
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2007

Vol. 6, No. 6, July-August 2007

Cite this article as follows: Laurent Balmelli: “An Overview of the Systems Modeling Language for
Products and Systems Development”, in Journal of Object Technology, vol. 6, no. 6, July-August
2007, pp. 149-177 http://www.jot.fm/issues/issue_2007_07/article2

An Overview of the Systems Modeling
Language for Products and Systems
Development

Laurent Balmelli, Ph.D., Manager, International Business Machine (IBM),
Research Division, T.J.Watson Center

Abstract
In this paper we present an overview of the capabilities of the Systems Modeling
Language (SysML.) SysML is a standard from the Object Management Group. It is
geared toward incrementally refinable description of conceptual design and product
architecture. Elements in the design represent abstractions of artifacts in the various
engineering disciplines involved in the development of the system. The design
represents how these artifacts collaborate to provide the product functionalities. This
paper explores all the diagrams available in SysML through the real-life example of an
embedded system.

1 INTRODUCTION

Today's competitive pressures and other market forces drive manufacturing companies to
improve the efficiency with which they design and manufacture products and systems.
Across the product lifecycle, one area where there has been a notorious lack of efficiency
support is the conceptual stage, during which the functional architecture (and sometimes
the physical architecture) is decided upon.

The conceptual stage follows the transformation of customer needs into product
functions and use cases, and precedes the design of these functions across the engineering
disciplines (for example, mechanical, electrical, software, etc.). A lack of support during
product conceptualization makes it difficult to efficiently trace the realization of
requirements in the product. The lack of a formal representation for concepts also results
in an inadequate ability to make decisions at the level of systems in the product, such as
during feasibility studies. Moreover, the lack of a clear vision of the product architecture
hinders team understanding and communication, which in turn often increases the risk of
integration issues. It is these and other challenges confronted during the conceptual phase
of product and system development that SysML is designed to mitigate.

AN OVERVIEW OF THE SYSTEMS MODELING LANGUAGE FOR PRODUCTS AND SYSTEMS

DEVELOPMENT

150 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 6

SysML is based on the actual standard for software engineering, the Unified
Modeling Language (UML) developed within the Object Management Group (OMG)
consortium. SysML was developed as a response to the request for proposal (RFP) issued
by the OMG in March 2003. The development team includes representatives from more
than ten companies. IBM has played a leadership role in the definition of the standard by
authoring part of the specification.

Figure 1 Comparison of SysML1.0 with UML2.0: The text in the figure summarizes the various diagrams

available in SysML. Requirements, Parametrics and Allocations are new diagrams available only in
SysML. Activity and Block diagrams are reused from UML2.0 and extended in SysML. Lastly, State

Machines, Interactions and Use cases are reused from UML2.0 without modifications.

SysML is a modeling language for representing systems and product architectures, as
well as their behavior and functionalities. It builds on the experience gained in the
software engineering discipline of building software architectures in UML (think of the
classic Class Diagram.) The architecture represents the elements realizing the functional
aspect of their product. The physical aspect is sometimes represented too, for example
when the architecture represents how the software is deployed on a set of computing
resources.

The overview of SysML presented in this paper covers all the diagrams available in
SysML. We explore most of the constructs attached to this diagram and refer to the OMG
specification [OMGSysML] for the ones that we do not address. In –Figure1 we compare
SysML1.0 to UML2.0 in term of re-use. The text in the figure summarizes the various
diagrams available in SysML. Requirements, Parametrics and Allocations are new
diagrams available only in SysML. Activity and Block diagrams are reused from
UML2.0 and extended in SysML. Lastly, State Machines, Interactions and Use cases are
reused from UML2.0 without modifications.

We explore the capabilities of SysML through an example: the Rain Sensing Wiper
(RSW) system. This sample problem is inspired from a real-life product failure that can be

VOL. 6, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 151

easily found using your preferred Internet search engine. In Appendix A we explain in
details the background story of the example that we are using in this paper. This example
is a nice illustration of the importance of having an understanding of a product at the
level of its sub-systems in order to prevent complex failure modes involving costly
product recalls. In the story, the product manufacturer endures a lengthy (hence costly)
root cause analysis that eventually requires a design change. In this article, we present a
model that is resilient to the failure experienced by the manufacturer.

We briefly explain now the purpose of the RSW: The goal of the RSW is to wipe the
surface of the windshield automatically (i.e. without user intervention) whenever droplets
of liquid are detected. In addition, the amount of liquid detected dictates the speed of the
wiper. This system has three main components: the software that controls the behavior of
the wiper, an electronic control unit that executes the software and a sensor fixed on the
windshield whose task is to sense droplets through the windshield.

In this article, we give a detailed model that describes many aspects of this system.
This example constitutes a realistic product in the area of embedded electronics (for the
automotive industry) whose design greatly benefits from a SysML representation. We
conclude this paper by summarizing the capabilities offered by SysML and give a
perspective for the potential improvements that SysML brings for products and systems
development.

2 CONTEXT, REQUIREMENTS AND USE CASES

When modeling a system, an important primary task is to decide what belongs to the
system and what does not. The Context Diagram is an informal means (informal in the
sense that it does not carry precise semantics) to represent the boundaries of the system.
In Figure 2 we show a context diagram for the RSW. Three actors for the system are
identified in the context: Maintenance (for repair purposes), Car Electrical System (to
activate the system in the car) and Driver (to manually disable the system for example.)
Three external systems are considered here: the wiper interface, the windshield and the
car electrical system. Note that the car electrical system also provides electrical power to
the RSW. Hence it is considered both an actor and external system. The context diagram
establishes the scope of the system. Note that a user-defined keyword “external” is used
to qualify the external components.

AN OVERVIEW OF THE SYSTEMS MODELING LANGUAGE FOR PRODUCTS AND SYSTEMS

DEVELOPMENT

152 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 6

Figure 2 Context diagram for the Rain Sensing Wiper system.

In the introduction of this paper, we explain that the conceptual stage of the lifecycle
succeeds to the analysis of the customer needs into product requirements. Requirements
have been traditionally represented as text (accompanied with figures and drawings) and
stored in files or databases. The requirements describe all the product functions and the
constraints under which these functions should be realized.

SysML allows the representation of requirements as model elements. Hence
requirements become an integral part of the product architecture. The language offers a
flexible means to represent text-based requirements of any nature (e.g. functional or non-
functional) as well as the relationships between them.

In Figure 3 we represent a requirement diagram for the RSW. Note that it contains
both functional and non-functional requirements. Requirements in SysML are abstract
classifiers (i.e. they cannot be instantiated) with no operations or attributes. They cannot
participate in associations or generalizations, however a set of predefined relationships
help to characterize the relationships between the requirements. We review these
relationships below.

Sub-requirements are related to their parent requirement using the crosshair
relationship (that denotes namespace embedding). For example in Figure 3, some of the
sub-requirements of the requirement Automatic Wiping are connected to it using the

VOL. 6, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 153

crosshair. The parent requirement is a package for the embedded requirements. In that
sense, deleting the parent requirement will automatically delete all the embedded ones.
Another example of requirement acting as a package for other requirements is the
requirement Core Functions which contains two sub-requirements. For readability in the
model, a user-defined keyword “package” is rendered next to the Requirement stereotype.

During requirement analysis (e.g. decomposition and flow-down) new requirements
are created by derivation. These new requirements can be connected to the initial ones
with the DeriveRqt dependency. For example in Figure 3, a set of core functions for the
product are derived from the set of requirements under Automatic Wiping. The name
DeriveRqt was chosen in order to avoid any confusion with the standard Derive
dependency in UML2.0. Other examples of derived requirements are the technical
choices for each function (see the box Technical Choices in Figure 3) Note that in the
Figure, the designer captures a Rationale comment to explain his choice for using a
sensor fixed on the windshield. A last example of derived requirement is the quality
requirement System Calibration stating that the system should be calibrated. This is the
requirement added to the product after the infamous RSW failure was identified (see the
Appendix A for more details.) The satisfaction of this requirement insures that the
product will be resilient to changes in the sensor and windshield characteristics.

Another relationship between requirements is Refine. An example of requirement
refinement is shown in Figure 3.The requirement on speed actuation is refined by the
possible selection for speed (slow, medium or fast.) Lastly, a generic Trace dependency
can be used to emphasize that a pair of requirements are related in some way or another.
In Figure 3, the requirement for manual deactivation is traced to the one about automatic
deactivation.

Requirements have a number of derived attributes to store the status of the
relationships reviewed in the above paragraphs. We will see later in this paper that these
attributes become particularly handy when requirement relationships are represented
outside requirements diagrams.

AN OVERVIEW OF THE SYSTEMS MODELING LANGUAGE FOR PRODUCTS AND SYSTEMS

DEVELOPMENT

154 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 6

Figure 3 SysML Requirement Diagram for the Rain Sensing Wiper system.

Often requirements are elicited during the whole product lifecycle and additional
requirement diagrams are used to represent them. Hence the product requirements are
typically laid out on a set of requirement diagrams.

SysML provides a generic model for requirements that allows the modeling of both
functional and non-functional requirements. A non-normative set of requirement types
are proposed in the appendix of the OMG SysML specification [OMGSysML]. Specific
types of requirements (for example related to timing or scheduling, etc) are handled by
language extensions. SysML supports a profile mechanism to extend the language. The

VOL. 6, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 155

Object Management Group (OMG) has released a series of modeling standards that
address specific needs: for the modeling of non-functional requirements related to
performance and quality [QoS, STP], and for the modeling of test cases [Testing profile].
These profiles can be used in SysML without restriction.

SysML provides a use case diagram that is inherited from UML2.0 without
modifications. In Figure 1 we show the interaction of the external actors with some of the
main use cases (represented by ellipses) owned by the RSW. We represent the three
actors and connect them to their respective use cases. In this figure, a central use case
Automatic Wiping is composed of a series of sub-use cases. The hierarchical relationship
is modeled using the Include dependency.

Figure 1 SysML Use Case Diagram

SysML has the capability for representing test cases and attach them to their related
requirements or use cases. A test case can be an operation or a behavioral model
(Interaction, State Machine or Activity.)
In Figure 5 we show a test case for the RSW. The test case verifies the requirement
System Calibration (see Figure 3.) This is done by: First, retrieving the characteristics of
the different components (sensor, windshield and software configuration file.) Second,
using these characteristics to compute an operating range (both for the sensor and
windshield) in order to assess their compatibility. If the sensor and windshield are
compatible, then the test case is successful. Otherwise, an alert is triggered. The actions
in the activity diagram contributing to each step are enclosed in illustrative boxes (Figure
4a) for the sake of clarity.

The first step is realized in this example using a set of webservices to access the
repositories containing the artifacts related to the different components (see the leftmost
enclosing box in Figure 4a.) More precisely, the bill of material (e.g. in a product data
management system) is queried for the characteristics of the sensor and the windshield

AN OVERVIEW OF THE SYSTEMS MODELING LANGUAGE FOR PRODUCTS AND SYSTEMS

DEVELOPMENT

156 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 6

and the configuration file is retrieved, for example, from a software configuration
management system.

The second step (see central box in Figure 4a) is realized by defining constraints on
the attributes of the sensor and the windshield in SysML Parametric Diagrams. We will
explore how these diagrams are constructed later in this paper.

In Figure 4b a test context is created to host prototypes for the webservices and other
functions necessary to execute the test case. This context is traced to the requirement. The
activity diagram uses the functions of the test context for its execution.

(a) The test case is realized with an activity diagram.

VOL. 6, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 157

(b) Requirement and test case traceability

Figure 2 SysML Test Case for the quality requirement System Calibration.

This concludes our review of the capabilities of SysML for modeling uses cases and
requirement. In the next section, we show how SysML is used to create a product
structure that satisfies these requirements.

3 STRUCTURE OF THE RAIN SENSING WIPER SYSTEM

In this section, we build now a structure for the RSW. We assume that a set of sub-
systems and components have been identified through the requirements engineering
process based on stakeholder concerns such as cost, performances, etc.

SysML provides a basic structural element called Block whose aim is to provide a
discipline-agnostic building block for systems. Blocks can be used to represent any type
of components of the system, e.g. functional, physical, and human, etc. Blocks assemble
to form architectures that represent how different elements in the system co-exist.

The SysML Block Definition Diagram (BDD) is the simplest way to describe the
structure of the system. It is the equivalent to the Class Diagram in UML. It is used to
represent the system decomposition using for example associations and composition
relationships. The BDD is ideal to display the features of a block, such as its properties,
and operations. SysML allows blocks to own special types of properties: Block Properties
and Distributed Property. Block properties impose additional constraints on classic UML
Properties, and can for instance own a SysML Value Type. Value Types are designed to
hold units (e.g. physical units) and dimensions. Distributed Properties let the user apply a
probability distribution to the values of the property. SysML proposes model libraries for
possible values of units, dimensions and probability distributions.

In Figure 5 we show a BDD for the RSW. For the sake of readability of the diagram,
we do not render the associations between the sub-systems and the Rain Sensing Wiper
element, although these associations exist in the model. Instead we use an illustrative box

AN OVERVIEW OF THE SYSTEMS MODELING LANGUAGE FOR PRODUCTS AND SYSTEMS

DEVELOPMENT

158 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 6

around each set of components (composite and external) and a black diamond shape over
the composite component as a visual clue for composition. The main components of the
RSW are: an interface to actuate the wiper, an electronic control unit, a sensor and the
windshield element. Both the interface and the windshield can exist in the car with or
without the RSW (In SysML they are so-called reference properties.)

The properties and the operations for each block are visible in Figure 5. Properties
(more precisely SysML BlockProperties, shown using the stereotype <<blockProperty>>)
are used to model the physical characteristics of the components. The operations (called
sometimes services) represent the functional aspects of the system.

Figure 3 Block Definition Diagram for the Rain Sensing Wiper.

VOL. 6, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 159

We now examine how the product structure and the product requirements can be related:
One of the important consequence of having requirements as model elements is that it
allows the designer to specify which components in the system satisfy a given set of
requirements. This is called allocation process. We show an example of requirement
allocation in Figure 4. In the figure, the part on the left hand side represents some
elements of the RSW, and the part on the right hand side is a hierarchy of requirements.
One way to perform allocation is to use the Satisfy dependency. In the figure the rain
sensing wiper model element is allocated to the requirement named “Automatic Wiping”.
Any element in SysML can be used to satisfy a requirement.

Another way to display allocation is to use a dedicated compartment named
“Requirement related”. This compartment displays the status of a set of derived
properties related to requirements. In Figure 4 the element ECU displays this
compartment: The ECU element is allocated to the requirement named “Use dedicated
ECU”.

Figure 4 Example of requirement allocation.

The SysML Internal Block Diagram (IBD) allows the designer to refine the structural
aspect of the model. The IBD is the equivalent of the composite structure in UML. In the
IBD properties (or parts) are assembled to define how they collaborate to realize the
behavior of the block. A part represents the usage of another other block.

The most important aspect of the IBD is that it allows the designer to refine the
definition of the interaction between the usages of blocks by defining Ports, as explained
below.

AN OVERVIEW OF THE SYSTEMS MODELING LANGUAGE FOR PRODUCTS AND SYSTEMS

DEVELOPMENT

160 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 6

Ports are parts available for connection from the outside of the owing block. Ports
are typed by interfaces or blocks that define what can be exchanged through them. Ports
are connected using connectors that represent the use of an association in the IBD.

Two types of ports are available in SysML: Standard ports handle the requests and
invocations of services (i.e. function calls) with other block, and Flow ports let blocks
exchange flows of information or material. For standard ports, an interface class is used
to list the services offered by the block. For flow ports, a Flow Specification is created to
list the type of data that can flow through the port. When only a single type of object can
flow through a port, then the type is used as type for the port directly. Such a port is
named Atomic Port. The class Item Flow is used to represent what does actually flow
between blocks in a particular usage context. We refer the interested reader to the
standard specification [OMGSysML] for more details on item flows. An example of IBD
is given in Figure 5.

Figure 5 Internal structure of the Rain Sensing Wiper system.

In Figure 5 we refine our initial description of the RSW by showing how parts are
interacting inside the block named Rain Sensing Wiper. Previously to constructing the
IBD, we need to define a model for the associations characterizing the relationships
between the different blocks. Also additional blocks are defined for example to type the
ports. We show this model in another BDD that can be found in Figure 15 (Appendix B.)

The central part of Figure 5 consists of the parts of the system that represent the
embedded hardware. The parts underneath are used for mounting the system in the car.

VOL. 6, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 161

The ones above represent the software. A set of standard ports and interfaces are defined
to represent the functional aspect of the communication between the parts. For example,
the processing unit accesses the actuation interface of the wiper through the interface
WiperECUCommunication. Details about the interfaces used in this IBD are found in
Figure 17.

The processing unit communicates with the sensor using a flow port. The data
exchanged is two bitstreams, one containing the measurements from the sensor and
another containing synchronization data. The port is typed with a specification of these
flows using the element SensorECUCommunication (see Figure 17.) Note the direction of
the flows in the definition.

For convenience a flow port can be conjugated in the sense that its input and outputs
are inversed (flows declared as “in” becomes “out” and vice-versa) with respect to the
definition of the interface. This is useful when connecting two systems whose flow ports
are conjugated with respect to each other. This is the case for instance between the
processing unit and the sensor in Figure 5. A conjugated flow port is represented in black.
Since the synchronization data flow is declared as “inout”, the conjugation of the port has
no effect on it.

Note that in Figure 5 connectors between ports link parts defined within the block.
SysML actually allows direct connection between ports defined at different levels of
granularity, for example between a port and another one defined inside a part. This type
of connector are called nested connectors. We refer readers to the standard specification
[OMGSysML] for more details about these connectors.

Flow ports are also useful to define physical contact between parts: For example the
SensorAttachement unit is fixed to the windshield using an adhesive. The block
representing the adhesive material (AttachementAdhesive in Figure 15) is used to type the
flow port connecting these parts.

We explain now how to represent requirements allocation in an IBD: Requirements
are classifiers and therefore cannot be represented on an IBD. For this type of diagrams,
the compartment notation as introduced in Figure 7 is used.

An example is shown in Figure 5: The parts representing the windshield and the
sensor attachment are used to satisfy the requirements named “Use Sensor on
Windshield” and “System Calibration”, respectively (see Figure 2.) The satisfaction of
these requirements is displayed in each part.

A large and complex model is composed of hundreds, maybe of thousands elements.
Hence such a model is laid out over a set of BDD’s. Typically, the content is organized
according to stakeholders concerns.

Most design methodologies advocate the use of viewpoints to organize the model,
for example according to stakeholder’s interests. SysML provides a model element
Viewpoint that allows users to capture the characteristics of a viewpoint (for example,
targeted stakeholders, concerns addressed, construction rules, etc.) A container element
called View is then used to organize the model according to the viewpoint description.

AN OVERVIEW OF THE SYSTEMS MODELING LANGUAGE FOR PRODUCTS AND SYSTEMS

DEVELOPMENT

162 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 6

Figure 6(a) represents a model for the definition of a viewpoint. In our example
model, the elements of the system are contained in a central package called Systems.
Some elements are imported from this package into a view called RSW Power whose
purpose is to gather elements playing a role in the power consumption of the system. The
view conforms to the definition given by the viewpoint description. Within the view, an
element Power System RSW is defined to describe how the various imported elements are
collaborating in the scope of the power consumption of the system.

(a) Definition of the view RSW Power. The block Power System RSW is defined in the context of the

view and uses a set of elements imported from the package Systems for its definition.

(b) An internal block diagram for the block Power System RSW. The diagram describes the roles of the

imported elements in the context of the power subsystem of the car.

Figure 6 Separation of concerns using viewpoint modeling.

In Figure 6(b) the car electrical system powers the parts using atomic flow ports typed
using the Power Supply Channel Block (Figure 15). In this case, the direction of the port
(in or out) is specified in one of the port’s attributes.

We have seen so far how attributes are defined for blocks in order to represent their
physical characteristics. Often attributes of a set of systems are not independent. Consider
two sub-systems A and B having attributes a and b, respectively, and that the constraint

VOL. 6, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 163

{A.a greater than B.b} must hold true. SysML ConstraintBlocks allows the engineer to
define any relationships (e.g. analytical) between the system attributes. These constraints
form networks of expressions that are typically leveraged in simulations, for example for
requirements verification. Note that constraint blocks are not instantiated as runtime
objects, but rather used to type special properties of blocks, as explained below.

Constraints are properties in sub-systems (i.e. blocks) named ConstraintProperty and
are typed by ConstaintBlocks. A constraint block defines an expression and the attributes
that represent its parameters. SysML does not prescribe any language to represent the
expressions or provide a solver for it. This setting is typically offered within the usage of
a particular tool.

The RSW uses a set of analytical constraints to verify that the system is properly
calibrated (requirement “System Calibration” in Figure 2.) Three constraints are shown
in Figure 7: The constraint SensorEffectiveRange computes an operational range for the
sensor, based on some of its parameters. Similarly, the constraint
WinshieldIREffectiveRange computes an operating range for infrared sensor that can be
compared with the one computed for the sensor. Finally the constraint
SensorWindshieldRangeCompare is used to compare the above values.

Figure 7 Definition of Constraint Blocks for the Rain Sensing Wiper system.
The SysML Parametric Diagram (PD) is used to represent the usage of constraint blocks
as constraint properties. Syntactically the PD is actually is similar to IBD. In a PD,
constraint properties are connected to each other through the parameters defined by their
constraint block. In turn they connect to other properties in the context of their owning
block. These other properties must be directly bound to parameters of the constraint
properties because they can only play a “feeding role” to the constraints parameters in a
PD.

AN OVERVIEW OF THE SYSTEMS MODELING LANGUAGE FOR PRODUCTS AND SYSTEMS

DEVELOPMENT

164 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 6

An example of PD is shown in Figure 8. Constraint properties are represented by
boxes with rounded corners. In this diagram, both the sensor and windshield parts
compute an operational range that is compared by the property named “compare”. These
values are also fed to the part representing the configuration file (bottom of the figure.) If
the sensor and the windshield are compatible, the flag IsCalibrated (exposed as a port) is
set to true. The verification of the calibration requirement is hence reduced to testing the
value of this port. The system is therefore resilient to changes in windshield and sensor
characteristics.

The usage of the constraint blocks WinshieldIREffectiveRange and
SensorEffectiveRange can be seen in the diagrams of Figure 16 and Figure 17,
respectively (Appendix B.) They are nested in the parts named RainSensor and
CarWinshield (see comments in the figure.) Note that the parametric diagrams of Figure
8, Figure 16 and Figure 17 are used to implement the second step of test case that we
presented in Figure 2.

An attractive aspect of constraint blocks is that they provide a reusable mechanism to
define types of constraints. Hence the same constraint can be used several times in the
model. It is important to note that a constraint does not specify which variable is an input
or an output. Values are assigned by the context and a numerical solver will provide
results for the variables of the system. Note to conclude our review of SysML constraints
that remarkable work on this topic is available from Peak et al. [GTech].

Figure 8 Parametric Diagram for the Rain Sensing Wiper system.

VOL. 6, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 165

Requirement allocation is shown in PD’s using compartments: In Figure 8, the
requirement allocation compartment is displayed in both the constraint used for
comparison and the part representing the configuration file. These elements satisfy the
requirement named System Calibration.

4 BEHAVIOR

In this section, we explore how SysML is used to model the behavior of the product. The
expression of the behavior of a system equates to realizing its Use Cases under a
specified set of non-functional constraints. SysML offers three types of behavioral
constructs: Interactions, State Machine and Activities. Several behavioral models from
UML are not reused for the sake of simplicity or because of some maturity concerns. We
examine these three models below through our RSW example.

The first behavior model that we review is the SysML Interaction Diagram. This
diagram allows the designer to model a sequence of service calls between components.
SysML leverages the UML2.0 interaction model but restrict its use in the interaction
diagram only. Other forms of interaction diagrams (e.g. communication diagram) are not
used.

In Figure 9 we represent the initialization sequence of the RSW using an interaction
diagram. The initialization sequence consists of a synchronization protocol between the
components. This diagram is well adapted to represent this type of behavior. Initially, the
car electrical system starts the RSW, which in turn queries the sensor and the wiper
interface for an acknowledgement. After that, the software is loaded in the memory of the
ECU and its execution is started. Once the software is started, it reads the parameters
stored in the calibration file.

AN OVERVIEW OF THE SYSTEMS MODELING LANGUAGE FOR PRODUCTS AND SYSTEMS

DEVELOPMENT

166 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 6

Figure 9 Interaction Diagram for the initialization of the Rain Sensing Wiper system.

The use case named Initialization (Figure 1) is realized by the interaction model in Figure
11. One mechanism for expressing the relationship between the interaction model and the
realized use case is to use the SysML Allocation mechanism, as introduced below.

In our previous examples, we have seen how requirements are allocated to system
elements aiming at satisfying or verifying them. SysML generalizes this concept by
allowing any elements to be related to any elements to express a particular relationship.
We will examine this mechanism in more details in the coming examples and in Section
[Allocation]. Similarly to requirement relationships, elements in SysML have derived
properties to display the status of their allocations to other elements. For example, at the
bottom of the interaction diagram, we can read that the behavior model is allocated to the
use case Initialization. In addition, the model is allocated to the system state named
Initializing (see below.)

The second behavior model that we introduced is the SysML State Machine
Diagram. This diagram is used to represent the different states of the RSW. This

VOL. 6, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 167

behavioral model is also reused from UML and not extended in SysML. Protocol State
Machines from UML2.0 are excluded from SysML for simplicity.

In Figure 10 the different states of the RSW are represented as well as their
transitions. Three states are identified: Deactivated, Initializing and Activated. In
deactivated mode (for instance manually by the user), the system waits for an activation
command. When this signal is received, it transits to the initializing state. In that state, the
interaction sequence in Figure 9 is executed. When completed successfully, the system
transits to the “activated” state. Note that, when entering and exiting states, flags are set
and unset, respectively. These flags are used for example to display the current status of
the system on the driver dashboard.

Figure 10 State Machine Diagram for the Rain Sensing Wiper system.

Allocation can also be shown in the state machine diagram as well. In Figure 12 the states
Initializing and Activated both exhibit requirement and allocation compartments.

The third type of the behavior that we review is the SysML Activity Diagram. SysML
leverages and extends the activity model from UML to support continuous systems. The
SysML Activity Diagram offers many innovations presented briefly below. A more
thorough description of the SysML activity model is available in [Bock].

The modeling of activities in SysML consists of describing behavior as a flow graph.
An activity is defined as a set of actions represented as graph nodes (these actions are the
usage of other activities) linked by edges carrying control flow and data flow between
actions. Object nodes represent the type of data that can traverse the flow graph and are

AN OVERVIEW OF THE SYSTEMS MODELING LANGUAGE FOR PRODUCTS AND SYSTEMS

DEVELOPMENT

168 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 6

used as containers for the data as it traverses the graph. For example, object nodes are
used to store input parameters of actions (called pins.) Finally, control nodes are used to
route control and data flows through the activity (for example create forks, duplicate
flows, etc.) An example of activity model is shown in Figure 12.

Since UML2.0, activities are classifiers and can be represented in Class Diagram.
SysML clarifies the semantic of association between activities. As a result, Activities can
be related to each other to represent for example functional decomposition in a similar
way that blocks represent structural decomposition in a BDD. In Figure 11 we represent a
decomposition of the main functions of the system.

In this setting, the upper limit at the part end represents the maximum number of
instances that can execute concurrently. In Figure 11 the lower and upper limits for each
activity owned by Rain Sensing Wiper Main (i.e. Actuate, Process and Sense) are
enclosed in an illustrative box. The example setting allows only one instance of each
activity to be run concurrently in the system.

Activities can also be associated to classifiers when the latter are used as type of
object node. In the case, the upper limit at the classifier end represents the maximum
number of instances that can reside in an object node at any given time. In Figure 13 we
can see that the upper limit for the number of instances that can be owned by Process is
ten.

In Figure 13, we can see that the activities Sense and Process share a common type
of object node named SensorMeasurement. Also, all activities use the type
InterfaceCommand. Note that both these blocks are specializations of a data type named
Bitstream. The bitstream modeled by the block InterfaceCommand is used to implement
the services communications between the ECU and the wiper interface (defined by the
various service ports between the parts.)

VOL. 6, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 169

Figure 11 Activities and object node types for the sensing activity of the RSW.

The requirements that the Actuate and Sense functions satisfy are also represented in
Figure 11. In addition the main function of the product is allocated to the rain sensing
wiper block using an Allocate relationship. In this case, the designer expresses that the
function is owned by this block. The activity Actuate displays its allocation compartment
which shows that this activity is allocated to the block WiperInterface.

The rain sensing function is implemented in the activity diagram in Figure 14. The
three functions defined in Figure 13 (Actuate, Process and Sense) are used as actions in
the activity.

In Figure 14 the data flows across edges that connect the actions through their pins.
The type of data that can flow between actions is defined by the type of their pins. For
example, objects of type InterfaceCommand are flowing from the action Process to the
action Actuate.

SysML introduces notions to specify the rate at which data can flow across edges
and parameters (pins) of activities. Two types of the rate are defined: Discrete and
Continuous. In the example of Figure 14, the bitstream exchanged between the function
Process and Actuate is limited in rate by the serial link that is used to connect the parts

AN OVERVIEW OF THE SYSTEMS MODELING LANGUAGE FOR PRODUCTS AND SYSTEMS

DEVELOPMENT

170 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 6

owning these functions (these parts are shown in Figure 5.) In Figure 14, this is modeled
by the edge (of type Discrete) named”serial data channel”. Edges of type Continuous are
used when the time interval between objects tends towards zero. Note that in order to use
rate-controlled edges and pins, activity parameters must be “streaming”1. An activity with
streaming parameters can accept values at any time during its operation.

Figure 12 Sensing activity for the Rain Sensing Wiper system.

The UML2.0 action model only enables actions to start. SysML introduces the notion of
control operators as a special type of actions able to enable or disable other actions. A
control operator named ManualControl is used in Figure 14 to start and stop the rain
sensing function. It deactivates the function upon reception of a “deactivate” signal (for
example triggered by the pressure of a button on the dashboard.) It can restart the
function later when receiving the proper signal. The type of data exchanged between the
actions Process and ManualControl is of type ControlValue. SysML defines some types
of control values (enable action, disable action) that can be extended by users according
their needs (for example, a suspend action value can be added.)

SysML also introduces two new types of object nodes to support continuous concept
such as transient states (e.g. for the modeling of electrical signals.) In Figure 14, the
action Process exposes a pin of type Overwrite to collect the data sent from the sensor.
An object node of type overwrite will ensure that the latest measurements from the sensor
are available to the Process action by erasing older ones in the object node. Note that up

1 UML2.0 notion.

VOL. 6, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 171

to ten values can be stored in the pin according to the bound (0..10) defined in Figure 13.
The second new type of object node is NoBuffer: In this case, the pin does not store any
value; hence a value is discarded if it is not directly accepted by outgoing edges (in the
case of an output pin) or an action (when used as input.)

Lastly, SysML supports assigning probabilities to activity edges (whose source is a
decision node or object node) and parameter sets. It allows the modeler to assign a
probability for an object value in order for it to traverse an edge. In the case of a
parameter set, it assigns a probability for the set to be assigned a value at runtime. This
feature can be used for instance to simulate loss in a communication channel.

Allocation to requirements or other elements is shown in the activity diagram using
the compartment notation. In Figure 14, the action called “manual control” satisfies the
requirement named “manual disablement”. Also, this action is allocated to the block
representing the dashboard button to emphasize that this button causes the system to
deactivate.

5 ALLOCATION

The review of the SysML Allocation mechanism will conclude this presentation of the
Systems Modeling Language. We have introduced some examples of allocations in the
previous examples of Figure 11 to 14.

The concept of allocation allows the user to bridge between various modeling
techniques. By allowing allocation between any pair of elements, the designer can
enforce consistency between the various parts of the model.

Through the examples of Figures 11 to 14, we have seen that allocations can be
displayed using special compartments or using the Allocate dependency. The usage of
this dependency is only possible when the related elements can be represented on the
same diagram.

Allocation is often used to represent mapping of function to structure, as used in the
example of Figure 13. Mapping between elements can be complex and require the display
of several relationships. To allow a scalable display of dependencies between elements,
SysML provides a tabular notation for relationships, as explained below.

In Figure 15 we show the allocation relationships between the edge named “serial
data channel” in Figure 14 (linking the actions Process and Sense) and other elements in
the model. Note that the type of an activity edge is shown as ObjectFlow in the table. The
figure shows that the edge is allocated to four elements in the model.

Figure 13 Display of allocation relationships using the tabular notation.

AN OVERVIEW OF THE SYSTEMS MODELING LANGUAGE FOR PRODUCTS AND SYSTEMS

DEVELOPMENT

172 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 6

Requirement dependencies can also be displayed using the tabular notation. To conclude
this review of the SysML Language, we show in Figure 16 the result of an allocation
query for the requirement System Calibration. Note that the direction of the relationship
depends on whether the requirement is the client or the supplier.

Figure 14 The tabular notation is used to display the requirements relationships.

6 CONCLUSION

In this paper we have toured the different capabilities that SysML offers to system
engineers and product designers. SysML is aimed at supporting the conceptual stage of
the lifecycle of the product. This stage is preceded by the decomposition of the customer
needs into product features. We have seen that SysML allows the representation of these
features as requirements in the model. In turn these requirements can be allocated to the
use cases, to the sub-systems and components (whether functional or physical) identified
for the product.

The conceptual stage requires the specification of the various sub-systems and the
need for details depends on their level of integration. SysML provides a set of constructs
to support the description of the structure of the product. Blocks are used to model sub-
systems and components, and ports support the description of their interfaces.
Dependencies (e.g. analytical) between structural properties are expressed using
constraints and represented using the parametric diagram.

In addition to structure, the conceptual stage should clarify how the product behavior
is expressed through the interaction of its components. For example, behavior modeling
gives a detailed description of the product use cases. SysML provides three means for
explicating the product behavior, namely interactions, state machine and activities. These
three mechanisms are built as a unified behavior concept and can consequently be
orchestrated in a single, uniform and complex behavior model for the whole product.

A complex product model is form by several “sub”-models of different nature (for
example requirements, blocks, constraints, activities, etc.) SysML provides a mechanism
to relate different aspects of the model and to enforce traceability across it.

VOL. 6, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 173

The conceptual stage precedes the detailed elaboration of the components within the
different engineering disciplines. The conceptual design plays therefore many central
roles in the product lifecycle and we emphasize below some of the most important ones
in our opinion.

The formal description of the product at an early stage of the lifecycle improves the
understanding of the product requirements and how they answer the customer needs. The
allocation of requirements to the model elements ensures that these needs are covered and
provides a rationale for the engineer in charge of fulfilling these requirements. The
rationalization of the design is therefore a communication tool spanning organizational
levels and lifecycle stages. It improves communication across teams, between teams
(think of the different engineering disciplines) and between teams and decision makers. It
uses a generic language (in the sense that it is not specific to any engineering discipline)
that accommodates the incremental detailing of the product representation. That last
aspect allows coping with organizational levels. Note that such a formal description is
well suited to methodologies.

The SysML model provides an electronic representation of the product that is
leveraged as a decision tool. Trade-off studies are performed by evaluating functions on
the model (cost function, estimation of the integration effort.) At an early stage in the
lifecycle, often rough estimations are used, hence the model need not necessarily have a
great amount of details in order to be used efficiently. When details are added, or artifacts
(for example sub-system simulations) are produced by detailed engineering, the model is
used to orchestrate the various simulations and perform requirement verification. Hence
the SysML model is an evolving decision tool available throughout the whole lifecycle of
the product, and not only at the conceptual stage.

The product model represents abstractions of artifacts that are progressively
elaborated throughout the lifecycle. These artifacts are distributed across the engineering
disciplines participating to the design. Hence the model forms a traceability scaffold that
provides a means to measure the development progress, perform change impact analysis,
and manage dependencies between processes and the produced artifacts. The SysML
model is hence a management and integration tool for the stakeholders.

The role of the system model clearly extends beyond the capabilities that we
describe above. We aim at discussing some of the attractive ones in our opinion.
Modeling for conceptual design is a young discipline and best practices will grow out of
it.

7 THE RAIN SENSING WIPER STORY

The development of the first Rain Sensing Wiper illustrates how a classic failure to fully
conceptualize a product's physical architecture resulted in the discovery of integration
issues at servicing time, thus quickly leading to engineering change requests. The
scenario revolves around the initial introduction of the Rain Sensing Wiper (RSW)
feature in an automobile manufacturer's vehicle program.

AN OVERVIEW OF THE SYSTEMS MODELING LANGUAGE FOR PRODUCTS AND SYSTEMS

DEVELOPMENT

174 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 6

Before examining the reason of the failure of the RSW, let us briefly review the
characteristics of the system. The RSW contains mechanical (optical mounting device),
electronics (IR sensors and ECU), and software (computer vision algorithm) components
that are procured by tier-one suppliers. These components are simply integrated by the
manufacturer. The main parameters of the system are: (1) the optical and geometric
specifications of the windshield, in particular its thickness and glass optical indexes, and
(2) the ranges of operation of the electronic optical sensors. The detection software also
has normal ranges of operation relative to these parameters, but in addition relies on data
about the actual values of the parameters of the windshield.

The fact that the RSW electronics and software specifications include ranges for the
relevant windshield properties is important, because it allows more flexibility on the
choice of the windshield itself. This is a critical design choice, the procurement and
integration costs associated with the windshield being an order of magnitude greater than
that of the RSW. For optimal performance, the actual values of the windshield properties
should fall near the center of the normal operating ranges both for the RSW sensors and
the software; however, acceptable operation should be guaranteed for the whole range.

From a procurement standpoint, the windshield is simultaneously purchased from
different suppliers. Depending on the year of production and where the product is
manufactured, suppliers may modify the design of their windshields. Also, one or more
changes of suppliers can occur during the production phase.

In the failure scenario, which occurred during the first year of the RSW's
introduction, a local windshield supplier provided a component whose characteristics
were incompatible with the operating range of the sensor. Unfortunately, no requirement
for calibrating the system properly (i.e., for verifying that sensor and windshield are
compatible) had been captured for the RSW at that point. Thus cars were sent to
customers with a non-functioning wiper system.

Initial diagnostics designated the software as the culprit for the malfunction, since it
was difficult for mechanics to test its behavior. The other components (ECU, sensor, and
windshield) were functioning normally when tested independently. The failure mode for
the RSW resided at the level of its sub-systems, which made it difficult for the
manufacturer to discover it. After discovering the root cause, a new requirement was
captured to ensure that new systems will be properly calibrated at the production stage.

In our SysML model, this requirement is named System Calibration and shown in
Figure 1 and Figure 2.

VOL. 6, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 175

8 ADDITIONAL DIAGRAMS

Figure 15 Associations between Blocks and Additional Elements

Figure 16 arametric Diagram for the Sensor.

AN OVERVIEW OF THE SYSTEMS MODELING LANGUAGE FOR PRODUCTS AND SYSTEMS

DEVELOPMENT

176 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 6

Figure 17 Parametric Diagram for the Windshield.

REFERENCES

[OMGSysML] SysML 1.0 Specification (ptc/06-05-04), OMG final adopted specification,
available at http://www.omgsysml.org/

[QoS] UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics
and Mechanisms (ptc/04-06-01), OMG final adopted specification, available
at http://www.omg.org/docs/ptc/04-06-01.pdf

[STP] UML Profile for Schedulability Performance and Time (ptc/05-01-02), OMG final
adopted specification, available at
www.omg.org/technology/documents/formal/schedulability.htm

[Testing profile] UML Testing Profile (ptc/05-07-07), OMG final adopted specification,
available at www.omg.org/technology/documents/formal/schedula-bility.htm

[GTech] Peak RS, Friedenthal S, Moore A, Burkhart R, Waterbury SC, Bajaj M, Kim I
(2005) Experiences Using SysML Parametrics to Represent Constrained
Object-based Analysis Templates. 7th NASA-ESA Workshop on Product
Data Exchange (PDE): The Workshop for Open Product & System Lifecycle
Management (PLM/SLiM), Atlanta. See also
http://www.pslm.gatech.edu/topics/sysml/

[Bock] Conrad Bock, SysML and UML 2 Support for Activity Modeling, Wiley
InterScience (www.interscience.wiley.com) DOI 10.1002/sys.20046

VOL. 6, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 177

About the author
Laurent Balmelli, Ph.D. Dr. Laurent Balmelli is currently a manager at
IBM in charge of architecting the new generation of offerings and tools
for Systems Engineering and Product Development He has been a
Research Staff Member at T.J. Watson Research Center and IBM Tokyo
Research Labs, and a member of several leadership councils in IBM
since 2000. Since 2003, Dr. Balmelli has represented IBM within the

SysML standard team and is one of the lead authors of the SysML language specification.
He was recently awarded the position of invited professor at Keio University in Tokyo,
Japan, where he currently resides. He can be reached at balmelli@us.ibm.com.

