
Vol. 6, No. 7, Special Issue: Aspect-Oriented Modeling, August 2007

A Meta-Level Specification and Profile for
AspectJ in UML

Joerg Evermann, School of Information Management, Victoria University of
Wellington, Wellington, New Zealand

Aspect-oriented programming (AOP) has become a mature technology. Increasingly,
calls for support of AOP on the software model level are being voiced. This paper
addresses these calls by offering a meta-model of AspectJ in UML. Using the UML
extension mechanisms, the resulting meta-model is also a UML profile for supporting
AspectJ modelling in UML. In contrast to previous work, this profile offers complete
meta-level integration of all AspectJ concepts. Moreover, the use of standard XMI
based modelling allows the use of the profile in commercially available CASE tools and
supports easy code generation.

1 INTRODUCTION

The identification and separation of cross-cutting concerns in software design has led
to the the widespread use of aspect-oriented programming (AOP) techniques. While
AOP has matured and gained widespread industry support, there is little support
for separation of cross-cutting concerns on the software model level. Aspect-oriented
modelling (AOM) techniques are intended to fill this gap.

Aspect-Oriented Modelling and Positioning of This Work

AOM approaches can be distinguished along two orthogonal dimensions: the level
of weaving and the symmetry of the approach (Fig. 1). The first dimension, the
level of weaving, indicates that level of abstraction where separation of cross-cutting
concerns is given up and weaving of concerns (aspects) occurs. In the case of model-
level weaving, cross-cutting concerns are separately modelled, then woven together to
yield a non-aspect-oriented model, which is then transformed to non-aspect-oriented
code (Fig. 2a). In the case of code-level weaving, the separation of concerns is
maintained to the level of code. Aspect-oriented models are transformed to aspect-
oriented code, and the weaving is done by an aspect compiler on the code (Fig. 2b).
Finally, recent developments have led to the idea of executable-level (runtime) weav-
ing, where the separation of concerns is maintained on the executable (e.g. JVM or
CLR bytecode) level and weaving occurs only at run-time (Fig. 2c).

Along the symmetry dimension, AOM approaches may be categorized as sym-
metric or asymmetric. For asymmetric AOM approaches, there is a designated base

Cite this article as follows: Joerg Evermann: A Meta-Level Specification and Profile for AspectJ
in UML, in Journal of Object Technology, vol. 6, no. 7, Special Issue: Aspect-Oriented
Modeling, August 2007, pages 27–49, http://www.jot.fm/issues/issues 2007 8/article2

http://www.jot.fm/issues/issue_2007_8/article2

A META-LEVEL SPECIFICATION AND PROFILE FOR ASPECTJ IN UML

Symmetry

Level of
weaving

Symmetric
Model weaving

Asymmetric
Model weaving

Symmetric
Code weaving

Asymmetric
Code weaving

Symmetric
Executable weaving

Asymmetric
Executable weaving

Figure 1: Dimensions of Aspect-Oriented Modeling

(Aspect) Model(Base) Model

Executable

Woven Code

Compilation

Model Transformation

Model Weaver

Woven Model

VM/CLR

(a) Model-level weaving

(Aspect) Model(Base) Model

Woven (Non-Aspect) Executable

Model Transformation Model Transformation

(Base) Code (Aspect) Code

Weaver & Compiler

VM/CLR

(b) Code-level weaving

(Aspect) Model(Base) Model

Model Transformation Model Transformation

(Base) Code (Aspect) Code

Compiler

(Aspect) Executable

Compiler

(Base) Executable

Weaving VM/CLR

(c) Executable-level weaving

Figure 2: Levels of weaving

model into which cross-cutting concerns (aspects) are woven. In the symmetric case,
there is no such designated base system and the ’base system’ is just one concern
among many that is woven together.

Using these dimensions, the work presented here is positioned in the highlighted
sector of Figure 1 and highlighted in Figure 2b: We present a technique to create

28 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

1 INTRODUCTION

aspect-oriented models that are converted to aspect-oriented code, which can be
woven by an aspect-oriented compiler. We also make a clear distinction between the
base-system and the cross-cutting concerns.

The focus on code-level weaving instead of model-level weaving is useful for soft-
ware development projects where the system behaviour is not specified in UML
behavioural diagrams. Many software development projects use only UML class di-
agrams [10], thereby ruling out model-level weaving of behaviour. For example, agile
methods such as XP (eXtreme Programming) [6] reject elaborate model construction
and eschew the use of MDA (model-driven-architecture).

Motivation and Goal

While aspect-oriented programming (AOP) is rapidly maturing and industrial-strength
tools such as AspectJ [21] are quickly becoming widely applied de-facto standards,
there is no standards-based approach to AOM that is supported by commercial
modelling tools. UML [25], the de-facto standard software design language upon
which many modelling tools are based, does not offer specific constructs for aspects
and their associated concepts. However, UML does provide standardized extension
mechanisms that can be used to provide aspect-oriented modelling facilities. In UML
2.0, these extension mechanisms allow the definition of UML profiles by means of
meta-models.

In this paper, we present a meta-model of the AspectJ language [21]. Using the
powerful extension mechanisms in UML 2.0, this meta-level model is a UML profile.

In the context of Model-Driven-Architecture (MDA), our proposal is situated as
shown in Figure 3. Our profile allows the specification of a platform-specific model
(PSM), namely one that is specific to the Java and AspectJ platform. We also offer
a translation to code, as indicated by the circled elements in Figure 3.

The presented profile is not a generic aspect-oriented modelling extension. The
conceptual differences between different aspect implementations, e.g. AspectC++,
Aspect# and AspectJ are substantial and cannot readily be captured in a single
meta-model. We have focused on providing a UML extension to support AspectJ
because of the maturity of the development of AspectJ and its wide-spread industrial
use [21].

Generic aspect-oriented profiles may be used for specification of a platform-
independent model (PIM), which in MDA forms the basis of the platform-specific
model (PSM) (Fig. 3). A generic aspect profile and platform specific aspect profiles
for languages other than AspectJ are beyond the scope of this paper.

Our approach as outlined here offers the following advantages over previous pro-
posals (discussed in detail in Section 2). First, it is supported by UML 2.0 compliant
modelling tools. The extension requires no special software support and allows as-
pect modelling to be used within existing, mature software tools. For example, the

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 29

A META-LEVEL SPECIFICATION AND PROFILE FOR ASPECTJ IN UML

Generic Aspect Profile
PIM

Executable

Code

Compilation

Model Transformation

AspectJ ProfileJ2SE PSM

Model Transformation

Aspect C# Profile.NET PSM

Model Transformation

Model Transformation

... et cetera

... et cetera

... et cetera

Figure 3: Use of profile within MDA-based development

work described in this paper was developed using the commercially available tool
MagicDraw, version 11.5. This contrasts with earlier proposals, which are not all
based on profiles and extend UML either by introducing new meta-model classes,
or new notation elements, or both [13, 31]. Those proposals cannot be used with
available modelling tools and require specific tool support.

Second, because the proposed technique is supported by UML XMI model inter-
change facilities, the model extension, as well as any models it is applied to, can be
exchanged between different MOF (Meta-Object-Facility) compliant UML modeling
tools.

Third, the proposal allows all aspect-related concepts to be specified in meta-
model terms. Hence, no textual specification of special keywords is necessary. This
means the models can be easily manipulated or verified, without requiring the pars-
ing of keywords or other textual specifications by special tools.

Fourth, the proposal maintains strict separation of base-model and cross-cutting
concerns in the models it is applied to, the primary motivation behind AOP.

30 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

2 RELATED WORK

The remainder of this paper is structured as follows. Section 2 presents related
work. Section 3 represents the main contribution of this work and discusses the
proposed AspectJ meta-model. This is followed by a brief example of the use of this
profile in Section 4. We describe the code-generation capabilities that have been
developed for this profile (Sec. 5) before concluding the paper with an outlook to
future research (Sec. 6).

2 RELATED WORK

An overview of some of the prior work for modelling aspects in UML is presented
in [27]. The early work presented at the AOM 2002 workshop is based on the
extension mechanisms in UML 1.x versions. Because these mechanisms are not fully
integrated with the meta-model, the specification of advices and pointcuts often
remains in textual form. The connection between aspects and base-model is made
as part of the model, instead of an aspect extension to the model, thereby foregoing
the clear separation of base-model and cross-cutting concerns that is central to AOP.

Initial work presented in [1] proposed the specification of aspects as stereotypes
on classes and was later extended to include advice and pointcut specification [2].
It models cross-cutting associations to show which aspect features relate to which
base-model elements. It is a generic profile that captures only few of the AspectJ
extensions.

The proposal in [26] is not defined in meta-model terms and uses special keywords
in a textual specification of roles to define pointcuts. It is limited to advice on
method calls and field accesses. An aspect stereotype for UML collaborations was
developed in [18], however without being fully defined in UML meta-model terms.
Aspects as well as pointcuts are stereotypes on UML classes. Pointcuts can be
associated with UML classes by means of stereotyped ”binding” associations.

An earlier profile for AspectJ [28] proposes that messages in collaborations are
join points. This profile represents advices and pointcuts as stereotyped operations,
introduction of fields or methods is modelled as templated collaborations, and the
connection to the base features is made via dependencies in the model. Similarly,
the proposal in [5] uses textual specification of pointcuts, rather than being based on
(meta-)model elements. Later extensions to this in [11] are similar to our proposal
in that aspects are stereotyped classes. However, because no meta-model based
profile is developed, the connection between aspects and base-model is made as part
of the model, rather than an aspect extension to it. An inital proposal for aspect
modelling using UML 2.0 was presented in [4], however without fully defining an
extension profile, as we do here.

Other prior work is based on defining new UML meta-classes, instead of defining
stereotypes for existing meta-classes, which requires specialized tool support for the
new meta-classes. Instead of using the extends relationship type in UML, these
proposals use the generalization relationship type to define the new aspect con-

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 31

A META-LEVEL SPECIFICATION AND PROFILE FOR ASPECTJ IN UML

cepts. The research in [13] introduces new UML meta-classes and therefore requires
specialized tools for their support. A meta-model for generic AOP is offered in [7],
but with no apparent mapping to AspectJ and without describing an implementa-
tion. A full meta-model based approach, similar to this proposal, is found in [31].
However, rather than employing the standard lightweight extensions of UML, this
approach also introduces new meta-classes, thus requiring specialized tools.

Other work on aspect modelling in UML proposes join point annotations for
UML [16]. A translation of aspect UML to object-oriented Petri-nets is described
in [23] but is limited to pointcuts around method calls. Weaving on the model level
is presented in [17] as part of work on design-by-contract. Code generation from
aspect-extended UML models is presented in [12], who opt against the XMI based
method proposed in this paper and instead use custom tool extensions.

In summary, much of the existing work on AOM profiles for UML is either based
on older UML versions, not well integrated on the meta-model level, incomplete with
respect to AspectJ, or requires specific tool support. The present proposal addresses
these gaps in the prior work.

3 ASPECT UML EXTENSION

The main point of distinction of the present work to previous proposals is the focus on
developing a complete and comprehensive meta-model of AspectJ. It also resolutely
employs a meta-model based specification. For example, the operations selected
by a call join point are specified as operation model elements, not as a textual
specification, as previous work has done.

This allows the integration of aspect features with base-model features on the
meta-model level, rather than as part of the model, as previous work was forced
to do, and thereby maintains strict separation of base and cross-cutting concerns.
For example, the application of an aspect to a classifier is not shown by any kind
of relationship in the model. Instead, analogous to the specification in AspectJ,
pointcuts of an aspect select specific operation elements or attribute elements of the
model (Sec. 4 and Figs. 13, 14).

This section presents a meta-model of the AspectJ concepts. It is modelled
on the UML meta-level, so that it is usable as a profile. Rather than specializing
UML meta-classes, as previous work has done, we extend the existing meta-classes.
A UML stereotype is a meta-class which enters into extends relationships with
existing meta-classes [25]. Visually, this is shown with the extended class in square
brackets. Attributes that are modelled on stereotype meta-classes will translate to
tags when the profile is applied [25]. Similarly, values of stereotype attributes will
become values of tags when the profile is applied [25]. This extension mechanism
in UML 2.0 is therefore a powerful way in which any meta-level model immediately
becomes usable as a profile. The following paragraphs present the UML meta-model
for each AspectJ construct. We show the complete model in Figure 11 below.

32 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

3 ASPECT UML EXTENSION

Academic Use Only

<<stereotype>>

CrossCuttingConcern

[Package]

<<stereotype>>

Aspect

[Class]

<<metaclass>>

Class

<<metaclass>>

Package

Figure 4: Cross cutting concern as package extension

CrossCuttingConcern We introduce the meta-class CrossCuttingConcern as
a way of grouping related aspects. While cross-cutting concerns are not directly
specifiable in AspectJ, being able to package related aspects is important for mod-
ularization and reuse [8, 9, 3]. CrossCuttingConcern extends the UML meta-class
Package, because a cross-cutting concern contains aspects in the same way as pack-
ages contain classes (Fig. 4). Providing a stereotyped package to contain aspects
also allows the packaging of supporting classes and supporting interfaces for aspects
in these packages to enhance modularization. For example, an aspect A may depend
on classes C1 and C2 and the CrossCuttingConcern allows these to be packaged
together. Because the UML meta-model already specifies that packages own classes,
the CrossCuttingConcern meta-class does not need to be associated with the As-

pect meta-class.

Aspect An aspect contains both static features (that do not specify behaviour),
such as pointcuts, and dynamic features (that specify behaviour), such as advices.
Furthermore, aspects can be specialized, and can realize interfaces. These character-
istics are sufficiently close to the features of a UML class, so that we model aspects
using a meta-class Aspect, which extends the meta-class Class (Fig. 5). This makes
the Aspect meta-class a stereotype on the UML Class construct.

Recall that this proposal is positioned in asymmetric AOM (Fig 1). Hence,
elements of the cross-cutting concern model or models must remain separated from
base-model elements. The following constraint ensures this by requring that classes
that are stereotyped �Aspect� are only packaged in packages that are stereotyped
as �CrossCuttingConcern�.

context Aspect inv:

package.oclIsKindOf(CrossCuttingConcern)

Aspects have some properties that are not already offered by classes. These are
modelled as attributes of the meta-class, which will become tags when the profile is
applied to a model. A boolean attribute isPrivileged indicates whether the aspect

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 33

A META-LEVEL SPECIFICATION AND PROFILE FOR ASPECTJ IN UML

Academic Use Only

<<stereotype>>

Aspect

[Class]

-isPrivileged : boolean

-perType : AspectInstantiationType [0..1]

<<stereotype>>

StaticCrossCuttingFeature

[Feature]

<<enumeration>>

AspectInstantiationType

<<enumeration>>

AdviceExecutionType

<<stereotype>>

CrossCuttingConcern

[Package]

<<stereotype>>

PointCutConjunction

[StructuralFeature]

<<metaclass>>

InterfaceRealization

<<stereotype>>

Advice

[BehavioralFeature]

<<stereotype>>

PropertyPointCut

[StructuralFeature]

<<stereotype>>

PointCut

[StructuralFeature]

<<stereotype>>

PointCut

[StructuralFeature]

<<metaclass>>

BehavioralFeature

<<metaclass>>

StructuralFeature

<<metaclass>>

Feature

<<metaclass>>

Package

<<metaclass>>

Generalization

<<metaclass>>

Type

<<metaclass>>

Class

<<metaclass>>

Property

-precedes 0..1

-precededBy 0..1

-advice

0..*

-pointcut

1

-perPointCut

0..1

-field

1..*

-declaredParents

0..*

-declaredImplements

0..*

-onType

1..*

-composite2..*

-composee0..*

Figure 5: Aspect as class extension

is privileged, i.e. whether its advices can access private or protected members of the
class they advise.

A multi-valued attribute declaredParents allows the declaration of general-
izations by the aspect (”declare parents: I extends J” in AspectJ). Because
the aspects are a meta-level model element, the data type for this attribute is the
meta-class Generalization in UML. In other words, the values of this sterotype
tag pick out generalization model elements when this extension is applied. For ex-
position purposes, Figure 5 explicitly shows the meta-level connections modelled as
associations. Figure 11 uses atttributes with appropriate datatypes for reasons of
brevity.

Similarly, declaredImplements allows the declaration of interface realizations
(”declare parents: I implements J” in AspectJ). The data type of this at-
tribute is the UML meta-class InterfaceRealization. The values of this stereotype
tag pick out interface realization model elements when this extension is applied.

Because aspects may be instantiated per pointcut, the attributes perType and
perPointCut are used to specify the type of aspect instantiation and associated
pointcut, if any. The data type of perPointCut is the PointCut meta-class (i.e.
the stereotype) in this extension and the values for perType are provided by the
enumeration AspectInstantiationType. We add the following constraint to ensure
that aspect instantiation is indicated either per type or per pointcut, but not for
both:

context Aspect inv:

perType -> size() > 0 xor

perPointCut -> size() > 0

34 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

3 ASPECT UML EXTENSION

Aspect precedence is modelled as a recursive relationship between aspects. Be-
cause the precedence ordering in AspectJ is total, each aspect has at most one
directly preceding and following aspect.

The AspectJ specification states that aspects may extend classes or other aspects
and implement interfaces, but that classes may not extend aspects. Consequently,
we add the following constraint that ensures for all generalizations that the specific
class of a general class that is an aspect is also an aspect:

context Generalization inv:

general.oclIsKindOf(Aspect) implies specific.oclIsKindOf(Aspect)

Because aspects are extensions of the meta-class Class, dependencies between
aspects can easily be defined. Moreover, visibility declarations and interfaces can
be used to establish which parts of an aspect are visibile to or hidden from other
aspects. This enables modellers to use aspect-composition frameworks, such as the
one proposed in [19].

Advice With Aspect being a meta-class that extends Class, the dynamic features
of aspects, i.e. advices, play the role of class behavior: The meta-class Advice is an
extension of the meta-class BehavioralFeature (Fig. 6).

In UML, the meta-class BehavioralFeature with subclasses such as Operation
or Reception (of a signal) is associated with the Behavior meta-class, which is the
superclass of OpaqueBehavior, Activity, Interaction and StateMachine, and
specifies the actual behavior of a behavioral feature. Opaque behaviour denotes
methods whose body is specified in a UML-external language (and thus is opaque as
far as UML tools are concerned). This means that advice behavior can be specified
either as a method, an activity, an interaction or a state machine. This mirrors a
previous proposal in [1, 2].

Because behavioral features are owned by classes in the UML meta-model, As-
pect does not have to be associated with Advice. We add the constraint that the
�Advice� stereotype can only be applied to behavioral features of classes that are
stereotyped �Aspect�. In other words, for all instances of an advice, the classifier
of the advice feature must be an aspect:

context Advice inv:

allInstances.featuredClassifier.oclIsKindOf(Aspect)

The UML meta-model already associates operations with signatures. Hence, our
extension does not need to model signatures for advices when the advice stereo-
type is applied to operations, a subclass of behavioral features. When applying the
�Advice� stereotype to an operation, we get parameters, return values, and raised
exceptions automatically.

Advice code can be executed before, after, or instead of (around) a pointcut.

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 35

A META-LEVEL SPECIFICATION AND PROFILE FOR ASPECTJ IN UML

Academic Use Only

<<stereotype>>

Aspect

[Class]

-isPrivileged : boolean

-perType : AspectInstantiationType [0..1]

<<stereotype>>

Advice

[BehavioralFeature]

-adviceExecution : AdviceExecutionType

<<stereotype>>

StaticCrossCuttingFeature

[Feature]

<<enumeration>>

AspectInstantiationType

<<enumeration>>

AdviceExecutionType

<<stereotype>>

CrossCuttingConcern

[Package]

<<stereotype>>

PointCutConjunction

[StructuralFeature]

<<metaclass>>

InterfaceRealization

<<stereotype>>

Advice

[BehavioralFeature]

<<stereotype>>

PointCut

[StructuralFeature]

<<stereotype>>

PointCut

[StructuralFeature]

<<stereotype>>

PropertyPointCut

[StructuralFeature]

<<metaclass>>

BehavioralFeature

<<metaclass>>

StructuralFeature

<<stereotype>>

Aspect

[Class]

<<metaclass>>

Class

<<metaclass>>

Property

<<metaclass>>

Feature

<<metaclass>>

Package

<<metaclass>>

Class

<<metaclass>>

Generalization

<<metaclass>>

Type

-precedes 0..1

-precededBy 0..1

-advice

0..*

-pointcut

1

-perPointCut

0..1

-field

1..*

-declaredParents

0..*

-declaredImplements

0..*

-onType

1..*

-composite2..*

-composee0..*

Figure 6: Advice as behavioral feature extension

We model adviceExecution as an attribute of the Advice meta-class. The values
are provided by the enumeration AdviceExecutionType. Because each advice has
a signature by virtue of being an operation, the signature determines whether an
”after” advice is ”after returning” or ”after throwing” by examining whether the
signature of an operation that is stereotyped �Advice� contains a return parameter
or a raised exception, respectively.

Static Crosscutting Features Aspects may introduce new features to existing
classes and types. Because such cross-cutting features can be static or dynamic,
the meta-class StaticCrossCuttingFeature extends the UML meta-class Feature,
which is the superclass of both Property and Operation (Fig. 7). Because the cross-
cutting features are owned by the aspect (by virtue of the ownership of attributes
and operations by classes), there is no need to associate StaticCrossCuttingFea-

ture with Aspect. We add the constraint that the �StaticCrossCuttingFeature�
stereotype can only be applied to features of classes that are stereotyped �Aspect�.
In other words, for all instances of an introduced cross cutting feature, the classifier
of that instance must be an advice.

context StaticCrossCuttingFeature inv:

allInstances.featuredClassifier.oclIsKindOf(Aspect)

To specify on which types the cross-cutting feature is to be introduced, the
StaticCrossCuttingFeature meta-class possesses a multi-valued attribute onType

whose data type is the UML meta-class Type. For exposition purposes, Figure 7
explicitly shows the meta-level connections modelled as an association. Figure 11
uses an atttribute with the appropriate datatype for reasons of brevity.

We have chosen to model cross-cutting features as owned by the aspect, rather
than by the classifier they are introduced on. While this requires the extra meta-
model attribute onType, it enforces the separation of base-model and cross-cutting
concerns that is fundamental to AOP. In the alternative model, the meta-class As-
pect would be associated with the meta-class Feature so that the aspect can pick

36 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

3 ASPECT UML EXTENSION

Academic Use Only

-adviceExecution : AdviceExectutionType

<<stereotype>>

Advice

[BehavioralFeature]

<<stereotype>>

StaticCrossCuttingFeature

[Feature]

<<enumeration>>

AdviceExectutionType

<<stereotype>>

CrossCuttingConcern

[Package]

<<enumeration>>

AspectInstationType

<<metaclass>>

InterfaceRealization

<<stereotype>>

PointCut

[StructuralFeature]

<<metaclass>>

BehavioralFeature

<<stereotype>>

Aspect

[Class]

<<metaclass>>

Feature

<<metaclass>>

Type

<<metaclass>>

Class

<<metaclass>>

Package

<<metaclass>>

Generalization

-perPointCut

0..1

-declaredParents

0..*

-declaredImplements

0..*

-precedes

0..1

-precededBy 0..*

-onType

1..*

Figure 7: Static cross-cutting feature as feature extension

Academic Use Only

<<profile>>

aspectJ

<<stereotype>>

CompositePointCut

[StructuralFeature]

-compositionType : PointCutCompositionType

<<stereotype>>

Advice

[BehavioralFeature]

-adviceExecution : AdviceExecutionType

<<stereotype>>

OperationPointCut

[StructuralFeature]

-operation : Operation [1..*]

<<stereotype>>

StaticCrossCuttingFeature

[Feature]

<<stereotype>>

StaticInitializationPointCut

[StructuralFeature]

<<enumeration>>

PointCutCompositionType

And

Not

Or

<<stereotype>>

AdviceExecutionPointCut

[StructuralFeature]

<<stereotype>>

PreInitializationPointCut

[StructuralFeature]

<<stereotype>>

CrossCuttingConcern

[Package]

<<stereotype>>

Aspect

[Class]

-isPrivileged : boolean

<<enumeration>>

AdviceExecutionType

AroundAdvice

BeforeAdvice

AfterAdvice

<<stereotype>>

InitializationPointCut

[StructuralFeature]

<<stereotype>>

CFlowBelowPointCut

[StructuralFeature]

<<stereotype>>

PropertyPointCut

[StructuralFeature]

-field : Property [1..*]

<<stereotype>>

WithinCodePointCut

[StructuralFeature]

<<stereotype>>

ExecutionPointCut

[StructuralFeature]

<<stereotype>>

ExceptionPointCut

[StructuralFeature]

<<stereotype>>

PointCut

[StructuralFeature]

<<stereotype>>

CallPointCut

[StructuralFeature]

<<stereotype>>

GetPointCut

[StructuralFeature]

<<stereotype>>

SetPointCut

[StructuralFeature]

<<stereotype>>

TypePointCut

[StructuralFeature]

-type : Type [1..*]

<<stereotype>>

ArgsPointCut

[StructuralFeature]

<<stereotype>>

ThisPointCut

[StructuralFeature]

<<stereotype>>

TargetPointCut

[StructuralFeature]

<<stereotype>>

WithinPointCut

[StructuralFeature]
<<stereotype>>

PointCutPointCut

[StructuralFeature]

<<stereotype>>

CFlowPointCut

[StructuralFeature]

-selectedPointCut

1

-selectedBy

0..*

-composee

0..*

-composite

0..*

-pointCut

1

-advice

0..*

-staticCrossCuttingFeature0..*

-aspect1

-selectedAdvice1

-selectedBy
0..*

Figure 8: Alternate model for Static Crosscutting Features

out any feature owned by any classifier in the model (Fig. 8). The application of
this alternate meta-model in Figure 9 shows that in this case the static cross-cutting
features are visually modelled as part of the base-model element rather than the
aspect, thereby giving up the clear separation of concerns into the aspects, at least
visually.

PointCut A pointcut does not specify dynamic behaviour. Hence, the meta-class
PointCut extends the UML meta-class StructuralFeature. We add the constraint
that the �PointCut� stereotype can only be applied to features of classes that are
stereotyped �Aspect�.

context PointCut inv:

allInstances.featuredClassifier.oclsIsKindOf(Aspect)

PointCut is an abstract meta-class: This stereotype cannot be applied to the
attributes of an aspect; only its non-abstract sub-classes, such as CallPointCut or

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 37

A META-LEVEL SPECIFICATION AND PROFILE FOR ASPECTJ IN UML

Academic Use Only

BaseClass

<<StaticCrossCuttingFeature>>+CrosscutOperation(){aspect = ExampleAspect}

<<CrossCuttingConcern>>

CrosscuttingConcern

<<Aspect>>

ExampleAspect

Figure 9: Alternate application of Static Crosscutting Features

Academic Use Only

<<stereotype>>

StaticCrossCuttingFeature

[Feature]

<<enumeration>>

AdviceExectutionType

<<stereotype>>

CrossCuttingConcern

[Package]

<<stereotype>>

PointCutConjunction

[StructuralFeature]

<<enumeration>>

AspectInstationType

<<metaclass>>

InterfaceRealization

<<stereotype>>

Advice

[BehavioralFeature]

<<stereotype>>

PointCut

[StructuralFeature]

<<stereotype>>

PropertyPointCut

[StructuralFeature]

<<metaclass>>

BehavioralFeature

<<metaclass>>

StructuralFeature

<<stereotype>>

Aspect

[Class]

<<metaclass>>

Feature

<<metaclass>>

Generalization

<<metaclass>>

Class

<<metaclass>>

Property

<<metaclass>>

Package

<<metaclass>>

Type
-declaredParents

0..*

-declaredImplements

0..*

-precedes

0..1

-precededBy 0..*

-advice

0..*

-pointcut

1

-field

1..*

-onType

1..*

-composite2..*

-composee0..*

Figure 10: Pointcut meta-model excerpt

ExecutionPointCut can. Rather than specifying the type and AspectJ textual dec-
laration of pointcuts as attributes on PointCut, we subclass the PointCut meta-class
to allow different attributes to be modelled for different pointcuts. Figure 10 shows
the meta-model excerpt for pointcuts and one subclass of pointcut, the property
pointcut. Other subclasses of pointcuts are modelled analogously (Fig. 11).

OperationPointCut is a superclass to describe pointcuts that select operation-
related join points. Hence, this meta-class has a multi-valued attribute operation

for this purpose, whose data type is the UML meta-class Operation. The subclasses
of this pointcut directly reflect AspectJ pointcut types and the reader is referred to
the AspectJ specification or [21] for the precise semantics. Because UML does not
distinguish between operations and constructors, both InitializationPointCut

and PreInitializationPointCut are subclasses of OperationPointCut and inherit
the operation attribute.

TypePointCut is a superclass to describe pointcuts that select type-related join
points. Therefore, it contains an ordered, multi-valued attribute Type, whose data
type is the UML meta-class Type. The subclasses of TypePointCut again directly
reflect AspectJ pointcut types and the reader is again referred to the AspectJ spec-
ification or [21] for the precise semantics.

38 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

4 PROFILE APPLICATION

AdviceExecutionPointCut describes a pointcut that selects all advice execution.

PointCutPointCut is a superclass for those types of pointcuts that select another
pointcut. Hence, it is associated with the meta-class PointCut to specify the selected
pointcuts.

PropertyPointCut is a superclass of those types of pointcuts that select fields.
Therefore, it possesses a multi-valued attribute with data type Property.

ContextExposingPointCut is an abstract superclass of those types of pointcuts
that can expose context in an advice. It contains an ordered, multi-valued attribute
argNames that holds the names of the exposed arguments. This collection is ordered,
so that the corresponding type can be discerned from the ordered collection type

specified for the TypePointCut meta-class.

In AspectJ, pointcuts can be composed of primitive pointcuts. We therefore in-
troduce three kinds of pointcut composition meta-classes: PointCutConjunction,
PointCutDisjunction and PointCutNegation. These are modelled as separate
sub-classes because the negation operation accepts only a single operand, while
conjunction and disjunction require at least two. No ordering of the operands
for conjunction or disjunction is necessary because these operations are associative
and commutative. Figure 10 shows an excerpt including the PointCutConjunction

meta-class. Disjunction and negation are modelled analogously (Fig. 11).

We have chosen to make all references to join points that are selected by pointcuts
multi-valued (the operation, field, and type attributes on OperationPointCut,
PropertyPointcut and TypePointCut, respectively) to reduce the complexity of the
resulting model. The alternative would force the modeller to use pointcut composi-
tion using pointcut disjunction. When multiple features are specified for pointcuts,
e.g. multiple values of the operation attribute of a ExeuctionPointCut instance,
the assumption during code generation (Sect. 5) is that they are composed using
logical disjunction.

Finally, because pointcuts are used by advices, the meta-class PointCut is asso-
ciated with the meta-class Advice.

Figure 11 shows the complete profile developed in this section. In this represen-
tation the meta-classes that are extended are not shown explicitly but are shown
in the class symbols in square brackets. In the above discussion we have shown
associations to existing meta-classes for purposes of exposition and clarity. In the
final representation, these associations have been modelled instead as attributes of
classes with the appropriate datatypes.

4 PROFILE APPLICATION

We show an application of the proposed profile as proof of concept (Fig. 12) and
to identify benefits and shortcomings of the proposed UML extension. Rather than
using a complex case study, we show a simple example to demonstrate the use of

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 39

A META-LEVEL SPECIFICATION AND PROFILE FOR ASPECTJ IN UML

A
c
a
d

e
m

ic
 U

s
e
 O

n
ly

<
<

p
ro

fi
le

>
>

a
s
p
e
c
tJ

<
<

s
te

re
o

ty
p

e
>

>

A
s
p
e
c
t

[C
la

s
s
]

-
is

P
ri

v
il
e
g

e
d

 :
 b

o
o

le
a
n

 [
1

]

-
p

e
rT

y
p

e
 :
 A

s
p

e
c
tI

n
s
ta

n
ti

a
ti

o
n

T
y
p

e
 [

0
..
*]

-
p

e
rP

o
in

tC
u

t
:
P
o

in
tC

u
t

[0
..
1

]

-
d

e
c
la

re
d

P
a
re

n
ts

 :
 G

e
n

e
ra

li
z
a
ti

o
n

 [
0

..
*]

-
d

e
c
la

re
d

Im
p

le
m

e
n

ts
 :
 I
n

te
rf

a
c
e
R

e
a
li
z
a
ti

o
n

 [
0

..
*]

<
<

s
te

re
o

ty
p

e
>

>

A
d
v
ic
e

[B
e
h

a
v
io

ra
lF

e
a
tu

re
]

-
a
d

v
ic

e
E
x

e
c
u

ti
o

n
 :
 A

d
v
ic

e
E
x

e
c
u

ti
o

n
T

y
p

e

<
<

s
te

re
o

ty
p

e
>

>

A
rg
u
m
e
n
tD
e
fi
n
in
g
P
o
in
tC
u
t

[S
tr

u
c
tu

ra
lF

e
a
tu

re
]

-
a
rg

N
a
m

e
s
 :
 S

tr
in

g
 [

1
..
*]

{o
rd

e
re

d
}

<
<

s
te

re
o

ty
p

e
>

>

O
p
e
ra
ti
o
n
P
o
in
tC
u
t

[S
tr

u
c
tu

ra
lF

e
a
tu

re
]

-
o

p
e
ra

ti
o

n
 :
 O

p
e
ra

ti
o

n
 [

1
..
*]

<
<

s
te

re
o

ty
p

e
>

>

S
ta
ti
c
C
ro
s
s
C
u
tt
in
g
F
e
a
tu
re

[F
e
a
tu

re
]

-
o

n
T

y
p

e
 :
 T

y
p

e
 [

1
..
*]

<
<

s
te

re
o

ty
p

e
>

>

S
ta
ti
c
In
it
ia
li
z
a
ti
o
n
P
o
in
tC
u
t

[S
tr

u
c
tu

ra
lF

e
a
tu

re
]

<
<

s
te

re
o

ty
p

e
>

>

T
y
p
e
P
o
in
tC
u
t

[S
tr

u
c
tu

ra
lF

e
a
tu

re
]

-
ty

p
e
 :
 T

y
p

e
 [

1
..
*]

{o
rd

e
re

d
}

<
<

s
te

re
o

ty
p

e
>

>

A
d
v
ic
e
E
x
e
c
u
ti
o
n
P
o
in
tC
u
t

[S
tr

u
c
tu

ra
lF

e
a
tu

re
]

<
<

s
te

re
o

ty
p

e
>

>

P
re
In
it
ia
li
z
a
ti
o
n
P
o
in
tC
u
t

[S
tr

u
c
tu

ra
lF

e
a
tu

re
]

<
<

e
n

u
m

e
ra

ti
o

n
>

>

A
s
p
e
c
tI
n
s
ta
n
ti
a
ti
o
n
T
y
p
e

p
e
rc

fl
o

w
b

e
lo

w

p
e
rt

a
rg

e
t

p
e
rc

fl
o

w

p
e
rt

h
is

<
<

s
te

re
o

ty
p

e
>

>

C
ro
s
s
C
u
tt
in
g
C
o
n
c
e
rn

[P
a
c
k
a
g

e
]

<
<

e
n

u
m

e
ra

ti
o

n
>

>

A
d
v
ic
e
E
x
e
c
u
ti
o
n
T
y
p
e

A
ro

u
n

d
A

d
v
ic

e

B
e
fo

re
A

d
v
ic

e

A
ft

e
rA

d
v
ic

e

<
<

s
te

re
o

ty
p

e
>

>

In
it
ia
li
z
a
ti
o
n
P
o
in
tC
u
t

[S
tr

u
c
tu

ra
lF

e
a
tu

re
]

<
<

s
te

re
o

ty
p

e
>

>

P
o
in
tC
u
tC
o
n
ju
n
c
ti
o
n

[S
tr

u
c
tu

ra
lF

e
a
tu

re
]

<
<

s
te

re
o

ty
p

e
>

>

C
F
lo
w
B
e
lo
w
P
o
in
tC
u
t

[S
tr

u
c
tu

ra
lF

e
a
tu

re
]

<
<

s
te

re
o

ty
p

e
>

>

P
ro
p
e
rt
y
P
o
in
tC
u
t

[S
tr

u
c
tu

ra
lF

e
a
tu

re
]

-
fi

e
ld

 :
 P

ro
p

e
rt

y
 [

1
..
*]

<
<

s
te

re
o

ty
p

e
>

>

P
o
in
tC
u
tD
is
ju
n
c
ti
o
n

[S
tr

u
c
tu

ra
lF

e
a
tu

re
]

<
<

s
te

re
o

ty
p

e
>

>

W
it
h
in
C
o
d
e
P
o
in
tC
u
t

[S
tr

u
c
tu

ra
lF

e
a
tu

re
]

<
<

s
te

re
o

ty
p

e
>

>

E
x
e
c
u
ti
o
n
P
o
in
tC
u
t

[S
tr

u
c
tu

ra
lF

e
a
tu

re
]

<
<

s
te

re
o

ty
p

e
>

>

E
x
c
e
p
ti
o
n
P
o
in
tC
u
t

[S
tr

u
c
tu

ra
lF

e
a
tu

re
]

<
<

s
te

re
o

ty
p

e
>

>

P
o
in
tC
u
t

[S
tr

u
c
tu

ra
lF

e
a
tu

re
]

<
<

s
te

re
o

ty
p

e
>

>

C
a
ll
P
o
in
tC
u
t

[S
tr

u
c
tu

ra
lF

e
a
tu

re
]

<
<

s
te

re
o

ty
p

e
>

>

G
e
tP
o
in
tC
u
t

[S
tr

u
c
tu

ra
lF

e
a
tu

re
]

<
<

s
te

re
o

ty
p

e
>

>

S
e
tP
o
in
tC
u
t

[S
tr

u
c
tu

ra
lF

e
a
tu

re
]

<
<

s
te

re
o

ty
p

e
>

>

A
rg
s
P
o
in
tC
u
t

[S
tr

u
c
tu

ra
lF

e
a
tu

re
]

<
<

s
te

re
o

ty
p

e
>

>

T
h
is
P
o
in
tC
u
t

[S
tr

u
c
tu

ra
lF

e
a
tu

re
]

<
<

s
te

re
o

ty
p

e
>

>

T
a
rg
e
tP
o
in
tC
u
t

[S
tr

u
c
tu

ra
lF

e
a
tu

re
]

<
<

s
te

re
o

ty
p

e
>

>

W
it
h
in
P
o
in
tC
u
t

[S
tr

u
c
tu

ra
lF

e
a
tu

re
]

<
<

s
te

re
o

ty
p

e
>

>

P
o
in
tC
u
tP
o
in
tC
u
t

[S
tr

u
c
tu

ra
lF

e
a
tu

re
]

<
<

s
te

re
o

ty
p

e
>

>

C
F
lo
w
P
o
in
tC
u
t

[S
tr

u
c
tu

ra
lF

e
a
tu

re
]

<
<

s
te

re
o

ty
p

e
>

>

P
o
in
tC
u
tN
e
g
a
ti
o
n

[S
tr

u
c
tu

ra
lF

e
a
tu

re
]

-
s
e
le

c
te

d
P
o

in
tC

u
t

1

-
s
e
le

c
te

d
B
y

0
..
*

-
c
o

m
p

o
s
e
e

2
..
*

-
c
o

m
p

o
s
it

e

0
..
*

-
c
o

m
p

o
s
it

e

0
..
*

-
c
o

m
p

o
s
e
e

2
..
*

1

1

-
p

o
in

tC
u

t

1

-
a
d

v
ic

e

0
..
*

-
p

re
c
e
d

e
s

0
..
1

-
p

re
c
e
d

e
d

B
y

0
..
1

-
s
e
le

c
te

d
A

d
v
ic

e
1

-
s
e
le

c
te

d
B
y

0
..
*

Figure 11: AspectJ profile for UML

40 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

5 CODE GENERATION

the profile’s during modelling and to show the visual appearance of the model.

Recall that in UML, meta-classes that extend existing meta-classes become
stereotypes, and attributes of extending meta-classes become tags.

Crosscutting concerns become packages that are stereotyped �CrossCutting-

Concern� and the aspects of this cross-cutting concern are classes that are stereo-
typed �Aspect�, contained in the package. The isPrivileged attribute of the
meta-class Aspect becomes the tag isPrivileged of the stereotype �Aspect�. In
this example, the aspect declares a generalization and an interface realization rela-
tionship. Because of the meta-model integration, the values of the declaredParents
and declaredImplements tags are the relationships elements specified in the model.
The UML generalization meta-class is not a subclass of the NamedElement meta-
class, so that no name is shown for the value of the declaredParents tag, but the
interface realization dependency between FigureElement and Drawable is named.
This name appears as the value of the declaredImplements tag of the aspect. As
Figs. 13 and 14 show, these are not textual specifications but refer to actual model
elements. This means that XMI based tools can be used to manage and modify
these features without requiring specialized parser extensions.

Pointcuts are stereotyped attributes of the aspect, because they are defined as
meta-class extensions of the StaticFeature meta-class. For example, the setXY-

PointCut attribute is stereotyped as a �SetPointCut�. Its meta-class attribute
field becomes a tag that provides a list of fields selected by this pointcut. The
values of the fields are the attribute elements in the model (the CASE tool does
not show the fully qualified name). Because of the meta-model integration, the
CASE tool allows selection of the appropriate model elements as values, shown in
Figure 13. The figure shows the fully qualified names of the model elements that
are the values of the tag field. Figure 14 shows that the values of the tags can be
picked out from the actual model elements. An example of a pointcut that exposes
context variables is given with the TwoIntArgsPC example, selecting all operations
taking two arguments of type int.

Static cross-cutting features can be either atttributes or operations. Examples
of both are shown as stereotyped �StaticCrossCuttingFeature�. The meta-level
attribute onType of the meta-class StaticCrossCuttingFeature becomes, on the
model level, a tag with (multiple) values referencing the classes of the model. For
example, the aspect introduces a public operation addObserver (myObserver) :

int on the types Line and Point.

Advices are operations that are stereotyped �Advice�. The Advice meta-class
is associated with the Pointcut meta-class. Therefore, each advice in the aspect
advises a pointcut, specified as the value of the tag pointCut.

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 41

A META-LEVEL SPECIFICATION AND PROFILE FOR ASPECTJ IN UML

Academic Use Only

<<CrossCuttingConcern>>

SampleCrossCuttingConcern

<<StaticCrossCuttingFeature>>+addObserver(param1 : myObserver) : int{onType = Line, Point}

<<StaticCrossCuttingFeature>>+removeObserver(param1 : int){onType = Line, Point}

<<Advice>>+pointChange(inA : int, inB : int){adviceExecution = BeforeAdvice, pointCut = observePointPC}

<<Advice>>+newLine(){pointCut = makeLinePointCut, adviceExecution = BeforeAdvice}

<<Aspect>>

SampleAspect

{isPrivileged,

declaredImplements = myImplementation,

declaredParents = }

<<StaticCrossCuttingFeature>>-theObservers : myObserver{onType = Line, Point}

<<SetPointCut>>-setXYPointCut{field = x, y, composite = observePointPC}

<<ArgsPointCut>>-TwoIntArgsPC{type = int, int, argNames = inX, inY, composite = observePointPC}

<<PointCutConjunction>>-observePointPC{composee = setXYPointCut, TwoIntArgsPC}

<<CallPointCut>>-makeLinePointCut{operation = makeLine}

FigureElement

+setXY(newX : int, newY : int) : int

+draw()

Figure

+makeLine() : Line

+makePoint() : Point

SampleException

myObserver Drawable
Line

-p1 : Point

-p2 : Point

Point

-x : int

-y : int

Drawing

myImplementation

(a) Base-model and cross-cutting concern

package SampleCrossCuttingConcern;

privileged aspect SampleAspect {

! declare parents:!Figure extends Drawing;

! declare parents: FigureElement implements Drawable;

! pointcut setXYPointCut (): (

! !set(private int Point.x) ||

! !set(private int Point.y));

! ! ! !

 pointcut TwoIntArgsPC (int inX, int inY):

! !args(inX, inY);

! ! ! ! !

 pointcut observePointPC (int inX, int inY): (

! !(set(private int Point.x) ||

! ! set(private int Point.y)) &&

! !args(inX, inY));

! ! ! ! !

 pointcut makeLinePointCut (): (

! !call(public Line Figure.makeLine ()));

 before(int inA, int inB) throws SampleException

 ! ! ! ! ! !: observePointPC(inA, inB!) {}

 before() : makeLinePointCut() {}

! private myObserver Line.theObservers;

! private myObserver Point.theObservers;

! public int Line.addObserver (myObserver param1) {};

! public int Point.addObserver (myObserver param1) {};

! public void Line.removeObserver (int param1) {};

! public void Point.removeObserver (int param1) {}; ! ! ! !

}

! !

(b) Generated AspectJ code

Figure 12: Application of AspectJ profile

42 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

5 CODE GENERATION

Figure 13: Tag values referring to model elements

Figure 14: Selecting model elements as tag values

5 CODE GENERATION

Because the model is compliant with standard UML XMI format and is fully specified
in terms of the meta-model, code can easily be generated. As a proof-of-concept, an
XSLT has been implemented that generates valid AspectJ code (Fig. 12). Existing
CASE tools already support code generation for the non-aspect-oriented parts of the
model, so that the XSLT only generates code for classes stereotyped as �Aspect�

within packages that are stereotyped �CrossCuttingConcern�. The XSLT will

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 43

A META-LEVEL SPECIFICATION AND PROFILE FOR ASPECTJ IN UML

generate method bodies for advice behavior that has been specified as a method
body (opaque behavior) in the model. If advice behavior has been specified as an
activity, interaction, or state machine, the XSLT will create only a method stub.
The translation of those types of behavioral specifications to Java method bodies is
clearly beyond the scope of this research.

While there is not enough space here to present the complete XSLT, to give an
indication of the complexity of the transformation, code generation is implemented
in approx. 580 lines of XSLT code. Most of the complexity in the transformation
stems from ensuring robustness. The XSLT is freely available from the author.

The code generation currently relies on the modeller to develop models that are
valid representations of AspectJ. For examples, the modeller must ensure that the
signature of an Advice matches the context exposed on any referenced Contex-

tExposingPointCut. Another example of this onus on the modeller is the choice
between a return parameter and a thrown exception on an advice. The XSLT will
generate after ... returning when a return parameter is included in the ad-
vice signature, and will generate after ... throwing when a raised exception is
modelled for the advice. However, it is valid in UML to model both. To at least
partially address this issue, we include the following constraint:

context Advice inv:

raisedException -> size() > 0 xor

ownedParameter -> select(op : op.direction=’return’) -> size() > 0

While TargetPointCut and ThisPointCut have, in the interest of a simple meta-
model, been modelled as subclasses of TypePointCut, they, in contrast to the other
subclasses of TypePointCut, should only refer to a single type. When generating
code, additional type references in the model are ignored. This can be addressed
using OCL constraints:

context TargetPointCut inv:

type.size() < 2 and

argNames.size() < 2

context ThisPointCut inv:

type.size() < 2 and

argNames.size() < 2

Combining context-exposing primitive pointcuts using multiple boolean opera-
tions can lead to very complex structures with no easily discernible signature. In
the current implementation, the pointcut signature is generated from the signatures
of the primitive ContextExposingPointCuts in a CompositePointCut using simple
union. It is up to the modeller to ensure that this transforms to valid AspectJ code.

When an advice signature contains a return parameter, the XSLT will interpret
this parameter depending on the value of the adviceExecution tag. For a Before-

Advice, the return parameter type is ignored, for an AroundAdvice it is interpreted

44 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

6 DISCUSSION

as the type of the value returned by the advice (generating ”type around(...):”),
while for an AfterAdvice it is interpreted as the type of the value returned by the
operation (generating ”after(...) returning (type):”).

These examples of potential pitfalls when generating code highlight the need
for OCL-based constraint specifications as part of the profile. Such constraints, if
enforced, can significantly reduce the complexity of the code generation. However,
while this profile includes OCL constraints, most current commercial UML modelling
tools lack the ability to enforce them.

6 DISCUSSION

We have shown an AspectJ profile for UML which, in contrast to previous work, is
based entirely on the existing UML meta-model, employing standard UML extension
mechanism. This section discusses strengths and weaknesses of the proposal.

From a theoretical perspective, the strength of this proposal is a complete spec-
ification of AspectJ in UML. The model completely specifies AspectJ in terms of
the UML meta-model and does not rely on textual descriptions or annotations that
must be parsed for model application or verification. To our knowledge, this is the
first complete proposal.

From a practitioner’s perspective, using the lightweight, meta-model based exten-
sion mechanisms of UML 2.0 makes the theoretically important AspectJ meta-model
practically useful as a profile. The profile can be used with existing, commercially
available UML CASE tools1. Aspects can be exchanged using UML XMI model
interchange mechanism and applied to both new and existing UML models. The
modular way in which UML 2.0 and the MOF allow profiles to be exchanged and ap-
plied means that AspectJ model extensions can be applied to existing UML models,
just as AspectJ extensions can be woven into existing Java software.

However, some words of caution are in order. The lack of pattern based, textual
specification implies that each AO-feature refers to a specific model element that
must be explicitly specified by the modeller (Figs. 13, 14). This is in contrast to the
AspectJ language where patterns are used to select join points for pointcuts. The
power of pattern specifications is not available in UML. Having to explicitly spec-
ify each pointcut requires that the modeller be aware of the complete base-system
model. This also is in contrast to AspectJ where AO-features can be specified us-
ing pattern expressions without full knowledge of the specific join points or types
selected by a pattern. However, this type of pattern-based specification, while con-
venient, also opens the door to inadvertent selection of unintended join points. This
problem is known as the fragile pointcut problem [14, 20] and is especially prob-
lematic when refactoring [22] the base system code, because pattern-based pointcut
specifications depend strongly on the specific design of the base system. In this

1It has been implemented in the MagicDraw tool from NoMagic, Inc.

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 45

A META-LEVEL SPECIFICATION AND PROFILE FOR ASPECTJ IN UML

respect, the explicit specification required by the presented profile is safer and the
meta-model integration allows easier model checking and verification. Moreover, if
patterns were to be specified using textual attributes in the UML model, special
tools would be required to resolve such specifications on the model level, e.g. as
part of model-level weaving. This would preclude the use of commercially available
CASE tools for AspectJ modelling. A future extension to this work may investi-
gate whether the use of JPDD (joint point description diagrams) [29, 30, 15] can
address this issue. JPDDs are used for describing joint point selection in pointcuts.
Because JPDDs are a type of UML diagram, an integration with this proposal may
be possible.

While one may argue that explicit specification of all AO-features creates a model
almost as complex as if the cross-cutting functionality had been included using
non-aspect methods, the use of the proposed profile retains the main advantage of
AO-modelling, namely that of modularization and encapsulation of cross-cutting
concerns.

The present work can be extended in multiple directions in future work. First, it
does not yet fully take into account generics and annotations in Java 5 and 6. UML
has the TemplateableElement concept and is therefore able to express Java generics.
Java annotations may be modelled as stereotypes in UML. While the proposed profile
can be applied to stereotyped and templated model elements, the code-generating
XSLT transformation needs to be extended to develop corresponding Java 5 code.

Second, in the context of the model driven architecture (MDA) process [24]
(Fig. 3), two extensions can be developed. UML profiles can be developed for other
aspect-oriented languages, such as Aspect#, to allow the development of platform
specific models (”PSM” in MDA terminology). The aspect-oriented features can also
be abstracted into a language-agnostic UML profile for generic AOM, to be used
for platform independent models (”PIM” in MDA terminology). Transformations
can then be developed to transform the language-agnostic aspect-oriented models
(”PIMs”) into language specific aspect-oriented models (”PSMs”) and from there to
code.

Third, while some OCL constraints are presented, others can be developed to
further ensure the validity of the models. For example, the signature of Advices
needs to match the context exposed by ContextExposingPointCuts, so that valid
AspectJ code is ensured.

Fourth, while the present work describes the use of this profile for code-level
weaving (refer to Figure 1 in Sect. 1 for the positioning of this work), it is also con-
ceivable that a code-generating XSLT can be be developed for model-level weaving.
From a woven UML model, the regular code-generation capabilities of commercial
UML tools can then be used to create ordinary Java code. However, while feasible,
it would require essentially duplicating the existing AspectJ weaver on the UML
model level.

Finally, usability studies need to be conducted. In this context, it is also pos-

46 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

6 DISCUSSION

sible to explore the impact of various design decisions for this profile, e.g. textual
specification of join points versus the present meta-model based specification, or the
modelling of static cross-cutting features with the aspect as presented here, or with
the base model element.

REFERENCES

[1] O. Aldawud, T. Elrad, and A. Bader. A UML profile for aspect oriented mod-
eling. In Proceedings of OOPSLA 2001, 2001.

[2] O. Aldawud, T. Elrad, and A. Bader. UML profile for aspect-oriented software
development. In Proceedings of the AOM workshop at AOSD, 2003, 2003.

[3] E. Baniassad and S. Clarke. Theme: An approach for aspect-oriented anal-
ysis and design. In Proceedings of the International Conference on Software
Engineering, 2004., 2004.

[4] E. Barra, G. Genova, and J. Llorens. An approach to aspect modelling with
UML 2.0. In Proceedings of the AOM workshop at AOSD, 2004, 2004.

[5] M. Basch and A. Sanchez. Incorporating aspects into the UML. In Proceedings
of the AOM workshop at AOSD, 2003, 2003.

[6] K. Beck. Extreme programming explained: embrace change. Addison-Wesley,
Reading, MA, 2000.

[7] C. Chavez and C. Lucena. A metamodel for aspect-oriented modeling. In
Proceedings of the AOM with UML workshop at AOSD, 2002, 2002.

[8] S. Clarke and R. J. Walker. Composition patterns: an approach to designing
reusable aspects. In ICSE ’01: Proceedings of the 23rd International Confer-
ence on Software Engineering, pages 5–14, Washington, DC, USA, 2001. IEEE
Computer Society.

[9] S. Clarke and R. J. Walker. Towards a standard design language for AOSD. In
AOSD ’02: Proceedings of the 1st international conference on Aspect-oriented
software development, pages 113–119, New York, NY, USA, 2002. ACM Press.

[10] B. Dobing and J. Parsons. How the UML is used. Communications of the ACM,
49(5), 2006.

[11] L. Fuentes and P. Sanchez. Elaborating UML 2.0 profiles for AO design. In
Proceedings of the AOM workshop at AOSD, 2006, 2006.

[12] I. Groher and S. Schulze. Generating aspect code from UML models. In Pro-
ceedings of the AOM workshop at AOSD, 2003, 2003.

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 47

A META-LEVEL SPECIFICATION AND PROFILE FOR ASPECTJ IN UML

[13] J. Grundy and R. Patel. Developing software components with the UML, En-
terprise Java Beans and aspects. In Proceedings of ASWEC 2001, Canberra,
Australia, 2001.

[14] K. Gybels and J. Brichau. Arranging language features for more robust pattern-
based crosscuts. In Proceedings of the 2nd international conference on Aspect-
Oriented Software Development (AOSD), pages 60–69, 2003.

[15] S. Hanenberg, D. Stein, and R. Unland. From aspect-oriented design to aspect-
oriented programs: Tool-supported translation of JPDDs into code. In Proceed-
ings of the 6th International Conference on Aspect-Oriented Software Develop-
ment AOSD, Vancouver, Canada, pages 49–62, 2007.

[16] W. Harrison, P. Tarr, and H. Ossher. A position on considerations in UML
design of aspects. In Proceedings of the AOM with UML workshop at AOSD,
2002, 2002.

[17] J.-M. Jezequel, N. Plouzeau, T. Weis, and K. Geihs. From contracts to aspects
in UML design.

[18] M. Kande, J. Kienzle, and A. Strohmeier. From AOP to UML - a bottom-up
approach. In Proceedings of the AOM with UML workshop at AOSD, 2002,
2002.

[19] M. Katara and S. Katz. A concern architecture view for aspect-oriented software
design. Software and Systems Modeling, 2007.

[20] A. Kellens, K. Mens, J. Brichau, and K. Gybels. Managing the evolution of
aspect-oriented software with model-based pointcuts. In Proceedings of the
European Conference on Object-Oriented Programming (ECOOP), pages 501–
525, 2006.

[21] R. Laddad. AspectJ in Action: Practical Aspect-Oriented Programming. Man-
ning Publications, Greenwich, UK, 2003.

[22] T. Mens and T. Tourwe. A survey of software refactoring. IEEE Transactions
on Software Engineering, 30(2):126–139, Feb. 2004.

[23] F. Mostefaoui and J. Vachon. Formalization of an aspect-oriented modeling
approach. In Proceedings of Formal Methods 2006, Hamilton, ON, 2006.

[24] Object Management Group. MDA Guide, June 2003. Document omg/2003-06-
01.

[25] Object Management Group. Unified Modeling Language: Superstructure, Aug.
2005. Document formal/05-07-04.

[26] R. Pawlak, L. Duchien, G. Florin, F. Legond-Aubry, L. Seinturier, and
L. Martelli. A UML notation for aspect-oriented software design. In Proceedings
of the AOM with UML workshop at AOSD, 2002, 2002.

48 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

6 DISCUSSION

[27] A. Reina, J. Torres, and M. Toro. Towards developing generic solutions with
aspects. In Proceedings of the AOM workshop at AOSD, 2004, 2004.

[28] D. Stein, S. Hanenberg, and R. Unland. Designing aspect-oriented crosscutting
in UML. In Proceedings of the AOM with UML workshop at AOSD, 2002, 2002.

[29] D. Stein, S. Hanenberg, and R. Unland. Query models. In Proceedings of
UML’04, Lisbon, Portugal, pages 98–112, 2004.

[30] D. Stein, S. Hanenberg, and R. Unland. Expressing different conceptual mod-
els of joint point selections in aspect-oriented design. In Proceedings of the
5th International Conference on Aspect-Oriented Software Development AOSD,
Bonn, Germany, pages 15–26, 2006.

[31] H. Yan, G. Kniesel, and A. Cremers. A meta model and modeling notation for
AspectJ. In Proceedings of the AOM workshop at AOSD, 2004, 2004.

Joerg Evermann is a faculty member with the School of Infor-
mation Management at Victoria University of Wellington. He re-
ceived his PhD in MIS from the University of British Columbia. His
research interests include requirements engineering and conceptual
modeling, modeling issues in system analysis and software design,
and the evaluation and improvement of modeling languages.

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 49

