
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2007

Vol. 6, No. 10, November-December 2007

Cite this column as follows: Dave Thomas, “Programming the World in a Browser - Real Men
Don’t Do JavaScript Do They?!”, in Journal of Object Technology, vol. 6 no. 10 November-
December 2007, pp. 25-29 http://www.jot.fm/issues/issue_2007_10/column3

Programming the World in a Browser
Real Men Don’t Do JavaScript Do
They?!

By Dave Thomas

1 AND THE WINNER IS JAVASCRIPT

The mainstream professional developer community has never taken JavaScript
seriously but soon they will have no choice. JavaScript is ready to move to center
stage as the development and delivery technology for Web 2.x applications. In the
past, most enterprise and product developers flocked to Java or C# while web
developers moved to PHP, Perl, Python and more recently Ruby, with most ignoring
the web based scripting language called JavaScript. At best it has been considered
something to spiff up one’s HTML pages. To make matters worse, incompatible
implementations of JS and the DOM have tormented developers and made JS very
unpopular with many. Until Ajax and Web 2.0 Douglas Crockford seemed to be the
only advocate for JavaScript as a reasonable programming language. He pointed out
that JS was really a Scheme like language with a prototype-based object model
layered on top of it. I’m sure that popular author David Flanagan never dreamed that
he would be best known for his book Definitive JavaScript.

While many smaller companies had built quality widgets and applications in JS it
is was the entry of Yahoo Widgets, and more importantly the that of Google Mail,
Calendar, etc. that laid the commercial foundation for the Ajax revolution with a
plethora of frameworks and tools. Rather than bulky and complex web standards,
more and more of these toolkits support simpler Restful style services that use JSON
rather than SOAP.

JavaScript’s ubiquitous browser availability makes it the frontrunner in that
environment and this will no doubt ripple to servers and appliances. JavaScript is
headed into the limelight once promised to Java, then later to Flash. It will be a must
know language for everyone within 3 years. If JavaScript does cross over from the
browser to other platforms it could inflict collateral damage on these languages down
the road.

PROGRAMMING THE WORLD IN A BROWSER REAL MEN DON’T DO JAVASCRIPT DO

THEY?!

26 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 10

Web 2.0 – The Push for a Faster, More Robust JS in the Browser

The Browser as a platform for Web 2.0 and a software as a service application
delivery system requires a robust JS that supports the execution of complete
applications. It is well known that the initial implementations were not designed as
high performance VMs and that the GCs were problematic. The race to improve JS
was kicked off by the Mozilla SpiderMonkey implementation, which demonstrated
that JS performance could be improved. Several popular Web 2.0 sites quickly
showed that the IE implementation performed poorly, making Firefox a more
attractive web platform. This of course had MS racing to put new legs on its JS
implementations, which were announced in March at the Mix conference.

2 JS ICING ON THE CAKE - UNIVERSAL LIGHT WEIGHT
RUNTIMES

Silverlight and the Dynamic Language Runtime

Silverlight is the recently announced lightweight CLR implementation with an
associated subset of the .NET framework that runs in the browser. Silverlight extends
the reach of the MS CLR beyond IE and Windows. More impressively, it allows MS
Visual Studio to be used to develop and debug applications running in non MS
browsers running on non Windows platforms. MS has demonstrated IronPython and
IronRuby implementations of these popular scripting languages as well as JS
implementations.

Recently, there has been discussion of a dynamic language runtime (DLR), which
is based on Jim Hugunin’s work on IronPython, rumored to include Python,
Javascript, Visual Basic and a version of Ruby which will use the CLR rather than
managed C code. This promises to finally give dynamic languages first class status at
Microsoft. So far the most impressive feature is the demonstration using MS Visual
Studio to debug a Safari web application running on a Mac.

Scripting Language Execution on the JVM

At last it appears that Dynamic Languages may finally be worthy of consideration by
the Java community. Efforts by researchers and implementors at Sun have
demonstrated the viability of the approach and are adding the machinery to improve
Java execution.

The Sun Finally Shines on Dynamic Languages

In Java 6 Sun has introduced two JSRs specifically intended to improve Java as a
scripting platform. JSR 223 makes it easier for Java based scripting languages to
interact with existing Java classes. This will improve JS execution with Rhino, the
popular JS implementation used on the JVM. JSR 292 introduces a new bytecode
invokedynamic that supports efficient and flexible execution of dynamic method
sends. The good work by the JRuby team at Sun demonstrates that dynamic languages

VOL. 6, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 27

such as Ruby can be implemented quite efficiently on the JVM by using a
combination of compilation and proven VM implementation techniques such as inline
caches. Through the use of tricks used in Smalltalk and Self as well as type inference
and selective compilation it is now possible to script server side applications using JS
or Ruby.

Google Reviving Rhino?

Google has recently been an active contributor to Rhino, the open source JS
implementation on the JVM. Although it is doesn’t support the current standard
perhaps renewed efforts will bring it in line. It should be enabled through Java JSR
223.

More impressively, Google has recently demonstrated the implementation of a
Rails like framework Rhino-On-Rails using Rhino JS. A recent blog post by Steve
Yettes has spiked rumors about Rhino at Google. However, if Google does do
something it would seem more likely to leverage its Smalltalk, Self and Hot Spot
expertise given Google’s VM wizards such as Jeffrey Dean, Urs Holtz and Lars Buk,
etc. This would provide a better client and browser side story that didn’t mandate a
JVM. Perhaps there is a Hot JS on the horizon, when it comes to Google anything is
possible.

IBM Project Zero?

Earlier this year, IBM introduced Project Zero, which promises many things but
comes up short on delivery, at least initially, and seems to position IBM out of the
running for a serious dynamic runtime. The current offerings include a subset of PHP
and some sort of cooperation on Groovy, which is itself well behind the work on
JRuby. IBM clearly has the expertise in its OTI Lab VM team but Project Zero seems
to be an independent effort that doesn't appear to leverage that expertise. IBM has bet
so heavily on Java runtimes that it will now have difficulty reacting to a world where
Javascript is king. Unfortunately it isn't easy to have zero overhead nor zero
complexity when resting on top of an infrastructure such as the JVM1. Also, the more
JS remains a dynamic language the more problematic a compile to Java based
implementation will become.
Rather than leveraging the true open source community that made IBM a mainstream
player with Eclipse, IBM seems to be playing bait and switch with bogus community
style licenses for Project Zero and Jazz. This has the potential to take IBM from OSS
leader to loser, especially if in doing so they alienate the good will and support of the
Eclipse community, which has supported IBM in its tooling and runtime efforts.

1 JVMs in a “Software as A Service” Environment? It is interesting to point out that the JVM community is very
silent about memory footprints of Java versus C based JS, Ruby, PHP or Python in a hosted software as a service
environment. I’ll bet Sun and IBM are very busy trying to figure out how to get Java starting a lot faster and
sharing a lot more code!

PROGRAMMING THE WORLD IN A BROWSER REAL MEN DON’T DO JAVASCRIPT DO

THEY?!

28 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 10

3 ECMASCRIPT 4 – JUST SAY NO!

Quietly, while no one was watching or caring, Adobe and Mozilla hijacked
ECMAScript and are now driving forward with a monster disguised as ECMAScript
4. The open reference implementation is a nice idea, but it is hardly a proven approach
for defining a language standard, especially with a C based implementation2. One may
argue that it worked for C# and JS however these were already defacto standards and
they were not designed by committee.

Just browsing through the wiki shows a language which has prototypes, classes,
multi-methods?, static types, dynamic types, etc, etc. This reminds an old guy like
myself of other large design by committee languages such as PL/I, Algol 68 and
ADA. These ambitious efforts all had smart people involved in the design and
implementation but were unfortunately far too complex and came to the market too
late. JS is intended to be a language for the people, not another language that only
technical wizards can understand. If you are an Ajax developer or care about dynamic
languages I suggest that it is time for you to speak up and help put ECMAScript 4 on
a much less ambitious path than is currently being charted. Less is truly more when it
comes to languages.

4 JS AS A PLATFORM!

There are numerous JS UI frameworks which enable developers to “target” JS in the
browser for delivering applications including Google Web Toolkit (GWT), Yahoo
Widgets and various Ajax frameworks. A more ambitious approach is used by
Morfik's JST, which compiles applications developed using their UI builder and
Basic, C#, Java or Pascal into JS Ajax.

A similar project, JSC is an experimental project to compile C# to JS.
Unfortunately, JS is not without its problems, one of which is the security risk

exposed in XMLHTTP and JS/DOM interactions. These problems are due more to the
DOM and Browser however. The Browser in particular is larger than many operating
systems!

But surely no one would seriously consider compiling real applications to a
native JS Platform. You clearly can’t do that with JavaScript! Well, if you have not
been watching your RSS feed you need to read about the bleeding edge research at
Sun Labs and Microsoft Live Labs.

Microsoft Live Labs Volta research project led by Erik Meijer, the father of
LINQ, compiles MSIL to JS. The main goal of the Microsoft Live Labs Volta
experiment is to delay irreversible decisions when building Web 2.0 applications until
the last possible responsible moment. Volta allows today’s MS tools such as Visual
Studio, C# and Visual Basic and applications to leap into the browser and cross

2 It can be very difficult to develop tools or independent implementations if the syntax and semantics are encrypted
in C. PHP and Ruby are just two recent examples where it has proven difficult to understand the grammar and
semantics from the reliable and very useful de facto reference implementations.

VOL. 6, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 29

platforms with zero deployment cost, optimizing for whichever execution
environment (JavaScript, Silverlight) is already available on the client. Volta explores
simple ways to build applications which span the internet cloud from user to data
source using declarative tier-splitting refactoring.

Sun Lively is billed as a WebOS in JS. Lively leverages the impressive Squeak
Morphic graphic framework to deliver applications on a JS + SVG platform. Lively is
inspired by Dan Ingall’s work on Smalltalk and Squeak and no doubt by Dave
Ungar’s work on Self. It provides an open, live programming experience in which the
running code can be edited on the fly. The use of vector graphics enables rich new UIs
that go beyond classical widgets. This brings to mind Sun NeWs, which pioneered the
use of programmable vector graphics based UIs using Display Postcript and was used
heavily in NextStep.

JavaScript – The World’s Most Popular Dynamic Language

JavaScript is growing up very quickly from a little scripting language to a full blown
application delivery run-time. It enables a new generation of easy to use Web 2.0
tooling, such as IBM QEDwiki, Yahoo Pipes and Microsoft PopFly, for rapid
application development for the Programmable Web. With luck Web 2.0 may allow
many of us to stop fighting the middleware and get back to the joy of building
applications!
It also appears that we may finally be moving away from platform-dictated UIs and
windowing systems to richer UI experiences tailored to the needs and expertise of the
user. I look forward to the IT community waking up to find that while they were lost
in the complexity of SOA, end users are already using their own enterprise application
integration and workflow orchestration as a restful and easy to use Mashup!

About the author

Dave Thomas is cofounder/chairman of Bedarra Research Labs
(www.bedarra.com), www.Online-Learning.com and the Open
Augment Consortium (www.openaugment.org) and a founding
director of the Agile Alliance (www.agilealliance.com). He is an
adjunct research professor at Carleton University, Canada and the
University of Queensland, Australia. Dave is the founder and past

CEO of Object Technology International (www.oti.com) creator of the Eclipse IDE
Platform, IBM VisualAge for Smalltalk, for Java, and MicroEdition for embedded
systems. Contact him at dave@bedarra.com or www.davethomas.net.

