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Self-adaptive systems are capable of changing their behaviour at runtime to meet
target constraints. An important research question is how quality of service models
can inform runtime adaptation. We sketch one solution to this question by application
of control theory to improve performance of queued systems by means of architectural
adaptation.

Previous research by our group has shown how Auto-Regressive Integrated Moving
Average techniques can be utilized to forecast how Quality of Service (QoS) charac-
teristics are likely to evolve in the near future. This is particularly important in cases
where systems can be adapted to counter QoS constraint violations. In this paper, we
show how, given a similar type of QoS characteristic forecasts, strategies of architec-
tural adaptation can be implemented that pre-emptively avoid QoS violations. The
novelty of our approach is that we use classical control theory to ensure that our adap-
tation strategies are stable, in the sense that they do not oscillate between choices.
We provide a description of how our control theoretic model can be implemented using
context-based interception in .NET via model driven engineering.

1 INTRODUCTION

Self-adaptive systems are capable of changing their behaviour at runtime to meet
target behavioural constraints. An important research question is how quality of
service models can inform runtime adaptation. This paper presents a step towards
solving this problem by application of classical control theory.

We show how Auto-Regressive Moving Average (ARMA) techniques can be use
to forecast how QoS characteristics are likely to evolve in the near future. This
result is useful in and of itself, as it allows us to detect warning signs that a system
is tending towards violation of desired QoS levels. A warning can be given to a
human administrator, who might then decide to reconfigure the system in such a
way as to pre-empt the violation occurring.

However, clearly there is benefit from an automated means of controlling system
parameters to provide such reconfiguration. The theory of dependability offers a
range of possible solutions for automated control for load balancing and fault tol-
erance. In this paper, we show how, given ARMA predictions of likely future QoS

Cite this article as follows: : Model Driven Prediction and Control, in Journal of Object
Technology, vol. 6, no. 11, Special Issue on Advances in Quality of Service Management
December 2007, pages 4567,

http://www.jot.fm /issues/issues_2007_12/article3


mailto:assel.akzhalova@kcl.ac.uk
mailto:assel.altayeva@kcl.ac.uk
mailto:nurzhan.duzbayev@kcl.ac.uk
http://www.jot.fm/issues/issues_2007_12/article3

G#_/ MODEL DRIVEN PREDICTION AND CONTROL

characteristics, pre-emptive controllers can be developed by application of classical
control theory. Our approach determines a control strategy that is optimal with
respect to resource cost.

We focus on the problem of queued stability and utilization. The idea is that,
if our system detects a dangerous trend towards a communication queue becoming
unmanageably long, then a controller component should adapt the architecture of
the system to improve influencing factors, such as service rate and the average
number of calls entering the queue. For example, if the queue is becoming too long,
the controller could create an alternative server and divert some calls to it, halving
the service rate. In a world of limitless resources, the controller could solve the
problem of QoS violation by creating a thousand such servers and, when the queue
becomes shorter, the thousand servers may be replaced by one again. The problem
is that each server has a cost, as does the adaptation action. The controller should
adapt the architecture to provide the best QoS and yet be optimal with respect to
cost.

A common approach is to perform adaptation by means of some form of a policy-
based controller. Determining the optimal control strategy is difficult. A bad strat-
egy vields a oscillating feedback problem: if the utilization improves significantly,
so (to minimize cost) influencing parameters are changed again (by removing some
servers for instance), and, consequently, the utilization worsens significantly, result-
ing in influencing parameters needing to be changed again, the utilization improving
signficantly again, and so on. The best controller is one that provides an appropriate
adaptation as quickly as possible but do not result in radical oscillations.

We develop the controller using root locus techniques to determine optimal non-
oscillating control strategies. We also provide a description of how our control
theoretic model can be implemented using context-based interception in .NET via
model driven engineering.

This paper extends work developed by Altayeva, Akzhalova, Duzbayev and Po-
ernomo some of which was previously presented at the QoSA 2006 and 2007 confer-
ences [7].

The paper proceeds as follows:

e Section 2 summarizes relevant notions from queuing theory.

e Section 3 shows how to apply classical control theory to develop a controller
providing optimal adaptation.

e Section 4 provides overview of how we employ model driven techniques to
implement our control systems.

e An illustrate example is provided in section 5.

e Conclusions and related work are discussed in the final section.
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Figure 1: A queued service. Invocations of the service’s methods are queued, where
each X; is the number of invocations at unit time

2 BACKGROUND

Queued communication

Queuing theory enables the mathematical analysis of queued communication be-
tween clients and a server (or a set of servers) (see, for example, [13, 5]). Such
communication is commonplace in large-scale distributed systems, where there is a
dependence on loosely coupled messaging and messages can potentially be sent from
different sources to the same component. Performance evaluation of such systems
is essential.

We understand queued communication as depicted in Fig. 1. A number of calls
enter a queue per unit time. We write X; > 0 for the random variable denoting the
number of calls entering at unit time ¢ = 1,2, .... Each call is numbered and served
in some order. As soon as the server finishes servicing a call, it immediately starts
to serve the next call (if there are calls remaining in the queue) and the served call
leaves the system. If repeated processing is necessary, a call joins the queue right
from the beginning. The server is called idle when there are no calls remaining in
the queue.

There is a range of different models of queued communication, each with well
understood QoS benefits and disadvantages. Factors effecting the values of QoS
characteristics for a particular model include the distribution of incoming requests,
the servicing discipline (for example, randomly selected, incoming order or some
priority discipline) and serving rate distribution.

For queued systems, a central QoS characteristic is stability. A system is defined
to be stable when each queued call is served. It is unstable if there is a possibility
that calls will not be served.

We compute stability via the notion of system utilization, defined as follows.

We assume each Xj; is independent and equally distributed and with an average
A = E[X|], defining the average number of calls joining the queue per unit time. We
assume that all calls have an average serving time b > 0 — this is the average unit
time to process a single request. We consequently define the average service rate,
the average number of requests that are served per unit time, to be p = 1/b.
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Definition 2.1 (System utilization) The utilization of a system, p is defined

p=Au=A\

where A\ 1s average number of calls joining the queue per unit time and b is the
average serving time. The system is stable if, and only if, p < 1 and unstable if,
and only if, p > 1. In case when p =1, the system is stable only when X; = X; for
all i, 5.

Thus, if system works stable we have a finite queue length.

Given utilization, it is possible to compute a number of quality of service char-
acteristics that can help in evaluating the efficiency of a M/1/1 system.

Theorem 2.1 (QoS Characteristics) The following statements are true of a M/1/1
queued system.:

e The probability of n requests being in a queue is
P(n) = p"P(0)
where the probability of 0 calls in the system is P(0) =1 — p.

e The average number of requests in the system is
E[N] = 3" nP(n) = p/1 - p
n=0

e The average waiting time E[W;] for a request is

E[W;] = bE[N]

The proof can be found in, for example, [8].

It follows from the theorem that the total average time for a call spent in the
system is E[W] = E[W;] + b.

Forecasting queue QoS

Given a system in which there are no trends in the number of calls made to a server
or in the service time for a call, then the definition of p above provides the best
means of predicting stability and QoS dependent characteristics.

While such situations are common, there are many contexts where trends in
queue usage occur. For instance, if we are running a Google-like web service search
engine, then, depending on various factors that influence the popularity of the service
(our business plan, advertising strategies, the novelty and use of the service itself,
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etc), it is possible that there will be a genuine trend in the number of calls over
time. In such a case, using an overall average to determine p will not provide the
best immediate prediction of stability. It would be preferable to factor out earlier
measures of calls (when the service was unpopular) and to emphasize the newer
values, to predict if the system is likely to become unstable soon.

Some of the following results were developed by Duzbayev and Poernomo in [7].

ARMA forecasting strategies

ARMA was developed to treat trends in a more sophisticated way than simple
averages.

One of the simplest strategies for time series prediction based on trends is to
take an average of recent values of the time series, ignoring earlier values. This is
the simple moving average technique. Here, the average is computed as

SMA(X,,r) = 2”: X

i=n—r+1

where r is cycle length and n is the total number of observations. This is essen-
tially an arithmetic mean, but over a shorter cycle length than the total number of
observations.

ARMA extends the simple moving average and is widely used in financial do-
mains for forecasting time series. The equation for ARMA is

ylk) =Y alk — I Zyk play, (1)

q=0

where x[i] is a time series of input values and y[j] is a time series of forecasted values
of , B; and o are weights for the moving average and autoregressive components
and m and n define how much of the time series the prediction method should
consider. Given a particular time series x[i] we can use least squares regression
to determine optimal values of these coefficients. There is a way of obtaining the
confidence interval for an ARMA forecast — see [7] for details.

So, the ARMA prediction for the k-th arrival rate X,, will be

Xi = Zkaqﬁq - ZkapO‘p (2)
q=0 p=1

Prediction of utilization

Given the ARMA prediction of call arrivals, it is possible to forecast M/M/1 QoS
characteristics by substitution of predicted values of X into the formula for utiliza-
tion. Confidence intervals are calculated similarly.
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We define the predicted utilization to be

pr = Xib

We can determine the confidence interval for predicted utilisation in terms of

predicted arrival rate’s error, using the fact that the error of p, will be Xb—X,b =
RXb:

k
min  max ~ 5
Pnk > Pn =Pnk+ —F= Var R%(mb
Utilization prediction is useful in two cases:

e When there is a genuine trend towards instability. This is a serious problem
for a queued system and pre-emptive notification can be very useful if an adap-
tation solution exists. For example, if a webservice has a predicted instability,
administration could refuse any more requests until the queue normalizes.

e When there is a “local” trend towards instability. A time series might have
a globally stable utilization, but with locally unstable segments. That is, a
queued system might be able to respond to all requests eventually, but at
certain times, might have an unacceptably high number of requests compared
to service time. This situation can also benefit from pre-emptive notification
to inform an adaptation strategy.

The previous confidence intervals for a prediction are helpful for determining the
certainty we have of a current predicted trend in utilization.

The n + k predicted probability of ¢ calls being in the system queue will be

~

Pri(i) = (pug) (1 = pui)

and the average number of requests in the system queue

A

E[Nmk] = ﬁn,k/(l - ﬁn,k)
with confidence interval

min max| __
[Eni Eni”] =

. k RX
E[Nyx] F % Var {Z - }

m=1 (/JJ — HPnm — R?{m) (1 - pn,m)

where the minimum values of the interval are at least limited by 0.
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Example

To illustrate our predictive methods, we describe a simulated B2B web service
based system. A queued server WSDistributor is a computer component distrib-
utor selling computer parts. There are 30 Client web services WSAssembler, .. .,
WSAssemblersg that act as communication points to businesses that use the distrib-
utor for purchasing components which they then assemble into computers. Clients
could make one of the following three types of call: makeOrder, cancelOrder or
makeQuery. For the sake of simplicity, we do not differentiate between the differ-
ent calls, so that the arrivals per time unit X may consist of any number of these
method invocations. The architecture of the system is shown in Fig. 2.

Call = order for a computer
component

y
,T‘_> |J—|_|_|_|_|_|_|_|_’O—|_VVS <<Interface>>

IServer IServer
B-2-B +makeOrder(corder:Details):int
+cancelOrder(order:Number):int
+makeQuery(query:Query):Result

Computer
component
distributor

Customer -
assembling
business

Figure 2: Our B2B example.

In order to obtain an initial working dataset of arrivals per time unit, we imple-
mented the distributor webservice as an ASP.NET webservice, running on a Xeon
1,7GHz server running Windows Server 2003 and IIS 6. We ran the Microsoft Web
Application Stress tool on a Pentium M laptop to simulate various demand profiles,
both random and noisy trends.

Fig. 3(a) shows an example simulation of incoming requests per minute for a
noisy trend. Fig. 3(b) shows an overall average calculation up to observation time
i (the most horizontal graph), against the 1-step-ahead exponentially smoothened
prediction of calls at i. Confidence intervals for the prediction are represented by
the faded lines.

In this example, it is clear that the probable time to process a call will not always
be best given by the overall average. For example, the client WS’s will make many
more requests of the distributor during business hours, and probably no requests
after business hours. In this case, the overall average is of little use in defining,
for instance, an adaptation strategy involving server replication and load balancing.
The exponentially smoothened version does a good job at filtering out noise and
effectively identifies peak trends at the (181,201) and (301,341) intervals, at other
points remaining very close to the overall average.

A more sensitive smoothened average could be obtained by changing the co-
efficients of the ARMA equations: this would be useful if there are more subtle
trends present in the time series. We should choose coefficients to avoid an overly
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Figure 3: (a) Observations of incoming stream. (b) Three-step prediction of load
rate using exponential smoothing of incoming stream with 95% confidential interval,
plotted against the arithmetical mean. The mean is the most constant of the graphs.
(Horizontal axes denote time and vertical axes denote incoming stream load.)
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sensitive average that identifies false trends. However, from the perspective of adap-
tation methods (describe in the next section), we need not be overly cautious: it
is generally better to adapt a system to a few false trend predictions than have no
adaptation in the face of genuine performance deterioration.

The QoS characteristics can be calculated with confidence intervals following
the discussion of the previous section. An 18 point plot of predicted utilization
is given in Fig. 4(a), together with a 95% confidence interval. Calculation of the
utilization by means of the overall average will yield a value of around 0.275 at any
point in time. In contrast, our predicted utilization reaches about 0.42 during the
second peak. The overall utilization never reaches such a high level, and so overall
stability is certain. However, while stability is maintained overall, it is more useful
to understand where “local” instability can be found — sections where predicted
utilization goes above 1. At such regions of the time series, while all calls may
eventually be served, there is the potential for backlog which, if trends continue,
would result in global instability. Observe that the 95% confidence interval for the
utilization forcast is remains reasonably close to the forcast. The exception to this
is at earlier points, when there are significant random fluctuations in the number of
requests received, resulting in a greater error of the prediction. This illustrates the
importance of computing confidence intervals, particularly when our source data is
noisy and there is uncertainty about whether a trend exists or not.

An 18 point plot of predicted number of requests to be served in the queue is given
in Fig. 4(b), together a 95% with confidence interval. The predicted number of calls
in the queue never reaches 1: that is, we never predict there to be an unanswered
request in the queue at any time. However, the predicted number of requests peaks
between (150,190) interval. This also suggests a potential trend towards a backlog.
If the predicted trend increased to an unacceptable level, there might be cause to
adapt the system to pre-emptively eliminate too many calls waiting in the queue.

Such adaptations are enabled through our control system, now described.

3 CONTROL SYSTEM MODEL

We now outline how classical control theory can be applied to develop a controller
for changing a queue service rate pre-emptively in response to trends in utilization
toward instability.

Specifically, we treat pre-emptive control of service rate in order to maintain a
desired level of utilization. If the predicted utilization diverges above or below the
desired level, we require our controller to apply a positive or negative gain to offset
the divergence.

The idea is as follows. At any point in time, the utilization for the service can
be computed in terms of the current average number of calls and average service
rate. A predicted utilization model can also be determined, following the ARMA
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Figure 4: (a) Observations of incoming stream. (b) Three-step prediction of load
rate using exponential smoothing of incoming stream with 95% confidential interval,
plotted against the arithmetical mean. The mean is the most constant of the graphs.
(Horizontal axes denote time and vertical axes denote incoming stream load.)
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technique of the previous section, to give a picture of how we expect the utilization to
continue, given known trends. Consider a constraint that the utilization should not
exceed a certain amount. The control error of the service is the difference between
the predicted utilization and a desired utilization. The controller is constructed
to manipulate the average service rate in such a way that this error is minimized.
The controller is characterised by a function over the error and a constant gain
parameter. Each adaptation is associated with a cost, so the controller must also
ensure that cost is minimal. We construct a closed-loop transfer function model for
the system. This is a complex valued function. Root locus analysis is a technique
whereby the poles of the transfer function are identified in order to determine the
optimal gain for the controller function.

Control systems

Control systems to consist of a series of interconnected ‘plants’. The term ‘compo-
nent’ is often used in place of ‘plant’ by control engineers, but to avoid confusion,
we shall only use the term ‘component’ in the software engineering sense. However,
a plant does have some similarities to a software component, that we expound upon
in the next section. A plant is considered as a functional module, taking an input
signal and returning an output signal.

Transfer functions

The relationship between input and output relationship for a plant is often charac-
terised by a transfer function. In the case of continuous relationships, where input
and output are related via time-invariant, differential equations, the transfer func-
tion is given as the Laplace transform of the output over the Laplace transform
of the input. The analogous situation for discrete relationships uses a Z-transform
instead of a Laplace transform:

Z tput
Transfer function = G(z) = Z{{O'u—zmt}}
inpu

The Z-transform Z is essentially a Fourier transform generalised over the complex
plane [12]. Given a signal x[n|, the Z-transform is defined as

X (z) = Z{z[n]} = Zm[n]z_”

where z is some complex number z = Ae’?.

Transfer functions are used because they allow us to represent system dynamics
by algebraic complex equations. If the highest power of z in the denominator of the
transfer function is equal to n, the plant is called nth-order.
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The transfer function for a plant enables us to understand its output for various
forms of input. Transfer functions can be experimentally derived by studying how
a plant reacts to a range of sample input values.

Automatic control systems and block diagrams

A block diagram of a system represents how signals flow from one plant to another.
Each plant is represented by a square block, with the name of its transfer function
drawn inside. Arrows connecting plants define the way in which the output of one
plant is passed on as the input for another plant. Two signals can be added or
subtracted from one another at what is called a summing point. A signal can split
and be fed concurrently into several other blocks or summing points — the point of
such a split is called a branch point.

R(z) g E(z) @) b o W) C(z)

Controller WS

Figure 5: Control flow for a single component architecture.

A simple automatic control system is a system with the block diagram of Fig.
5. It consists of three plants with transfer functions G(z), W(z) and H(z), with
input and output signals being sent as depicted by the arrows. The output signal of
W (z) branches out of the system and also is fed into a summation point (depicted
by the circle), where it is subtracted from a reference input R (summation of the
two signals would be depicted by two positive symbols in the circle).

The entire system forms a plant, with an input R and an output C. It can
therefore be associated with a transfer function of the form
C(z) G(z)W(2)
R(z) 14+ G(2)W(2)H(z)

(3)
This is called the closed-loop transfer function for the system. The term
G(2)W(2)H(z)

relates the signal ¢(z) to the error signal F(z), and is called the open-loop transfer
function.
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Control system for a queued service

Our intention is to define a control system of the form given in Fig. 5, where

e The reference input R is the desired level of utilization to be maintained for
the service.

e The service is modelled by the plant W. We are not concerned with modelling
the actual functionality of the service here. Rather, we are only interested in
its current utilization. Therefore, in the control system, it is modelled as a
function that takes in a controlled service rate b from the controller G' and
outputs a current utilization rate ¢ = Xb, where X is the current number of
calls joining the queue. The transfer function for the service is

_ Z{output}  X(z)b(z)
Gls) = Z{input} — b(2)

= X(2)

Thus, the transfer function is parametrised over the model for the service’s
arrival process. For example, if we consider a service with a M/M/1 queue,
we assume the service is characterized by a Poisson arrival process and a FIFO
queue ordering discipline. In this case, the transfer function for G' will be the
Z-transform of a Poisson distribution for arrivals X.

e The current utilization is fed into an prediction plant H that forecasts the likely
future utilization of the service, using an ARMA function of the form (1), with
coefficients optimised according to the service’s queuing model. There is a well-
known result in discrete control theory that relates ARMA to a Z-transform,
which tells us the Z-transform for (1) is

N TE N~
C(2) 1+ i 2 Py,

Control laws

Our control system, following Fig. 5, should also include a controller plant. We
then identify the controller plant defined by a function over the error signal, taken
as the difference between the desired utilization and the predicted utilization

e=R—¢

The controller plant G takes this error as input and will return a service time b
that will attempt to offset any trends away from the desired utilization. This service
time is taken as the input for the plant that models the queued service, W.
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Control theory offers a range of possible equations that can define the controller’s
actions. Our approach works equally well with any of these strategies. For the
purposes of illustration, we employ the integral control action strategy, in which
the controller output value, the controlled service time, b(t) is changed at a rate
proportional to the error signal e(t),

db(t)

P Kk
dt ic(t)

where K; is a constant parameter, called the gain of the controller. Because we
consider only discrete time, this becomes

b(t) = K; Y _e(t)

The Z-transform for an integral controller is

G =1
z

Note that the strategy is a simplification: in practice, the control strategy will
be implemented by discrete actions (for instance, increasing the service time by
diverting calls to replicated servers) offering generally coarser shifts in b. The relation
between the controller plant model and its implementation is addressed in the next
section.

Clearly a higher value of K; will lead to a faster correction to predicted diver-
gence from a desired utilization. However, at some point, higher values of K; will
“overshoot”, leading to a large predicted divergence in the opposite direction that
will then require another large correction. When this occurs, the value of K; results
in feedback through the control system and oscillations in control actions. In terms
of implementation, this is undesirable as oscillations will effect performance, as each
control action will be associated with a cost.

So, we require the highest value of K; that does not overshoot in this fashion.
This can be determined through root locus analysis of the closed-loop transfer func-
tion for the control system.

The root locus method involves finding the roots of the characteristic equation
for the closed-loop transfer function are plotted for all values of the gain parameter
K;. The characteristic equation for the closed-loop system is obtained by setting
the denominator of (3) to zero. This occurs when the open loop transfer function
GW H is equal to —1,

G(z)W(2)H(z) = —1

The method enables the analyist to determine the effects variations on K; will have
on the location of closed-loop poles. While theoretically quite complex, the solution
for systems of our form can be easily determined automatically by MATLAB.

58 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 11



5 EXAMPLE

The damping ratio for a root locus plot determines the speed at which we would
like the controller to converge to a desired value after a predicted divergence, assum-
ing no further external perturbations to the utilization arising from changes to the
arrival rate X. A lower damping ratio is desirable, but should be balanced with as
high a value of K; as possible. A given damping ratio r can be used to determine the
value of K; from the root locus plot: the value is found from the point on the plot
that makes an angle cos~!r with the negative real axis. Because the ratio should
be between 0 and 1, with a ratio above 1 leading to oscillations, all non-oscillating
values of K; are to be found in the upper left hand side of the complex plane for the
the root locus plot.

4 MODEL DRIVEN DEVELOPMENT OF CONTROLLED ARCHITEC-
TURES

The method of the previous section developed a controller function that determines
how the service rate should be changed in order to avoid undesirable trends in
utilization. This function is a model of how control should work for a particular
queued service. We now sketch our approach to controller generation. We first
develop control systems for each constrained component of our extended version
of the UML2 superstructure. Then we apply a so called Y model-transformation,
mapping UML components and their associated control systems to .NET based
implementations.

We have implemented a beta version of our translations using the INRIA Triskell
group’s Kermeta transformation language. In this language, model transformations
are defined as meta-operations of M2 metaclasses, whose input types are Platform
Independent metaclasses and whose output types are Platform Specific metaclasses.
This has the advantage of providing a unifying MOF-style framework for under-
standing both metamodels and model transformations.

We omit the full description of the transformations and instead describe their
behaviour informally. As a motivating example for our transformations, we define a
simple application of model transformation, involving a constraint over utilization
imposed over method calls to a component.

Three models are given given in Fig. 6. We use the UML2 superstructure
extended with QoS constraints, as defined in [3]. Our transformations map this to
a control system model, that defines an adaptation strategy.

5 EXAMPLE

To illustrate our method for control, we continue with the webservice based example
of section 2.

We then ran least squares regression over the dataset to obtain an optimal set
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Figure 6: Model driven development of the controlled system.

of 10 a; and (3; parameters for an ARMA model of the form (1) with n =m = 9.

The model transformations of the previous section generate a context for the
server, mapping this ARMA model to prediction pre-call code in the context. We
assume each call type has the same processing time b.

The architecture of the system assumes an M /M /1 queuing model, with a Pois-
son arrival distribution. This information is used in the UML to controller transfor-
mation, generating a control system model with the following description:

GWH =

¢(n) = ARM A(c(n))

9
Z 2710,
q=0

¢() 1+ i 2 Py,
p=1
K K 2. —2.02
KNy (B\ gy 55s 023
S S s+ 1.3
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so that GW H is

2K (62" + (81 — Bo) 2 + (B2 = B1) 2° + ... + (Bo — ) 2 — Po)
24 (g + 1) 210 4+ (g +aq) 22 + (g + az) 28 + ... + (g + ag) 22 + gz

We then apply root-locus analysis over this equation to determine the optimal
value of K. We plot the roots of the characteristic equation against all values of K.
This can be done easily in MATLAB, producing Fig. 7. The poles are denoted by
an x and the zeros by a 0. We can use this to determine the value of the gain that
will make the damping ratio of the dominant closed-loop poles as prescribed. For
example, valid, non-oscillating values for K; are .1 with damping ratio .2, .5 with
damping ratio .193 and 1 with damnine ratio .63.

1 T

08 I G\( 4

06 O\X -
0l K=0.1 / % |

Damping = 0.752

02 -

0 G—x

Imaginary Axis

-0.2 -
04 4

A (o :

-2 -1.5 -1 -0.5 0 0.5 1
Real Axis

Figure 7: Root loci for our example.

Fig. 8 shows controlled utilization with valid, non-oscillating gain values (0.1
and 1) against uncontrolled utilization. As can be seen, higher gain results in faster
response to trends away from the desired utilization level of 0.7. Because there
is always random arrival rates, the controlled utilization will never be exactly at
the desired level, but it maintains a satisfactory level of stability. Most notably,
when the uncontrolled utilization moves into instability between time units 144-199
and 298-331, both graphs show the controlled utilization maintains a much better
level of stability. Fig. 9 shows controlled utilization for oscillating gain values with a
damping ratio of greater than 1. Clearly the controlled utilization here “overshoots”
the correction to deviation from required utilization. In particular, the controller
leads to undesirable oscillations between a near zero utilization (corresponding to,
for instance, a very high number of replicated servers) and very unstable utilization
(corresponding to a single overloaded server) at the points where uncontrolled uti-
lization exhibits prolonged instability. This makes the controlled utilization worse
than retaining ordinary utilization.
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Figure 8: Two plots of controlled utilization with valid, non-oscillating gain values

against uncontrolled utilization.)
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In the implementation, the service rate is changed by means of several adaptation
strategies. 1) The server can be replicated n times, with yielding a new processing
time equal to bn. 2) There are equivalent versions of the server available to access
via UDDI, each with a variable serving time. If calls are diverted equally to one
of these servers with service time ¥’, then the new overall processing time is b + b'.
These strategies are mapped to server selection code that forms the final part of
the pre-call in the context generated by the transformation. Given a desired service
level b, the selection code chooses the best strategy to meet the target. Provided
the service rate change strategies are sufficiently fine grained enough, the selector
can follow the controller’s requests closely.

6 RELATED WORK AND CONCLUSIONS

There are many systems that permit dynamic adaptation of architectures based on
real time QoS information [2, 1, 18, 4, 11, 16]. The work of [18] is most similar to
ours, as they use UDDI and QoS information to assemble web service architectures
of optimal performance. Adaptation has also been proven to be useful in a range of
other contexts. For example, [1] defines a language of QoS policies for grid services
that are enforced by means of adaptation mechanisms. A different approach to QoS
adaptation is considered in [17] for the case of embedded systems. These systems
do not involve control theoretic notions or forecasting of values as part of their
adaptation strategies. The ARMA methods need not only be applied to compute
QoS queue characteristics. These strategies have the potential to be combined with
such (non-queued) QoS-based runtime adaptation technologies.

Similar forecasting methods are used by Dinda for host load prediction [6] of
CORBA based systems and the performance prediction methods of [2] and [8]. The
difference with that works is that we adapt ARMA methods to queued models,
instead of load time estimation models. The intention behind our system is analo-
gous to that of the Running Time Advisor of [6], but applied to widely distributed
webservice component architecture.

Further work on stability for more complicated queuing strategies is given in
[9]. These results could be adapted to our context, to enable us to predict stability
for systems involving multiple servers.[10] presents the most completed overview of
different stochastic methods to examine queued system to stability. There are about
ten methods. Each of them represents particular interest of investigation, study and
especially applying. Most of these methods have been contrived to be applied in
different parts of science, but never was applied to predict behaviour of complicated
computer systems.

We intend to improve the trustworthiness of our model-driven approach next.
While the mathematics behind the adaptive approach is sound, there remains the
problem of a semantic gap between the platform independent specification of adap-
tive constraints and the platform specific control strategies. There is no formal
guarantee that the latter strategies are accurately generated to satisfy the former
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specifications — we simply trust that the transformation writer has done his/her job
in providing an accurate generation. This problem holds for any MDA context, not
only our own. However, because the transformations are between models that have
a formalizable semantics, it should be possible to apply the methods of [14] and [15]
to obtain provably correct generation strategies.
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