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We propose an easy-to-use but formal approach for early safety analysis in the context
of component-based software development and illustrate its application with a case
example. Our approach aims at adopting formal safety analysis while maintaining
flexibility and consistency throughout the development process. To this end, we use
semi-formal use cases with templates that can be systematically translated into the
formal specification language RSML-e , whose execution environment integrates au-
tomated verification tools such as the model checker NuSMV. Consistency between
use cases and the high-level component design is maintained through a systematic
transition, so that the result of the safety analysis can be easily reflected in the design
model.

1 INTRODUCTION

As the dependency of our society on control software has increased tremendously,
software safety has become an important issue; control software is ubiquitous in our
daily lives, from mobile phones to aircraft controllers. Safety-related issues in such
control software have to be pre-identified from the beginning of system development
so that corresponding prevention mechanisms can be incorporated into the system
design [17].

Numerous approaches have been suggested for early safety analysis with vary-
ing degrees of automation of the analysis method; the hard-core formal methods
community promotes using formal specification languages for safety-critical systems
so that formal verification and validation can be thoroughly performed on formal
requirements [4, 14, 15]. Some of the approaches try to generate certifiable code
directly from the verified specifications [25], bypassing the design stage, in order to
ensure that the safety properties verified in the requirements are preserved in the
implementation.

In many application areas, where the level of safety assurance often needs to
be adjusted in trading off with flexibility and reusability, the use of formal speci-
fication may not be a practical approach. Especially in component-based system
development, where a flexible design architecture is desirable, the use of a flexible
requirements specification language is often necessary for seamless transition from
requirements to design. In such cases, informal or semi-formal requirements can
be translated into a formal specification for reasoning about the safety aspect of
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the requirements [10, 16, 18, 24]. Such translations can be difficult to perform in
practice when understanding of the target formal specification language requires
sophisticated mathematical skills, which has been one of the major barriers against
formal methods being a routine part of software engineering processes in practice.
Moreover, how to incorporate the analysis result from requirements engineering into
the early stage of the design process has not been well understood.

In this work, we suggest an easy-to-use formal approach for safety analysis in
the early stage of requirements engineering in the context of component-based soft-
ware development. Our approach is two-fold; first, the issue of providing safety
analysis capability while maintaining flexibility and usability is addressed by using
semi-formal use cases with templates [7], which can be systematically translated
into a formal specification language RSML-e [26]. Verification of safety require-
ments is performed on the translated use cases using the model checker NuSMV [21]
integrated into the execution environment of RSML-e . Second, the issue of incorpo-
rating the result of the safety analysis into the early stage of design is addressed by
defining a systematic transition from use cases to the high-level component design
based on the KobrA approach [2].

RSML-e is a state machine language designed with an emphasis on readability
and writability for non-computer scientists, whose practical value has been proven
through industrial applications [20]. Thanks to the simple syntax of the language,
we can provide a systematic mapping from use cases to RSML-e . Moreover, its
execution environment Nimbus [13] provides automated visual simulation and formal
verification capabilities. Once use cases are translated into RSML-e , validation of
the use cases using simulation and formal safety analysis with the help of model
checking are rather straightforward [5]. The analysis result is incorporated into
the system model by providing systematic transition from use cases to high-level
component design. We demonstrate our approach on a hypothetical elevator system
developed using the component-based software development approach KobrA [2].

The remainder of this paper is organized as follows; Section 2 introduces our
semi-formal use cases with templates, which is a basis of our approach. Section 3
suggests guidelines for systematic transition from use cases to the initial component
design in the KobrA method. Section 4 illustrates our safety analysis approach,
including a short description of RSML-e , a systematic translation from use cases to
RSML-e , and the safety analysis process. We conclude with discussion in Section 5.

2 REQUIREMENTS SPECIFICATION USING USE CASES

Use cases [7] are a popular means to specify behavioral requirements of software sys-
tems, mainly due to their intuitive style which can be easily understood by engineers
as well as non-technical stakeholders. This nature of use cases can promote efficient
communication among stakeholders — a major reason why they are preferred to
formal specification languages in practice.
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Figure 1: Use cases for an hypothetical elevator system

Use cases consist of three artifacts; use case diagrams, textual descriptions of use
cases, and use case scenarios. Use case diagrams illustrate the relationship among
use cases and actors, giving an overview of the system behavior.

Figure 1 shows an essential part of the use case diagram specifying the behavior of
a hypothetical elevator system. Each actor outside of the box represents an external
entity interacting with the system. The use cases inside the box represent system
functionalities provided to the external actors, where each use case can include or be
extended by other use cases. For example, the use cases move up and move out are to
represent how a user interacts with the elevator system when she/he wants to move
up or down floors. For both cases, a user needs to call the cabin by pressing the up
or down button outside the elevator. Since this act of calling the cabin is necessary
for both move up and move down use cases, they include the use case Call Cabin.
On the other hand, the use case Select Floor, representing the action of selecting
destinations after getting into the elevator cabin, is considered optional for the move
up and move down use cases, and, thus, modeled as extending those use cases. In
this early stage of requirements specification, we consider only the abstract notion of
elevator without distinguishing the software part from the hardware component of
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Figure 2: Textual specification of use cases

the system, which will be identified by component decomposition in the later stage.

The use case diagram is supplemented by textual use cases with a varying degree
of formality — from an informal, casual description to the use of a semi-formal
template specifying details of each use case. We adopt a semi-formal template for
textual use case description in order to support formal safety analysis with some
degree of automation. Figure 2 shows the textual use case of Move Up with its
included use case Call Cabin.

The template is designed to specify details of use case behavior, including pre-
and post-conditions of the use case, the flow of events, and controlled (output)
and/or monitored (input) variables related to the use case. As specified in the
flow of events, the move up use case first follows the flow of events of the use
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Figure 3: System Environment Model

case call cabin and then optionally follows the flow of events of the use case select
floor, if pre-conditions of those use cases are satisfied. Note that all the rules and
constraints of the included use cases also apply to the use case. The monitored and
the controlled variables of the use case include the monitored and the controlled
variables from its included use cases, respectively. Nevertheless, use case diagrams
and use case templates focus on what the system does and not on how it implements;
for example, the monitored variable Floor of Request of the use case Call Cabin
would be measured from the signal initiating the Call Cabin and its value would be
stored and used for making the elevator cabin stop at the Floor of Request on the
way of moving, but such details are left to design decision.

We can construct the environment model of the system under development from
the monitored and the controlled variables specified in use cases. The environment
model views the system as a black box and describes only the input to the system
from the external environment and the outcome of the system to the environment.
As shown in Figure 3, the input (output) variables of the elevator system are the
collection of monitored (controlled) variables specified in the use cases. This en-
vironment model, together with the use case diagrams, will be used as a basis to
derive the high-level component of the system design.

Use case scenario describes possible usage scenarios of the system and is often
specified in sequence diagrams or activity diagrams. In our approach, the use case
scenario is considered a part of the context realization, which is a starting point of
component design; this will be described in the next section.

3 COMPONENT DESIGN FROM USE CASES

In this section, we describe how use case specifications are used to derive a high
level component design in the context of the component-based software development
approach KobrA [2].

VOL 6, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 189



EARLY SAFETY ANALYSIS: FROM USE CASES TO COMPONENT-BASED SOFTWARE DEVELOPMENT

The KobrA approach

The KobrA approach is a structured and recursive method for component-based
system development. Its framework process starts from considering the whole sys-
tem as consisting of one component, which is an abstract and external view of the
system. The description of each component is then split into two main parts: the
specification and the realization. The specification describes the externally visible
characteristics (contracts) of the component. Each externally visible functionality
is realized, possibly with the decomposition of the component, in the realization
process through interactions with lower-level sub-components capturing the archi-
tecture (or design) of the component. This means that the framework development
process can be entirely recursive — a complete system can be a component, and any
component can be a system that can be decomposed further.

This recursive nature of KobrA ensures high-quality system development through
carefully controlled consistency, traceability, and realization relationships. Never-
theless, it also means high dependency among a component and its sub-components;
a problem in the high-level component propagates to the low-level components.

Transition from use cases to the high-level component

In order to provide a consistent safety analysis mechanism in the development pro-
cess, a seamless transition from requirements to high-level component specifications
is a prerequisite. To this end, we suggest a set of guidelines for designing high level
KobrA components from use cases.

1. The system under development defines a high-level abstract component class
viewing the whole system as one component.

2. Each actor identified in the use case diagram defines a class associated with
the component class.

3. Each controlled variable defines an attribute of the component class.

4. Each use case that has a direct interaction with an external actor defines an
externally visible operation of the component.

5. Each include/extending/specialized use case without direct interaction with
an external actor defines an operation of a sub-component of the component.

6. Each monitored variable for each use case defines a parameter of the corre-
sponding operation.

7. A set of associations between an actor and use cases defines an interface.

Figure 4 shows the first-level structural specification of the elevator system de-
rived from use cases; the main component ElevatorContext has 9 externally visible
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Figure 4: High-level structural diagram

operations derived from use cases directly interacting with external actors, 5 exter-
nally visible attributes from controlled variables. A set of operations (use cases)
directly interacting with the same actor constitutes one interface specific to the
actor; for example, elevator user interface has 6 operations as its signature. The
classes user, HelpCenter, maintenance, and barrier are identified from actors, and
the decomposition of the system component into main service, supporting service,
and floor is a design decision to internally realize the externally visible operations.
Operations defined in this decomposition are derived from include/extending use
cases, and are visible only to the ElevatorContext, hidden from external actors of
the system. Further decomposition can be performed for each sub-component in the
next iteration, if necessary.

The internal behavior (realization) of each externally visible system operation is
described using an activity/interaction diagram; Figure 5 shows an example of the
realization behavior for the operation moveUp of the elevator context. This activity
diagram in the highest-level component description can be considered the same as
the use case scenario for Move Up from which the operation moveUp is derived.
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Figure 5: Realization of moveUp use case

Note that we allow non-deterministic behavior in this high-level description; once
the elevator user is in the cabin and the door is not closed, either the hold action
can be taken by the user or the CloseDoor action can be taken by the main service.

4 SAFETY ANALYSIS USING MODEL CHECKING

We have described our seamless transition approach from use cases to high-level
components. Use cases are converted into the operations of high-level design with
their behavior specified in the textual use cases and use case scenarios are manifested
into the component realization. Therefore, any unsafe behavior of the use cases will
propagate into high-level components, and then, to lower-level components because
of the recursive nature of the KobrA approach. In this respect, the identification
of safety-related issues in use cases is a must so that we can take the issues under
consideration throughout the transition and decomposition process. As we can see
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later, most unsafe situations result from inter-dependent but under-specified use
cases, which makes manual analysis difficult especially when we have a large number
of use cases. Therefore, we adopt an automated analysis approach using model
checking by systematically translating use cases to the formal specification language
RSML-e . This approach enables us to use the simulation and verification tools
integrated into the execution environment of RSML-e , facilitating an easy access
to formal verification method.

RSML-e and its verification environment

RSML-e (Requirements State Machine Language without events) [26] is a formal
data flow specification language semantically similar to Lustre [11] and SCR [3],
and visually similar to David Harel’s Statecharts [12], supporting for parallelism,
hierarchies, and guarded transitions. In addition to that, RSML-e provides rigorous
specifications between the environment and the control software, which facilitates
the validation of the early specification by execution. Its execution environment
Nimbus [13] provides formal verification tools such as the theorem prover PVS [22]
and the model checker NuSMV [21] as back-end verifier by automatically translat-
ing RSML-e specifications into the input language of the verification tools. The
successful use of RSML-e and its execution environment Nimbus in the context of
requirements engineering practice is reported elsewhere [20].

RSML-e distinguishes itself from other formal specification languages by empha-
sizing on readability and understandability by non-computer professionals, enabling
a smooth transition from the less formal, but more intuitive use cases to the formal
specification.

Figure 6 illustrates the verification framework; use cases are used to derive the
initial design of the top level component, as described in Section 3, translated into
RSML-e for formal analysis, and verified with respect to safety requirements using
the symbolic model checker NuSMV. Here, the safety requirements are identified by
a simple version of hazard analysis as we describe later. The result of the verification
is reflected in the initial design.

Translation

RSML-e consists of 7 basic constructs: input variables, state variables, input inter-
face, output interface, functions, macros, and constants. Input variables are used
to record the values observed in the environment, state variables are organized in a
hierarchical fashion and are used to model various states of the control model, inter-
faces act as communication gateways to the external environment, and the function
and macros encapsulate computations providing increased readability and ease of
use.

In an abstract view, RSML-e can be considered as a Mealy machine, a finite
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Figure 6: Verification framework

state machine where the outputs are determined by the current state and the input.
A Mealy machine is a 6-tuple, (S, Σ, Γ, T, G, s), consisting of a finite set of states
S, a finite set of the input alphabet Σ, a finite set of the output alphabet Γ, a
transition function T : S × Σ → S, output function G : S × Σ → Γ, and a start
state s ∈ S. A state in a Mealy machine corresponds to a state vector in RSML-e

which is a combination of possible values of all the state variables. Likewise, an
input alphabet (output alphabet) corresponds to a vector of input (output) variable
values. In RSML-e a transition function is specified in a so-called AND-OR table,
which is a way of expressing conditions in a disjunctive normal form; each column
of truth values represents a conjunction of the propositions in the leftmost column.
If a table contains several columns, we take the disjunction of the columns.

The translation from use cases into RSML-e is based on viewing the system as
consisting of a set of action states, i.e., each use case constitutes a state in the system
with two possible values ready and run. Initially, all the use cases are in the ready
state. The transition from ready to run happens when monitored variable values
(input variable values in RSML-e ) or other use cases initiate a corresponding use
case action. Transition conditions for each state variable values are defined based
on the preconditions and the flow of events specified in each use case. Figure 7
shows the mapping between the basic constructs of RSML-e and the constructs of
use cases.

For example, the use case MoveUp is translated into RSML-e by declaring a state
variable move up with the possible values {run, ready}. The transition between run
and ready is defined based on the flow of events as follows;

STATE_VARIABLE move_up : {run, ready}
PARENT: none
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Figure 7: Basic mapping between use cases and RSML-e

INITIAL_VALUE: ready
CLASSIFICATION: State

Transition ready to run IF
TABLE

/* from use case flow of event */
@T(Moving_Request = Up) : T;
/* from use case pre-condition */
elevator_status = Normal : T;

END TABLE

Transition run to ready IF
@T(current_position = destination)

END STATE_VARIABLE

In this case, the transition from call cabin = ready to call cabin = run is initiated
by user Moving Request on the condition that elevator status is normal. This condi-
tion is derived from the flow of events, monitored variables, and the precondition of
the included use case call cabin. Here, @T(a) is a SCR-style notation meaning that
“a is true but was not true in the previous step”. The end of the use case is specified
by a transition from run to ready triggered by the satisfaction of the post condition
destination = current position. Controlled variables, such as current position and
moving direction, are translated into output variables in RSML-e , which is a special
kind of a state variable. The transition tables are adopted from the original RSML
notation–each column of truth values represents a conjunction of the propositions in
the leftmost column (a ‘*’ represents a “don’t care” condition). If a table contains
several columns, we take the disjunction of the columns; thus, the table is a way of
expressing conditions in a disjunctive normal form; for example, the transition from
ready to run of the move up state variable happens if @T (Moving Request = Up)
and elevator status = Normal, but the same transition of the call cabin (specified
below) happens if @T (move up = run) or @T (move down = run).

The three relationships, extends, includes, specialization, which are used to struc-
ture use cases, are all flattened out so that each use case is treated as an independent
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system behavior. The dependency among use cases is specified only by the transition
relations. For example, in Figure 1, the move up use case includes the call cabin
use case, which is extended by the change location use case. In the translation, all
three use cases are defined as independent state variables without any hierarchical
relationships among them, but their inter-dependency is specified in the transition
relation;

STATE_VARIABLE call_cabin : {run, ready}
PARENT: none
INITIAL_VALUE: ready
CLASSIFICATION: State

/*** this part is derived from the "include"
dependency ***/

Transition ready to run IF
TABLE

@T(move_up = run) : T *;
@T(move_down = run) : * T;

END TABLE

Transition run to ready IF
Floor_of_Request = current_position

END STATE_VARIABLE

The activation of call cabin use case is initiated by the activation of the including
use cases move up or move down. Note that these including use cases have no flow of
events other than initiating their included use cases. There can be other cases where
the flow of events specified in including use cases may constrain other conditions
for the initiation of included use cases. Such constraints can be specified in the
corresponding use case scenario.

Figure 8 shows a snapshot of the internal states of the elevator use cases after
they are translated into RSML-e ; each grey-colored box represents a state-variable
with its possible values enumerated in outlined boxes. Currently active states and
their values are visualized with red-colored boxes. The visualization helps engineers
understand the current state of the system in an intuitive way by illustrating the
hierarchical structure in one view. The execution environment Nimbus enables us
to perform visual simulation to validate the behavior of the use cases.

Formal safety analysis

Our safety analysis process starts by identifying and describing possible hazards of
the system and then determining the causes of each hazard, using a simple version
of hazard analysis [19] or fault tree analysis [8].
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Figure 8: Visualization of use cases

Figure 9 illustrates the safety-related hazard identification with respect to “ac-
cidents involving elevator users”. All possible causes of the specific hazard are to
be identified and each identified cause can be further classified into sub-causes. The
hazard analysis process continues iteratively until all the causes of the hazard in
question are identified. Given all possible causes of a specific hazard, we categorize
them according to the level of abstraction so that high-level causes can be verified
on the requirements. In Figure 9, the two causes related to cabin falls down are
on the hardware and algorithmic level, and, thus, we defer their verification until
the system is further decomposed into more concrete levels. On the other hand,
the causes related to user falls out of cabin or user falls down into cabin path are
general enough to be checked on the requirements level. These causes are negated
and specified in temporal logic to be verified using the automated verification tech-
nique model checking [6]. For example, the cause cabin moves while the door is
open is negated to cabin does not move if the door is open and specified in temporal
logic as “safety1 : AG(Door Status = Open → change location 6= run)” using the
corresponding vocabulary used to translate use cases into RSML-e . By trying to
verify the negation of the cause using model checking, we can identify whether and
how the cause can actually happen; model checking performs an exhaustive search
on the given model to verify the safety property. If the safety property turns out
to be true, we conclude that the cause is not possible in the model. Otherwise, it
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Figure 9: Hazard analysis and temporal logic

generates a counter example trace, which is an execution sequence leading to the
unsafe state, i.e., the cause of the hazard. The execution sequence can be used to
analyze and correct the model in order to prevent the unsafe situation.

Addressing the analysis result in design

safety1 is verified as false on our use cases using the symbolic model checker NuSMV
generating the following unsafe execution scenario;

1. Door Request = Open ∧ door status = Closed ∧ change location = ready ∧
close door = ready ∧ open door = ready

2. Door Request = Hold ∧ change location = run

3. Door Request = Open ∧ door status = Open ∧ open door = run

In the first step, the door is closed and the cabin is not moving. In the second
step, the cabin starts moving though door hold is requested, since, according to the
open door use case, the door hold request is ignored when the door is already closed.
In the third step, the user requests the door open and the system opens the door
even though the change location use case is still in run state. This unsafe situation
is possible because the open door use case and the change location use case are
independently specified regardless of the situation of each other. To avoid such an
unsafe situation, we introduce two additional preconditions in the change location
use case and the open door use case; the change location use case can be active only
when the open door use case is finished, and vice versa. safety1 is verified as true
after introducing these pre-conditions to the use cases.

These pre-conditions identified from the use case analysis are also imposed on
the design of each component of the system in order to prevent such situations.
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Figure 10: Safety consideration in high level design

Figure 10 shows the statechart for the initial component specification for the elevator
system. Originally, the initial transition to the moving state was specified only by the
triggering event callCabin without any guarding condition. The guarding condition
door status = Closed is added after we perform the safety analysis on use cases; all
the transition into the moving state and the open state need to be guarded in a
way that moving and opening the door cannot happen at the same time. Though
the original statechart specified the moving state and the open state exclusively, it
overlooked the situation that the elevator door might be open in the initial state.

5 DISCUSSION

We have presented our approach for early safety analysis in the context of
component-based software development. Our approach addresses two key issues;
how to support systematic and easy-to-use analysis methods on semi-formal use
cases, and how to incorporate prevention mechanisms into the design stage based
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on the analysis result. For the first issue, we chose the formal specification language
RSML-e for its intuitive syntax and semantics as well as its execution environment
enabling automated verification without additional cost. The second issue is ad-
dressed by suggesting guidelines for seamless transition from use cases to the initial
component design, which will be recursively decomposed in the design process.

Our approach follows the use case driven system development framework with an
emphasis on integrating safety analysis throughout the development process. There
are other approaches, such as Catalysis [9] and DisCo [1], which follows the use case
driven system development approach by formalizing use cases and providing incre-
mental modeling methodology [23]. Nevertheless, these approaches do not address
safety issues as an essential part of system development. Moreover, the transition
from use cases to initial design is left to design decisions without systematic guide-
lines.

There are a couple of issues to be addressed to claim the value of our approach;
first, as KobrA is a recursive development framework, we may need a recursive
safety analysis framework as well that is interwoven with the KobrA framework.
Though the work presented here bridges the gap between requirements and initial
design with respect to safety issues, the problems related to further decomposition
and refinement are not addressed. Second, the practical value of this work has to
be evaluated on industrial applications in terms of usability and effectiveness of the
approach. We leave these issues to future work.
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