(*.new..)) && !'within(A);
before():P_Init(){...}}

One third of the participants expected the following rebaked on the fact that thet er f acel
andl nt er f ace2 will not be initialized (according to the above discussion)

initialization(dassl())
initialization(Cass2())

This corresponds to initialization of supercl&sass1, followed by initialization ofC ass2
itself. Referring to theAspectJ Language Guidewever,i ni tial i zati on join point captures
call to constructor through the keywondw, and invocation of non-static initializers of super-
classes and superinterfaces. There are few rules regaitkengrder of initialization within
inheritance hierarchy chain:

e A supertype is initialized before the subtype.
e A superclass is initialized before superinterface.

e Initializers are executed once.

The ajc compiler In what seems to be in contradiction with tAspect] Language Guide
after running the program with the ajc compiler, we obseedollowing result:

initialization
initialization
initialization
initialization

G assi())
O ass2())
Interface2())
Interfacel())

—~ o~~~

Note thatC ass2 is initialized before the initialization of its superintaces. In addition,
it seems thatnt erf ace? is initialized beford nterfacel. Both observations indicate that the
above rules are not followed by the ajc compiler.

VOL 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 139

VZ/—J OVERCOMING COMPREHENSION BARRIERS IN THE
o ASPECTJ PROGRAMMING LANGUAGE

The abc compiler Similarly, the abc compiler provides the following output:

initialization(Cassl())
initialization(dass2())
initialization(Interfacel())
initialization(lnterface2())

In this case the order of initialization of interfaces feltothe above rules, but stil ass2 is
initialized before the initialization of its superintectss which seems to contradict thepectJ
Language Guide

Overall, it is important to note that initialization in Jagadi nitial i zati on pointcut in
AspectJ are two different concepts, which meansithiati al i zat i on pointcut in AspectJ does
not capture the initialization such as defined in Java. Thezein order to capture initialization
as defined in Java, one should useti ci ni tial i zati on pointcut.

6 RELATED WORK

In [Barzilay et al., 200fthe authors argue about certain “unintuitive aspects” gfféctd. They
observed certain unexpected results with AspectJ (verkibri) regarding the semantics of
cal | andexecution pointcuts and proposed alternative semantics. Their gasens and
guidelines can not be applied to the current version of Alspéc5.2). The authors showed
that for matching aal | pointcut the method should be defined in the specific clagge(in
itance is not a sufficient condition). In Sectiérhowever we explain that inheritance is now
enough. Also, for matching axecut i on pointcut the authors explained that the method should
be defined or overridden, whereas in Secbame show that currently a signature is enough.

In [Breu, 200% the author introduces an aspect mining tool called DynAMvERich uses
Aspectexecut i on pointcut for trace generation. The authors mentions alfmutrtcapability
to trace system methods. In Sectidwe provided a more detailed explanation for call and
execution of system methods.

7 CONCLUSION

In this article we addressed the comprehensibility prgpeftthe AspectJ programming lan-
guage as a notable representative of AOP technology, hgaimgd an increasing acceptance
both in industry as well as in academia. There seems to be iffepasht issues that affect the
comprehensibility property of AspectJ: The first is a contietween the two different imple-
mentations, ajc and abc. The second is the conflict betweert thk two implementations
seems to have intended and what program readers seem td.eWeewentified cases where
the provisions of the language do not seem to be intuitivack bf detailed documentation. We
provided a reasoning in cases where the behavior does nuottedee obvious for the partici-
pants which may result in lack of comprehension and also rfiegtdhe correctness of systems.
Programmers should be careful when writing AspectJ programil in some cases, should take

140 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 6

7 CONCLUSION G’VL—/

into consideration the semantics of the underlying languadava. Finally, we feel that by
providing more clarity on some subtle cases, the underataliy property as well as the usage
of the AspectJ programming language can be increased evablg. We also feel that lessons
learned from this experience can be beneficial to languasgjgmiers and practitioners alike.

ACKNOWLEDGMENTS

We would like to thank Therapon Skotiniotis for his commethiising the preparation of this
article.

REFERENCES

[Barzilay et al., 2004] Barzilay, O., Feldman, Y. A., Tyszberowicz, Sd &ehudai, A. (2004). Call
and Execution Semantics in AspectJ. Aroceedings of the'8 AOSD Workshop on Foundations of
Aspect-Oriented Languages (FOAL)

[Breu, 2005] Breu, S. (2005). Extending Dynamic Aspect Mining withiStaformation. InProceed-
ings of the §' IEEE International Workshop on Source Code Analysis and Manipul48GAM)

[Colyer et al., 2004] Colyer, A., Clement, A., Harley, G., and Webster, 2004). Eclipse AspectJ:
Aspect-Oriented Programming with AspectJ and the Eclipse Aspect] Pewehd Tools Addison-
Wesley.

[Dijkstra, 1976] Dijkstra, E. W. (1976)A Discipline of ProgrammingPrentice Hall.

[Elrad et al., 2001] Elrad, T., Filman, R. E., and Bader, A. (2001). Asgxiented Programming:
Introduction. Communications of the ACM4(10):29-32.

[Gosling et al., 2005] Gosling, J., Joy, B., Steele, G., and Bracha, G5J20he Java Language Speci-
fication Addison Wesley, 8 edition.

[Hilsdale and Hugunin, 2004] Hilsdale, E. and Hugunin, J. (2004). i¢&lWWeaving in Aspect]. In
Proceedings of the'8 International Conference on Aspect-Oriented Software DevelopmESDA

[Kiczales et al., 2001] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten,Rdlm, J., and Griswold,
W. G. (2001). An overview of AspectlLecture Notes in Computer Scien@872:327-355.

[Kiczales et al., 1997] Kiczales, G., Lamping, J., Menhdhekar, A., Ma€dalLopes, C., Loingtier,
J.-M., and Irwin, J. (1997). Aspect-Oriented Programming.Ptaceedings of the 11 European
Conference on Object-Oriented Programming (ECOQOP)

[Kienzle et al., 2003] Kienzle, J., Yu, Y., and Xiong, J. (2003). On Cositmn and Reuse of Aspects.
In Proceedings of the™ AOSD Workshop on Foundations of Aspect-Oriented Languages (FOAL

[Lorenz and Kojarski, 2006] Lorenz, D. H. and Kojarski, S. (200&ature Interaction in AspectJ 5. In
Proceedings of the'SAOSD Workshop on Software-engineering Properties of Languagésfuct
Technologies (SPLAT)

[Masuhara et al., 2002] Masuhara, H., Kiczales, G., and Dutchyn2@?2). Compilation Semantics
of Aspect-Oriented Programs. Rroceedings of theS1AOSD Workshop on Foundations of Aspect-
Oriented Languages (FOAL)

VOL 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 141

\ VL—J OVERCOMING COMPREHENSION BARRIERS IN THE
o ASPECTJ PROGRAMMING LANGUAGE

[Parnas, 1972] Parnas, D. L. (1972). On the Criteria to be Used inDpasing Systems into Modules.
Communications of the ACM5(12):1053-1058.

[Penta et al., 2007] Penta, M. D., Stirewalt, R. E. K., and Kraemer, E7(2@esigning your Next Em-
pirical Study on Program Comprehension.Proceedings of the 15IEEE International Conference
on Program Comprehension (ICPC)

[The Aspect] Team, 2006] The AspectJ Team (2006). The Aspectliage Guide.

ABOUT THE AUTHORS

Venera Arnaoudovais a graduate research assistant at the Department
of Computer Science and Software Engineering of Concordiadusity,
Canada. She can be reaches _arnaou@encs.concordia.ca

Laleh Mousavi Eshkevari is a PhD student and research assis-
tant at the Department of Computer Science and Software Engi-
neering of Concordia University, Canada. She can be reached at
|_mousa@encs.concordia.ca

Elaheh Safari Sharifabadiis a graduate research assistant at the De-
partment of Computer Science and Software Engineering of @diec
University, Canada. She can be reacheel safari@encs.concordia.ca

Constantinos Constantinidesis an Assistant Professor at the Depart-
ment of Computer Science and Software Engineering of Coreaidi-
versity, Canada. He holds an MS degree in Computer Sciencethem
New York Institute of Technology and a PhD degree in Computer S
ence from the lllinois Institute of Technology. He can becread at
cc@encs.concordia.ca

142 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 6

mailto:v_arnaou@encs.concordia.ca
mailto:l_mousa@encs.concordia.ca
mailto:e_safari@encs.concordia.ca
mailto:cc@encs.concordia.ca

