
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2008

Vol. 7, No. 4, May-June 2008

J. Leslie Keedy, Klaus Espenlaub, Christian Heinlein and Gisela Menger: “Security and Pro-
tection in Timor Programs”, in Journal of Object Technology, Vol. 7, No. 4, May-June 2008,
pp 123-138 http://www.jot.fm/issues/issue_2008_05/article3/

Security and Protection in Timor Pro-
grams

J. Leslie Keedy, Klaus Espenlaub, Christian Heinlein and Gisela
Menger, University of Ulm, Germany

Abstract
Timor offers a wide variety of security and protection features which are not avail-
able in other programming languages. A basic capability mechanism allows access
to the methods associated with a Timor persistent file or a local internal object to be
selectively controlled. A general qualifier mechanism allows arbitrary checks to be
programmed both before methods are invoked and when they attempt to invoke
other methods. This enables mechanisms such as access control lists, capability
revocation lists and password checking to be applied to some or all the method in-
vocations on an object, and can also be used for example to encrypt parameters.
Since such qualifiers can be arbitrarily programmed they can also easily provide
rule-based access controls. Mechanisms are also provided to allow objects with
which users entrust their information to be confined. Finally, it is possible to program
authentication objects which can provide arbitrary checks to establish the identities
of users as they log in.

1 INTRODUCTION

A key issue in any persistent system is the protection from misuse of information
stored in persistent objects. This is especially true for Timor, as one purpose of the
language is to provide an environment which allows database systems to be supported
in an object oriented and component oriented manner. Hence Timor provides a num-
ber of protection mechanisms which are not present in other programming language
designs.

Timor programs store information in persistent file objects. These are persistent
objects which in principle correspond to files in conventional systems, except that
they are defined in accordance with the information hiding principle to be accessible
only via methods associated with the type of the file. Internally such a file can contain
local objects, which correspond loosely to objects in a conventional object oriented
program, and are also defined in accordance with the information hiding principle.

Because a file object is accessed via its methods it can serve not only as a reposi-
tory of information, but also as a program or as a subroutine library. Hence Timor has
no special concepts of program, subroutine library or similar. The Timor concept of
persistent objects is described in detail in [7].

 SECURITY AND PROTECTION IN TIMOR PROGRAMS

124 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

Activity in a Timor environment occurs via threads, which are stored in persis-
tent process objects [8]. A persistent process object, which may have multiple threads
that can be dynamically created and deleted, can persist between logouts and logins of
its associated user, as will be described in more detail below. Threads are organised
according to the in-process (procedure oriented) model [14, 16]. In the Timor envi-
ronment this means that an active thread of a process can invoke methods of different
file objects as procedures, with parameters passed and values returned on the thread's
stack. Inter-file linkage is stored in the process object with which the thread is associ-
ated. There is no process or thread implicitly associated with a file object. File objects
located at remote computers can be accessed in the same way as file objects on the
local node, via invocations of their methods. The semantics of such calls are identical
and the programmer need not be aware of the fact that the file object which he is ac-
cessing happens to be on a remote computer. The SPEEDOS emulator, which forms
part of a Timor run-time environment, is responsible for hiding the differences. This
emulates certain aspects of a SPEEDOS operating system environment [1] for Timor
programs which are executed on systems with conventional operating systems.

This paper describes the protection mechanisms available for Timor programs.
These mechanisms are uniformly available for protecting file objects and the local
objects which can exist within them. Section 2 provides a general discussion of pro-
tection principles, in particular the concepts of access control, capabilities, access con-
trol lists, confinement of information; it concludes by emphasizing the importance of
being able to identify subjects and objects uniquely. In section 3 the kinds of unique
identifiers available to Timor programmers are listed and discussed. Section 4 pre-
sents the Timor capability concept. Section 5 briefly outlines the idea of qualifiers,
showing how they can be used to implement a variety of protection mechanisms, in-
cluding access control lists and the revocation of capability access rights. Section 6
describes various mechanisms for solving the confinement problem. In section 7 some
issues related to the control of untrusted qualifiers are discussed. Section 8 describes
how users of Timor programs can safely authenticate themselves to their persistent
processes. The paper concludes with indications of related work in section 9 and a
short conclusion in section 10.

2 SOME PROTECTION PRINCIPLES

Control over access to information can be viewed technically as falling into two basic
categories:

• control via access rights (classically defined in Lampson's access control ma-
trix [13] but possibly also defined in terms of access rules, cf. [2]), and

• the confinement of information.
Although the first case is relatively well understood, existing operating systems are
frequently inadequate in their provision of such access controls. The second case is
not so well understood and creates very serious problems in existing systems. Pro-
gramming languages frequently provide no mechanisms for controlling access in ei-
ther form.

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 125

Direct Access Controls: Lampson's Matrix

Lampson's matrix provides a neutral representation of access rights control defined in
terms of a set of subjects (e.g. users, processes, programs), a set of objects (e.g. files,
programs, memory segments) and for each subject-object pair a set of access rights.
Because in a typical multi-user operating system or database system

• there may be very many subjects and objects,
• most users have no access to most objects, and
• subjects and objects are dynamically created and deleted quite frequently

such a matrix is typically very sparse and frequently changing, so that it does not
make sense to implement an abstract access matrix as a two dimensional array. Two
fundamental implementation possibilities arise, representing two lower level abstrac-
tions of the matrix.

A capability list (CL) is an abstract implementation whereby a set of <object, ac-
cess rights> pairs is associated with each subject. If a subject has no access according
to the access matrix, his CL does not need to contain an entry for the object in ques-
tion. Each entry in a CL is known as a capability.

Alternatively an access control list (ACL) is an abstract implementation whereby
for each object there is a set of <subject, access rights> pairs. Where a subject has no
access to a particular object in the matrix, the ACL does not need to contain an entry
for the subject in question.

Each of these abstractions has an analogy in real life. A capability list has similar
properties to a bunch of keys on a key ring, where each key gives access to a room in
a building. The deciding factor for access to a room is whether the subject has a key.
The corresponding analogy for an ACL is a list showing which subjects are permitted
to enter particular rooms in the building, where the building's doorkeeper takes indi-
viduals to rooms which they are permitted to enter.

Just as a key does not need to be on a key ring to be useful, so a capability can be
useful without being held in a list. Hence a capability can in OS design be regarded as
a separate entity which may but need not be held in a CL. On the other hand the con-
cept of an entry in an ACL as an independent entity is not so useful, and there is no
corresponding independent concept in ACL-based operating systems.

Both abstractions can be efficiently implemented, because they do not require en-
tries for the cases where no access is permitted. However, both potentially have dis-
advantages. A capability list (or an individual capability), because it is associated with
a subject, has a revocation problem: how can access rights, once granted, be with-
drawn? (How do I get a key back from someone to whom I have distributed it, if he is
unwilling to give it up?) In an ACL based system revocation is not a problem: the
owner can simply remove or change the entry in the ACL, because this is associated
with his object, not with the subjects.

ACL based systems can have a different problem: how can a subject express his
right to access an object when he cannot name/find the object? (This leads in a system
such as Unix to the situation where users typically browse through directories, and
may thereby obtain information about objects to which they have no access.)

 SECURITY AND PROTECTION IN TIMOR PROGRAMS

126 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

In practice some systems combine the two techniques. For example in a hotel the
reception clerk might consult a list (ACL) to determine whether a potential guest
should have access to a room and then hand him a key to the room (i.e. an individual
capability).

Rule Based Access: the Access Rule Model

Implementations of Lampson's matrix are often insufficient to represent the access
controls required in a real system. Some implementations (e.g. Unix) place restric-
tions on the naming of subjects, forcing them to be grouped into inappropriate catego-
ries. But even more significant, the control of access rights often needs to be coupled
with arbitrary rules for governing access. For example an employer might want to im-
plement the access rule: "Employees [the subjects] can only access information in file
X [the object] between 8 am and 6 pm [access rule]" (possibly with a list of excep-
tions to the rule and maybe also with a control rule that accesses should be monitored
and recorded in a logging file).

Such rules can be expressed using the "access rule model". According to this
model [2] an access rule takes the form:

condition: s → o.ar

with the meaning that a subject s has the access rights ar for the object o if the boo-
lean condition evaluates to true. Lampson's matrix is a special case thereof:

true: s → o.ar

By using the quantifier ∀ in conjunction with subjects, access rights and/or objects, a
single access rule can neatly express many fields of Lampson's matrix. Thus

∀S: S → Spooler.print

gives all subjects the right to print using the Spooler object. Similarly the access rule
∀O: Superuser → O.read

gives the Superuser read access to all objects in the system. The access rule
∀AR: Smith → MyFile.AR

gives Smith all access rights to MyFile.
With sets and the operation ∈ on sets, the rules can be used to discriminate more
finely:

∀x ∈ BankTellers: x → Account.deposit

More complex conditions can be expressed by using boolean operators in the condi-
tions:

∀x ∈ BankTellers ∧ ¬ Account.overdrawn: x → Account.withdraw

More powerful rules can be formulated by introducing predicates, e.g. confined and
confined_to in order to express the need for confinement (see next section).

The access rule model has the advantage that it matches the OO paradigm, by in-
terpreting the general notion of object as an OO object, and the access rights as the
right to invoke methods. Arbitrary conditions can be programmed, provided that the
language offers a mechanism for executing such code to check whether a method can
be invoked. We shall see in section 6 that this proviso is fulfilled in Timor in the form
of qualifying types with bracket methods.

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 127

Confinement of Information

The confinement problem is concerned with ensuring that an object or process, which
itself has legitimate access to information (e.g. a spooler with access to information to
be printed), cannot misuse this access by providing unauthorised third parties indi-
rectly with access to this information. In many, but not all, cases the issue behind con-
finement is that the code of programs or objects to which information is passed to per-
form a service is untrustworthy, either because the programmer of the implementation
has introduced deliberate "errors" which are to his advantage or to the advantage of a
third party, or because the code has been "infected", e.g. by a virus.

Identifying Subjects and Objects

In order to achieve adequate protection it is important to be able uniquely to identify
the subjects who exercise access rights and the objects on which they are exercised.
This is not as trivial as might first appear. There are several difficult issues.

The first concerns the concept of uniqueness as such. In many operating systems
and programming languages identifiers are provided for subjects and/or objects which
are not unique in the sense that they may be re-used over time. This can of course lead
to confusion and errors, and to misuse by hackers. One (but by no means the only)
root of this problem in OO environments used with conventional operating systems is
that the systems are not normally persistent. For example each time a user logs in, the
operating system creates a new process for him which has a non-unique identifier. In a
persistent system, this issue can be resolved by having persistent processes/threads
which are re-used by a user whenever he logs in (see section 8). In such a system
these processes/threads can retain the same identifier over many user sessions. The
important issue then becomes: how can such processes be associated with the right
users? This issue will be discussed in section 8.

A second significant issue is the ability to make distinctions with respect to
who/what is intended as the subject of an operation. There are at least three possibili-
ties:

1. The user may be the subject who needs to demonstrate that he has an access
right. For example User A might give User B the right to read a file F.

2. Individual objects might need to demonstrate a right to invoke another object.
For example only the code of my text file objects might have the right to read
my preferences file object.

3. Objects of a particular type or objects with a particular implementation might
(or might not) have the right to access a particular object. For example, I might
decide that my file objects should never be accessed by other objects which
have code produced by a particular software house.

In the following sections we describe the facilities available in Timor to handle the
protection issues discussed in this section.

 SECURITY AND PROTECTION IN TIMOR PROGRAMS

128 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

3 UNIQUE IDENTIFIERS

As indicated in section 2, systems which aim to provide a satisfactory level of protec-
tion must be in a position uniquely to identify subjects and objects. All global identifi-
ers in SPEEDOS are unique world-wide and over time.

There are two standard types GlobalID and LocalID. These allow unique iden-
tifiers to be stored and compared.

The type GlobalID supports identifiers which can be used globally. Identifiers
of this type define users, their processes and their persistent file objects. They can be
used globally to identify particular users, objects and processes. The global identifier
of a user is the identifier of the first persistent process which is created for him. If he
deletes this process he ceases to be a user.

Not all global identifiers can be obtained from within a Timor program. Some of
the identifiers which are available are accessible in Timor programs via the following
pseudo variables:

Pseudo variable Returns the global identifier of the

processID current process

processOwnerID owner of the current process

fileID current file object

fileOwnerID owner of the current file

implID code implementation of the currently executing code

implOwnerID owner of the current code implementation

callingFileID file having directly called the current file

callingFileOwnerID owner of the calling file object

callingImplID code of the implementation which called the current file

callingImplOwnerID owner of the calling code

Each global object is marked with the identifier of the user which created it, and is
subsequently known as its owner. (Ownership can be changed by mechanisms pro-
vided in SPEEDOS, but the details of this are not relevant to this paper.) Notice that a
single owner operator with an operand which defines a GlobalID would be a risk to
security in that it would allow users to establish the owner of any arbitrary object
world-wide! Hence owners of objects can only be established via pseudo variables
which are relevant to the current protection environment of a program.

An implID is the global identifier of the actual program which has been used to
implement the currently executing code or that of the file or local object which in-
voked it.

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 129

The type LocalID supports identifiers which can only be used within the context
of a particular global object or process to identify constituent objects or threads. The
significance of this two tier identifier system is discussed in detail in [7]. Some local
identifiers are accessible in Timor programs, via the following pseudo variables:

Pseudo variable Returns the local identifier of the

threadID current thread

objectID current local object

callingObjectID local object which directly called the current object

Since threads and local objects are constituent parts of processes and files they are
owned by the owner of the process or file of which they are a part.

The uniqueness of GlobalID identifiers over time and space is organised by
SPEEDOS (or the SPEEDOS emulator), while the uniqueness of LocalID identifiers
(within a global object) is guaranteed by the local Timor runtime system. Some fur-
ther global and local identifiers will be introduced after we have discussed qualifiers
in section 5.

Because Timor rigorously adheres to the in-process model, there is no pseudo
variable which returns an identifier for a "calling process" or "calling thread".

4 THE TIMOR CAPABILITY CONCEPT

At the programming language level a capability based approach to access control is an
appropriate form of protection, because it reflects the idea that an object can be refer-
enced if a pointer (variable) for it is within the current addressing scope. In this sense
Timor references for local objects and capabilities for file objects (and thread refer-
ences/process capabilities) can be considered as examples of the more general capa-
bility concept.

Timor references and capabilities can be restricted. A restricted reference or ca-
pability provides access to only a subset of the methods of the object assigned to the
variable (see [7, 9]). In this sense each reference or capability has an associated set of
access rights.

This provides the basis for a very powerful capability system in the sense that ob-
jects can be defined and protected in terms of the semantics of individual user appli-
cations. For example a bank account object might be defined to have semantic meth-
ods for making deposits and withdrawals, for authorising overdrafts, for accumulating
interest, etc. and the right to invoke such methods (on an individual basis) can be pro-
tected using restricted references or capabilities as appropriate.

At the level of file objects, which in Timor are only accessible by invoking their
methods, this means that a much finer grain of semantic protection is available than is
found in conventional operating systems, which support access controls for files pri-
marily in terms of basic operations such as read, write and/or execute.

 SECURITY AND PROTECTION IN TIMOR PROGRAMS

130 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

In Timor the same kind of semantic access controls can be applied to local ob-
jects within a file (by restricting references). Such a facility can provide a high degree
of protection e.g. for database objects.

5 THE TIMOR QUALIFIER CONCEPT

It is sometimes argued that a capability should be the necessary and sufficient condi-
tion to guarantee access to an object (e.g. [15]). This view fits nicely with the fact that
in most systems it is difficult to revoke access rights provided in capabilities. How-
ever, it is not the Timor view. Timor provides a quite different concept (known as
qualifying types), which inter alia allows such revocation to be achieved. Qualifying
types are described in more detail in [4-6, 9, 10]. The basic idea is that a qualifier (an
instance of a qualifying type) can be associated with another object (the target). When
a client object invokes a method of the target object a call-in bracket method of the
qualifier object "catches" the invocation (see Figure 1).

body

method
return

method
invocation Target

object

Figure 1: A Testing Bracket Method

bracket
return

Client
object

prelude;
if (test) body
else ...;
postlude

Qualifying
object

i

It executes prelude code which can, for example, carry out any arbitrary test to decide
whether to use a special body statement and so allow the call to proceed (or not).
Since a qualifier is a separate object it can have its own state (and normal instance
methods for reading and changing this). A qualifier's state can be used to store infor-
mation needed, for example to check whether the capability access rights used to in-
voke the target object have been revoked by its owner1.

The information held in the state of a qualifier might for example take the form
of a "revocation list", i.e. a negative ACL. With this scenario it is a simple matter for
the owner of a target object (either at the local or object level) to revoke access which
he has granted via a reference or a capability by associating with the target a qualifier
containing a list of (unique identifiers for) forbidden subjects which the bracket
method can examine to determine whether the caller's access has been revoked.

Alternatively the list might be organised as a "positive" ACL, i.e. containing a list
of subjects who are permitted to call the target. Other subjects, even if they have a
reference or a capability, are not allowed to proceed.

Which objects are qualified can be determined on an individual basis (e.g. some
objects of a type may be qualified while other objects of the same type may not be). It
is possible to add qualifiers to an already existing object. Different target objects (of
the same or different types) might be qualified by a single qualifier or by different
qualifiers of the same or different types. Hence several objects might be protected by
the same ACL or each might be individually protected by a separate ACL.

1 or of course by some other subject with access to the instance methods of the qualifier.

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 131

Which invocations of an object are caught by bracket methods depends on how
the latter are specified. A bracket method can be defined to qualify individual meth-
ods of a type, or of a view (a set of methods designed to be integrated into many
types) or it can qualify methods which fall into a particular category (e.g. all the op or
all the enq methods2). Since op methods (operations) are instance methods which po-
tentially change the state of the object and enq methods (enquiries) are instance
methods which cannot change the state of the object, the designer of a qualifying type
can distinguish between reader methods and writer methods. This allows him to de-
fine protection in terms of reading and/or writing, as is commonly needed in protec-
tion environments.

Much finer access controls can be programmed in a qualifier, e.g. using bracket
methods which with the aid of a further pseudo variable can check whether a particu-
lar method can be invoked (i.e. selective revocation of individual access rights) or
which demand a password before access is granted, etc. Any arbitrary check can be
programmed into a qualifying type and its bracket methods, allowing most access
rules which might be defined using the Access Rule Model (see section 2) to be im-
plemented.

Qualifiers (if they are created as file objects) can be used to control access to file
objects or (if they are created as local objects) to control access to the local objects
within a file.

Because a qualifier which executes a body statement is not the "real" invoker of
its destination, programmers both in the qualifiers and target objects need to be able to
distinguish between qualifiers and normal objects when obtaining unique identifiers.
Hence some further pseudo variables are provided. Because several qualifiers can be
placed between a caller and its target, it must be possible to cycle through a list of
qualifiers. Because the aim of this paper is to enunciate principles rather than provide
details, we leave the latter to the reader's imagination.

6 CONFINING OBJECTS

Unfortunately, not all access control rules can easily be implemented using the
mechanisms described so far. In particular, the problem of confining information is in
some cases easy to express informally (or more formally with the access rule model
[2]), but is by no means easy to implement in conventional systems.

For example, the users of an operating system frequently need to invoke a spooler
module to print their files. But how can they guarantee that the spooler, which has le-
gitimate access to the information in the file, will not make a secret copy which can be
accessed by an unauthorised third party? With conventional means it is almost impos-
sible in a straightforward manner to confine a spooler (or editor or other service pro-
gram) such that it is guaranteed not to release information entrusted to it in good faith.

2 All the instance methods of a type must be explicitly defined as op or enq.

 SECURITY AND PROTECTION IN TIMOR PROGRAMS

132 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

Confinement Control by Call-out Bracket Methods

In Timor programs some simple forms of confinement can be implemented using
bracket methods. So far only call-in bracket methods have been mentioned, but Timor
also supports call-out bracket methods, i.e. bracket methods which are activated when
the target with which their qualifier is associated invokes a method of some other ob-
ject. Figure 2 shows the relationship between call-in and call-out brackets. A qualifier
may have one or both kinds of bracket methods (cf. [10]).

call

method
return

method
call

 call-out
bracket return

method
call

Figure 1: A Qualifier with Call-in and Call-out Bracket Methods

 call-in
bracket return

Client
object

body

method
return

Target
object

prelude
body(...)
postlude
(call-in
bracket)

prelude
call(...)

postlude
(call-out
bracket)

Call-out
object

Qualifying object

Just as a call-in bracket can determine whether to invoke a target method, so a call-out
method can determine whether an executing object can invoke other objects. Whereas
for a call-in bracket it is generally useful to determine which subject is calling, in a
call-out bracket method it can be useful for confinement purposes to determine what
object is being invoked by the object which it is qualifying. This information (which
might be formulated in terms of the called object as such, or for example the code im-
plementing it or the owners of either of these) can be obtained in a call-out bracket by
using further pseudo variables.

It is thus possible to program a call-out bracket method to determine whether a
target may invoke methods of some specified object(s), or pass particular information
or capabilities to another object or list of objects. This might be achieved for example
by checking a list of forbidden (or permitted) destination modules – or their owners,
or modules with specific implementations or implementations from specific software
houses, etc. – stored in the state of the qualifier.

Confinement Control by Unsetting Confinement Permissions

Call-out bracket methods allow information to be confined in terms of arbitrary rules,
but only on the basis of two relatively naive assumptions, first that the subject wishing
to confine the information has control of the object to be confined (i.e. has the right to
associate a qualifier with it), and second that it is adequate to block a method invoca-
tion entirely. Unfortunately neither of these assumptions need be true.

For example a capability for "my" file can legitimately be needed by an editor
that provides a text editing service which I would like to use. But I am not authorised
to add a qualifier to the editor to ensure that it does not pass on the contents of my file
to a third party (or secretly print it on a printer at some remote location of which I am
not aware, etc.).

The other problem is that even if I could prevent a method invocation, how can
the editor function properly if it is not permitted to invoke subsidiary objects to assist
it, e.g. a dictionary object or an object in which my editing preferences (e.g. my pre-
ferred font, my styles, etc.) are stored.

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 133

These examples show that confinement is a non-trivial problem, and most sys-
tems have no adequate solutions. Following ideas formulated for confinement control
in the SPEEDOS operating system (which are described in greater detail in section
6.8.3 of [1]), the Timor run-time environment provides a relatively simple set of "con-
finement permissions" which in effect allow the caller of a method selectively to
switch off particular permissions and so restrict the operations which the called object
can carry out. These include the possibility of switching off the called method's right
to modify

• its own state (and hence for example preventing it from persistently storing in-
formation which its caller wishes to pass as confined information) and/or

• the state of its input parameters (thus preventing it from passing confined in-
formation back to its caller)

and/or to
• return values.

More drastically it is also possible to
• forbid calls entirely or
• forbid calls to objects which have state variables.

All these measures can be applied separately in terms of a (primary) call to a target
object and/or in terms of secondary calls (i.e. calls from a target to further objects –
which are then automatically applied to further object calls). It is also possible to ap-
ply different secondary confinements to calls which are based on parameters passed to
the primary module and calls based on references or capabilities not known to the user
applying the confinements.

These mechanisms can easily be used for example to permit an editor to access
the file/local object to be edited, a dictionary module and a preferences file (all passed
as parameters) while permitting calls to other objects only on condition that the state
of these objects may not be modified. This condition in effect prevents information
from the file which is being edited from being stored in secret places, where it might
otherwise later be accessed by a third party cooperating with a Trojan horse in the edi-
tor code.

7 CONTROLLING UNTRUSTED QUALIFIERS

More subtle protection problems can arise, especially in relation to the use of qualifi-
ers, e.g. what is to prevent a bracket method itself from secretly accessing methods of
a target object or their parameters? We briefly outline some of the mechanisms avail-
able in Timor which can be used to prevent leakage of information from untrusted
bracket methods.

First, a qualifier is like any other object in that it cannot directly access the meth-
ods of an object (including its target object) unless it has an appropriate reference or
capability for the object. Without such a reference a qualifier can access its target us-
ing only the body statement from within authorised bracket methods.

 SECURITY AND PROTECTION IN TIMOR PROGRAMS

134 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

Second, even in cases where a bracket method can legitimately catch a method
invocation, it can only access parameters being passed to and from its target if (a) the
qualification is for a specific method and (b) the type definition indicates that parame-
ters can be accessed in the bracket method (i.e. the parameters are explicitly listed in
the bracket method definition). Thus any bracket method defined to have parameters
syntactically expressed as (...) has no access to parameter and return values.

Third, even if a bracket method formally has access to parameters it is possible to
ensure that the latter are rendered unintelligible. For example [10] describes how the
same qualifier can be associated with a client object and with the target object which
it invokes, such that a call-out bracket associated with the client object encrypts a pa-
rameter (e.g. defined as a String) and a call-in bracket of the same qualifier decrypts
the same parameter, on the basis of an encryption key stored in the qualifier's state.
One effect of this is that all further bracket methods activated between the encryption
and the decryption can only view encrypted data.

Fourth, there is a run-time check which ensures that a body statement can be
executed only once during the activation of a bracket method, thus ensuring that the
programmer of a bracket method cannot cause a problem akin to replay attacks by re-
peatedly invoking the body statement.

8 USER AUTHENTICATION

The most fundamental security issue in a system is that its active users are who they
claim to be. Here the main problem is to ensure that a hacker cannot impersonate a
genuine user. Unfortunately most current systems are relatively unsafe in this respect
because generally speaking all users of a system have to authenticate themselves in
the same way (e.g. by providing a password) and there is generally a central reposi-
tory of information in the system (e.g. a password file). Consequently a hacker has the
advantages first of knowing how he has to pass the authentication test (e.g. by provid-
ing the right password) and often he knows where to look (e.g. the system password
file) to obtain the authentication information. That the information might be encrypted
may make his task more difficult, but he nevertheless has the advantage of knowing
how he can go about cracking the system.

As described in [8] Timor persistent threads can use a powerful authentication
technique for checking the identities of users as they log in. This technique was first
implemented for the persistent processes in the MONADS system [3] and is also in-
cluded in the SPEEDOS operating system [1]. The basic idea is that when a user logs
out, the thread via which he has been controlling his work persists in a suspended
state. When he logs in again the thread is activated at the point where it was sus-
pended. The user has the freedom to arrange that this re-activation point is in a user-
supplied authentication module that can be programmed to authenticate the person
attempting to login in any way which he chooses.

In this way each user can easily define his own authentication procedure rather
than simply relying on a standard mechanism such as password checking. Hence a
hacker does not know a priori what he has to do to login correctly, nor is there a cen-
tral repository of authentication information which he can attempt to crack. Authenti-
cation modules can be written as normal Timor objects, and in non-SPEEDOS envi-

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 135

ronments are supported at run-time by a SPEEDOS emulator which is part of the
Timor run-time environment.

9 RELATED WORK

The basic protection mechanisms of capabilities and access control lists, as described
in section 2, were formulated many years ago and have been largely ignored in mod-
ern programming languages, which in general scarcely provide any significant pro-
grammable protection features. Similarly conventional operating systems are inade-
quate in terms of their support for protection and security concepts, with the result that
software systems are currently suffering from a severe security crisis.

For this and other reasons the designers of Timor decided to extend the conven-
tional run-time environment by providing Timor programs with the basic features of a
secure operating system environment. This takes the form of an emulator for relevant
parts of the SPEEDOS operating system (assuming that programs are running on a
system other than SPEEDOS itself).

The SPEEDOS system [1] is being developed as a parallel project to Timor, and
has as one of its primary aims the provision of an environment in which its users can
enjoy (and themselves provide components which support) a high degree of protec-
tion. It includes all the features (at the OS level) which are described in this paper. It
is a capability based system which supports the concept of qualifying types (enabling
it to support the revocation of access rights provided in capabilities, ACLs, and any
arbitrary form of protection which the user wishes to provide for checking access to
his file objects). Like Timor file objects, these can only be accessed via methods, and
only then when a suitable capability is supplied. It also has the features described ear-
lier which allow confinement strategies to be implemented by turning off permissions
(see section 6).

Qualifying types have a superficial resemblance to aspect oriented programming
(AOP) [11] in that both allow the behaviour of objects to be modified using separately
programmed "aspects". However both the style of integration into the base program-
ming language and the implementation technique used, for example in AspectJ [12]
have the effect that AOP is far less suitable than Timor for providing protection as-
pects. The main reason for this is that the code and state data of AspectJ aspects are
integrated into objects by modifying the target class. The result is that the aspects do
not have a separate state from the state of their target. Hence even if for example an
ACL were programmed as an aspect, this could not be used to selectively control ac-
cess to some objects of a class or to objects of different classes, and such an ACL
could not be added later to an object.

Finally, because other programming languages do not support a concept of identi-
fiers which are unique over time, they are not in a position to allow subjects and ob-
jects to be uniquely identified for protection purposes.

 SECURITY AND PROTECTION IN TIMOR PROGRAMS

136 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

10 CONCLUSION

As is appropriate in modern globally networked computing environments, Timor pro-
vides a number of powerful protection mechanisms, including capability based protec-
tion for file objects (which are loosely equivalent to Java remote objects), a qualifier
mechanism which can be used to implement access control lists, revocation lists,
password checking, etc. and can enforce any access control rule which can be formu-
lated as an executable algorithm. In addition it can be used to implement some con-
finement policies, while more advanced confinement is also supported through the use
of certain permissions which the user can turn off to enforce particular advanced con-
finement strategies.

Because Timor objects and processes are automatically persistent [7, 8], and
since the protection mechanisms described can function not only at the level of file
objects but also at the level of the local objects which they contain, Timor can be used
not only as an OO programming language but also as an object oriented database lan-
guage, allowing highly protected databases to be developed and used with fine
grained control at the level of the individual objects within the database.

REFERENCES

[1] K. Espenlaub, "Design of the SPEEDOS Operating System Kernel,"
Department of Computer Structures: University of Ulm, 2005, 234 pp.,
http://vts.uni-ulm.de/doc.asp?id=5333.

[2] M. Evered and J. L. Keedy, "A Model for Protection in Persistent Object-
Oriented Systems," Security and Persistence, Proceedings of the International
Workshop on Computer Architectures to Support Security and Persistence of
Information, 1990, Springer Verlag, pp. 67-82.

[3] J. L. Keedy and K. Vosseberg, "Persistent Protected Modules and Persistent
Processes as the Basis for a More Secure Operating System," Proceedings of
the 25th Hawaii International Conference on System Sciences, 1992, vol. 1,
pp. 747-756.

[4] J. L. Keedy, G. Menger, C. Heinlein, and F. Henskens, "Qualifying Types
Illustrated by Synchronisation Examples," in Objects, Components,
Architectures, Services and Applications for a Networked World, International
Conference NetObjectDays, NODe 2002, Erfurt, Germany, vol. LNCS 2591,
M. Aksit, M. Mezini, and R. Unland, Eds.: Springer, 2003, pp. 330-344,
http://link.springer.de/link/service/series/0558/papers/2591/25910330.pdf.

[5] J. L. Keedy, K. Espenlaub, G. Menger, and C. Heinlein, "Qualifying Types
with Bracket Methods in Timor," Journal of Object Technology, vol. 3, no. 1,
pp. 101-121, http://www.jot.fm/issues/issue_2004_01/article1/, 2004.

[6] J. L. Keedy, K. Espenlaub, G. Menger, C. Heinlein, and M. Evered, "Statically
Qualified Types in Timor," Journal of Object Technology, vol. 4, no. 7,
http://www.jot.fm/issues/issue_2005_9/article5/ 2005, pp. 115-137.

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 137

[7] J. L. Keedy, K. Espenlaub, C. Heinlein, and G. Menger, "Persistent Objects
and Capabilities in Timor," Journal of Object Technology, vol. 6, no. 4, May-
June 2007, http://www.jot.fm/issues/issue_2007_05/article3/, 2006, pp. 103.-
123

[8] J. L. Keedy, K. Espenlaub, C. Heinlein, and G. Menger, "Persistent Processes
and Distribution in Timor," Journal of Object Technology, vol. 6, no. 6, July-
August 2007, http://www.jot.fm/issues/issue_2007_07/article2/, pp. 91-108,
2007.

[9] J. L. Keedy, K. Espenlaub, C. Heinlein, G. Menger, F. Henskens, and M.
Hannaford, "Support for Object Oriented Transactions in Timor," Journal of
Object Technology, vol. 5, no. 2, March-April 2006,
http://www.jot.fm/issues/issue_2006_03/article1/, pp. 103-124, 2006.

[10] J. L. Keedy, K. Espenlaub, G. Menger, and C. Heinlein, "Call-out Bracket
Methods in Timor," Journal of Object Technology, vol. 5, no. 1, January-
February 2006, http://www.jot.fm/issues/issue_2006_01/article1/, pp. 51-67,
2006.

[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier,
and J. Irwin, "Aspect-Oriented Programming," ECOOP '97, 1997, pp. 220-
242.

[12] G. Kiczales, E. Hilsdale, J. Hugonin, M. Kersten, J. Palm, and W. G.
Griswold, "An Overview of AspectJ," ECOOP 2001 - Object-Oriented
Programming, 2001, Springer Verlag, LNCS, vol. 2072, pp. 327-353.

[13] B. W. Lampson, "Protection," Proc. 5th Princeton Symposium on Information
Sciences and Systems, 1971

[14] H. C. Lauer and R. M. Needham, "On the Duality of Operating System
Structures," ACM Operating Systems Review, vol. 13, no. 2, pp. 3-19, 1979.

[15] R. M. Needham, "Capabilities and Security," Security and Persistence,
Bremen, 1990, Springer-Verlag, pp. 3-8.

[16] K. Ramamohanarao, "A New Model for Job Management Systems,"
Department of Computer Science: Monash University, 1980.

 SECURITY AND PROTECTION IN TIMOR PROGRAMS

138 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

About the authors

J. Leslie Keedy retired from the position of Professor and Head, De-
partment of Computer Structures, University of Ulm, Germany in
2005, where he previously led the Timor language design and the
Speedos operating system design groups. His email address is
keedy@jlkeedy.net. His biography can be visited at
http://www.jlkeedy.net/biography_short.php

Klaus Espenlaub completed his Ph.D. in Computer Science at the
University of Ulm in 2005. He is currently employed by InnoTek Sys-
temberatung GmbH. His research interests include secure operating
systems, protection mechanisms and computer architecture. His email
address is klaus@espenlaub.com.

Christian Heinlein is Professor for Fundamentals of Computer Sci-
ence and Software Engineering at Aalen University, Germany. In his
research, he has developed "Advanced Procedural Programming Lan-
guages", which are both conceptually simpler and more flexible than
standard object-oriented languages. More information about him and
his work can be found at www.htw-
aalen.de/personal/christian.heinlein.

Gisela Menger received a Ph.D. in Computer Science from the Uni-
versity of Ulm in 2000. She recently retired from the Department of
Computer Structures at the University of Ulm. Her research interests
include programming language design and software engineering.

