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Generic functions and classes typically accept a fixed number of type arguments. How-
ever, generic functions and classes that accept a variable number of type arguments
have proven to be a very useful, even though there is no support for this feature in
C++. Numerous foundational libraries rely on clever template and preprocessor tricks
to emulate such variable-length templates. By several measures these emulations
are inadequate. This paper describes variadic templates, an extension to the C++ lan-
guage that significantly improves existing implementations of widely used C++ libraries
in terms of code size, quality of error diagnostics, compilation speed, and generality.
Furthermore, variadic templates enable new applications, such as type-safe imple-
mentations of functions like printf, and improved support for generic mixin classes.
Variadic templates are part of the upcoming ISO C++ Standard, dubbed C++0x, and
we have integrated variadic templates into the GNU C++ compiler.

1 INTRODUCTION

Many situations call for generic functions that accept an arbitrary number of param-
eters or generic classes that can be instantiated with any number of type arguments.
An example of the former kind is a type-safe, secure version of the printf function
in C. A parametrized class representing tuple objects is an example of the latter
kind. Both of these above scenarios can be supported with variadic templates, an
extension to C++ for types parametrized with a varying number of arguments.

The need for variadic templates in C++ is pronounced. Though not part of C++,
variadic templates are crucial in implementations of many widely-used libraries.
This is possible because of clever tricks with templates (such as the use of many
template parameters with default arguments), often combined with more tricks with
the preprocessor (to effect code repetition for templates with varying numbers of
parameters), that enable a clumsy emulation of variadic templates in today’s C++.
Libraries relying on such emulation include the bind libraries [1, 2] that provide a
form of partial function application for C++, tuple libraries [3,4], libraries generaliz-
ing C++ function pointers [5], and the Boost Metaprogramming Library (MPL) that
enables compile-time computation with types [6]. Apart from the last one, the func-
tionality of these libraries is included in the draft specification of the next revision
of the C++ standard library (see [7]). The above libraries rely on tricks that are
(1) limited in expressiveness requiring, for example, a predefined upper limit for the
length of the template parameter list; (2) expensive in terms of time and memory
needed for compilation; (3) subtle and expert-friendly, difficult to master and use;
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and (4) a nightmare to debug, exhibiting enormous compiler error messages from
simple programming errors.

The built-in variadic templates proposed here can be instantiated with an un-
bounded number of template arguments. Both class and function templates can be
variadic—the latter allowing the definition of functions that can accept any num-
ber of arguments in a type-safe manner. Variadic templates make obsolete the
ugly hacks used in their emulation today. The libraries mentioned above can be
implemented using variadic templates in a significantly more concise manner with
no artificial limits on the number of arguments, placing less burden on the compiler
and producing shorter, clearer error diagnostics. Variadic templates also enable new
uses, such as a type-safe, secure implementation of printf. We show the printf

implementation in Section 3; here we settle for an example of its use:

const char* msg = "%s can accept %i parameters (or %s).";
printf(msg, std::string("Variadic templates"), 100, "more");

The above code compiles and executes correctly with our extensions. In current
C++ the printf call invokes undefined behavior because printf cannot handle
std::strings or other user-defined types. As another example, variadic templates
prove very useful in defining mixin classes, discussed in Section 3.

The compilation model of C++ templates, where a distinct piece of code is gener-
ated for each different instantiation of a template, matches well with variadic tem-
plates. Variadic templates essentially become program generators. Later sections
show how manipulating the variadic template argument lists may require generating
many functions, but C++’s function inlining combined with the instantiation model
can typically coalesce such calls into a single, efficient block of code.

Variadic templates are part of the draft ISO C++ standard [7]. We have im-
plemented variadic templates in the GNU C++ compiler [8]. This language feature
is used within the GNU implementation of the C++ Standard Library and will be
available to users in version 4.3 of the GNU compiler.

2 EMULATING VARIADICS

This section briefly explains the tricks used to emulate variadic templates, and why
these emulations are inferior to a built-in language feature.

C++ class templates with variable-length argument lists can be emulated using a
long list of “extra” template parameters that all have a special default value, e.g.,

struct unused;
template<typename T1 = unused, typename T2 = unused,

/* up to */ typename TN = unused> class tuple;

This tuple template can be instantiated with anywhere from zero to N template
arguments. Assuming that N is large enough, we could instantiate tuple, say, as:
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typedef tuple<char, short, int, long, long long> integral_types;

Of course, this instantiation actually contains N − 5 unused parameters, but it is
possible to “ignore” those extra parameters with tricks in the implementation of the
tuple template, so that objects of the type unused are not stored in tuple objects.

Default template arguments are not allowed in function templates, so emulating
variadic function templates requires a host of overloads. For example, the draft
standard tuple library [7, §20.3] overloads the make tuple helper functions for each
different number of template arguments. Figure 1 shows three of these overloads.

tuple<> make_tuple() { return tuple<>(); };

template<typename T1>
tuple<T1> make_tuple(const T1& t)
{ return tuple<T1>(t1); };

template<typename T1, typename T2>
tuple<T1, T2> make_tuple(const T1& t1, const T2& t2)
{ return tuple<T1, T2>(t1, t2); };

Figure 1: Emulating variadic function templates with overloads.

As mentioned in Section 1, the above emulation is used by many widely-used
foundational C++ libraries. Unfortunately, the emulation leads to a huge amount
of code repetition, very long type names in error messages (compilers tend to print
the defaulted arguments) and very long mangled names. It also sets an upper limit
on the number of variadic arguments, which is not extensible without resorting to
preprocessor metaprogramming [9] (which has its own fixed upper limits).

As an example of the severity of the problems with the emulations, consider the
tuple and function object facilities in the current draft standard library specifica-
tion [7, §20], implemented by many compiler vendors. In the GCC standard library
implementation, excessive compilation times forced reverting the maximum number
of supported parameters from the original twenty to ten—the smallest value allowed
by the draft standard [10]. Still, the code is very slow to preprocess and parse, and
is almost impenetrable to readers. Section 4 demonstrates how variadic templates
drastically reduce compilation times for these libraries.

3 VARIADIC TEMPLATES

Variadic templates are a syntactically lightweight extension to the C++ template
system, using only the existing ellipsis operator “...” and mixing well with existing
template code. A template parameter declared with an ellipsis prior to its name
signifies that zero or more template arguments can “fit” into that single parameter—
such a parameter is referred to as a template parameter pack. For example, using a
template parameter pack the tuple template shown in Section 2 becomes:
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template<typename... Elements> class tuple;

Instantiating tuple as, say, tuple<char, int, string> binds the template param-
eter pack Elements to a list of template arguments whose elements are the types
char, int, and string.

The only operation one can do to a parameter pack is to expand it. To demon-
strate, we add a static constant in the tuple class to tell the length of the tuple:

template<typename... Elements> class tuple {
static const int length = count<Elements...>::value;

};

Here, the Elements parameter pack is expanded into normal template arguments,
and the count template is instantiated as if the contents of Elements were written
out explicitly. For example, tuple<char, int, string>::length is defined as
count<char, int, string>::value.

Access to individual elements of a parameter pack is achieved via template spe-
cialization. The count template has a primary definition (which is never used), and
two specializations:

template <typename... Args> struct count;

template <typename T, typename... Args>
struct count<T, Args...> {
static const int value = 1 + count<Args...>::value;

};

template <> struct count<> { static const int value = 0; };

This template computes, at compile-time, the number of arguments it was instanti-
ated with. The idea is to “peel off” one argument at a time from a parameter pack,
computing the length of the remaining parameter pack recursively, and adding one
to that length. Consider the expression count<A, B, C>::value. Both the primary
template and the first specialization match. In the primary template, Args would
cover all arguments A, B, and C, whereas in the first specialization, Args only covers
B and C as A is bound to the individual template parameter T. The first specializa-
tion is a better match. It computes the constant value by expanding Args to a new
instantiation of count. The generated expression becomes count<B, C>::value,
which again instantiates the first specialization, peeling off B, and generating the
expression count<C>::value, and finally count<>::value, in which case the second
specialization matches and ends the recursive chain of instantiations.

For this to work, we extend the C++’s template specialization rules that decide
when one specialization is a better match than another as follows: A non-variadic
specialization is a better match than a variadic specialization. Of two variadic spe-
cializations, the one where fewer arguments are “covered” by a parameter pack is
a better match. Hence, in the count definition, the first specialization matches for
instantiations with one or more arguments, and is a better match than the primary

34 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 2



3 VARIADIC TEMPLATES

template in those cases. The second specialization only matches for instantiations
with zero arguments, and is the best match in those cases.

Variadic function templates can be called with an arbitrary number of arguments.
A variadic function template is defined by using a parameter pack in the type of the
last parameter of a function template. Similarly to the syntax of template parameter
packs, a trailing ellipsis is required. The definition of the make tuple function serves
as an example:

template <typename... Elements>
tuple<Elements...> make_tuple(const Elements&... elems) {
return tuple<Elements...>(elems...);

}

The types of the arguments to this function are contained in the parameter pack
Elements, and the values of the arguments in the function parameter pack elems.
Note that what precedes the ellipsis in the function parameter list is not a plain
parameter pack Elements, but rather a pattern, const Elements&, that will be
repeated for each type in the parameter pack.

Similarly to template parameter packs, the only valid use for a function parame-
ter pack is to expand it, now in an argument list of a function call. Again, we require
that when expanding a function parameter pack it (or the pattern it is contained in)
be followed by an ellipsis. The body of the make tuple function shows an example:
the elems... expression generates a list of actual arguments to the constructor
of the tuple<Elements...> class. Calling make tuple with, say, two arguments
generates a function identical to the last make tuple overload in Figure 1.

When expanding a template parameter pack or a function parameter pack, we
can also use patterns. For example, the tuple library provides tie functions that
can be used to assign the elements of a tuple into separate variables:

int a; string b;
tie(a, b) = make_tuple(100, string("42"));
// a has value 100, b has value "42"

The way this works is by having tie to construct a tuple that stores references to
tie’s arguments, here a and b. Assignment between tuples is defined as element-
wise assignment, so the desired result follows. Now, however, the element types of
the tuple returned by tie are reference types. We can express this with the pattern
Elements&...:

template <typename... Elements>
tuple<Elements&...> tie(Elements&... elems) {
return tuple<Elements&...>(elems...);

}

We saw above that the access to the elements of template parameter packs is
via recursive template instantiations where the recurring cases, as well as stopping
conditions, are defined as template specializations. In a similar manner, we access
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values in function parameter packs with function template overloads. We thus need
to extend the overload resolution rules analogously to the rules of ordering template
specializations: a matching non-variadic function is a better match than a variadic
function, and between two variadic functions, the one where fewer arguments are
covered by the parameter pack is a better match.

We illustrate the use of function overloading with variadic templates by defining a
simple print operation that accepts any number of function arguments and displays
them using the C++ stream operations. As with the count template, we peel off one
argument at a time and recursively process the remaining arguments; in this case,
however, we print the argument (“current”) at each stage.

void print() { }

template<typename T, typename... Rest>
void print(const T& current, const Rest&... rest) {
std::cout << current;
print(rest...);

}

The essential elements of variadic templates are: declaring template and function
parameter packs with the ellipsis operator; expanding them, again with the ellipsis
operator; using partial specialization to access elements of template parameter packs;
and using function overloading to access elements of function parameter packs.

Tuple types

The current draft of the C++ standard library [7] specifies a tuple template, es-
sentially a generalization of the std::pair to an arbitrary number of parameters.
Implementing tuples in today’s C++ relies on the hacks described in Section 2. With
variadic templates, the implementation becomes fairly effortless.

The notable parts of the implementation, consisting of a primary template and
two specializations, are shown in Figure 2. The primary tuple template is never
instantiated; either the specialization for zero arguments (line 3) or for one argument
and a parameter pack (line 5) is always a better match. The latter of these is the
interesting case—it is the recursive definition that peels off the first argument (Head)
to be stored in the m head member and derives from a tuple containing the remaining
arguments (Tail).

The constructor in line 15, with a function parameter pack as its last parameter,
accepts one argument for each element in the tuple. It initializes the m head data
member and passes all the arguments of the function parameter pack vtail to
the constructor of the base class, which is another tuple, containing all but the
first element. Similar structure is visible in the templated constructor in line 19,
that allows one tuple to be converted to another one, assuming their corresponding
element types are convertible from one to another. The assignment operator (line
23) follows the same pattern.
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template<typename... Elements> class tuple;

3 template<> class tuple<> { };

template<typename Head, typename... Tail>
class tuple<Head, Tail...> : private tuple<Tail...>
{

8 public:

tuple() { }

// implicit copy-constructor is okay
13

// Construct tuple from separate arguments.
tuple(const Head& v, const Tail&... vtail)
: m_head(v), tuple<Tail...>(vtail...) { }

18 // Construct tuple from another tuple.
template<typename... VValues>
tuple(const tuple<VValues...>& other)
: m_head(other.head()), tuple<Tail...>(other.tail()) { }

23 template<typename... VValues>
tuple& operator=(const tuple<VValues...>& other) {
m_head = other.head();
tail() = other.tail();
return *this;

28 }

Head& head() { return m_head; }
const Head& head() const { return m_head; }
tuple<Tail...>& tail() { return *this; }

33 const tuple<Tail...>& tail() const { return *this; }

protected:
Head m_head;

};

Figure 2: A tuple template.
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The tuple template also provides four helper functions, starting from line 30, for
accessing the head and the tail of a tuple. Note that only the head is stored as a
data member. The elements in the tail of a tuple will each be stored as a head of
some tuple. This may seem horribly inefficient, but C++ compilers routinely inline
code that traverses such nested instantiations, making element access to tuple as
fast as referring to any member variable of a class.

Of other functionality the draft C++ standard library requires of tuples, Section 3
showed the make tuple and tie functions; we omit functions for accessing an ele-
ment in a tuple based on an index, as the definitions of those are a bit tedious; and
as a representative of all comparison operators, we show how the equality operator
for tuples is defined:

inline bool operator==(const tuple<>&, const tuple<>&) { return true; }

template <typename T, typename... TTail, typename U, typename... UTail>
inline bool
operator==(const tuple<T, TTail...>& t, const tuple<U, UTail...>& u) {
return t.head() == u.head() && t.tail() == u.tail();

}

Type-safe, secure printf

Many security problems stem from so-called “format string vulnerabilities”, which
exploit the inability of C’s printf implementation to check its format string param-
eter against the actual types of the arguments. Here, we outline a type-safe, secure
printf implemented with variadic templates.

The definition is shown in Figure 3. This printf function accepts, e.g., the
call shown in Section 1. The first printf overload, accepting no arguments besides
the format string, is the base case of the recursive definition. The second printf

overload accepts two or more arguments, the formatting string and one or more
values. In this overload, the function parameter pack args covers all but the first
value. The implementation scans the format string, emitting characters until it
reaches a format specifier. The format specifier is then processed and checked (by
check specifier, shown in Figure 4), which may result in an exception if the format
specifier does not match the argument type. Once the format specifier is known to
be correct, printf outputs the first value, then recursively calls printf again with
what remains of the format string and with the rest of the values obtained by
expanding args. Note that the recursion occurs at compile-time, each nested call
will be to a different instance of the printf template, with one fewer argument
on every round. Note also that we have extended printf with the ‘Z’ specifier,
permitting the display of user-defined types.
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void printf(const char* s) {
while (*s) {
if (*s == ’%’ && *++s != ’%’)
throw std::runtime_error("format string missing arguments");

std::cout << *s++;
}

}

template<typename T, typename... Args>
void printf(const char* s, const T& value, const Args&... args)
{
while (*s) {
if (*s == ’%’ && *++s != ’%’) {
if (check_specifier<T>(*s)) std::cout << value;
else throw std::runtime_error("invalid printf specifier");
return printf(++s, args...);

}
std::cout << *s++;

}
throw std::runtime_error("extra arguments to printf");

}

Figure 3: A simple type-safe, secure printf function.

Mixins and inheriting constructors

Deriving a new class from an existing class is a convenient mechanism to adapt
an existing type to manifest slightly different behaviour. For classes with many
constructors, however, it may be a notable programming task—C++ classes do not
inherit the constructors from their base classes. Often, however, inheriting construc-
tors would be just what the programmer desires: the new derived class may be a
small adaptation of the base class, where the ways of constructing objects remain
unchanged. Alternatively, an adaptation of the construction scheme may be desired,
e.g., adding a parameter or two to each constructor.

Not being able to inherit or adapt constructors from base classes becomes a more
serious problem with mixin composition in C++. One way of implementing mixins
is by inheriting from a template parameter (see, e.g., [11]). In such a design, the
number and argument types of the base class constructors are not known. Consider
for example the following class that can add a location information to any type:

template <typename Base>
class Location : public Base {
int x, y;

public:
Location() : x(0), y(0), Base() { }

};
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template<typename T>
bool check_specifier(const char*& p) {
// process padding, precision information...
switch (*p) {
case ’d’: case ’i’: return is_same<T, int>::value;
case ’e’: case ’E’: return is_same<T, double>::value;
case ’s’: return is_same<T, char*>::value;
case ’Z’: return true; // user-defined
// ...

}
return false;

}

Figure 4: Subroutine of printf that checks the current formatting specifier against
the current argument type, T. The (draft) standard is same template determines
whether two type expressions denote the same type [7, §20.4.5].

We could use it for example to give physical co-ordinates to a class representing
graph vertices:

typedef Location<Vertex> PositionedVertex;

The new class, however, only supports default construction. Whatever other con-
struction schemes the Vertex class may support are not accessible anymore. Vari-
adic templates offer a simple solution for “inheriting” constructors. A single con-
structor definition suffices:

template <typename... Args>
Location(const Args&... args) : x(0), y(0), Base(args...) { }

Note that this solution has a minor deficiency: not all argument types can be for-
warded cleanly through const references: non-constant temporaries of primitive
type, for example, are rejected, and non-constant lvalues will be forwarded to the
Base constructor as constant lvalues. In fact, today’s C++ offers no generic way to
define a parameter type that could accept an object of arbitrary type and forward it
to another function. This problem is addressed with rvalue references [12], another
new feature in the upcoming C++ standard [7]. With rvalue references and variadic
templates, one can forward an arbitrary number of arguments to the base class as
follows:

template <typename... Args>
Location(Args&&... args)
: x(0), y(0), Base(std::forward<Args>(args)...) { }

In the parameter list, && denotes an rvalue reference parameter, which can bind
to either rvalues or lvalues. More interesting from the variadic templates per-
spective is the use of std::forward to forward arguments to the Base construc-
tor. The pack expansion uses two parameter packs—Args and args—which will
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be expanded pairwise to produce an argument list std::forward<Args1>(args1),
std::forward<Args2>(args2), . . ., std::forward<ArgsN>(argsN).

The constructor forwarding arguments to base class constructors is a specific
case of a more general situation: a function forwarding its arguments to another
function, possibly manipulating them in some ways, or adding other functionality.
Using variadic templates with rvalue references, any number of arguments can be
forwarded without introducing additional temporaries or losing the lvalue- or rvalue-
ness of the original argument. The lack of this feature in today’s C++ has long been
the source of ugly hacks in several libraries [1, 2, 13].

Our Location class template permits extension by wrapping the class it is ex-
tending, e.g., Vertex. An alternative approach would be to prepare the Vertex

class to accept a user-defined mixin (such as Location) from which it would derive.
Given that C++ permits multiple inheritance, the Vertex class could even accept
multiple mixins, e.g.,

typedef Vertex<Location, Population, Mayor> City;

We can prepare Vertex to accept many mixins by providing it with a Mixins tem-
plate type parameter pack, which will contain all of the class types from which
Vertex will derive. We can then expand Mixins into separate, public base classes:

template <typename... Mixins>
class Vertex : public Mixins... {
public:
template<typename... Args>
Vertex(Args&&... args)
: Mixins(std::forward<Args>(args))... { }

};

In our extended Vertex class, we use pack expansions for the base classes and base
class initializers of our mixins, the latter of which actually uses three parameter
packs in a single pack expansion (all of which must have the same length). Thus,
the ith argument to the constructor is used to initialize the ith base class. In general,
parameter packs can be expanded anywhere the C++ grammar contains a comma-
separated list. The City type defined above could be constructed as, e.g.,

City bloomington(Location(39.2,86.4), Population(69017),
City bloomington(Mayor("Mark Kruzan"));

Template Metaprogramming

The tuple type developed in Section 3 acts both as a container for (run-time) values
and as a container for types. The latter usage makes a tuple useful in many of the
same contexts as a typelist, used as the primary container for types within the world
of template metaprogramming [14, 15]. A type list is typically constructed using a
LISP-like cons template, e.g.,
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struct null { };

template<typename Head, typename Tail = null> struct cons { };

typedef cons<char, cons<short, cons<int, cons<long> > > > integral_types;

LISP-like cons typelists are relatively easy to extend and manipulate with template
metaprograms. For example, one can easily write algorithms to insert an element at
the beginning of a list (producing a new list), map each element in a list via a given
metafunction, or zip two sequences into a sequence of pairs. The variadic tuple can
work in much the same way, with most of these algorithms requiring only a trivial
amount of code, far less than for typelists. Moreover, the syntax of tuple is more
concise (compare the cons-based definition of integral types to the tuple-based
formulation in Section 2) and, because variadic templates are directly supported by
the language, more efficient to compile.

Inserting a new element at the beginning of a tuple can be achieved with a
simple metafunction push front:

template<typename Sequence, typename T> struct push_front;

template<typename... Elements, typename T>
struct push_front<tuple<Elements...>, T> {
typedef tuple<T, Elements...> type;

};

The map operation on typelists (referred to as transform in [14]) requires a recur-
sive template metaprogram to walk the list, map each value, and build the result.
With variadic templates, this operation can be accomplished with a single non-
recursive template specialization, shown below. The complex-looking instantiation
of the apply template is an invocation of a template metafunction according to
the conventions of the MPL library [14], which uses nested templates inside type
parameters to express template metafunctions rather than the more obvious (but
more limited) template template parameters.

template<typename Sequence, typename F> struct map;

template<typename... Elements, typename F>
struct map<tuple<Elements...>, F> {
typedef tuple<typename F::template apply<Elements>::type...> type;

};

Finally, the zip operation takes two sequences of equal length and produces a se-
quence of pairs. Again, with a LISP-like typelist, one would write a recursive algo-
rithm. With variadic templates, pairwise expansion allows for a concise definition:

template<typename Sequence1, typename Sequence2> struct zip;

template<typename... Elements1, typename... Elements2>
struct zip<tuple<Elements1...>, tuple<Elements2...> > {
typedef tuple<std::pair<Elements1, Elements2>...> type;

};

42 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 2



3 VARIADIC TEMPLATES

We have shown how one can manipulate tuples and typelists, efficiently and con-
cisely, using variadic templates. Section 3 illustrated how one can create tuples from
an arbitrary number of arguments via tie and make tuple. What remains is to take
an existing tuple object (containing run-time values of various types) and break it
apart into separate arguments, one for each run-time value, allowing tuples to serve
as the medium for storing arbitrary sets of statically-typed data. In particular, we
need to define a function apply(f, t) that extracts the values t0, t1, . . ., tN from
the tuple t and passes them to the function f as f(t1, t2, . . ., tN).

The tuple type defined in C++0x [7] provides a get<I>(t) operation that accesses
the I th run-time value in the tuple t. Thus, one could extract all of the run-
time values from the tuple by producing arguments get<0>(t), get<1>(t), . . .,
get<N-1>(t). Thus, the problem reduces to the need to produce a parameter pack
containing the integral values 0, 1, . . ., N − 1, which can be achieved via a template
non-type parameter pack :

template<int... Values> struct int_tuple { };

Given a length N , it is possible to write a simple template metafunction (call it
indices) that constructs a set of indices as int tuple<0, 1, . . ., N-1>. Then,
this index tuple can be used to index into the actual tuple via get, providing access
to all of the run-time values as arguments:

template<typename F, typename... Elements, int... Indices>
inline void
apply(const F& f, const tuple<Elements...>& t, int_tuple<Indices...>) {
f(get<Indices>(t)...);

}

The template non-type parameter pack Indices dictates which elements are picked
out the tuple, and in what order. When Indices corresponds to 0, 1, . . ., N -1,
the tuple’s run-time values will be passed to f in their natural order. However, one
can permute the indices in any way, eliminate or repeat indices, etc., to provide a
different set of arguments to f. In the common case, however, we wish to pass all
of the values in order, which is accomplished by the following definition of f.

template<int N> struct indices;

template<typename F, typename... Elements>
inline void apply(const F& f, const tuple<Elements...>& t) {
apply(f, t, typename indices<sizeof...(Elements)>::type());

}

We assume that indices is a template metafunction returning an int tuple of
indices of length N . The sizeof... operator is a compiler-supported shorthand
that computes the length of a parameter pack. While not strictly necessary (we
illustrated the equivalent count metafunction in Section 3), this operator reduces
the burden of this common operation on both users and compilers.
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Other applications

We mentioned a few applications of variadic templates in Section 1. These include
the polymorphic function wrappers and the partial function application with bind

functions, both in the draft standard library, currently implemented with the hacks
described in Section 2. We have implemented these facilities in GCC 4.3’s C++
standard library, where the use of variadic templates resulted in a code-size reduc-
tion of more than 50 kilobytes and led to a much more readable and maintainable
formulation.

As can be seen from the kinds of uses we describe for variadic templates, the
feature is a powerful tool for library writing, enabling applications that essentially
extend the C++ language with new features. In day-to-day programming, variadic
template uses would be frequent in using library components implemented in terms
of variadic templates. Direct definitions of variadic templates would surface mostly
in implementations of mixins and forwarding functions.

4 IMPLEMENTATION AND EVALUATION

Parameter packs are not first-class citizens in the C++’s type system: template
parameter packs are not types and function parameter packs are not values. A single
object representing a parameter pack does not exist in memory when a program
is executing. Every time a parameter pack is referred to, it is at compile time
expanded to individual arguments. This enables a lightweight specification and
implementation on top of the existing template system of C++, integrating well with
existing compiler technology.

All C++ compilers implement templates with a so called instantiation model,
where template instantiation with a different set of arguments leads to generating a
different piece of code. Variadic templates follow the same approach, and thus are es-
sentially program generators. It is easy to see that this generation is programmable,
and variadic templates are expressive enough so that arbitrary computations can be
encoded with them. As a consequence, it is possible to write variadic templates for
which instantiation with certain arguments leads to a non-terminating sequence of
other instantiations. For example:

template <typename... Args>
void add_one(Args... args) { add_one(1, args...); }

The problem of determining whether a C++ template instantiation is terminating has
been shown to be undecidable [16]. C++ deals with non-terminating (or terminating
but very long) chains of instantiations by simply setting an upper limit on the
length of an instantiation chain. A standard compliant compiler must allow at least
17 nested instantiations, but most compilers let the programmer increase this limit
with a command line option.
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Figure 5: Compile-time performance for a small program with variadic templates
(∞) and with emulation of variadic templates supporting up to a fixed number of
arguments.

We have implemented the complete specification of variadic templates in the
GNU C++ compiler [8], which are available in GCC 4.3. The implementation itself
was relatively straightforward in GCC, implying that this feature can be imple-
mented in other C++ compilers without architectural changes. Our basic imple-
mentation approach involved adding flags to each kind of template parameter and
each function parameter stating whether these parameters are in fact parameter
packs. Parameter packs are only treated differently from their non-pack equivalents
at several key places in the compiler:

• When deducing template arguments from a function call or when matching a
partial specialization of a class template, parameter packs can bind to many
arguments rather than a single argument.

• When instantiating an expansion expression (e.g., args...), the instantiation
is performed once for each argument in the parameter pack, and the results of
each instantiation are placed in separate arguments.

• Uses of the ellipsis operator to expand expressions or types, which can be used
in template argument deduction and instantiation. The compiler must also
verify that parameter packs are not used outside of an ellipsis operator.

To determine the impact of variadic templates on compilation time, we updated
the GNU implementation of the C++ Library Extensions Technical Report (TR1) [17]
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to compare variadic templates against their emulation. We opted to evaluate TR1
because it contains many template-heavy constructs whose implementation currently
requires a great deal of repetition and can benefit greatly from variadic templates.
Moreover, the components in TR1 have also been introduced into the C++0x working
draft [7], where variadic templates are used within the specification itself, eliminating
the pseudo-code description used in TR1.

We modified the GNU implementation of TR1 to completely emulate variadic
templates via preprocessor metaprogramming [9], allowing us to vary the maximum
number of arguments with a macro definition, and (alternatively) to use variadic
templates as implemented in our compiler. We then compiled a simple, fixed user
program that included the TR1 library headers and used their facilities in some
simple ways. Figure 5 illustrates the compilation time of this simple program as
we vary the maximum number of arguments supported in the library, divided into
preprocessing time, TR1 header compilation time, and user code compilation time.
We vary the maximum number of arguments from 3 to 30; the compilation time
increases quickly, with the vast majority of time spent compiling the TR1 library
headers themselves. This effort is entirely wasted for our example user program (and
most user programs), which only uses up to 3 arguments. Beyond 15 arguments
the compilation time becomes prohibitive for real-world use. The inset portion
of Figure 5 illustrates compile-time performance for a subset of the data, and we
can see that variadic templates require less compilation time than even the three-
argument version of the emulated variadics while supporting an unbounded number
of arguments.

5 RELATED WORK

Different forms of type-safe variadic functions are supported by different languages,
and using notably different language constructs and implementations. If each pa-
rameter type in the variable argument list must be the same, we say that the variable
argument list is homogeneous, otherwise we say it is heterogeneous. We use the same
terminology for functions that use such argument lists.

Mainstream object-oriented languages, such as Java and C#, support type-safe
homogeneous variadic functions. The variable arity methods [18] of Java are declared
with an ellipsis that follows the last parameter type of a method. This construct is
defined as syntactic sugar for declaring an array parameter; within the body of a
variable arity method, the “vararg” parameter is treated as an array. Another dose
of sugar turns a method argument list into an array at a call site of a variable arity
method. C#’s params [19] are similar to Java’s variable arity methods. Heteroge-
neous variadic argument lists can be emulated with the parameter list Object...

that accepts objects of any types, but obviously the exact types of the arguments
are not known statically.

The idea of extending Java generics with heterogeneous variadic type parame-
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ter lists has been brought up [20], with related syntax and expansion behavior to
that of ours. Java generics does not have a counterpart to that of C++’s template
specialization—the expansion functionality would thus not enable recursive variadic
definitions such as the tuple template presented in Section 3. Heterogeneous variadic
forwarding functions would become possible, though.

The programming language D [21] provides two related features to our work:
variadic functions with type info and type-safe variadic functions. The former is
comparable to the Object... parameter list in Java: variadic arguments can be
accessed through void pointers, but also their typeid is available. Thus, the pro-
grammer can safely cast the arguments to their expected types and deal with errors
in a controlled manner. The latter feature is for initializing an array with a fixed
element type, as in Java’s variable arity methods. Neither of these features offer
support for heterogeneous variadic argument lists where one would not need to re-
sort to dynamic type information (typeid) to achieve type-safety. Note that D uses
the ellipsis notation to request an automatic generation of a parameter list that con-
sists of all the members of a particular class, and D’s language reference classifies
the feature under type-safe variadic functions. Regardless of the notations used and
this classification, such functions are not variadic.

Functional languages can support a form of variadic polymorphic functions with
combinators, with solutions of varying level of sophistication—printf has been the
showcase example. In essence, a variable length argument list is emulated with
a composition of calls to polymorphic unary functions. For example, a type-safe
printf-like functionality can be provided in ML with such combinators comprising
the formatting string [22]. E.g., our printf example from Section 3 becomes the
following:

format (str oo lit " can accept " oo int oo
lit "parameters (or " oo str oo lit ").")

: string → int → string → string

The format function thus seemingly accepts a variadic number of parameters, the
types of which determine the number and types of the parameters that the resulting
function expects. In this solution, the formatting specifiers must be known statically.

Template Haskell [23] can evaluate and generate code at compile-time. Thus, in
an analogous approach as the one above, the format specification can be represented
by a string. This string is parsed at compile time, and the function with a type
matching the format specification is generated. More general and systematic way of
emulating polymorphic variadic functions is offered by the type-indexed functions
of data-type generic programming—a generalization of the printf implementation
of [22] is presented in [24].

Some C++ libraries use variations of the combinator functions to emulate type-
safe variadic polymorphic functions. The underlying technique is known as expres-
sion templates. Staying loyal to the printf function, we demonstrate with the
Boost.Format C++ library [25]. It provides analogous functionality with its format
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function that accepts a format specifier string and returns a type that overloads the
modulus operator to accept additional parameters. For example:

format ("%s can accept %i parameters (or %s).")
% std::string("Variadic templates") % 100 % "more";

The expansion mechanism of variadic templates borrows from Scheme’s [26]
macros. For each Scheme macro declaration, one defines a sequence of pattern–
output-expression pairs; a call to a macro expands to the output-expression of the
first matching pattern. Similarly to our variadic function templates, the last param-
eter of a Scheme macro can be declared to be of a variable length. To access the
elements of such a variable length parameter, patterns can peel of arguments from
the front. This is similar to accessing the elements of function parameter packs: the
patterns are defined as the signatures of overloaded functions, output-expressions as
the bodies of these functions.

Variadic templates have evolved through a series of proposals to the C++’s ISO
standardization committee [27, 28,29,30,31].

6 CONCLUSION

Variadic templates are a lightweight extension to the C++ template system. The new
functionality proves useful in the implementation of numerous widely-used template
libraries, allowing more concise implementation, faster compile times, and avoiding
uses of ugly template and preprocessor trickery that is a cause of unwieldy error mes-
sages and “write-only” code. Variadic templates enable type-safe implementations
of variadic functions, such as printf, and the definition of transparent forwarding
functions. The latter provide significant improvements in expressing mixin classes
in C++.

We have implemented variadic templates within the GNU C++ compiler and used
variadic templates to implement several libraries [1, 3, 5] that use various forms of
variadic template emulations. Variadic templates are included in GCC 4.3, both in
its C++0x mode and in its implementation of the aforementioned TR1 components.
Variadic templates are a part of C++0x, the upcoming revision of the ISO C++
standard, currently in draft form [7].
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