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We present a language extension, which integrates in a Java like language a mech-
anism for dynamically extending object behaviors without changing their type. Our
approach consists in moving the addition of new features from class (static) level to
object (dynamic) level: the basic features of entities (representing their structure)
are separated from the additional ones (wrapper classes whose instances represent
run-time added behaviors). At run-time, these entities can be dynamically composed
by instantiating wrapper objects which are attached to basic entities. Wrappers per-
mit specializing (wrapping) methods at run-time: the method of the wrapper will be
automatically executed after the method of the wrapped objects, using a delegation
mechanism. Furthermore, wrapped methods can return values and values returned by
the wrapped methods are transparently made available in the wrapper methods. We
formalize our extension by adding the new constructs to Featherweight Java and we
prove that the core language so extended (Featherweight Wrap Java) is type safe.

1 INTRODUCTION

Class inheritance is a key feature in Object-Oriented Programming, since it provides
means for code reusability and, from the type perspective, it allows the programmer to
address flexibility in a safe way. However, class inheritance is essentially a static mech-
anism: the relation between a parent and a derived class is established statically, once
and for all; should this relation be changed, then the program has to be modified and re-
compiled. The only dynamic feature is represented by dynamic binding, i.e., the dynamic
selection of a specific method implementation according to the run-time type of an ob-
ject. This may not suffice for representing the dynamic evolution of objects that behave
differently depending on their internal state, the context where they are executing or the
entities they interact with. All these possible behaviors may not be completely predictable
in advance and they are likely to change after the application has already been developed
and used. While trying to forecast all the possible evolutions of system entities, classes
are often designed with too many responsibilities, most of which are basically not used.
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Figure 1: Wrapper and component classes.

Furthermore, the number of subclasses tend to grow dramatically when trying to compose
different functionalities into single modules. With this respect, object composition is of-
ten advocated as an alternative to class inheritance, in that it is defined at run-time and it
enables dynamic object code reuse by assembling the existing components [17].

Furthermore, in many situations, when deriving from a base class, we need to special-
ize methods (i.e., add some behavior while still relying on the implementation of the base
class) instead of overriding them. For instance, the method paint in a GUI framework is
a callback method that is invoked by the framework when the contents of a window have
to be redrawn on the screen. The programmer is required to extend this method in order
to take care of drawing the contents that are specific of the application, while standard
graphical items (menu, toolbars, button, etc.) are drawn by the implementation of the su-
perclasses in the framework. Thus, the programmer has to explicitly call super.paint()
in his redefined method, otherwise the window will not be correctly redrawn. However,
there are no means to formally enforce the call to the super version, but (informally) doc-
umenting the framework. The design pattern decorator [17] is often used in contexts
where we need to specialize (“decorate”) object behaviors at run-time; however, it still
requires manual programming, and, again, there’s no static guarantee that the version of
the method in the base class is called.

On the other hand, object based languages use object composition and delegation, a
more flexible mechanism, to reuse code (see, e.g., [30, 19, 11], and the calculi [15, 1, 2]).
Every object has a list of parent objects: when it cannot answer a message it forwards it
to its parents until there is an instance that can process the message. However, a drawback
of delegation is that run time type errors (“message not understood”) can arise when no
delegates are able to process the forwarded message [31]. In order to preserve the benefits
of static type safety, several solutions have been proposed in the literature such as design
patterns [17] and language extensions integrating in class based languages more flexible
mechanisms, such as, e.g., mixins [7], generic types [9], delegation [23].

In this paper, we propose an extension of FJ (Featherweight Java) [21], we called FWJ
(Featherweight Wrap Java), which integrates in a Java like language a mechanism for dy-
namically extending object behaviors without changing their type. Our approach consists
in moving the addition of new features from class (static) level to object (dynamic) level:
we propose a mechanism that separates in different entities the basic features of elements
(representing their structure) from the additional ones (representing their run-time added
behaviors). At run-time, these entities can be dynamically composed. The basic idea of
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Figure 2: Delegation and consultation.

our approach can be summarized as follows: at run time an object (called component) is
embedded in another object (called wrapper) that associates to the component additional
features (see Figure 1). A wrapper object’s interface is conforming to the one of the com-
ponent so the power of polymorphism can be exploited: we can assign to a variable a of
type Element a wrapper object that embeds an instance of Element, called component.
Every time a client invokes a method m on a that belongs to the interface Element, it
(automatically and transparently) forwards the method call to its attribute component,
possibly adding code. These class and object structures are very similar to those proposed
in the design pattern decorator [17]. However, the decorator pattern only implements a
consultation mechanism and does not extend the language: it requires manual program-
ming. Conversely, by using our language extension the implementation of decorator is
straightforward; furthermore, we provide a delegation based mechanism.

Let us notice that, in the literature (e.g., [17]), the term delegation, originally intro-
duced by Lieberman [24], is given different interpretations and it is often confused with
the term consultation. In both cases an object A has a reference to an object B. However,
when A forwards to B the execution of a message m, two different bindings of the implicit
parameter this can be adopted for the execution of the body of m: with delegation, this
is bound to the sender (A) thus, if in the body of the method m (defined in B) there is a call
to a method m, then also this call will be executed binding this to A; with consultation,
during the execution of the body the implicit parameter is always bound to the receiver B
(Figure 2).

Following the key idea discussed above we propose to extend a Java like language by
adding the following new constructs to define wrapper classes and create wrapper objects
(in the following, I is used to refer to interfaces):

• class D wraps I bodyD. In bodyD the programmer can add fields and new meth-
ods w.r.t. I and can implement (“wrap”) some methods belonging to I, using the
keyword after in method definition: the wrapper method implementation will be
executed after the wrapped method implementation. This way we obtain method
specialization (i.e., a method redefinition does not completely overrides the previ-
ous definition). This construct also states that instances of class D can be used to
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wrap, at run-time, instances of I. Since a new subtyping relation, namely D is a sub-
type of I, is introduced by this construct, then a wrapper object can wrap another
wrapper. Notice that not all methods of I need to be implemented in bodyD. How-
ever, this does not cause run-time errors (e.g., “message-not-understood”) because
instances of D can only be used to wrap instances (or, in turn, wrapper objects)
of a class implementing (all methods of) I, and methods not implemented in the
wrapper class are simply forwarded to the wrapped component.
• Concerning object creation, an instantiation of a wrapper class can only be of the

shape newwrap D(x, f1, . . . , fn) where x is an instance of I (the object to be wrapped)
and f1, . . . , fn are the parameters for the wrapper’s constructor. Notice that two
different wrappers can wrap the same component.

FWJ was inspired by [5], which, however, presented only an implementation schema
(with less features than our language extension) and no real formalization. The first ver-
sion of FWJ was presented in [4]; in this paper we deal with methods that return values (in
[4] only void methods were considered), and provide mechanisms to deal with returned
values during the method invocation chain. In particular, since we have already treated
void, in order to simplify the presentation of FWJ, in this version, we will only consider
non-void methods. Moreover, we show the main properties of FWJ (namely, FWJ is type
safe) together with the proofs of crucial cases (Section 3). To further simplify and shorten
the presentation of our language, in this paper, we consider only method invocation by
delegation, since it requires a more involved (and interesting) technical treatment of the
substitution of this; invocation by consultation can be smoothly added to the language
(as shown in [4]) since this can be handled just as in FJ.

In the previous version of FWJ, since we were considering only void methods, we
were only concerned about the order in which methods of wrappers and components were
executed in the semantics. In this version, since we deal with methods returning a value,
we need to handle return values, and in particular, since the method invocation chain is
transparent to the programmer, we need to provide an automatic mechanism to access the
value implicitly returned by the previous invocation within the method invocation chain.
Notice that we do not want to impose a decision about the actual value returned to the
original caller: we do not want the returned value to be the value returned by the last (or
the first) invocation in the chain. Since we want our wrapper mechanism to be flexible, we
let the programmer of wrappers decide what to return. Thus, we provide the programmer
with a means to access to the value returned by the previous invocation in the method
chain: every wrapped method has an implicit variable, ret, that, similarly to this, is
initialized automatically with the value returned by the previous method invocation in the
chain. In [4] we allowed wrapper methods also to be executed “before” the methods of the
component (using the keyword before); however, in the scenario of methods returning a
value, this method invocation mechanism makes no sense, in particular the ret automatic
variable would not be initialized in some contexts (e.g., during the execution of the first
method invocation on the wrapper). For this reason, in this version of the language we
will not consider wrapped methods declared as before.

In Listing 1 we present a code snippet using our wrappers. This implements a scenario
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interface TextElement { String render(); }

class SimpleText implements TextElement {
String data;
String render() { return data; }

}

class HtmlBold wraps TextElement {
after String render() {

return "<b>" + ret + "</b>";
}

}

class HtmlColor wraps TextElement {
String color;
after String render() {

return "<font color=\"" + color + "\">" + ret + "</font>";
}

}

TextElement e =
newwrap HtmlColor(newwrap HtmlBold(new SimpleText("Hello World!")), "green");

System.out.println(e.render());

Listing 1: The formatting scenario using wrappers (constructors are not shown).

where wrappers are used to implement text decorated with specific HTML styles (such as
bold and color). Different wrapper formatters can be composed at run-time and when the
method render is called on the wrapped text, the style tags will surround the actual text
(or the further formatted text). In particular, the above code will print the string:

<font color="green"><b>Hello World!</b></font>

Notice how the implicit variable ret is used to add a style to a (possibly already format-
ted) text.

From the typing point of view, the resulting wrapped object will have the type of the
most external wrapper (e.g., in the example of Listing 1, the type of HtmlColor); this
will be reflected in the type system (rule T-NEWWRAP, Figure 7). However, as a good
programming technique to make code reuse easier, it is suggested not to treat the wrapped
object as an instance of HtmlColor, but as an instance of the wrapped interface (see
Listing 1, where the wrapped object is assigned to a reference of type TextElement).

In Listing 2 we show an example which exploits the delegation mechanism. The
hierarchy is composed by an interface CallRate which abstracts the methods common to
call rates (a method bill which calculates the total bill and displayRate which returns a
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interface CallRate {
int bill(int m);
String displayRate();

}

class SimpleRate implements CallRate {
int rate;
after String displayRate() { return "Call Rate: " + rate + " cents/min;"; }

after int bill(int m){
System.out.println(displayRate());
return m ∗ rate;

}
}

class FreqCall wraps CallRate {
int top;
after String displayRate() {

return "50 % for bills > " + top + " euros; " + ret;
}

after int bill(int m){
if (ret > top) return (ret − (0,5∗(ret−top)));
else return ret;

}
}

Listing 2: The CallRate example using wrappers and delegation (constructors are not
shown).

string describing the kind of rate/discount), a component class SimpleRate and a wrapper
class FreqCall implementing a discount for phone rates. Discounts are modeled with
wrapper classes since they make sense only when applied to rates, moreover with our
approach we can obtain customized rates combining different wrapper-discounts. In class
SimpleRate method bill calls method displayRate to show how the total amount is
calculated. For instance, let us consider the following code:

CallRate r = newwrap FreqCall(new SimpleRate(15), 50);
int b = r.bill(400);

During the execution of method bill, the string "50 % for bills > 50 euros; Call

Rate 15 cents/min;" will be displayed; indeed when the control reaches the call of
displayRate in the implementation of bill in SimpleRate, thanks to delegation, the
implicit object this will be bound to the original caller, i.e., the FreqCall wrapper,
thus the string describing the discount will be displayed as well. This would not happen
without delegation.

10 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 2
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The example of Listing 2 also highlights another feature of wrapped methods: al-
though the order of method invocation is fixed (the method body of the wrapper is called
after the method body of the wrapped object), the ret mechanism is flexible enough
to allow the programmer to build the result as he sees fit. In fact, in the example,
the result of SimpleRate.displayRate is appended to the end of the string built in
FreqCall.displayRate, in spite of the latter being executed after the former. Thus, the
absence of wrapper methods declared as before, as in [4], does not limit the flexibility
of methods that return values.

We refer the reader to [4] for further examples of use of wrappers (with void meth-
ods).

This paper is organized as follows: Section 2 formalizes our extension by adding our
new constructs to Featherweight Java and Section 3 presents the formal properties of our
FJ extension (in particular, the type safety of our language); Section 4 concludes the paper
and compares our approach to related works.

2 FEATHERWEIGHT WRAP JAVA

This section presents syntax, typing rules and operational semantics of FWJ (Feather-
weight Wrap Java), a minimal imperative core calculus for Java, based on Featherweight
Java (abbreviated with FJ), extended to the wrapper class constructs. FJ [21, 29] is
a lightweight version of Java, which focuses on a few basic features: mutually recur-
sive class definitions, inheritance, object creation, method invocation, method recursion
through this, subtyping and field access1. Thus, the minimal syntax, typing and seman-
tics make the type safety proof simple and compact, in such a way that FJ is a handy tool
for studying the consequences of extensions and variations with respect to Java (“FJ’s
main application is modeling extensions of Java”, [29], pag. 248).

Besides the innovative features of the wrapper construct, FWJ models interfaces and
some imperative features like field assignment and sequential composition. Our imper-
ative model is inspired by the one in [12]. For the sake of completeness we show the
complete syntax, typing and semantics of FJ augmented with interfaces, imperative fea-
tures and wrapper constructs; comments will stress on elements added by our extension.
We assume the reader is familiar with FJ (we refer to [21] for details on standard charac-
teristics), thus we will focus on the novel aspects of FWJ w.r.t. FJ.

The abstract syntax of FWJ is given in Fig. 3. The metavariables C and D range over
class names (we adopt the convention that C is an ordinary class name and D is a wrapper
class name; we will use E when we do not want to specify the kind of class we are
referring to) and I ranges over interface names (the metavariable T denotes a class name,
a wrapper class name or an interface name); f and g range over attribute names; x ranges
over method parameter names; and e ranges over expressions. Following FJ, we assume

1FJ also includes up and down casts; however, since these features are completely orthogonal to our
context, they are omitted in FWJ.
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L ::= class C extends C implements I {T f; K; M} classes
H ::= interface I extends I {SG} interfaces
DCL ::= class D wraps I {I g; T f; KD; M N} wrapper classes
SG ::= T m (T x); signatures
K ::= C(T f, T′ f′){super(f); this.f′=f′;} constructors
KD ::= D(I g; T f){this.g=g; this.f=f;} wrapper constructors
M ::= T m (T x){e} methods
N ::= after T m (T x){e} wrapper methods
e ::= x

∣∣ e.f
∣∣ e.m(e)

∣∣ new C(e)
∣∣ e;e

∣∣ expressions
newwrap D(e,e)

∣∣ e.f = e

Figure 3: FWJ syntax

that the set of variables includes the special variable this, which cannot be used as the
name of a method’s formal parameter (this restriction is imposed by the typing rules).
Instead, this is considered to be implicitly bound in any method declaration. Note that
since we treat this in method bodies as an ordinary variable, no special syntax for it is
required. The same holds for the other implicit variable ret in wrapper class methods,
implicitly bound to the value returned by the method invocation on the component.

As in FJ, we write “e” as a shorthand for a possibly empty sequence “e1, . . . ,en” (and
similarly for C, T, x) and “M” as a shorthand for “M1 . . .Mn” (and similarly for N). Given a
sequence e, |e| represents its length. We abbreviate operations on pair of sequences by
writing “T f” for “T1 f1; . . . ;Tn fn”, where n is the length of T and f. The empty sequence
is denoted by •. We assume that sequences of attributes, method parameters and method
declarations do not contain duplicate names. A class table CT is a mapping from class
names to class declarations. Then a program is a pair (CT,e) of a class table (containing
all the class definitions of the program) and an expression e (the program’s main entry
point). The class Object has no members and its declaration does not appear in CT. We
assume that CT satisfies some usual sanity conditions: (i) CT(C) = class C . . . for every
C ∈ dom(CT) (ii) for every class name C (except Object) appearing anywhere in CT,
we have C ∈ dom(CT); (iii) there are no cycles in the transitive closure of the extends

relation. Thus, in the following, instead of writing CT(C) = class . . . we will simply
write class C . . .. The same conditions apply also to wrapper classes and interfaces.

The wrapper class declaration class D wraps I {I g; T f; KD; M N} defines a wrap-
per class of name D. The new class has a single constructor KD, a field g that specifies
the wrapped object component, a sequence of fields f and a set of standard methods M

and a set of wrapped methods N (in particular, the wrapped methods must belong to the
wrapped interface I, as checked by the typing rules). The wrapper constructor declara-
tion D(I g,T f){this.g= g; this.f= f;} takes parameters corresponding to the compo-
nent and the instance variables, and its body consists of the corresponding assignments.
Note that in FWJ the wrapped object is explicitly denoted in the class declaration, but
it could be implicit in an implementation. Note also that, for the sake of simplicity, the
calculus does not allow a wrapper class to have a superclass. Nevertheless, the type sys-
tem could be straightforwardly extended to handle wrapper class inheritance. The wrap-
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T <: T
T <: T′ T′ <: T′′

T <: T′′

interface I extends I{. . .}

I <: I′ ∀I′ ∈ I

class C extends C′ implements I { . . .}

C <: C′ C <: I ∀I ∈ I

class D wraps I { . . .}

D <: I

Figure 4: FWJ: subtyping

fields(Object) = • class D wraps I {I g; T f; . . .}
fields(D) = T f

class D wraps I {I g; . . .}
comp(D) = I g

class C extends C′ implements I{T f; K; M} fields(C′) = T
′
g

fields(C) = T
′
g, T f

class C extends C′ implements I{T f; K; M} M = {T j m j (T′j x j){. . .} j∈J}
sign(C) = {T j m j (T′j x j) j∈J}∪ sign(C′)

interface I extends I {SG}
sign(I) = {SG}∪ sign(I)

class D wraps I {· · ·}
wrap(D) = I

class C extends C′ implements I{· · ·}
ord(C)

Figure 5: FWJ: lookup functions

per method declaration after T m (T x){e} defines a method and specifies how that the
method body e will be executed after the call on the component. In method declarations,
the return value is the one produced by reducing e.

FWJ basic expressions are standard FJ expressions: variables, field selection, method
invocation, object creation. Instead, sequences of expressions (e;e) and field updating
(e.f=e) characterize our imperative framework. Finally, newwrap D(e,e) creates a new
instance of the wrapper class D wrapping the object e; the other parameters e are required
to initialize D’s fields.

The subtyping relation induced by the class declarations in the program, denoted by
<:, is formally defined in Figure 4. In FWJ, subtyping is straightforwardly extended to
deal with interfaces and wrapper classes.

For the typing and reduction rules, we need a few auxiliary lookup function definitions
(Figure 5). The function fields(C) applied to a standard class C or to a wrapper class D,
return the fields of the class argument: indeed in the case of a wrapper class D we consider
only the fields declared in D. The special field corresponding to the wrapped object of a
wrapper class D is written comp(D). The lookup function of method signatures for classes
and interfaces is sign (Figure 5). Here again, sign(I) denotes sign(I1)∪ . . .∪sign(In). The
function wrap(D) denotes the interface wrapped by the wrapper class D and the predicate
ord(E) returns true if E is an ordinary class. Notice that wrap(E) is defined if and only if
!ord(E); however, having both wrap(E) and ord(E) makes presentation of rules cleaner.
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class C extends C′ implements I{T f; K; M} T m (T′ x){e} ∈ M
mBody(m,C) = (x, e)

class C extends C′ implements I{T f; K; M} m 6∈ M
mBody(m,C) = mBody(m,C′)

class D wraps I {I g; T f; KD; M N} after T m (T′ x){e} ∈ N
mBody(m,D) = (x, e)

class D wraps I {I g; T f; KD; M N} m 6∈ N T m (T′ x) ∈ sign(I)
mBody(m,D) = (x,ret)

class D wraps I {I g; T f; KD; M N} T m (T′ x){e} ∈ M
mBody(m,D) = (x, e)

class C extends C′ implements I{· · ·} T m (T x) ∈ sign(C)
mType(m,C) = T→ T

interface I extends I{· · ·} T m (T x) ∈ sign(I)
mType(m,I) = T→ T

class D wraps I {I g; T f; KD; M N} T m (T′ x) ∈ sign(I)
mType(m,D) = T

′→ T

class D wraps I {I g; T f; KD; M N} T m (T′ x){e} ∈ M
mType(m,D) = T

′→ T

Figure 6: FWJ: lookup functions for methods.
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Γ ` x : Γ(x) (T-VAR)
Γ ` e : E fields(E) = T f

Γ ` e.fi : Ti
(T-FIELD)

Γ ` e0 : E0 mType(m,E0) = T→ T Γ ` e : T′ T
′
<: T

Γ ` e0.m(e) : T
(T-INVK)

fields(C) = T f Γ ` e : T′ T
′
<: T

Γ ` new C(e) : C
(T-NEW)

comp(D) = I g Γ ` e : E E <: I
fields(D) = T f Γ ` e : T′ T

′
<: T

Γ ` newwrap D(e,e) : D
(T-NEWWRAP)

Γ ` e1 : T′ Γ ` e2 : T′′

Γ ` e1;e2 : T′′
(T-SEQ)

Γ ` e1.f : T Γ ` e2 : T′ T′ <: T
Γ ` e1.f = e2 : void

(T-ASSIGN)

Figure 7: FWJ: typing rules for expressions

The function mBody (Figure 6) returns the body of the method m in class C as a pair
of a sequence of parameters x and an expression e. Notice that, since inheritance is not
allowed for wrapper classes, we do not search for the body in superclasses (as for standard
classes); instead when a wrapper class does not define a method belonging to the wrapped
interface mBody returns ret. The lookup function for method types, mType, uses sign for
classes and interfaces; in case of wrapper classes, if a wrapped method is not defined in
the wrapper class, it is searched for in the wrapped interface.

FWJ: typing

An environment Γ is a finite mapping from variables to types, written x : T. The syntax
of types is extended with void, the type of expressions that do not return a value, i.e.,
assignments. The typing judgment for expressions has the form Γ ` e : T, read “in the
environment Γ, expression e has type T”. We abbreviate typing judgment on sequences in
the obvious way, writing Γ ` e : T as shorthand for Γ ` e1 : T1, . . ., Γ ` en : Tn, and writing
T <: T′ as shorthand for T1 <: T′1, . . ., Tn <: T′n. The typing rules are syntax directed, with
one rule for each form of expression.

Typing rules for expressions (Figure 7) are straightforward: (T-FIELD), (T-INVK) and
(T-NEW) are as in FJ and (T-SEQ) and (T-ASSIGN) are standard in an imperative setting.
The novel rule is (T-NEWWRAP) that also checks that the type of the actual parameter e
associated to the component, is a subtype of the interface I wrapped by the constructor’s
class D. Moreover, this rule assigns to the wrapped object the type of the wrapper.

The rule for methods (Figure 8) in ordinary classes (M-OK), besides the standard
check that the type of the body is a subtype of the declared return type, checks that, in
the case of overriding, if a method with the same name is declared in the superclass,
then it has the same type (this corresponds to the override predicate in [29]). Similarly,
if the signature of a method occurs in some of the implemented interfaces, then it must
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class C extends C′ implements I {· · ·} x : T, this : C ` e : T0 T0 <: T
if mType(m,C′) = T

′→ T′, then T
′ = T ∧ T′ = T

∀I j ∈ I, if mType(m,I j) = T
′′→ T′′, then T

′′ = T ∧ T′′ = T

T m (T x){e} OK IN C

(M-OK)

class D wraps I {· · ·} x : T, this : D, ret : T ` e : T0 T0 <: T
mType(m,D) = mType(m,I)

after T m (T x){e} OK IN D
(DM-OK)

class D wraps I {· · ·} x : T, this : D ` e : T0 T0 <: T T m (T x) 6∈ sign(I)
T m (T x){e} OK IN D

(DM-OK-2)

K = C(T g, T′ f){super(g); this.f = f;} fields(C′) = T g
sign(I)⊆ sign(C) M OK IN C

class C extends C′ implements I{T′ f; K; M} OK
(CLASS-OK)

KD = D(I g, T f){this.g = g; this.f = f;} N OK IN D M OK IN D

class D wraps I {I g; T f; KD; M N} OK (DCLASS-OK)

Figure 8: FWJ: typing rules for methods and classes

v ::= ι
∣∣ voidValue

e ::= e.f
∣∣ e.m(e)

∣∣ new C(e)
∣∣ newwrap D(e,e)

∣∣ e;e
∣∣

e.f = e
∣∣ v

∣∣ deleg(ι .m(ι), ι)
∣∣ Ret(e,e, ι)

Figure 9: FWJ: runtime values and expressions

have the same type. We define two rules for methods declared in wrapper classes, both
similar to the previous one. The rule (DM-OK), for wrapped methods, also inserts the
type for ret (i.e., the return type of the method itself) in the type environment; more-
over, it checks that the wrapped method is actually part of the wrapped interface and that
the signature of the wrapped method is the same of the one in the wrapped interface,
mType(m,D) = mType(m,I). The second one, (DM-OK-2), is for standard methods, i.e.,
those that do not belong to the wrapped interface. Since there is no inheritance between
wrapper classes, differently from rule (M-OK), we do not have to check the signature of
possible overridden methods. Rule (CLASS-OK) for ordinary classes is similar to FJ: it
checks that the constructor applies super to the fields of the superclass and initializes the
fields declared in this class, and that each method declaration in the class is OK; moreover,
it also checks that the class implements all the methods of its interfaces. Notice that, in
rule (DCLASS-OK) for wrapper classes, we do not have to check that methods belonging
to the wrapped interface and not implemented in the wrapper class are defined, because
they are automatically called on the component.

FWJ: semantics

In order to properly model imperative features we introduce the concepts of heap H
and addresses ι : H is a heap mapping addresses to objects; Addresses, ranged over by
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H (ι) = (E, [f : ι ])
ι .fi ‖H −→ ιi ‖H

(R-FIELD)

fields(C) = T f ι 6∈ Dom(H )
new C(ι) ‖H −→ ι ‖H ∪ {ι 7→ (C, [f : ι ])} (R-NEW)

fields(D) = T f comp(D) = I g ι ′ 6∈ Dom(H )
newwrap D(ι , ι) ‖H −→ ι ′ ‖H ∪ {ι ′ 7→ (D, [g : ι ,f : ι ])} (R-NEWWRAP)

v;e ‖ H −→ e ‖ H (R-SEQ)

H (ι) = (E, [...,fi : ιi, ...])
ι .fi = ι ′i ‖H −→ voidValue ‖H [H (ι) 7→ (E, [...,fi : ι ′i , ...])]

(R-ASSIGN)

H (ι) = (C, [f : ι
′]) ord(C) mBody(m,C) = (x,e)

ι .m(ι) ‖H −→ e [this← ι ,x← ι ] ‖H
(R-INVK)

H (ι) = (D, . . .) wrap(D) = I m 6∈ sign(I) mBody(m,D) = (x,e)
ι .m(ι) ‖H −→ e [this← ι ,x← ι ] ‖H

(R-DINVK)

H (ι) = (D, [g : ι ′, . . .]) wrap(D) = I m ∈ sign(I)
ι .m(ι) ‖H −→ Ret(deleg(ι ′.m(ι), ι), ι .m(ι), ι) ‖H

(R-DA-INVK)

H (ι ′) = (C, . . .) ord(C) mBody(m,C) = (x,e) H (ι) = (D, . . .) wrap(D) = I

deleg(ι ′.m(ι), ι) ‖H −→ ((e[this⇐I ι ]) [this← ι ′,x← ι ]) ‖H
(R-DEL-1)

H (ι ′) = (D, [g : ι ′′, . . .]) !ord(D)
deleg(ι ′.m(ι), ι) ‖H −→ Ret(deleg(ι ′′.m(ι), ι), ι ′.m(ι), ι) ‖H

(R-DEL-2)

H (ι ′) = (D, . . .) wrap(D) = I mBody(m,D) = (x,e)
Ret(ι , ι ′.m(ι), ι ′′) ‖H −→ ((e[this⇐I ι ′′]) [this← ι ′,ret← ι ,x← ι ]) ‖H

(R-RET)

Figure 10: FWJ: computation rules

the metavariable ι , are the elements of the denumerable set I; Objects are denoted by
(E, [f1 : ι1, . . . ,fp : ιp]), where E is the class of the object and [f1 : ι1, . . . ,fp : ιp] maps
field names to addresses. The result of a term evaluation depends on the heap thus we
define the operational semantics of FWJ in terms of transitions between configurations of
the shape e ‖H where e is a runtime expression, i.e., the code under evaluation. Runtime
expressions (see Fig. 9) are defined starting from to the grammar defining expressions by
adding values, removing variables, and adding deleg(ι ′.m(ι), ι) and Ret(e, ι ′.m(ι), ι). A
value is either an address or the value voidValue which represents the outcome of the
evaluation of redexes that do not return a value, like the assignment redex ι .f = ι ′.

The reduction relation is of the form “e ‖H −→ e′ ‖H ′”, read “configuration e ‖H
reduces to configuration e′ ‖H ′ in one step”. We write −→? for the reflexive and tran-
sitive closure of −→. The reduction rules, by using the standard notions of computation
rules (Figure 10) and congruence rules (Figure 11), ensure that the computation is carried
on according to a call-by-value reduction strategy. Rule R-NEW for object creation stores
the newly created object at a fresh address of the heap and returns the address. Object’s
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e ‖H −→ e′ ‖H ′

e.f ‖H −→ e′.f ‖H ′
e ‖H −→ e′ ‖H ′

e.m(e) ‖H −→ e′.m(e) ‖H ′

ei ‖H −→ e′i ‖H ′

ι0.m(ι ,ei,e) ‖H −→ ι0.m(ι ,e′i,e) ‖H ′
e ‖H −→ e′ ‖H ′

Ret(e, ι .m(ι), ι ′) ‖H −→ Ret(e′, ι .m(ι), ι ′) ‖H ′

ei ‖H −→ e′i ‖H ′

new C(ι ,ei,e) ‖H −→ new C(ι ,e′i,e) ‖H ′
ei ‖H −→ e′i ‖H ′

newwrap D(ι ,ei,e) ‖H −→ newwrap D(ι ,e′i,e) ‖H ′

e1 ‖H −→ e′1 ‖H ′

e1;e2 ‖H −→ e′1;e2 ‖H ′
e1 ‖H −→ e′1 ‖H ′

e1.f = e2 ‖H −→ e′1.f = e2 ‖H ′

e2 ‖H −→ e′2 ‖H ′

ι1.f = e2 ‖H −→ ι1.f = e′2 ‖H ′

Figure 11: FWJ: congruence rules

fields are initialized as specified by the class constructor. Similarly for the wrapper object
creation (rule R-NEWWRAP), where also the special field corresponding to the wrapped
object is initialized.

Concerning invocation of a method m on a receiver ι with actual parameter values ι

we distinguish the following cases: (1) the object at ι is an instance of an ordinary class
(R-INVK) or is a wrapper object and m is not in the wrapped interface (R-DINVK): ι .m(ι)
is replaced with the evaluation of the body of m; (2) the object at ι is a wrapper object
and m is in the wrapped interface (R-DA-INVK): evaluates the body of m at ι after having
invoked m by delegation on the wrapped object ι ′ (using deleg and Ret, as explained
in the following). Note that, when the method m is in the wrapped interface but it is
not implemented in the wrapper class D, the invocation of m on D reduces to ret (see
mBody(m,D) in Figure 6). This is to model the fact that methods not implemented in a
wrapper class are forwarded to the wrapped component.

In order to implement the chain of invocation of wrapper and component methods by
delegation, we need the runtime expressions deleg(ι ′.m(ι), ι) and Ret(e, ι ′.m(ι), ι). We
first define [this⇐I ι ] (Definition 2.1) as a new form of substitution that, when applied
to an expression e, replaces every occurrence of this.m(e), such that m ∈ sign(I), with
ι .m(e).

Definition 2.1 (Substitution this⇐I ι) We define the substitution this⇐I ι on FWJ
expressions as follows:

• x [this⇐I ι ] = x

• this.m(e) [this⇐I ι ] = ι .m(e [this⇐I ι ]) if m ∈ sign(I)
• this.m(e) [this⇐I ι ] = this.m(e [this⇐I ι ]) if m 6∈ sign(I)
• e.m(e) [this⇐I ι ] = e [this⇐I ι ].m(e [this⇐I ι ]) if e 6= this

• e.f [this⇐I ι ] = e [this⇐I ι ].f
• new C(e) [this⇐I ι ] = new C(e [this⇐I ι ])
• e1;e2 [this⇐I ι ] = e1 [this⇐I ι ];e2 [this⇐I ι ]
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• newwrap D(e,e) [this⇐I ι ] = newwrap D(e [this⇐I ι ],e [this⇐I ι ])
• e1.f = e2 [this⇐I ι ] = e1 [this⇐I ι ].f = e2 [this⇐I ι ]

The redex Ret(e, ι ′.m(ι), ι) evaluates e until it reaches a value (an identifier); after
that, it evaluates the method invocation ι ′.m(ι) by using the substitution this⇐I ι and
by also replacing ret with the value produced by e. This implements the fact that the
method of the wrapper is called after the method on the component returned, and ret is
automatically updated. The unfolding of method invocation by delegation in a wrapper
composition is performed by the redex deleg(ι ′.m(ι), ι): when ι ′ is itself a wrapper ob-
ject, then there is a recursive call on the component object stored at ι ′′, which is wrapped
by ι ′ (rule R-DEL-2) by leaving an outer Ret redex. Otherwise, the recursion terminates
by evaluating the body of the method in the ordinary class (still using this⇐I ι). Only
at that point, the outer Rets will be reduced.

Let us show an example of method invocation with wrappers, to see how deleg and
Ret work together. Suppose you have the following (well-typed) method invocation,
newwrap D1(newwrap D2(new C())).m(), (where for simplicity we do not use parameters
nor class fields) and let us see how it evolves by using the above semantic rules (in the
following reduction steps we denote the body of m in the class E with eE and its final result
with ι ′E; while we denote the identifier of the object of class E with ιE):

newwrap D1(newwrap D2(new C())).m() ‖ /0 −→
newwrap D1(newwrap D2(ιC)).m() ‖ {ιC 7→ (C)} −→
newwrap D1(ιD2).m() ‖ {ιC 7→ (C), ιD2 7→ (D2, [g : ιC])} −→
ιD1.m() ‖ {ιC 7→ (C), ιD2 7→ (D2, [g : ιC]), ιD1 7→ (D1, [g : ιD2])} −→
(denote H = {ιC 7→ (C), ιD2 7→ (D2, [g : ιC]), ιD1 7→ (D1, [g : ιD2])})
Ret(deleg(ιD2.m(), ιD1), ιD1.m(), ιD1) ‖H −→
Ret(Ret(deleg(ιC.m(), ιD1), ιD2.m(), ιD1), ιD1.m(), ιD1) ‖H −→
Ret(Ret((eC[this⇐I ιD1]) [this← ιC], ιD2.m(), ιD1), ιD1.m(), ιD1) ‖H −→?

(assume (eC[this⇐I ιD1]) [this← ιC] ‖H −→? ι ′C ‖H ′)
Ret(Ret(ι ′C, ιD2.m(), ιD1), ιD1.m(), ιD1) ‖H ′ −→
Ret((eD2[this⇐I ιD1]) [this← ιD2,ret← ι ′C], ιD1 .m(), ιD1) ‖H ′ −→?

(assume (eD2 [this⇐I ιD1]) [this← ιD2,ret← ι ′C] ‖H ′ −→? ι ′D2
‖H ′′)

Ret(ι ′D2
, ιD1 .m(), ιD1) ‖H ′′ −→

(eD1[this⇐I ιD1]) [this← ιD1,ret← ι ′D2
] ‖H ′′ −→. . .

Notice how deleg ensures that the methods in wrappers and components are executed
in the correct order, and how Ret correctly updates the value of ret.

3 SOUNDNESS

In this section we prove that our language extension enjoys type safety. In order to for-
mally state and prove this result we have to define the notions of well typed runtime
expression and well formed heap. We consider the environment Γ to be extended to map
also addresses to types, written ι : T. The typing judgment for runtime expressions has
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Typing rules for runtime expressions:

Γ ` ι : Γ(ι) (T-RE-ADDR)

Γ ` voidValue : void (T-RE-VOID)

Γ ` ι ′.m(ι) : T Γ ` ι : D Γ ` ι ′ : E E <: wrap(D)
Γ ` deleg(ι ′.m(ι), ι) : T

(T-RE-DELEG)

Γ ` e : T Γ ` ι .m(ι) : T Γ ` ι : D Γ ` ι ′ : E E <: wrap(D)
Γ ` Ret(e, ι ′.m(ι), ι) : T

(T-RE-RET)

Well-formed heap:

Dom(H )⊆ Dom(Γ)
∀ι ∈ Dom(H ),

if H (ι) = (E, [f1 : ι1, · · · , fn : ιn]),
then Γ(ι) = E

∧
(

(fields(E) = T1 f1, · · · , Tn fn) ∨
(comp(E) = T1 f1, fields(E) = T2 f2, · · · , Tn fn)

)
∧ ∀ Ti fi, 1≤ i≤ n, Γ(ιi) <: Ti

Γ |= H
(WF-HEAP)

Figure 12: Typing rules for runtime expressions and well-formed heap

the form Γ ` e : T, read “in the environment Γ, runtime expression e has type T”. Most
of typing rules have already been given in Figure 7 while typing rules for addresses,
deleg(ι ′.m(ι), ι) and Ret(e, ι ′.m(ι), ι) are given in Figure 12. Rule (T-RE-DELEG)
checks method invocation and also checks that the class of the receiver implements the
interface of the second parameter of deleg: this condition will ensure that the substi-
tution this⇐I ι (Definition 2.1) is type safe, when applied by the computation rule
(R-DEL-1). Rule (T-RE-RET) is similar, but it also checks that the first parameter (the
expression e) has the same type of the method invocation: this reflects the fact that the
value produced by e will be substituted to ret (computation rule (R-RET)). The judg-
ment for well formed heap (Figure 12) has the form Γ |= H , read “heap H is well formed
with respect to environment Γ”. The associated rule ensures that the environment Γ maps
all the addresses defined in the heap into the type of the corresponding objects. It also
ensures that the fields of all the objects stored in the heap contain appropriate values. We
notice that the typing rules are syntax directed, with one rule for each form of expression.

The type-soundness theorem (Theorem 3.9) is proved by using the standard technique
of subject reduction (Theorem 3.5) and progress (Theorem 3.8). Informally speaking we
prove the following result: if e is a well typed closed expression and the configuration
“e ‖ /0” reduces to a normal form “e′ ‖H ”, then (1) the heap H is well formed; (2) the
runtime expression e′ is well typed and the type of e′ is a subtype of the type of e and (3)
e′ is a value v. We first develop some auxiliary lemmas.

Lemma 3.1 (Weakening) Let Γ ` e : T. If Γ′ ⊇ Γ, then Γ′ ` e : T.
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Proof. Straightforward induction on the derivation of Γ ` e : T. �

Lemma 3.2 (mType) If mType(m,T1) = T→ T then mType(m,T2) = T→ T for all T2 <: T1.

Proof. Straightforward induction on the derivation of T2 <: T1. �

Lemma 3.3 (Substitution) If Γ,x : T ` e : T and Γ ` ι : T′ where T′ <: T, then
Γ ` e[x← ι ] : T′ for some T′ <: T.

Proof. By induction on the derivation of Γ,x : T ` e : T. The interesting case is method
invocation (the other cases are straightforward).

Case e.m(e). Since Γ, x : T ` e.m(e) : T for some T, we have that

Γ, x : T ` e : T0 mType(T0,m) = T
′→ T

Γ, x : T ` e : T0 T0 <: T′

By induction hypothesis on e and e we have that Γ` e[x← ι ] : T′0 for some T′0 <: T0,
and Γ ` e[x← ι ] : T′0 for some T

′
0 <: T0. From T′0 <: T0 and Lemma 3.2 we have

that mType(T′0,m) = T
′→ T, and from transitivity of subtyping T

′
0 <: T′. Applying

rule (T-INVK) we get that Γ ` (e.m(e))[x← ι ] : T which proves the result.

�

Lemma 3.4 (Substitution this⇐I ι) If Γ,this : E` e : T and Γ` ι : Dwhere wrap(D)=
I and E <: I, then Γ, this : E ` e[this⇐I ι ] : T.

Proof. The substitution this⇐I ι (Definition 2.1) substitutes ι to this only in expres-
sions this.m(ι) when m ∈ sign(I). The result follows from the fact that, since E,D <: I,
then ∀n ∈ sign(I) mType(n,E) = mType(n,D) by Lemma 3.2. �

Theorem 3.5 (Subject reduction) If Γ |= H , Γ ` e : T and e ‖ H −→ e′ ‖ H ′, then
there exists Γ′ ⊇ Γ such that Γ′ |= H ′, Γ′ ` e′ : T′, for some T′ such that T′ <: T.

Proof. The proof is by induction on a derivation of e ‖ H −→ e′ ‖ H ′, with a case
analysis on the reduction rule used. We proceed by a case analysis on computation rules;
for congruence rules simply use the induction hypothesis.

Case (R-FIELD). We have that ι .fi ‖H −→ ιi ‖H , where H (ι) = (E, [. . . ,fi : ιi, . . . ]).
From Γ ` ι .fi : Ti we get Γ ` ι : E′ and fields(E′) = T f. Since Γ |= H , then E′ = E

and Γ(ιi) <: Ti.
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Case (R-NEWWRAP). We have that

newwrap D(ι , ι) ‖H −→ ι
′ ‖H ∪ {ι ′ 7→ (D, [g : ι ,f : ι ])},

where fields(D)= T f, comp(D)= I g and ι ′ 6∈Dom(H ). From rule (T-NEWWRAP),
we have that Γ ` ι : E <: I, Γ ` ι : T′ <: T. Let Γ′ be such that Γ′ = Γ ∪ {ι ′ : D}.
Then Γ′ ` ι ′ : D and Γ′ |= H ′, where H ′ = H ∪ {ι ′ 7→ (D, [g : ι ,f : ι ])}.

Case (R-NEW). Similar to the previous one.
Case (R-SEQ). Immediate.
Case (R-ASSIGN). We have that

ι .fi = ι
′
i ‖H −→ voidValue ‖H [H (ι) 7→ (E, [...,fi : ι

′
i , ...])],

where fields(E) = T f and H (ι) = (E, [. . .fi : ιi . . . ]). Since Γ ` ι .fi = ι ′i : void,
from typing rule (T-ASSIGN) we get Γ ` ι .fi : Ti and Γ ` ι ′i : T′i, with T′i <: Ti. Then
ι ′i : T′i ∈ Γ and Γ |= H ′, where H ′ = H [H (ι) 7→ (E, [...,fi : ι ′i , ...])]. Moreover
Γ ` voidValue : void.

Case (R-INVK). The last applied rule is
H (ι) = (C, [f : ι

′]) ord(C) mBody(m,C) = (x,e)
ι .m(ι) ‖H −→ e [this← ι ,x← ι ] ‖H

Since Γ ` ι .m(ι) : T, from typing rule (T-INVK) we get Γ ` ι : C, mType(m,C) =
T→ T, Γ ` ι : E, E <: T. Since class C is OK, then method m is OK IN C and,
from (M-OK) Γ, x : T, this : D ` e : T0 <: T. Therefore, from Lemma 3.3 we have
Γ ` e [this← ι ,x← ι ] : T′ <: T0 <: T.

Case (R-DINVK). Similar to the previous one.
Case (R-DA-INVK). The last applied rule is

H (ι) = (D, [g : ι ′, . . .]) wrap(D) = I m ∈ sign(I)
ι .m(ι) ‖H −→ Ret(deleg(ι ′.m(ι), ι), ι .m(ι), ι) ‖H

Since Γ ` ι .m(ι) : T, from rule (T-INVK) (and well-formedness of H ), we get that
Γ ` ι : D, mType(m,D) = T→ T, Γ ` ι : E <: T, for some E. Since D is OK and
Γ |= H , then Γ ` ι ′ : E <: I for some E. Since m ∈ sign(I) and D,E <: I, then,
from Lemma 3.2 we have that mType(m,D) = mType(m,E) = T→ T, and thus Γ `
ι ′.m(ι) : T. Moreover, by using (T-RE-DELEG), we have Γ ` deleg(ι ′.m(ι), ι) : T.
Thus, use (T-RE-RET) to obtain Γ ` Ret(deleg(ι ′.m(ι), ι), ι .m(ι), ι) : T.

Case (R-DEL-1). Similar to (R-INVK) by also using Lemma 3.4 that can be applied
since Γ ` deleg(ι ′.m(ι), ι) : T implies that C <: I.

Case (R-DEL-2). Similar to (R-DA-INVK). By hypothesis, Γ ` deleg(ι ′.m(ι), ι) : T;
D is OK and Γ |= H imply that Γ(ι ′′) <: wrap(D) and thus (by Lemma 3.2) we
use (T-RE-DELEG) to obtain Γ ` deleg(ι ′′.m(ι), ι) : T. Γ ` deleg(ι ′.m(ι), ι) : T
implies that Γ ` ι ′.m(ι) : T and D <: wrap(ι), and thus we can use (T-RE-RET).

Case (R-RET). Similar to (R-DEL-1); Γ ` Ret(ι , ι ′.m(ι), ι ′′) : T implies that Γ ` ι : T,
Γ ` ι ′.m(ι) : T (thus we can apply Lemma 3.3) and D <: wrap(ι ′′) (thus we can
apply Lemma 3.4).

�
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Corollary 3.6 (Subject reduction) Let Γ |= H , Γ ` e : T, e ‖ H −→ e′ ‖ H ′, and
Γ |= H ′. Then Γ ` e′ : T′, for some T′ such that T′ <: T.

Lemma 3.7 Given the configuration e ‖H such that Γ ` e : T and Γ |= H , then

1. If e = ι .fi then H (ι) = (E, [. . . ,fi : ιi, . . .]) for some E;
2. If e = ι .m(ι) then H (ι) = (E, . . .) for some E, mBody(m,E) = (x,e) and |x|= |ι |

Proof.

1. Follows directly from well-formedness of heap
2. From Γ ` e : T we have that Γ ` ι : E, mType(m,E) = T→ T, Γ ` ι : T′ and T

′
<: T;

• E = C for some class class C extends C′ implements I {T f; K; M}. From
mType(m,C) = T→ T we have that T m (T′ x) ∈ sign(C), and by definition of
sign, either m ∈ M or T m (T′ x) ∈ sign(C′) and in both cases mBody is defined
(Figure 6), mBody(m,C) = (x,e); |x|= |ι | follows from T

′
<: T;

• E= D for some wrapper class class D wraps I {I g; T f; KD; M N}. Similar to
the previous case by noticing that mBody(m,D) = (x,ret) in case T m (T′ x) ∈
sign(I) and m 6∈ N.

�

Theorem 3.8 (Progress) Let Γ |= H and Γ ` e : T, where e is a run-time expression.
Then either e is a value or there exist e′ and H ′ such that e ‖ H −→ e′ ‖ H ′.

Proof. The proof is by straightforward induction on the derivation of Γ ` e : T using
Lemma 3.7 in crucial cases of field selection and method invocation. �

Theorem 3.9 (Soundness) If /0 ` e : T and e ‖ /0−→? e′ ‖H , with e′ ‖H normal form,
then there exist Γ and T′ <: T such that Γ |= H , Γ ` e′ : T′, and e′ is a value.

Proof. By Corollary 3.6 and Theorem 3.8. �

4 CONCLUSIONS AND RELATED WORKS

In this paper we presented an extension for Java like languages that permits specializing
method behaviors with the dynamic mechanisms of wrappers, which act at run-time, at
object level (thus fostering flexibility), and are type safe. We believe that wrappers help
in keeping the design and the implementation of specific software systems simpler (less
programming required) and safer (more conditions checked statically), in particular in
those situations where class inheritance shows its limits due to its static nature and leads
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to code that is harder to maintain. Typically, this is the case when the class construct
is responsible of too many concerns, while, instead, behavior definitions and behavior
structuring should be kept separated by relying on the constructs provided by the language
[26]. Following this philosophy we proposed our language extension.

Wrappers are useful in all those cases where the software architecture is structured
in layers where each layer is independent and interchangeable with each other. We have
already cited the case of stream libraries. The other recurrent case is the one of a commu-
nication protocol stack (e.g., the TCP/IP stack) where each layer of the stack takes care
of dealing with specific type of information contained in the headers of a packet. Each
layer, upon writing, will add specific header information, and upon reading, will remove
specific header information, and will pass the rest of the packet to the other layers in the
stack. Finally, wrappers allow the programmer to implement small software components
each one dealing with a specific single goal and to glue them together dynamically (this
recalls the UNIX philosophy).

There can be some drawbacks in using wrappers, though: first of all, a class that acts
as a wrapper must be designed and written as a wrapper from the beginning; turning an
existing class into a wrapper might not be straightforward, in case that class has already
many methods, since those methods should be manually analyzed to see where to use the
keyword ret. Furthermore, once a class is designed as a wrapper it cannot be used to
create standalone instances: each wrapper, upon creation, requires an object to wrap. We
think that these drawbacks are only due to the specialized features the wrappers provide
and are based upon: wrappers are higher level constructs and should be used in the right
context to solve specific problems (just like design patterns).

Furthermore, wrappers are thought to add behavior to existing objects, and cannot
be removed once objects are wrapped; this is basically a legacy from the decorator pat-
tern. However, concerning this point, we might think of extending FWJ with linguistic
constructs that also permit removing wrappers. This issue is still under investigation.

Finally another limitation (again inherited by decorator pattern) is that our approach
can be easily applied to existing class hierarchies, by adding new wrapper classes, only
when there is a common interface. We are studying an inference mechanism which detects
the set of common methods w.r.t. set of classes in order to exploit our approach also where
there is not a common interface.

The implementation of the proposed language extension is still under study. We think
of implementing wrappers only with a preprocessor, i.e., without modifying the virtual
machine: given a program written in the extended Java with wrappers, the preprocessor
will generate standard Java code with the same semantics (w.t.r. a formalization of this
translation will be studied and proved correct). Probably, the declarative parts might rely
on the Java annotation features. As for methods, we will need to change the method
signatures and arguments during translation, since we need to correctly bind this for
delegation, and the ret implicit variable. Furthermore, we will need to take into consid-
eration also possible interactions with other features of the language we did not consider
here, first of all, generic types.
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In the rest of the section we will review main related works in the literature.

Aspects [22] permit isolating functionalities in typed entities that can be injected in
other types. These functionalities can be introduced in specific entry points such as in-
stances creation and method calls. As wrapper objects, aspects can enclose in a module
features that can be reused through a program in different points. On the other hand as-
pects are conceptually separated from wrapper objects: aspects are used to implement
crosscutting concerns (pieces of code which affect other parts of the program such as
exceptions) while wrappers represent classes of decorators for other objects.

Concerning method specialization mechanism our approach offers a similar compu-
tational “feel” as the Beta inheritance [25] that is designed to avoid the replacement of a
method by a completely different method in subclasses (via standard overriding). In Beta
a method in a subclass can add some behaviors but cannot replace the version defined in
the superclass: the version defined in the subclass can be called using inner keyword.
The difference between the two approaches is that wrappers are applied to objects and
can be dynamically composed in several ways, while Beta inheritance is a static mecha-
nism concerning class definition. The same difference holds between Wrap Java and the
approach in [20] (which integrates Beta inheritance style in Java) and GBETA [14]. In
the language GBETA dynamic combination of classes coexists with static type checking
(the type of dynamically created classes is partially known statically, in that it is known
that the dynamic class is a subtype of a given, statically known class).

[31, 23] extend Java like languages with consultation and delegation respectively, thus
extending object behaviors by forwarding messages to objects with a different type/inter-
face. To this aim classes defining delegator objects usually have an explicit reference to
the delegate object. Instead, the use of wrapper objects is transparent to component ob-
jects and classes. Thus, our approach is different from the one adopted in [31, 23] since
component objects are not aware about wrapper objects: in this way the programmer can
manage multiple nested or disjoint wrappers. The transparency of wrapper object makes
code more reusable since every instance of an object implementing interface I can be
wrapped by objects of type I, while in [31, 23] the delegating class /object has to ex-
plicitly manage the delegate attribute. On the other hand, in our approach, the use of
delegation is restricted to the methods belonging to the “wrapped” interface I.

Generic wrappers [10] are a language construct for Java to aggregate objects at run-
time. Generic wrappers implement inheritance at object level: a wrapper object is a
subtype of the wrapped object (called wrappee) and wrapper methods override wrappee’s
ones. In order to properly model overriding some consistency check between the wrapper
and the wrappee are made at run-time, possibly throwing exceptions at the moment of
wrapper instantiation. Finally, generic wrappers implement only consultation (the authors
claim that also delegation can be easily modeled) and do not allow disjunctive wrapping
(two wrappers cannot be attached to the same wrappee object).

[27] proposes a model where all the features that proved so useful for single class-
es/objects (inheritance, delegation, late binding and subtype polymorphism) automati-
cally apply to sets of collaborating classes and objects. The main difference between
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this approach and ours is that we restrict wrapping and method style forwarding to ob-
jects implementing a common interface while in [27] there is more flexibility concerning
the hierarchy of involved instances and more expressive power since delegation layers
permit expressing configurations that cannot be modeled with delegation alone. On the
other hand, this approach results in a more complex semantics concerning objects inter-
action/relation.

Both wrapper objects and the mixin based approach [8, 16, 6] encapsulate extensions
in classes making them reusable. As for standard inheritance, the main difference with
wrapper objects is that when we compose one or more mixins with a class, a new class,
and therefore a new type, is created, while, in wrapper objects, the composition is moved
at instance level so neither new classes nor new types are created. We also observe that the
dynamic flexibility achieved by wrapper objects relies in that it enables a run-time decora-
tion of objects, while mixins permit to statically “decorate” code (classes). A mixin-based
approach that is more similar to our wrappers is the one of incomplete objects [3], i.e., in-
stances of mixins that can be completed at run-time by composition with complete objects
(instances of classes) or with single methods. However, incomplete objects do not have
the mechanisms of automatic delegation/consultation/specialization of our wrappers.

Fickle [13] implements a dynamic object reclassification (i.e., objects can change class
membership at run-time) in order to represent object evolutions and changes. For exam-
ple, an instance of class Student can change class at run-time becoming an instance
of class Employee. Our approach is different in that we let incrementally add features
to a kernel of essential features that do not change (these are the ones belonging to the
Component classes) instead, in Fickle an object loses the features that were typical of the
previous role, when it is reclassified. Our proposal is oriented to model a dynamic notion
of non-exclusive roles [18] rather than a dynamic change of mutually exclusive types.

[28] proposes compound references, a new abstraction for object references, which
provides explicit linguistic support for combining different composition properties on-
demand. The model is statically typed and allows the programmer to express a various
kind of composition semantics in the interval between object composition and inheritance.
We share with the authors the view that new fine grained linguistic features, that can be
combined, can increase the flexibility in object oriented languages thus avoiding the need
of many design patterns originally proposed to overcome lack of adequate constructs in a
language.
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