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Abstract 
In this paper we present an overview of the capabilities of the Systems Modeling 
Language (SysML.) SysML is a standard from the Object Management Group. It is 
geared toward incrementally refinable description of conceptual design and product 
architecture. Elements in the design represent abstractions of artifacts in the various 
engineering disciplines involved in the development of the system. The design 
represents how these artifacts collaborate to provide the product functionalities. This 
paper explores all the diagrams available in SysML through the real-life example of an 
embedded system. 

1 INTRODUCTION 

Today's competitive pressures and other market forces drive manufacturing companies to 
improve the efficiency with which they design and manufacture products and systems. 
Across the product lifecycle, one area where there has been a notorious lack of efficiency 
support is the conceptual stage, during which the functional architecture (and sometimes 
the physical architecture) is decided upon.  

The conceptual stage follows the transformation of customer needs into product 
functions and use cases, and precedes the design of these functions across the engineering 
disciplines (for example, mechanical, electrical, software, etc.). A lack of support during 
product conceptualization makes it difficult to efficiently trace the realization of 
requirements in the product. The lack of a formal representation for concepts also results 
in an inadequate ability to make decisions at the level of systems in the product, such as 
during feasibility studies. Moreover, the lack of a clear vision of the product architecture 
hinders team understanding and communication, which in turn often increases the risk of 
integration issues. It is these and other challenges confronted during the conceptual phase 
of product and system development that SysML is designed to mitigate. 
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SysML is based on the actual standard for software engineering, the Unified 
Modeling Language (UML) developed within the Object Management Group (OMG) 
consortium. SysML was developed as a response to the request for proposal (RFP) issued 
by the OMG in March 2003. The development team includes representatives from more 
than ten companies. IBM has played a leadership role in the definition of the standard by 
authoring part of the specification. 

 
Figure 1 Comparison of SysML1.0 with UML2.0: The text in the figure summarizes the various diagrams 

available in SysML. Requirements, Parametrics and Allocations are new diagrams available only in 
SysML. Activity and Block diagrams are reused from UML2.0 and extended in SysML. Lastly, State 

Machines, Interactions and Use cases are reused from UML2.0 without modifications. 

SysML is a modeling language for representing systems and product architectures, as 
well as their behavior and functionalities. It builds on the experience gained in the 
software engineering discipline of building software architectures in UML (think of the 
classic Class Diagram.) The architecture represents the elements realizing the functional 
aspect of their product. The physical aspect is sometimes represented too, for example 
when the architecture represents how the software is deployed on a set of computing 
resources. 

The overview of SysML presented in this paper covers all the diagrams available in 
SysML. We explore most of the constructs attached to this diagram and refer to the OMG 
specification [OMGSysML] for the ones that we do not address. In –Figure1 we compare 
SysML1.0 to UML2.0 in term of re-use. The text in the figure summarizes the various 
diagrams available in SysML. Requirements, Parametrics and Allocations are new 
diagrams available only in SysML. Activity and Block diagrams are reused from 
UML2.0 and extended in SysML. Lastly, State Machines, Interactions and Use cases are 
reused from UML2.0 without modifications. 

We explore the capabilities of SysML through an example: the Rain Sensing Wiper 
(RSW) system. This sample problem is inspired from a real-life product failure that can be 
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easily found using your preferred Internet search engine. In Appendix A we explain in 
details the background story of the example that we are using in this paper. This example 
is a nice illustration of the importance of having an understanding of a product at the 
level of its sub-systems in order to prevent complex failure modes involving costly 
product recalls. In the story, the product manufacturer endures a lengthy (hence costly) 
root cause analysis that eventually requires a design change. In this article, we present a 
model that is resilient to the failure experienced by the manufacturer. 

We briefly explain now the purpose of the RSW: The goal of the RSW is to wipe the 
surface of the windshield automatically (i.e. without user intervention) whenever droplets 
of liquid are detected. In addition, the amount of liquid detected dictates the speed of the 
wiper. This system has three main components: the software that controls the behavior of 
the wiper, an electronic control unit that executes the software and a sensor fixed on the 
windshield whose task is to sense droplets through the windshield. 

In this article, we give a detailed model that describes many aspects of this system. 
This example constitutes a realistic product in the area of embedded electronics (for the 
automotive industry) whose design greatly benefits from a SysML representation. We 
conclude this paper by summarizing the capabilities offered by SysML and give a 
perspective for the potential improvements that SysML brings for products and systems 
development. 

2 CONTEXT, REQUIREMENTS AND USE CASES 

When modeling a system, an important primary task is to decide what belongs to the 
system and what does not. The Context Diagram is an informal means (informal in the 
sense that it does not carry precise semantics) to represent the boundaries of the system. 
In Figure 2 we show a context diagram for the RSW. Three actors for the system are 
identified in the context: Maintenance (for repair purposes), Car Electrical System (to 
activate the system in the car) and Driver (to manually disable the system for example.) 
Three external systems are considered here: the wiper interface, the windshield and the 
car electrical system. Note that the car electrical system also provides electrical power to 
the RSW. Hence it is considered both an actor and external system. The context diagram 
establishes the scope of the system. Note that a user-defined keyword “external” is used 
to qualify the external components. 
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Figure 2 Context diagram for the Rain Sensing Wiper system. 

In the introduction of this paper, we explain that the conceptual stage of the lifecycle 
succeeds to the analysis of the customer needs into product requirements. Requirements 
have been traditionally represented as text (accompanied with figures and drawings) and 
stored in files or databases. The requirements describe all the product functions and the 
constraints under which these functions should be realized.  

SysML allows the representation of requirements as model elements. Hence 
requirements become an integral part of the product architecture. The language offers a 
flexible means to represent text-based requirements of any nature (e.g. functional or non-
functional) as well as the relationships between them.  

In Figure 3 we represent a requirement diagram for the RSW. Note that it contains 
both functional and non-functional requirements. Requirements in SysML are abstract 
classifiers (i.e. they cannot be instantiated) with no operations or attributes. They cannot 
participate in associations or generalizations, however a set of predefined relationships 
help to characterize the relationships between the requirements. We review these 
relationships below. 

Sub-requirements are related to their parent requirement using the crosshair 
relationship (that denotes namespace embedding). For example in Figure 3, some of the 
sub-requirements of the requirement Automatic Wiping are connected to it using the 
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crosshair. The parent requirement is a package for the embedded requirements. In that 
sense, deleting the parent requirement will automatically delete all the embedded ones. 
Another example of requirement acting as a package for other requirements is the 
requirement Core Functions which contains two sub-requirements. For readability in the 
model, a user-defined keyword “package” is rendered next to the Requirement stereotype. 

During requirement analysis (e.g. decomposition and flow-down) new requirements 
are created by derivation. These new requirements can be connected to the initial ones 
with the DeriveRqt dependency. For example in Figure 3, a set of core functions for the 
product are derived from the set of requirements under Automatic Wiping. The name 
DeriveRqt was chosen in order to avoid any confusion with the standard Derive 
dependency in UML2.0. Other examples of derived requirements are the technical 
choices for each function (see the box Technical Choices in Figure 3) Note that in the 
Figure, the designer captures a Rationale comment to explain his choice for using a 
sensor fixed on the windshield. A last example of derived requirement is the quality 
requirement System Calibration stating that the system should be calibrated. This is the 
requirement added to the product after the infamous RSW failure was identified (see the 
Appendix A for more details.) The satisfaction of this requirement insures that the 
product will be resilient to changes in the sensor and windshield characteristics.  

Another relationship between requirements is Refine. An example of requirement 
refinement is shown in Figure 3.The requirement on speed actuation is refined by the 
possible selection for speed (slow, medium or fast.) Lastly, a generic Trace dependency 
can be used to emphasize that a pair of requirements are related in some way or another. 
In Figure 3, the requirement for manual deactivation is traced to the one about automatic 
deactivation. 

Requirements have a number of derived attributes to store the status of the 
relationships reviewed in the above paragraphs. We will see later in this paper that these 
attributes become particularly handy when requirement relationships are represented 
outside requirements diagrams. 
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Figure 3 SysML Requirement Diagram for the Rain Sensing Wiper system. 

Often requirements are elicited during the whole product lifecycle and additional 
requirement diagrams are used to represent them. Hence the product requirements are 
typically laid out on a set of requirement diagrams. 

SysML provides a generic model for requirements that allows the modeling of both 
functional and non-functional requirements. A non-normative set of requirement types 
are proposed in the appendix of the OMG SysML specification [OMGSysML]. Specific 
types of requirements (for example related to timing or scheduling, etc) are handled by 
language extensions. SysML supports a profile mechanism to extend the language. The 
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Object Management Group (OMG) has released a series of modeling standards that 
address specific needs: for the modeling of non-functional requirements related to 
performance and quality [QoS, STP], and for the modeling of test cases [Testing profile]. 
These profiles can be used in SysML without restriction. 

SysML provides a use case diagram that is inherited from UML2.0 without 
modifications. In Figure 1 we show the interaction of the external actors with some of the 
main use cases (represented by ellipses) owned by the RSW. We represent the three 
actors and connect them to their respective use cases. In this figure, a central use case 
Automatic Wiping is composed of a series of sub-use cases. The hierarchical relationship 
is modeled using the Include dependency. 

 
Figure 1 SysML Use Case Diagram 

SysML has the capability for representing test cases and attach them to their related 
requirements or use cases. A test case can be an operation or a behavioral model 
(Interaction, State Machine or Activity.) 
In Figure 5 we show a test case for the RSW. The test case verifies the requirement 
System Calibration (see Figure 3.) This is done by: First, retrieving the characteristics of 
the different components (sensor, windshield and software configuration file.) Second, 
using these characteristics to compute an operating range (both for the sensor and 
windshield) in order to assess their compatibility. If the sensor and windshield are 
compatible, then the test case is successful. Otherwise, an alert is triggered. The actions 
in the activity diagram contributing to each step are enclosed in illustrative boxes (Figure 
4a) for the sake of clarity. 

The first step is realized in this example using a set of webservices to access the 
repositories containing the artifacts related to the different components (see the leftmost 
enclosing box in Figure 4a.) More precisely, the bill of material (e.g. in a product data 
management system) is queried for the characteristics of the sensor and the windshield 
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and the configuration file is retrieved, for example, from a software configuration 
management system. 

The second step (see central box in Figure 4a) is realized by defining constraints on 
the attributes of the sensor and the windshield in SysML Parametric Diagrams. We will 
explore how these diagrams are constructed later in this paper. 

In Figure 4b a test context is created to host prototypes for the webservices and other 
functions necessary to execute the test case. This context is traced to the requirement. The 
activity diagram uses the functions of the test context for its execution. 

 
(a) The test case is realized with an activity diagram. 
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(b) Requirement and test case traceability  

Figure 2 SysML Test Case for the quality requirement System Calibration. 

This concludes our review of the capabilities of SysML for modeling uses cases and 
requirement. In the next section, we show how SysML is used to create a product 
structure that satisfies these requirements. 

3 STRUCTURE OF THE RAIN SENSING WIPER SYSTEM 

In this section, we build now a structure for the RSW. We assume that a set of sub-
systems and components have been identified through the requirements engineering 
process based on stakeholder concerns such as cost, performances, etc. 

SysML provides a basic structural element called Block whose aim is to provide a 
discipline-agnostic building block for systems. Blocks can be used to represent any type 
of components of the system, e.g. functional, physical, and human, etc. Blocks assemble 
to form architectures that represent how different elements in the system co-exist. 

The SysML Block Definition Diagram (BDD) is the simplest way to describe the 
structure of the system. It is the equivalent to the Class Diagram in UML. It is used to 
represent the system decomposition using for example associations and composition 
relationships. The BDD is ideal to display the features of a block, such as its properties, 
and operations. SysML allows blocks to own special types of properties: Block Properties 
and Distributed Property. Block properties impose additional constraints on classic UML 
Properties, and can for instance own a SysML Value Type. Value Types are designed to 
hold units (e.g. physical units) and dimensions. Distributed Properties let the user apply a 
probability distribution to the values of the property. SysML proposes model libraries for 
possible values of units, dimensions and probability distributions. 

In Figure 5 we show a BDD for the RSW. For the sake of readability of the diagram, 
we do not render the associations between the sub-systems and the Rain Sensing Wiper 
element, although these associations exist in the model. Instead we use an illustrative box 
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around each set of components (composite and external) and a black diamond shape over 
the composite component as a visual clue for composition. The main components of the 
RSW are: an interface to actuate the wiper, an electronic control unit, a sensor and the 
windshield element. Both the interface and the windshield can exist in the car with or 
without the RSW (In SysML they are so-called reference properties.) 

The properties and the operations for each block are visible in Figure 5. Properties 
(more precisely SysML BlockProperties, shown using the stereotype <<blockProperty>>) 
are used to model the physical characteristics of the components. The operations (called 
sometimes services) represent the functional aspects of the system. 
 

Figure 3 Block Definition Diagram for the Rain Sensing Wiper. 
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We now examine how the product structure and the product requirements can be related: 
One of the important consequence of having requirements as model elements is that it 
allows the designer to specify which components in the system satisfy a given set of 
requirements. This is called allocation process. We show an example of requirement 
allocation in Figure 4. In the figure, the part on the left hand side represents some 
elements of the RSW, and the part on the right hand side is a hierarchy of requirements. 
One way to perform allocation is to use the Satisfy dependency. In the figure the rain 
sensing wiper model element is allocated to the requirement named “Automatic Wiping”. 
Any element in SysML can be used to satisfy a requirement. 

Another way to display allocation is to use a dedicated compartment named 
“Requirement related”. This compartment displays the status of a set of derived 
properties related to requirements. In Figure 4 the element ECU displays this 
compartment: The ECU element is allocated to the requirement named “Use dedicated 
ECU”. 
 

 
Figure 4 Example of requirement allocation. 

The SysML Internal Block Diagram (IBD) allows the designer to refine the structural 
aspect of the model. The IBD is the equivalent of the composite structure in UML. In the 
IBD properties (or parts) are assembled to define how they collaborate to realize the 
behavior of the block. A part represents the usage of another other block. 

The most important aspect of the IBD is that it allows the designer to refine the 
definition of the interaction between the usages of blocks by defining Ports, as explained 
below. 
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Ports are parts available for connection from the outside of the owing block. Ports 
are typed by interfaces or blocks that define what can be exchanged through them. Ports 
are connected using connectors that represent the use of an association in the IBD. 

Two types of ports are available in SysML: Standard ports handle the requests and 
invocations of services (i.e. function calls) with other block, and Flow ports let blocks 
exchange flows of information or material. For standard ports, an interface class is used 
to list the services offered by the block. For flow ports, a Flow Specification is created to 
list the type of data that can flow through the port. When only a single type of object can 
flow through a port, then the type is used as type for the port directly. Such a port is 
named Atomic Port. The class Item Flow is used to represent what does actually flow 
between blocks in a particular usage context. We refer the interested reader to the 
standard specification [OMGSysML] for more details on item flows. An example of IBD 
is given in Figure 5. 
 

 
Figure 5 Internal structure of the Rain Sensing Wiper system. 

In Figure 5 we refine our initial description of the RSW by showing how parts are 
interacting inside the block named Rain Sensing Wiper. Previously to constructing the 
IBD, we need to define a model for the associations characterizing the relationships 
between the different blocks. Also additional blocks are defined for example to type the 
ports. We show this model in another BDD that can be found in Figure 15 (Appendix B.)  

The central part of Figure 5 consists of the parts of the system that represent the 
embedded hardware. The parts underneath are used for mounting the system in the car. 
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The ones above represent the software. A set of standard ports and interfaces are defined 
to represent the functional aspect of the communication between the parts. For example, 
the processing unit accesses the actuation interface of the wiper through the interface 
WiperECUCommunication. Details about the interfaces used in this IBD are found in 
Figure 17. 

The processing unit communicates with the sensor using a flow port. The data 
exchanged is two bitstreams, one containing the measurements from the sensor and 
another containing synchronization data. The port is typed with a specification of these 
flows using the element SensorECUCommunication (see Figure 17.) Note the direction of 
the flows in the definition. 

For convenience a flow port can be conjugated in the sense that its input and outputs 
are inversed (flows declared as “in” becomes “out” and vice-versa) with respect to the 
definition of the interface. This is useful when connecting two systems whose flow ports 
are conjugated with respect to each other. This is the case for instance between the 
processing unit and the sensor in Figure 5. A conjugated flow port is represented in black. 
Since the synchronization data flow is declared as “inout”, the conjugation of the port has 
no effect on it. 

Note that in Figure 5 connectors between ports link parts defined within the block. 
SysML actually allows direct connection between ports defined at different levels of 
granularity, for example between a port and another one defined inside a part. This type 
of connector are called nested connectors. We refer readers to the standard specification 
[OMGSysML] for more details about these connectors. 

Flow ports are also useful to define physical contact between parts: For example the 
SensorAttachement unit is fixed to the windshield using an adhesive. The block 
representing the adhesive material (AttachementAdhesive in Figure 15) is used to type the 
flow port connecting these parts. 

We explain now how to represent requirements allocation in an IBD: Requirements 
are classifiers and therefore cannot be represented on an IBD. For this type of diagrams, 
the compartment notation as introduced in Figure 7 is used.  

An example is shown in Figure 5: The parts representing the windshield and the 
sensor attachment are used to satisfy the requirements named “Use Sensor on 
Windshield” and “System Calibration”, respectively (see Figure 2.) The satisfaction of 
these requirements is displayed in each part. 

A large and complex model is composed of hundreds, maybe of thousands elements. 
Hence such a model is laid out over a set of BDD’s. Typically, the content is organized 
according to stakeholders concerns. 

Most design methodologies advocate the use of viewpoints to organize the model, 
for example according to stakeholder’s interests. SysML provides a model element 
Viewpoint that allows users to capture the characteristics of a viewpoint (for example, 
targeted stakeholders, concerns addressed, construction rules, etc.) A container element 
called View is then used to organize the model according to the viewpoint description. 
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Figure 6(a) represents a model for the definition of a viewpoint. In our example 
model, the elements of the system are contained in a central package called Systems. 
Some elements are imported from this package into a view called RSW Power whose 
purpose is to gather elements playing a role in the power consumption of the system. The 
view conforms to the definition given by the viewpoint description. Within the view, an 
element Power System RSW is defined to describe how the various imported elements are 
collaborating in the scope of the power consumption of the system. 

 
(a) Definition of the view RSW Power. The block Power System RSW is defined in the context of the 

view and uses a set of elements imported from the package Systems for its definition. 

 
(b) An internal block diagram for the block Power System RSW. The diagram describes the roles of the 

imported elements in the context of the power subsystem of the car. 

Figure 6 Separation of concerns using viewpoint modeling. 

In Figure 6(b) the car electrical system powers the parts using atomic flow ports typed 
using the Power Supply Channel Block (Figure 15). In this case, the direction of the port 
(in or out) is specified in one of the port’s attributes. 

We have seen so far how attributes are defined for blocks in order to represent their 
physical characteristics. Often attributes of a set of systems are not independent. Consider 
two sub-systems A and B having attributes a and b, respectively, and that the constraint 
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{A.a greater than B.b} must hold true. SysML ConstraintBlocks allows the engineer to 
define any relationships (e.g. analytical) between the system attributes. These constraints 
form networks of expressions that are typically leveraged in simulations, for example for 
requirements verification. Note that constraint blocks are not instantiated as runtime 
objects, but rather used to type special properties of blocks, as explained below.  

Constraints are properties in sub-systems (i.e. blocks) named ConstraintProperty and 
are typed by ConstaintBlocks. A constraint block defines an expression and the attributes 
that represent its parameters. SysML does not prescribe any language to represent the 
expressions or provide a solver for it. This setting is typically offered within the usage of 
a particular tool. 

The RSW uses a set of analytical constraints to verify that the system is properly 
calibrated (requirement “System Calibration” in Figure 2.) Three constraints are shown 
in Figure 7: The constraint SensorEffectiveRange computes an operational range for the 
sensor, based on some of its parameters. Similarly, the constraint 
WinshieldIREffectiveRange computes an operating range for infrared sensor that can be 
compared with the one computed for the sensor. Finally the constraint 
SensorWindshieldRangeCompare is used to compare the above values. 

 
 

Figure 7 Definition of Constraint Blocks for the Rain Sensing Wiper system. 
The SysML Parametric Diagram (PD) is used to represent the usage of constraint blocks 
as constraint properties. Syntactically the PD is actually is similar to IBD. In a PD, 
constraint properties are connected to each other through the parameters defined by their 
constraint block. In turn they connect to other properties in the context of their owning 
block. These other properties must be directly bound to parameters of the constraint 
properties because they can only play a “feeding role” to the constraints parameters in a 
PD. 



 
AN OVERVIEW OF THE SYSTEMS MODELING LANGUAGE FOR PRODUCTS AND SYSTEMS 

DEVELOPMENT 
 
 
 
 

164 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 6 

An example of PD is shown in Figure 8. Constraint properties are represented by 
boxes with rounded corners. In this diagram, both the sensor and windshield parts 
compute an operational range that is compared by the property named “compare”. These 
values are also fed to the part representing the configuration file (bottom of the figure.) If 
the sensor and the windshield are compatible, the flag IsCalibrated (exposed as a port) is 
set to true. The verification of the calibration requirement is hence reduced to testing the 
value of this port. The system is therefore resilient to changes in windshield and sensor 
characteristics.  

The usage of the constraint blocks WinshieldIREffectiveRange and 
SensorEffectiveRange can be seen in the diagrams of Figure 16 and Figure 17, 
respectively (Appendix B.) They are nested in the parts named RainSensor and 
CarWinshield (see comments in the figure.) Note that the parametric diagrams of Figure 
8, Figure 16 and Figure 17 are used to implement the second step of test case that we 
presented in Figure 2. 

An attractive aspect of constraint blocks is that they provide a reusable mechanism to 
define types of constraints. Hence the same constraint can be used several times in the 
model. It is important to note that a constraint does not specify which variable is an input 
or an output. Values are assigned by the context and a numerical solver will provide 
results for the variables of the system. Note to conclude our review of SysML constraints 
that remarkable work on this topic is available from Peak et al. [GTech]. 

 
Figure 8 Parametric Diagram for the Rain Sensing Wiper system. 
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Requirement allocation is shown in PD’s using compartments: In Figure 8, the 
requirement allocation compartment is displayed in both the constraint used for 
comparison and the part representing the configuration file. These elements satisfy the 
requirement named System Calibration. 

4 BEHAVIOR 

In this section, we explore how SysML is used to model the behavior of the product. The 
expression of the behavior of a system equates to realizing its Use Cases under a 
specified set of non-functional constraints. SysML offers three types of behavioral 
constructs: Interactions, State Machine and Activities. Several behavioral models from 
UML are not reused for the sake of simplicity or because of some maturity concerns. We 
examine these three models below through our RSW example. 

The first behavior model that we review is the SysML Interaction Diagram. This 
diagram allows the designer to model a sequence of service calls between components. 
SysML leverages the UML2.0 interaction model but restrict its use in the interaction 
diagram only. Other forms of interaction diagrams (e.g. communication diagram) are not 
used. 

In Figure 9 we represent the initialization sequence of the RSW using an interaction 
diagram. The initialization sequence consists of a synchronization protocol between the 
components. This diagram is well adapted to represent this type of behavior. Initially, the 
car electrical system starts the RSW, which in turn queries the sensor and the wiper 
interface for an acknowledgement. After that, the software is loaded in the memory of the 
ECU and its execution is started. Once the software is started, it reads the parameters 
stored in the calibration file. 
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Figure 9 Interaction Diagram for the initialization of the Rain Sensing Wiper system. 

The use case named Initialization (Figure 1) is realized by the interaction model in Figure 
11. One mechanism for expressing the relationship between the interaction model and the 
realized use case is to use the SysML Allocation mechanism, as introduced below. 

In our previous examples, we have seen how requirements are allocated to system 
elements aiming at satisfying or verifying them. SysML generalizes this concept by 
allowing any elements to be related to any elements to express a particular relationship. 
We will examine this mechanism in more details in the coming examples and in Section 
[Allocation]. Similarly to requirement relationships, elements in SysML have derived 
properties to display the status of their allocations to other elements. For example, at the 
bottom of the interaction diagram, we can read that the behavior model is allocated to the 
use case Initialization. In addition, the model is allocated to the system state named 
Initializing (see below.) 

The second behavior model that we introduced is the SysML State Machine 
Diagram. This diagram is used to represent the different states of the RSW. This 
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behavioral model is also reused from UML and not extended in SysML. Protocol State 
Machines from UML2.0 are excluded from SysML for simplicity. 

In Figure 10 the different states of the RSW are represented as well as their 
transitions. Three states are identified: Deactivated, Initializing and Activated. In 
deactivated mode (for instance manually by the user), the system waits for an activation 
command. When this signal is received, it transits to the initializing state. In that state, the 
interaction sequence in Figure 9 is executed. When completed successfully, the system 
transits to the “activated” state. Note that, when entering and exiting states, flags are set 
and unset, respectively. These flags are used for example to display the current status of 
the system on the driver dashboard.  
 

 
Figure 10 State Machine Diagram for the Rain Sensing Wiper system. 

Allocation can also be shown in the state machine diagram as well. In Figure 12 the states 
Initializing and Activated both exhibit requirement and allocation compartments.  

The third type of the behavior that we review is the SysML Activity Diagram. SysML 
leverages and extends the activity model from UML to support continuous systems. The 
SysML Activity Diagram offers many innovations presented briefly below. A more 
thorough description of the SysML activity model is available in [Bock]. 

The modeling of activities in SysML consists of describing behavior as a flow graph. 
An activity is defined as a set of actions represented as graph nodes (these actions are the 
usage of other activities) linked by edges carrying control flow and data flow between 
actions. Object nodes represent the type of data that can traverse the flow graph and are 
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used as containers for the data as it traverses the graph. For example, object nodes are 
used to store input parameters of actions (called pins.) Finally, control nodes are used to 
route control and data flows through the activity (for example create forks, duplicate 
flows, etc.) An example of activity model is shown in Figure 12. 

Since UML2.0, activities are classifiers and can be represented in Class Diagram. 
SysML clarifies the semantic of association between activities. As a result, Activities can 
be related to each other to represent for example functional decomposition in a similar 
way that blocks represent structural decomposition in a BDD. In Figure 11 we represent a 
decomposition of the main functions of the system. 

In this setting, the upper limit at the part end represents the maximum number of 
instances that can execute concurrently. In Figure 11 the lower and upper limits for each 
activity owned by Rain Sensing Wiper Main (i.e. Actuate, Process and Sense) are 
enclosed in an illustrative box. The example setting allows only one instance of each 
activity to be run concurrently in the system. 

Activities can also be associated to classifiers when the latter are used as type of 
object node. In the case, the upper limit at the classifier end represents the maximum 
number of instances that can reside in an object node at any given time. In Figure 13 we 
can see that the upper limit for the number of instances that can be owned by Process is 
ten.  

In Figure 13, we can see that the activities Sense and Process share a common type 
of object node named SensorMeasurement. Also, all activities use the type 
InterfaceCommand. Note that both these blocks are specializations of a data type named 
Bitstream. The bitstream modeled by the block InterfaceCommand is used to implement 
the services communications between the ECU and the wiper interface (defined by the 
various service ports between the parts.) 



 
 
 
 
 

VOL. 6, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 169 

 
Figure 11 Activities and object node types for the sensing activity of the RSW. 

The requirements that the Actuate and Sense functions satisfy are also represented in 
Figure 11. In addition the main function of the product is allocated to the rain sensing 
wiper block using an Allocate relationship. In this case, the designer expresses that the 
function is owned by this block. The activity Actuate displays its allocation compartment 
which shows that this activity is allocated to the block WiperInterface. 

The rain sensing function is implemented in the activity diagram in Figure 14. The 
three functions defined in Figure 13 (Actuate, Process and Sense) are used as actions in 
the activity. 

In Figure 14 the data flows across edges that connect the actions through their pins. 
The type of data that can flow between actions is defined by the type of their pins. For 
example, objects of type InterfaceCommand are flowing from the action Process to the 
action Actuate.  

SysML introduces notions to specify the rate at which data can flow across edges 
and parameters (pins) of activities. Two types of the rate are defined: Discrete and 
Continuous. In the example of Figure 14, the bitstream exchanged between the function 
Process and Actuate is limited in rate by the serial link that is used to connect the parts 
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owning these functions (these parts are shown in Figure 5.) In Figure 14, this is modeled 
by the edge (of type Discrete) named”serial data channel”. Edges of type Continuous are 
used when the time interval between objects tends towards zero. Note that in order to use 
rate-controlled edges and pins, activity parameters must be “streaming”1. An activity with 
streaming parameters can accept values at any time during its operation. 
 

 
Figure 12 Sensing activity for the Rain Sensing Wiper system. 

The UML2.0 action model only enables actions to start. SysML introduces the notion of 
control operators as a special type of actions able to enable or disable other actions. A 
control operator named ManualControl is used in Figure 14 to start and stop the rain 
sensing function. It deactivates the function upon reception of a “deactivate” signal (for 
example triggered by the pressure of a button on the dashboard.) It can restart the 
function later when receiving the proper signal. The type of data exchanged between the 
actions Process and ManualControl is of type ControlValue. SysML defines some types 
of control values (enable action, disable action) that can be extended by users according 
their needs (for example, a suspend action value can be added.) 

SysML also introduces two new types of object nodes to support continuous concept 
such as transient states (e.g. for the modeling of electrical signals.) In Figure 14, the 
action Process exposes a pin of type Overwrite to collect the data sent from the sensor. 
An object node of type overwrite will ensure that the latest measurements from the sensor 
are available to the Process action by erasing older ones in the object node. Note that up 
                                                           
1 UML2.0 notion. 
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to ten values can be stored in the pin according to the bound (0..10) defined in Figure 13. 
The second new type of object node is NoBuffer: In this case, the pin does not store any 
value; hence a value is discarded if it is not directly accepted by outgoing edges (in the 
case of an output pin) or an action (when used as input.) 

Lastly, SysML supports assigning probabilities to activity edges (whose source is a 
decision node or object node) and parameter sets. It allows the modeler to assign a 
probability for an object value in order for it to traverse an edge. In the case of a 
parameter set, it assigns a probability for the set to be assigned a value at runtime. This 
feature can be used for instance to simulate loss in a communication channel. 

Allocation to requirements or other elements is shown in the activity diagram using 
the compartment notation. In Figure 14, the action called “manual control” satisfies the 
requirement named “manual disablement”. Also, this action is allocated to the block 
representing the dashboard button to emphasize that this button causes the system to 
deactivate. 

5 ALLOCATION 

The review of the SysML Allocation mechanism will conclude this presentation of the 
Systems Modeling Language. We have introduced some examples of allocations in the 
previous examples of Figure 11 to 14. 

The concept of allocation allows the user to bridge between various modeling 
techniques. By allowing allocation between any pair of elements, the designer can 
enforce consistency between the various parts of the model. 

Through the examples of Figures 11 to 14, we have seen that allocations can be 
displayed using special compartments or using the Allocate dependency. The usage of 
this dependency is only possible when the related elements can be represented on the 
same diagram. 

Allocation is often used to represent mapping of function to structure, as used in the 
example of Figure 13. Mapping between elements can be complex and require the display 
of several relationships. To allow a scalable display of dependencies between elements, 
SysML provides a tabular notation for relationships, as explained below. 

In Figure 15 we show the allocation relationships between the edge named “serial 
data channel” in Figure 14 (linking the actions Process and Sense) and other elements in 
the model. Note that the type of an activity edge is shown as ObjectFlow in the table. The 
figure shows that the edge is allocated to four elements in the model. 

 
Figure 13 Display of allocation relationships using the tabular notation. 
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Requirement dependencies can also be displayed using the tabular notation. To conclude 
this review of the SysML Language, we show in Figure 16 the result of an allocation 
query for the requirement System Calibration. Note that the direction of the relationship 
depends on whether the requirement is the client or the supplier. 

 
Figure 14 The tabular notation is used to display the requirements relationships. 

6 CONCLUSION 

In this paper we have toured the different capabilities that SysML offers to system 
engineers and product designers. SysML is aimed at supporting the conceptual stage of 
the lifecycle of the product. This stage is preceded by the decomposition of the customer 
needs into product features. We have seen that SysML allows the representation of these 
features as requirements in the model. In turn these requirements can be allocated to the 
use cases, to the sub-systems and components (whether functional or physical) identified 
for the product. 

The conceptual stage requires the specification of the various sub-systems and the 
need for details depends on their level of integration. SysML provides a set of constructs 
to support the description of the structure of the product. Blocks are used to model sub-
systems and components, and ports support the description of their interfaces. 
Dependencies (e.g. analytical) between structural properties are expressed using 
constraints and represented using the parametric diagram.  

In addition to structure, the conceptual stage should clarify how the product behavior 
is expressed through the interaction of its components. For example, behavior modeling 
gives a detailed description of the product use cases. SysML provides three means for 
explicating the product behavior, namely interactions, state machine and activities. These 
three mechanisms are built as a unified behavior concept and can consequently be 
orchestrated in a single, uniform and complex behavior model for the whole product. 

A complex product model is form by several “sub”-models of different nature (for 
example requirements, blocks, constraints, activities, etc.) SysML provides a mechanism 
to relate different aspects of the model and to enforce traceability across it. 
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The conceptual stage precedes the detailed elaboration of the components within the 
different engineering disciplines. The conceptual design plays therefore many central 
roles in the product lifecycle and we emphasize below some of the most important ones 
in our opinion. 

The formal description of the product at an early stage of the lifecycle improves the 
understanding of the product requirements and how they answer the customer needs. The 
allocation of requirements to the model elements ensures that these needs are covered and 
provides a rationale for the engineer in charge of fulfilling these requirements. The 
rationalization of the design is therefore a communication tool spanning organizational 
levels and lifecycle stages. It improves communication across teams, between teams 
(think of the different engineering disciplines) and between teams and decision makers. It 
uses a generic language (in the sense that it is not specific to any engineering discipline) 
that accommodates the incremental detailing of the product representation. That last 
aspect allows coping with organizational levels. Note that such a formal description is 
well suited to methodologies. 

The SysML model provides an electronic representation of the product that is 
leveraged as a decision tool. Trade-off studies are performed by evaluating functions on 
the model (cost function, estimation of the integration effort.) At an early stage in the 
lifecycle, often rough estimations are used, hence the model need not necessarily have a 
great amount of details in order to be used efficiently. When details are added, or artifacts 
(for example sub-system simulations) are produced by detailed engineering, the model is 
used to orchestrate the various simulations and perform requirement verification. Hence 
the SysML model is an evolving decision tool available throughout the whole lifecycle of 
the product, and not only at the conceptual stage. 

The product model represents abstractions of artifacts that are progressively 
elaborated throughout the lifecycle. These artifacts are distributed across the engineering 
disciplines participating to the design. Hence the model forms a traceability scaffold that 
provides a means to measure the development progress, perform change impact analysis, 
and manage dependencies between processes and the produced artifacts. The SysML 
model is hence a management and integration tool for the stakeholders. 

The role of the system model clearly extends beyond the capabilities that we 
describe above. We aim at discussing some of the attractive ones in our opinion. 
Modeling for conceptual design is a young discipline and best practices will grow out of 
it. 

7 THE RAIN SENSING WIPER STORY 

The development of the first Rain Sensing Wiper illustrates how a classic failure to fully 
conceptualize a product's physical architecture resulted in the discovery of integration 
issues at servicing time, thus quickly leading to engineering change requests. The 
scenario revolves around the initial introduction of the Rain Sensing Wiper (RSW) 
feature in an automobile manufacturer's vehicle program. 
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Before examining the reason of the failure of the RSW, let us briefly review the 
characteristics of the system. The RSW contains mechanical (optical mounting device), 
electronics (IR sensors and ECU), and software (computer vision algorithm) components 
that are procured by tier-one suppliers. These components are simply integrated by the 
manufacturer. The main parameters of the system are: (1) the optical and geometric 
specifications of the windshield, in particular its thickness and glass optical indexes, and 
(2) the ranges of operation of the electronic optical sensors. The detection software also 
has normal ranges of operation relative to these parameters, but in addition relies on data 
about the actual values of the parameters of the windshield. 

The fact that the RSW electronics and software specifications include ranges for the 
relevant windshield properties is important, because it allows more flexibility on the 
choice of the windshield itself. This is a critical design choice, the procurement and 
integration costs associated with the windshield being an order of magnitude greater than 
that of the RSW. For optimal performance, the actual values of the windshield properties 
should fall near the center of the normal operating ranges both for the RSW sensors and 
the software; however, acceptable operation should be guaranteed for the whole range. 

From a procurement standpoint, the windshield is simultaneously purchased from 
different suppliers. Depending on the year of production and where the product is 
manufactured, suppliers may modify the design of their windshields. Also, one or more 
changes of suppliers can occur during the production phase. 

In the failure scenario, which occurred during the first year of the RSW's 
introduction, a local windshield supplier provided a component whose characteristics 
were incompatible with the operating range of the sensor. Unfortunately, no requirement 
for calibrating the system properly (i.e., for verifying that sensor and windshield are 
compatible) had been captured for the RSW at that point. Thus cars were sent to 
customers with a non-functioning wiper system. 

Initial diagnostics designated the software as the culprit for the malfunction, since it 
was difficult for mechanics to test its behavior. The other components (ECU, sensor, and 
windshield) were functioning normally when tested independently. The failure mode for 
the RSW resided at the level of its sub-systems, which made it difficult for the 
manufacturer to discover it. After discovering the root cause, a new requirement was 
captured to ensure that new systems will be properly calibrated at the production stage. 

In our SysML model, this requirement is named System Calibration and shown in 
Figure 1 and Figure 2. 
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8 ADDITIONAL DIAGRAMS 

 
Figure 15 Associations between Blocks and Additional Elements 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 16 arametric Diagram for the Sensor. 
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Figure 17 Parametric Diagram for the Windshield. 
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