
Vol. 6, No. 9, 2007

A Metamodel Independent Approach to
Difference Representation

Antonio Cicchetti, Davide Di Ruscio, and Alfonso Pierantonio
Università degli Studi dell’Aquila, Italy

It is of critical relevance that designers are able to comprehend the various kinds
of design-level modifications that a system undergoes throughout its entire life-
cycle. In this respect, an interesting and useful operation between subsequent
system versions is the model difference calculation and representation.
In this paper, a metamodel independent approach to the representation of model
differences which is agnostic of the calculation method is presented. Given two
models which conform to a metamodel, their difference is conforming to another
metamodel derived from the former by an automated transformation. Difference
models are first-class entities which induce transformations able to apply the
modifications they specify. Finally, difference models can be composed sequen-
tially and in parallel giving place to more complex modifications.

1 INTRODUCTION

Model-Driven Engineering (MDE) leverages models to first-class status by shifting the
focus of software development from coding to modeling. It isof critical relevance that
designers are able to comprehend the various kinds of design–level modifications that a
system undergoes throughout its entire life-cycle. Nurturing the detection of differences
between models is essential to model development and management practices, which are
traditionally not neglected in high-quality software development processes [10].

There have been some work (e.g., [22, 1, 29]) that proposed automated UML–aware
differencing algorithms which, in contrast with traditional lexical approaches, such as
GNU diff-liketools (see [12, 13, 14] among others), are capable of capturing the high-level
logical/structural changes of a software system. More recently, another approach [20]
based on structural similarity extended differencing to metamodel independency, i.e., to
models conformant to an arbitrary metamodel. However, the capability of tools to op-
erate on change documentation which conforms only to their own internal format tends
to lock software development into a single tool compromising its exploitation as part of
a tool chain. In fact, whilst a number of algorithms and toolsare available for detect-
ing structural changes, the visualization of differences is often based on solutions where
the opportunity to harness the power of generic modeling platforms has far been largely
missed.

At the moment, the techniques for visualizing and representing model differences are

Cite this column as follows: Antonio Cicchetti, Davide Di Ruscio, Alfonso Pierantonio:
A Metamodel Independent Approach to Difference Representation, in Journal of Object
Technology, vol. 6, no. 9, 2007, pages 165–185,
http://www.jot.fm/issues/issues 2007 10/paper9

http://www.jot.fm/issues/issues_2007_10/paper9

A METAMODEL INDEPENDENT APPROACH TO DIFFERENCE REPRESENTATION

mainly based on edit scripts [1, 21] and coloring techniques [22]. The former represents
modifications as a sequence of atomic actions specifying howthe initial model is proce-
durally modified. Whereas, the latter permits the differences to be displayed in a diagram
which is the union of the two base models, with the common parts of both base dia-
grams painted black and the specific elements colored. Unfortunately, to different extent
both solutions present drawbacks not limited to a certain lack of abstraction and compo-
sitionality which compromises their adoption in a generic modeling platform [3]. In fact,
edit scripts are intrinsically not declarative, lengthy and very fine-grained, suitable for
inner representations but quite ineffective to be adopted for documenting changes (e.g.,
see [7]). Coloring techniques presents advantages over procedural methods, for instance
differences are given as a model which enhances intuitiveness and can provide the basis
for a variety of subsequent analysis. However, they tend to be densely populated, require
dedicated tool support, and subsequent difference calculations are not compositional.

In this paper, we present a metamodel independent approach to the representation of
model differences which is agnostic of the calculation algorithm, i.e., the proposed tech-
niques do not refer to any differencing methods nor tools andaim at providing a mean
to represent version changes. Given two models which conform to an arbitrary meta-
model, their difference conforms to another metamodel derived from the former by an
automated transformation. Interestingly, difference models are first-class objects which
induce transformations, such that they can be applied to oneof the differenced models to
automatically obtain the other one. This operation can be, under certain conditions, com-
posed sequentially and/or in parallel in order to representmore complex modifications.

The paper is structured as follows: Sect.2 describes the current approaches to model
difference representation and visualization and outlinesa minimal set of requirements a
representation technique should, in our opinion, satisfy.Next section presents the pro-
posed approach by defining an automated transformation froman arbitrary metamodel
to a corresponding difference metamodel. How a difference model induces, in turn, a
transformation is given in Sect.4 by means of a higher-order transformation. Sect.5 in-
troduces the dual, parallel and sequential composition operators for differences. Finally,
after discussing some related work we draw some conclusions.

2 BACKGROUND

The rationale behind the design–level modifications that a system undergoes during its
life-cycle is of key relevance in model development and management practices. Detect-
ing differences and identifying mappings among distinct versions of a system design is
preparatory to represent at least part of such knowledge. The more the documents increase
in intricacy, the more specialized tools are needed to compare, manage, and represent the
different models into a new one that contains all the proposed changes.

As mentioned, we are interested in finding a suitable representation for model differ-
ences which abstracts from the calculation method and permits to harness the potential
offered by generic modeling platforms (for instance [4, 19]). Thus, we identified a num-
ber of natural properties a representation technique should have according to our view, as

166 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

2 BACKGROUND

described below

– model-based, the outcome of a difference calculation must be represented as a
model to conform to the spirit of “everything is a model” principle [3] and to en-
able a wide range of possibilities, such as subsequent analysis, conflict detection or
manipulations;

– minimalistic, the difference model must contain only the necessary information
to represent the modifications, without duplicating parts as those model elements
which are not involved in the change;

– transformative, each difference model must induce a transformation, such that when-
ever applied to the initial model yields the final one. Moreover, the transformation
must be applicable also to any other model which is possibly left unchanged in case
the elements specified in the difference model are not contained in it;

– compositional, the result of subsequent or parallel modifications is a difference
model whose definition depends only on difference models being composed and
is compatible with the induced transformations;

– metamodel independent, the representation techniques must be agnostic of thebase
metamodel, i.e., the metamodel the base models conform to. In other words, it must
be not limited to specific metamodels, as for instance happens for certain calculation
methods (e.g., [22, 29]) which are given for the UML metamodel.

The above discussion outlines a minimal set of requirementswhich should be taken
into account in order to let a generic modeling platform dealwith advanced model man-
agement facilities. In the rest of the section, the most common visualization techniques
are compared according to a small benchmark case borrowed from [22] and illustrated
in Fig. 1. In particular, in the final model export functionalities have been added to the
initial model through theExport class; consequently an abstractHTMLDocElem has
been created, which is specialized byHTMLList andHTMLForm. In turn,HTMLList
is specialized byHTMLCombo, whileHTMLForm is composed byHTMLDocElems, re-
spectively. These modifications are intended to be manuallyperformed on the initial
model and can be detected by means of an automated tool implementing one of the ex-
isting differencing algorithms. The visualization of differences can be divided into two
main techniques:directed deltasandsymmetric deltas[21]. The former represents delta
documents as the sequence of the operations needed to obtainthe new version from the
old one, while the latter shows the results as the set difference between the two compared
versions. In the sequel, a deeper description of both techniques will be provided by means
of the example introduced above, aiming at highlight pros and cons about each of them.

Edit Scripts

Edit scripts represent an implementation of the directed delta approach. Sequences of
primitive operations, likeadd, edit anddelete for instance, describe in procedural
terms the modifications a model has been subject to. In general, such technique is strictly

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 167

A METAMODEL INDEPENDENT APPROACH TO DIFFERENCE REPRESENTATION

a) initial model b) final model

Figure 1: Different versions of a system design

related to the calculation algorithm because of optimization issues, such as unexpected
redundancy [21]. In fact, if on one hand the calculation is based on a set of atomic
operations which is independent from any differencing method, on the other hand the
optimization requires the calculation to provide a preciseordering of the operations.

A major advantage of this techniques is the compositionality, i.e., the capability of
obtaining a document, which underwent a number of subsequent modifications, by ap-
plying the composition of deltas to the initial document. This quality factor combined
with the optimization makes the technique very appreciatedfor its efficiency. Unfortu-
nately, the readability and intuitiveness of the outcome result is limited, especially when
the scripts are largely optimized and the rationale behind the updates tends therefore to be
blurred. Additionally, the calculation method proposed incombination with edit scripts
typically identifies elements among distinct versions of a model by means of persistent
identifiers. Consequently, delta documents result locked within the tool which has been
used for entering/editing the base models and the opportunity of having transformative
deltas is largely missed.

Coloring techniques

Coloring techniques permit the modifications to be displayed in a diagram which is the
union of the two base models, with the common parts of both base diagrams painted black
and the specific elements denoted by colors, tags, or symbols, respectively. It is a sym-
metric delta approach, since it directly compares two versions of a model and highlights
the changes which took place. In [22] a calculation and visualization method based on

168 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

3 DIFFERENCE METAMODEL

Figure 2: An example of difference visualization technique.

coloring is proposed and Fig.2 depicts the resulting delta document applied to the base
models in Fig.1. Alternative representations are possible and usually based on element
stereotyping and delta tree arrangements [29] among others. Visualizing modifications
according to this technique is typically beneficial for the designer, since the underlying
rationale can be grasped with a glance thanks to enhanced intuitiveness and readability.
However, these quality factors are retained only if the basemodels are not large and not
too many updates apply to the same elements, since the difference model consists of both
base models to denote the differences. Finally, this causesthe method not to betransfor-
mativeproperty as well.

3 DIFFERENCE METAMODEL

In this section, we propose an approach to model differencescapable to meet the require-
ments discussed in Sect.2. For presentation purposes, the simplified UML metamodel in
Fig. 4 is considered throughout the section although the approachis general and is appli-
cable to any metamodel. According to the “everything is a model” principle [3], this work
proposes an approach to specify differences as models and that can be taken as input by
general purpose theories and tools in a MDE setting. In particular, in MDE models are
not considered as merely documentation but precise artifacts that can be understood by
computers and can be automatically manipulated. In this scenario, metamodeling plays a
key role: it is intended as a common technique for defining theabstract syntax of models

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 169

A METAMODEL INDEPENDENT APPROACH TO DIFFERENCE REPRESENTATION

Figure 3: Difference metamodel generation

and the interrelationships between model elements. Metamodeling can be seen as the con-
struction of a collection ofconceptswithin a certain domain formalized in a metamodel
which describes the common properties of its instances, i.e., models which represent ab-
stractions of real world phenomena. A model is said toconform toits metamodel like
a program conforms to the grammar of the programming language in which it is writ-
ten [3]. In this respect, the four-level architecture illustrated on the left hand side of Fig.3
describes theconformancerelation: at the bottom level, theM0 layer is the real system. A
model represents this system at levelM1; this model conforms to its metamodel defined at
level M2 that in turn conforms to the meta–metamodel at levelM3. The meta-metamodel
conforms to itself.

Provided that, given two models being differenced and that conform to a given meta-
modelMM, their difference conforms to another metamodelMMD that can be automat-
ically derived fromMM. In particular, the new metamodel has to provide the constructs
able to express the modifications that have to be performed onthe initial version of a given
model in order to obtain the final one. The proposed approach permits the representation
of changes that can classified as follows:

– additions: new elements are added in the final model like theHTMLDocElem ab-
stract class in Fig.1.b not present in the initial version of the specification;

– deletions: some of the existing elements are deleted as a whole like thecomposition
relation between theHTMLDoc andHTMLList classes in Fig.1.a;

– changes: a new version of the model can consist of some updates of already existing
elements. For example, some structural features (attributes and operations) of the
HTMLList class in Fig.1.a have been modified giving place to the new version in
Fig. 1.b.

In particular, letMC be a metaclass of a given metamodel, then it defines theAddedMC,
DeletedMC andChangedMC metaclasses that enable the representation of additions, dele-
tions and changes, respectively, of elements conforming totheMC metaclass (see the right
hand side of Fig.3). For instance, the metaclassesAddedClass, DeletedClass and
ChangedClass in Fig. 5 are derived by the metaclassClass depicted in Fig.4. The

170 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

3 DIFFERENCE METAMODEL

Figure 4: Sample UML metamodel

resulting metamodel allows the representation of the differences among two distinct ver-
sions of a UML model, as in Fig.7 where only part of the differences between the
two versions in Fig.1 are reported. For example, theHTMLDocElem class in Fig.1.b
is represented as anAddedClass instance since it is not present in the initial ver-
sion of the model in Fig.1.a. The deletion of elements is represented by means of
instances of the correspondingDeleted metaclass like the composition association be-
tween theHTMLDoc andHTMLList classes which is represented as an instance of the
DeletedAssociation metaclass. Whenever the deletion concerns a container, the
metamodel prescribes that also its contained elements mustbe denoted as deleted, al-
though this may appear redundant if not counterintuitive. The motivation is that a differ-
ence model must be a self–contained unit, i.e., in case the internal elements of a deleted
container are not explicitly marked as deleted, such information could only be deducted
by navigating the initial model. This is shown to be relevantin Sect.5 when discussing
the dual notion.

Changes of already existing elements are represented through Changed elements as
the class updates which are given by means ofChangedClass instances each of them
associated with a correspondingupdatedElement class. The latter specifies how
ChangedClass has to be modified in the new model version in terms of attributes and
associations. TheChanged modification is kind of shortcut which groups simple modifi-
cations consisting ofAdded andDeleted only reducing the size of the overall difference
model. For example, the modifiedHTMLList class in Fig.7 is composed by the attribute
name and the operationadd; both features are not present in theupdatedElement
class which consists of thedumpCont operation only. This means that all the struc-
tural features which are given in theChangedClass instance but not in the associ-
atedupdatedElement will be deleted in the new version. The features which are not
represented in theChangedClass instance will remain unchanged and will be simply
copied in the new version of the given element (like the operation toString or the
attributemultiSel in theHTMList class). Finally, the features specified both in the
ChangedClass instance and in the associatedupdatedElement will be modified
according to descriptions given in the last one.

Modifications occurring in ordered references (e.g.,Parametermetaclass in Fig.4)
require to be treated with some additional support. More in detail, theorderedassociation

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 171

A METAMODEL INDEPENDENT APPROACH TO DIFFERENCE REPRESENTATION

Figure 5: Fragment of the extended UML metamodel

ends induce in all the metaclasses of the difference metamodel but theDeleted ones an
additional attribute calledpositionIndex. This enables the management of ordered
sets in terms of absolute positioning. For instance, let us suppose to have an initial UML
class having the operationop(a:int,b:int) and due to a manual intervention, the
parameter order changed giving place toop(b:int,a:int), then the corresponding
difference model (restricted to the only operationop) is in Fig.6.

Figure 6: Sample ordering difference

As a side remark, please consider that analogously to the previous container situation also
in this case the class the operation is defined in must be denoted as “changed” as well.

As previously pointed out, the approach is metamodel independent and a given meta-
model can be automatically extended with the metaclasses needed to represent the mod-
ifications among base models that conform to that metamodel.The discussion given

172 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

3 DIFFERENCE METAMODEL

above about theAdded, Deleted andChanged concepts has been done by taking into ac-
count theClass element of the sample UML metamodel in Fig.4 for descriptive purposes
only. However, the explained behavior is valid for any metamodel and the resultinggener-
icity permits the specification of a canonical metamodel extension. In fact, according to
the general picture in Fig.3, a model transformationMM2MMD to yield the difference
metamodelMMD associated withMM must be defined. Introducing new metaclasses
to denote updated, deleted, and added model elements it is not the only way of modeling
modifications, but provides a mean for mapping them to any concrete syntax, as tagging or
annotations. Besides, specialization conceptually groups the kind of modifications related
to a base metaclass and makes the transformations (which areapplied to the difference
model) simpler in their formulation.

In the current implementation (available for download at [9]), the MM2MMD trans-
formation is given in ATL [18], a QVT compliant language part of the AMMA frame-
work [4]. Due to space limitation, Listing1 illustrates only a fragment of the implemen-
tation. In particular, we reported those rules which modifythe source metamodel w.r.t.
the structure shown in Fig.3 disregarding the simple functionalities, such as copying from
the source to the target metamodel.

ATL is a hybrid language which contains a mixture of declarative and imperative
constructs. Transformation definitions in ATL consist ofmodules each containing a
header section,import section, and a number ofhelpers(that will be described in
the next section) andtransformation rules. The header contains declarations, such as the
module name, the source and target models (lines1-2) with their typing metamodels. The
keywordcreate denotes the target model, whereas the keywordfrom indicates the
source one. In the following code, the source and target metamodels are both KM3 [16]
which is a metamodeling language part of the AMMA framework and based on the same
core concepts used in OMG/MOF [23] and EMF/Ecore [5]: classes, attributes and refer-
ences. In other words, the current implementation is an endogenous transformation over
KM3 metamodels.

1 module Metamodel2MetamodelDiff;
2 create OUT : KM3 from IN : KM3;
3 ...
4 rule Class2ClassDiff {
5 from
6 s : KM3!Class
7 (
8 not s.isAbstract
9)

10
11 to
12 t : KM3!Class (--topClass
13 name <- s.name,
14 ...
15),
16
17 a : KM3!Class (--addedClass
18 name <- ’Added’+s.name,
19 ...
20),
21
22 d : KM3!Class (--deletedClass
23 name <- ’Deleted’+s.name,

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 173

A METAMODEL INDEPENDENT APPROACH TO DIFFERENCE REPRESENTATION

24 ...
25
26),
27
28 c : KM3!Class (--changedClass
29 name <- ’Changed’+s.name,
30 ...
31),
32
33 ass : KM3!Reference (--updatedElement reference
34 name<-’updatedElement’,
35 owner<-c,
36 ...
37 type <-t
38)
39 }

Listing 1: Fragment of theMM2MMD transformation

Helpers and named rules are the constructs used to specify the transformation func-
tionality; relations betweensourceandtarget patternsare given as declarative rules, called
matched rules. In particular, the source pattern of the rule (lines5-9) consists of asource
typeand a OCL [24] guard stating that only non abstract classes must be matched. The
target pattern (lines11-39) is composed of a set ofelements, each of them (as the one
at lines12-15) specifies atarget typefrom the target metamodel (for instance, the type
Class from theKM3 metamodel) and a set ofbindings.

A binding refers to a feature of the type, i.e., an attribute,a reference or an association-
end, and specifies an expression whose value initializes thefeature. The elementsa,
d, andc of the target pattern (lines11-39) are devoted to the generation of the added,
deleted and changed sub-classes of the matched source classs, respectively. Finally,
the referenceass is created as a structural feature of the elementc in order to provide
with the possibility to refer to the new version of a given changed class by means of the
updatedElement reference. Difference models are first-class artifacts which, in turn,
induce other transformations, such that they can be appliedto one of the differenced mod-

Figure 7: A difference model fragment

174 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

4 DIFFERENCE APPLICATION

Figure 8: Difference application

els to automatically obtain the other one. Next section describes the techniques behind
such atransformativequality of the illustrated difference models.

4 DIFFERENCE APPLICATION

The transformative property introduced in Sect.2 denotes the important capability to em-
ploy modifications by interpreting the difference model specifying them. The difference
application is twofold: it can be used to “reconstruct” the final model starting from the
initial one, but it can also be applied to any model conforming to the base metamodel
giving possibly place to an idempotent application in case it does not overlap the initial
model. In summation, difference models can be viewed aspatchesoperating over models,
even though the induced transformations are somewhat exact, i.e., do not comprises any
fuzziness factor or adjustability of their application (see Sect.7 for a discussion about
that).

The model difference interpretation is intrinsically difficult since it requires a higher-
order transformation, i.e., transformations taking othertransformations as input and/or
transformations producing other transformations as output [3]. In particular, according to
the lower side of Fig.8, the model transformation (MMD MM2MM) can be applied to
a source modelM1 in order to obtain a targetM2 with respect to the differences speci-
fied in a modelMD. Such a model conforms to the metamodelMMD automatically ob-
tained fromMM as discussed in the previous section. More in detail, theMMD MM2MM
transformation implements the rules to apply on a modelM1 theadditions, deletionsand
changesspecified in the modelMD. More precisely, considering the dashed part in Fig.3,
for each metaclassMC in the metamodelMM, the transformationMMD MM2MM con-
tains the following rules:

– AddedMC2MC: it manages the elements in the difference modelMD that conform
to theAddedMC metaclass. For each element, the rule creates inM2 a new instance
of MC setting the corresponding structural features according to the specification of
theAddedMC element;

– ChangedMC2MC: it updates already existing elements in the initial model of type

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 175

A METAMODEL INDEPENDENT APPROACH TO DIFFERENCE REPRESENTATION

MC according to the modifications specified inMD throughChangedMC instances;

– UnchangedMC2MC: it copies the unmodified instances of the metaclassMC which
have to be the same both inM1 andM2. The source pattern of this rule has a guard
matching only theMC elements which have not been changed nor deleted.

Concerning the management ofDeletedMC instances, no rules are provided, since the
guard in the source pattern of theUnchangedMC2MC rule guarantees that elements which
have been specified as deleted in the difference model are notmatched during the trans-
formation phase (hence, not copied in the target modelM2).

The following ATL code is a fragment of theUMLD UML2UML transformation that
applies on a given UML model the modifications expressed in a difference model (that
conforms to the correspondingUMLD metamodel like the one in Fig.5) generating the fi-
nal UML specification. Due to space limitation, only the codefor managing the metaclass
Class is considered providing theAddedClass2Class, ChangedClass2Class,
andUnchangedClass2Class rules that reify the general behaviors of the transfor-
mation MMD MM2MM previously illustrated. The transformation rules can use ATL
helpers, i.e., read-only functions, to navigate the difference model to find the values to
be assigned to the structural features of the new version of agiven element. For in-
stance, the new value of the attributename of a changed class (line28) is reached in the
difference model by navigating theupdatedElement association of the considered
changed class. The dedicated helpergetChangedClassname is used for this purpose
and given a changed class it returns the new value for the attribute name (see lines4-5).

1 module UMLD_UML2UML;
2 create OUT : SimpleUML from IN1 : SimpleUML, IN2 : SimpleUMLDiff;
3
4 helper context SimpleUMLDiff!ChangedClass def: getChangedClassname : String =
5 if not self.updatedElement.oclIsUndefined() then self.updatedElement.name else

OclUndefined endif;
6 ...
7
8 rule AddedClass2Class {
9 from

10 s : SimpleUMLDiff!AddedClass
11 (
12 s.oclIsTypeOf(SimpleUMLDiff!AddedClass)
13)
14 to
15 t : SimpleUML!Class(
16 ...
17)
18 }
19
20 rule ChangedClass2Class {
21 from
22 s : SimpleUMLDiff!ChangedClass
23 (
24 s.oclIsTypeOf(SimpleUMLDiff!ChangedClass) and not s.updatedElement.oclIsUndefined()
25)
26 to
27 t : SimpleUML!Class(
28 name <- s.getChangedClassname,
29 ...
30)
31 }

176 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

4 DIFFERENCE APPLICATION

32
33 rule UnchangedClass2Class {
34 from
35 s : SimpleUML!Class
36 (
37 s.oclIsTypeOf(SimpleUML!Class) and not s.isChanged and not s.isDeleted
38)
39 to
40 t : SimpleUML!Class(
41 ...
42)
43 }
44 ...

Listing 2: Fragment of theUMLD UML2UML transformation

The UMLD UML2UML transformation above has been automatically generated by
means of a higher-order transformation applied to the UML difference metamodel shown
in Fig. 5 according to the upper side of Fig.8. Such a generation is feasible since the
behaviors of the building blocks of a model difference (thatis additions, deletions and
changes) are “parametrically” defined and can be instantiated on the elements of a given
metamodel. For example, the generic transformation ruleChangedMC2MC described
at the beginning of this section can be instantiated on the metaclassClass of the UML
metamodel producing theChangedClass2Class rule of theUMLD UML2UML trans-
formation. Alternative to a higher-order transformation for generating ATL transforma-
tions is serializing models into code by means of a templating mechanism. However,
ATL is part a set of coordinated languages and tools, as for instance Textual Concrete
Syntax [17] (TCS) devoted to bridging abstract and concrete syntaxes,which make tem-
plating for ATL model/code generation unnecessary.

An ATL implementation of this higher-order transformationis available for down-
load at [9], since because of space limitation only a very small fragment can be ac-
commodated in the current work (see Listing3). The implementation consists of three
main rules that areAddedClass (lines 4-23), UnchangedClass (lines 25-39), and
ChangedClass (lines41-52). They are dedicated to the generation of the three kinds
of rules needed for the management of each metaclass specified in the source difference
model. For instance, the match of the followingAddedClass rule with the metaclass
AddedAssociation of the UML difference metamodel, generates in the transforma-
tion UMLD UML2UML the ruleAddedAssociation2Association.

1 module MMD2ATL; -- Module Template
2 create OUT : ATL from IN : KM3;
3
4 rule AddedClass {
5 from
6 s : KM3!Class (
7 not s.isAbstract and s.name.startsWith(’Added’)
8)
9 using {

10 newHelper : Sequence (ATL!Helper) = OclUndefined;
11 ...
12 }
13 to
14 t : ATL!MatchedRule (
15 name <- s.name +’2’+s.name.regexReplaceAll(’Added’,’’),
16 ...
17),

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 177

A METAMODEL INDEPENDENT APPROACH TO DIFFERENCE REPRESENTATION

18 ...
19 do {
20 ...
21 newHelper<- thisModule.CreateAddedHelper(s);
22 }
23 }
24
25 rule UnchangedClass {
26 from
27 s : KM3!Class (
28 not s.isAbstract and (not s.name.startsWith(’Added’)) and
29 (not s.name.startsWith(’Deleted’)) and
30 (not s.name.startsWith(’Changed’))
31)
32 ...
33 to
34 t : ATL!MatchedRule (
35 name <- ’Unchanged’+s.name+’2’+s.name,
36 ...
37),
38 ...
39 }
40
41 rule ChangedClass {
42 from
43 s : KM3!Class (
44 not s.isAbstract and s.name.startsWith(’Changed’)
45)
46 ...
47 to
48 t : ATL!MatchedRule (
49 name <- s.name +’2’+s.name.regexReplaceAll(’Changed’,’’),
50),
51 ...
52 }

Listing 3: Fragment of theMMD2ATLhigher-order transformation

Depending on the structural features of the matched metaclass, a number of helpers (like
the one in the line4 of Listing 2) are created. Since such generations are quite complex
and it is difficult to specify them in a declarative way, ATLcalled rulesandaction blocks
are used. In particular, a called rule is a rule called by other ones like a procedure. An
action block is a sequence of imperative statements and can be used instead of, or in
combination with a target pattern in matched or called rules. For instance, lines19-22
implement an action blocks where the called ruleCreateAddedHelper is invoked in
order to generate the target helpers needed for the management of additions specified in a
given model difference (see the lower side of Fig.8).

5 DIFFERENCE OPERATORS

The evolution of a model consists of the initial model and a number of difference models
in such a way the final model is obtained by applying all the modifications to the origi-
nal one. Starting from a difference model it is useful to automatically generate its dual
model, i.e., an inverse difference model that when applied to the final model returns the
original one. This allows the designers to operate and storeonly the final model and even-
tually rollback to previous versions until the original model. Further useful constructions
would be the compositions of delta documents, like sequential and parallel merging of

178 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

5 DIFFERENCE OPERATORS

several versions independently developed. The former can be exploited to group two or
more subsequent modifications in a single difference model,while the latter enables the
concurrent manipulation of the same artifacts, which will need a fusion step to obtain the
overall resulting delta with respect to the previous version.

In the sequel, the mentioned operators will be discussed to suggest how to implement
them by means of the proposed approach.

Dual Notion
The dual calculation consists of the following operations:a) theadded anddeleted
specializations are transformed to the correspondingdeleted andadded ones, respec-
tively; b) thechanged specialization is moved to the linked element and the direction of
the association between them is reversed. The previous steps define a general model trans-
formation which can be easily derived from the source metamodel, as shown in Sect.3
and Sect.4 for difference representation and animation, respectively. In essence, a differ-
ence model and its dual induce two transformations which arethe inverse one with each
other.

As mentioned in the previous sections, a difference model isself–contained and min-
imalistic or, in other words, it must contain all and only therelevant information. This
is particularly relevant for the deletion of containers, which requires that all its contained
elements are denoted as deleted as well. What appears an unnecessary repetition is in-
deed a requisite which prevents the dual calculation from navigating the base model: in
fact, from a difference model which “deletes” a container, we have to derive a dual model
which “add” both the same container and whatever it contains, which is left undetermined
without referring to the initial model.

Sequential and Parallel Compositions
As mentioned above, an evolution consists of an initial model and a number of sub-

sequent modification documents. For the sake of simplicity,let us consider only two
subsequent modifications over the initial model. The sequential composition of such ma-
nipulations corresponds to merge the modifications conveyed by the first document and
then, in turn, by the second one in a resulting difference model containing a minimal dif-
ference set, i.e., only those modifications which have not been overridden by subsequent
modifications. Given a couple of subsequent modifications affecting the same element,
the optimization management will behave as summarized in Table 1: when a (added,
deleted) sequence occurs it is possible to ignore both the manipulations being one the
dual of the other, while in the case of a (changed, deleted) it is possible to perform

δ1 \ δ2 added changed deleted
added \ added ⊕ changed
changed \ changed⊕ changed deleted
deleted added \ \

Table 1: Optimization cases.

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 179

A METAMODEL INDEPENDENT APPROACH TO DIFFERENCE REPRESENTATION

Figure 9: A delta composition example.

only the deletion of the element since the changes would be lost anyway. To compact
a (deleted, added) couple an update should be built which changes the version of
the element depicted indeleted with the re-added one inadded. In the situations
where a (added, changed) or a (changed, changed) occurs, it is possible to group
the manipulations in a singleadded andchanged delta, respectively. In particular, in
the former case the addition can be completed with the subsequent changes, whereas in
the latter the updates can be composed in a single merged one.Finally, the other cou-
ples can be ignored simply because it is not possible they could occur; for instance, it is
not possible to update an element before creating it (changed, added) or to modify a
previously deleted element (deleted, changed). In the work in [22], where the dif-
ference example used in this paper has been taken, there is also an intermediate version
with respect to the initial and final ones shown here, which can be exploited to illustrate
a possible application of composition. In the top of Fig.9, it is depicted the addition
of theHTMLDocElem class and the composition relation fromHTMLDoc class to the
just added one. In the lower part of the same figure can be seen two further changes to
HTMLDocElem andHTMLDoc classes. As said above, when an (added, changed)
sequence occurs on the same element, it can be possible to build a single addition com-
pleted with the subsequent modifications. Therefore, in thedelta document of Fig.7 it is
possible to see a singleadded difference in which the changes contained in the second
part have been included.

In a distributed development environment modifications canbe operated also diverg-
ing from the same ancestor in parallel. In case both modifications are not affecting the
same elements (or in other words are parallel independent) their composition is obtained
by merging the difference models. This property can be easily shown by performing the
parallel independent modifications by interleaving the single changes and assimilating it
to the sequential composition. Unfortunately, the result of two parallel modifications can
give place to conflicting results, i.e., elements in the original model which are changed

180 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

6 RELATED WORK

by both difference models without converging to a common result. In this case, con-
flicting modifications either have to be resolved by the corresponding designers (see for
instance [1]), or they need some mechanism to support such a task [8]. However, conflict
resolution is a current research topic but it goes far beyondthe scope of this paper.

6 RELATED WORK

This paper is related to numerous aspects of modeling, even if only few of them are
pertinent to difference representation. In fact, there exist methods and algorithms for de-
tecting differences between documents (see [2, 26, 27, 30] for UML–aware calculations
and [20] for a metamodel independent approach, respectively) and only few focus on vi-
sualization issues. As discussed in Sect.2, difference representations are usually given
by means of edit scripts or coloring techniques. These formalizations present limita-
tions since their lack of abstraction and declarativeness prevents them from being repre-
sented by suitable metamodels and processed in standard modeling platforms. In [6] the
problem of representing changes between data structures inEMF Service Data Objects
(SDO) is addressed. Change summaries are used for recordingmodifications within data
graphs which consist mainly of trees of data objects; data graphs are serialized to XML
and change summaries make use of XPath for querying documents. With respect to our
proposal, change summaries do not meet the requirements of model-based, metamodel
independence, and transformability.

Although our approach is agnostic of the calculation method, it can be interesting
to consider the way certain difference calculations are performed. In fact, some UML–
differencing techniques are based on persistent identifiers which are assigned to all model
elements. This characteristic locks the designer within a tool since models realized with
different modeling tools have different identifiers and aretherefore not comparable. A
solution to this problem is introduced in [29] where algorithms based on similarity anal-
ysis are able to detect changes without referring to persistent identifier. This approach is
based on the notion of longest common subsequence. The presentation is usually realized
by means of change tree visualization introduced in two different versions which are es-
sentially the same but follow the inheritance– and containment–spanning tree of software
model, respectively. Such representation requires ad–hoctool support. Persistent iden-
tifiers could have been employed also in difference representation avoiding to have deep
copies of model elements and keeping models relatively small in size. Unfortunately, us-
ing persistent identifiers poses a number of questions, in particular: a) it tends to lock a
model life-cycle within a specific tool;b) it reduces the applicability of the induced trans-
formation since models edited independently (even within the same tool) from the base
model have different identifiers although conceptually related;c) finally, it would likely
restrict the adoptable calculation methods to those methods based on persistent identifiers.

An approach to compare models which conform to arbitrary metamodels is proposed
in [20]; difference calculation is performed by means of a similarity analysis technique,
while the representation exploits a coloring method based on tree arrangement of the
detected structural changes. From our point of view that work can be considered as a

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 181

A METAMODEL INDEPENDENT APPROACH TO DIFFERENCE REPRESENTATION

possible candidate technique to perform a metamodel independent differentiation whose
results can be represented with similar techniques as thosepresented in this paper.

An interesting initiative related to this work is the FAMOOSproject [11], whose goal
is to build a framework to support the evolution and reengineering of object–oriented
software systems. In particular, the language–independent FAMIX metamodel [28] is
often used for modelling snapshots in approaches which handle the history as a first class
entity, as for instance in [15] where the Hismo metamodel is introduced. In our approach
subsequent versions are represented by models which are possibly related via difference
models. In contrast with Hismo, we cannot explicitly model history and versions. Thus,
as far as we know, it seems that the approaches are somewhat orthogonal since we are able
to specify arbitrary snapshots which are linked by automated transformations induced by
the modifications.

Darcs [25] is a text-based revision control system (not dissimilar toCVS) which is
based on a theory of patches, whose properties enable context-independent manipula-
tions. Several concepts and issues in this paper have analogies with such theory. In par-
ticular, every patch is required to be invertible. Sequential composition of patches may
be subject to a reordering which can fail because of missing dependencies. Moreover,
concurrent patches (i.e., patches that are applied on the same source tree) can be merged;
the result of a set of merges is independent of the order in which the merges are per-
formed. Darcs can be a relevant source of inspiration for ourwork since there is at least a
perfect analogy across the corresponding domains.

7 CONCLUSIONS AND FUTURE WORK

This paper discussed the problem of representing differences among models conforming
to an arbitrary metamodel. Differences can be therefore given as a model which adheres
to a difference metamodel obtained by an automated transformation. Interestingly, differ-
ence models, regardless of the metamodel the base models areconformant to, are given
a behavior which transforms an initial model to the final one by means of a higher-order
transformation. The proposal has been devised to comply to the “everything is a model”
principle and to be accommodated in a generic modeling framework as shown by the im-
plementation [9] upon the AMMA framework. Compositional operators which combine
models sequentially and in parallel have been introduced.

Future work will address the problem of conflict detection and resolution. Parallel
modifications can give place to conflicts which are usually detected by means of tradi-
tional lexical approaches which lack of abstraction and cangive place to false positive
and negative issues. Our goal is to define a weaving metamodelfor the specification of
conflicts in such a way designers cancustomizetheir notion of conflict according to the
specific stage in the development process they are dealing with. A preliminary investiga-
tion has been recently presented in [8]. Model differences present an analogy to the patch
utility. Since the induced transformations do not present any adjustability of their applica-
tion, we intend to investigate how to introduce a fuzziness factor. In particular, we plan to

182 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

7 CONCLUSIONS AND FUTURE WORK

adopt weaving models [3] for setting – at different level of granularity – relationships be-
tween model elements and modifications to be applied to. Furthermore, the composition
of difference models has been partly investigated in [8], thus the implementation of the
corresponding higher-order transformations has not been totally realized and it is planned
to be covered in the near future.

Acknowledgments.This work has been partially supported by the IST EU project ”PLAS-
TIC” (www.ist-plastic.org).

REFERENCES

[1] M. Alanen and I. Porres. Difference and Union of Models. In Procs. UML 2003,
volume 2863 ofLNCS, pages 2–17.

[2] D. T. Barnard, G. Clarke, and N. Duncan. Tree-to-tree correction for document trees.
Technical report, Departement of Computing and Information Science Queen’s Uni-
versity Kingston, Canada, Jan 1995.

[3] J. Bézivin. On the Unification Power of Models.SOSYM, 4(2):171–188, 2005.

[4] J. Bézivin, F. Jouault, P. Rosenthal, and P. Valduriez.Modeling in the Large and
Modeling in the Small. InModel Driven Architecture, ECMDA Workshops: Foun-
dations and Applications, volume 3599 ofLNCS, pages 33–46, 2004.

[5] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T.J. Grose.Eclipse Modeling
Framework. Addison Wesley, 2003.

[6] M. Carey. Data Delivery in a Service Oriented World: The BEA AquaLogic Data
Services Platform.

[7] S.-Y. Chien, V. J. Tsotras, and C. Zaniolo.Version Management of XML Documents,
volume 1997 ofLNCS, pages 184–200. Springer-Verlag.

[8] A. Cicchetti, D. Di Ruscio, and A. Pierantonio. Composition of Model Differences.
In Procs. CMT 2006, number TR-CTIT-06-34 in CTIT Technical Reports.

[9] A. Cicchetti, D. Di Ruscio, and A. Pierantonio. ATL Use Case -
A Metamodel Independent Approach to Difference Representation, 2007.
http://www.eclipse.org/m2m/atl/usecases/MMIndApproachtoDiffRep/.

[10] R. Conradi and B. Westfechtel. Version models for software configuration manage-
ment.ACM Computing Surveys, 30(2):232–282, 1998.

[11] S. Ducasse and S. Demeyer. The FAMOOS Object-Oriented Reengineering Hand-
book.

[12] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and A. Mockus. Does code decay?
assessing the evidence from change management data.IEEE Trans. Software Eng.,
27(1):1–12, 2001.

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 183

A METAMODEL INDEPENDENT APPROACH TO DIFFERENCE REPRESENTATION

[13] S. G. Eick, J. L. Steffen, and E. E. Sumner Jr. Seesoft-a tool for visualizing line
oriented software statistics.IEEE Trans. Software Eng., 18(11):957–968, 1992.

[14] M. Fischer, M. Pinzger, and H. Gall. Populating a release history database from
version control and bug tracking systems. InProcs. ICSM 2003, pages 23–32. IEEE
Computer Society.

[15] T. Girba and S. Ducasse. Modeling History to Analyze Software Evolution.J. Softw.
Maint. Evol.: Res, Pract., 18:207–236, 2006.

[16] F. Jouault and J. Bézivin. KM3: a DSL for Metamodel Specification. In Procs.
FMOODS’06, volume 4037 ofLNCS, pages 171–185.

[17] F. Jouault, J. Bézivin, and I. Kurtev. TCS: a DSL for theSpecification of Textual
Concrete Syntaxes in Model Engineering. InProcs. Fifth Intl. Conference on Gen-
erative Programming and Component Engineering (GPCE’06), 2006. to appear.

[18] F. Jouault and I. Kurtev. Transforming Models with ATL.In MoDELS Satellite
Events, volume 3844 ofLNCS, pages 128–138. Springer-Verlag, 2005.

[19] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomason, G. Nordstrom,
J. Sprinkle, and P. Volgyesi. The Generic Modeling Environment. InWorkshop on
Intelligent Signal Processing, 2001.

[20] Y. Lin, J. Gray, and F. Jouault. DSMDiff: A Differentiation Tool for Domain-
Specific Models, Dec 2006.

[21] T. Mens. A state-of-the-art survey on software merging. IEEE Trans. Softw. Eng.,
28(5):449–462, 2002.

[22] D. Ohst, M. Welle, and U. Kelter. Differences between versions of UML diagrams.
In Procs. ESEC/FSE 2003, pages 227–236. ACM Press.

[23] OMG. Meta Object Facility (MOF) 2.0 Core Specification, OMG Document ptc/03-
10-04. http://www.omg.org/docs/ptc/03-10-04.pdf, 2003.

[24] OMG. OCL 2.0 Specification, 2006. OMG Document formal/2006-05-01.

[25] D. Roundy. Darcs 1.0.9rc2 Official Manual.

[26] S. M. Selkow. The tree-to-tree editing problem.Information Processing Letters,
6(6):184–186, 1977.

[27] K.-C. Tai. The tree-to-tree correction problem.Journal of the ACM, 26(3):422–433,
1979.

[28] S. Tichelaar, S. Ducasse, and S. Demeyer. FAMIX and XMI.In Proceedings WCRE
2000 Workshop on Exchange Formats, pages 296–299, 2000.

184 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

7 CONCLUSIONS AND FUTURE WORK

[29] Z. Xing and E. Stroulia. UMLDiff: an algorithm for object-oriented design differ-
encing. In20th IEEE/ACM ASE, pages 54–65. ACM, 2005.

[30] K. Zhang and D. Shasha. Simple fast algorithms for the editing distance between
trees and related problems.SIAM Journal of Computing, 18(6):1245–1262, 1989.

ABOUT THE AUTHORS

Antonio Cicchetti is a Ph.D student in the Computer Science Department at the Univer-
sity of L’Aquila, Italy from 2004. His research interests include techniques for model
differencing and management in current model-engineeringplatforms, domain-specific
modelling languages, model transformations and model weaving. He can be reached at
cicchetti@di.univaq.it. See alsohttp://www.di.univaq.it/∼cicchetti.

Davide Di Ruscio recently has received his Ph.D in Computer Science from the Univer-
sity of L’Aquila, Italy. His research interests include generative techniques and method-
ologies for Web development, model driven engineering and more specifically model
transformation and model differencing. He can be reached atdiruscio@di.univaq.it. See
alsohttp://www.di.univaq.it/∼diruscio.

Prof. Alfonso Pierantonio is Associate Professor in the Computer Science Department
at the University of L’Aquila, Italy. His present research interests include general model
engineering and more specifically model transformation andtechniques for model differ-
encing and management in current model-engineering platforms. He has been involved in
program and organization committees of conferences and co-edited several special issues
on scientific journals about these subjects. He can be reached at alfonso@di.univaq.it.
See alsohttp://www.di.univaq.it/∼alfonso.

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 185

mailto:cicchetti@di.univaq.it
http://www.di.univaq.it/~cicchetti
mailto:diruscio@di.univaq.it
http://www.di.univaq.it/~diruscio
mailto:alfonso@di.univaq.it
http://www.di.univaq.it/~alfonso

