
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2007

Vol. 6, No. 6, July-August 2007

Cite this article as follows: J. Leslie Keedy, Klaus Espenlaub, Christian Heinlein and Gisela
Menger: “Persistent Objects and Capabilities in Timor”, in Journal of Object Technology, vol. 6,
no. 6, July-August 2007, pp. 91-108 http://www.jot.fm/issues/issue_2007_07/article2

Persistent Processes and Distribution in
Timor

J. Leslie Keedy, Klaus Espenlaub, Christian Heinlein and Gisela Menger,
University of Ulm, Germany

Abstract
The paper explains the concept of persistent processes and threads in Timor, showing
how it is based on the in-process (procedure oriented) model of process execution. In
their Timor form processes and threads can persist even when a user is logged out.
They can also invoke remote persistent objects with the same semantics as invocation
of local objects.

1 INTRODUCTION

A companion paper [11] describes how types defined in Timor can be instantiated as
"file" objects which can subsequently be addressed using capabilities both from within
Timor programs and at the operating system (OS) level. This paper builds on and extends
the ideas presented in that paper, discussing the closely related themes of persistent
processes and the Timor distribution concept. A knowledge of the companion paper is
assumed, although relevant aspects are summarised in section 2.

Before the Timor facilities for persistent processes and threads are presented, section
3 distinguishes between two fundamentally different process structuring techniques, the
in-process (procedure oriented) and out-of-process (message oriented) techniques, and
shows that although these can be considered to be formally equivalent, the former has
some significant practical advantages.

Section 4 describes the features which allow a normal Timor programmer to write
parallel programs. Section 5 sketches out aspects of Timor which allow a system
programmer to develop types and implementations which can enhance the Timor run-
time environment.

Section 6 outlines the Timor concept for distributed systems. Section 7 briefly
discusses implementation issues. Related work is described in section 8, and section 9
concludes the paper.

PERSISTENT OBJECTS AND CAPABILITIES IN TIMOR

92 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 6

2 THE TIMOR OBJECT MODEL

Timor distinguishes between type definitions and their implementations [7-9]. A Timor
type definition (introduced by the keyword type) can have several implementations
(introduced by the keyword impl) and different instances of the same type can have
different implementations, even within a single program.

Type Definitions

A type definition potentially consists of instance methods, abstract variables and makers
(constructors). Instance methods operate on a particular instance of the type. They are
designated either as op (for operation) or enq (for enquiry). An op method can modify
the state of its instance, an enq can only read the state. Abstract variables superficially
resemble public fields. However these are actually pairs of instance methods (an op and
an enq) which by default set and get the value of an internal variable, but which can be
programmed to have other implementations [9]. Thus Timor types fully conform to the
information hiding principle. Here is a simple example of a type definition:

type Person {
instance:
 String name, address; // abstract variables
 Date dateOfBirth;
 enq int currentAge();
}

To avoid problems with binary instance methods (see [1]) instance methods may not have
parameters of the type being defined.

Implementations

A type can have several implementations. An implementation has its own identifier and
names the type which it implements, e.g.

impl PersonImpl of Person {
state: // the state variables of an instance
 String name, address; // concrete variables
 Date dateOfBirth;
instance: // the instance methods
 enq int currentAge() {/* code to calculate current age*/}
}

An implementation of the method pair corresponding to each abstract variable is
automatically added by the compiler, unless the programmer explicitly adds code, e.g. the
abstract variable String name has the code:

VOL. 6, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 93

op String name(String name) {return this.name = name;}
enq String name() {return this.name;}

Files, Local Objects and Values

An instance of a type can serve many different purposes, e.g. as a data abstraction, as a
subroutine library, as a program, and even as a file which is structured according to the
information hiding principle. In support of this flexible approach, a type can be
instantiated at any of three levels: (a) as a file object, (b) as a local object, or (c) as a
value within an object.

A file object is an independent persistent entity which can be accessed - within a
Timor program and/or at the operating system (OS) level – only by presenting a
capability, which serves as a reference to the file and defines which methods of the object
the holder can invoke. File objects serve a purpose similar to that of conventional files
and programs in an OS environment, but can also be used e.g. as the equivalent of remote
objects in Java.

A local object is an independent sub-object within a file (or process) object. In
Timor local objects and values can exist only within files and processes. Hence the
equivalent of a conventional OO program is a Timor file object in which local objects are
created, and with one or more methods containing code equivalent to the code of a
conventional program. A local object can be accessed only via a reference, which is in
effect a local capability that cannot be released from the context of its file. Possession of
references with appropriate access rights determines which objects in the file have what
method access to a local object.

A value is an instance of a type which is accessible only to the (file or local) object
in which it is embedded, i.e. it is a private instance which is a part of another object. The
state of an object consists of its values, which in accordance with the information hiding
principle are visible or accessible only to the object in which these values are embedded.
Capabilities and references can also be stored in the state of an object. Values (including
reference and capability values) can also be instantiated locally in a method, in which
case they reside on the current execution stack.

Instantiating Types

When a type is instantiated the maker (a constructor) always formally returns a value of
that type. There is a new operator which can transform a value into a local object, and a
create operator which can transform a value into a file object.

A value belongs to only one object and direct access to a value can only occur from
within that object1. A value can only be assigned to a value variable of the type (or a
supertype thereof). Given a type Person an actual Person value can be instantiated in a
statement such as:

1 There is no operator in Timor which can create a pointer or reference from a value, and values cannot be
passed by reference to methods.

PERSISTENT OBJECTS AND CAPABILITIES IN TIMOR

94 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 6

Person aPersonValue = Person.init();

where Person.init() is a maker invocation.
Local objects correspond loosely to the usual notion of objects in OO programs.

However, whereas in a language such as Java or C++ such objects must (where
appropriate) be explicitly made persistent2, in Timor local objects are naturally persistent
unless they are explicitly or implicitly deleted, because they are always embedded in file
objects.

The new operator accepts a value (which may or may not have just been instantiated
by a maker), creates a local object the state of which is a copy3 of the value, enters this
into a local object table for the current file, and returns a reference to the new object. This
reference can be assigned to a reference variable of the same type (or a supertype
thereof), as the following example illustrates:

Person* aPersonRef = new Person.init();

Similarly the create operator accepts a value, creates a file object with a state which is a
copy of this value and returns a capability for the new file object, which can be assigned
to a capability variable, e.g.

Person** aPersonCap = create Person.init();

File objects are accessed via capabilities. Like files in conventional systems file objects
are known at the OS level. However, they differ substantially from conventional files in
that they are objects which – like normal OO objects - can only be invoked via their
associated methods. Such invocations can occur both at the OS level and from within
Timor programs.

Relationship between Value Variables, References and Capabilities

For each type a type handle automatically exists. This serves as a supertype for
capabilities, references and values of the type. It is designated using a three star notation
(e.g. for a type T it is written as T***). This makes it possible to write programs which
can for example receive parameters of a specified type without defining exactly which
mode is to be passed. (A type safe cast statement can be used to determine the actual
mode of the entity assigned to the type handle.)

Programs

There is no special concept of a "program". A conventional program can be programmed
as a normal instance method of a normal type, which can be instantiated as a value, a

2 typically by using libraries, as in C++, possibly assisted by further mechanisms, e.g. the Java
Serializable feature.
3 Although new formally copies the value, the compiler optimises away redundant copying.

VOL. 6, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 95

local object or a file object. If instantiated as a file object the "program" can be invoked
via a capability (either from within a Timor program or at the OS level).

Because a program is simply an instance method, types can be defined which in
effect are collections of programs, e.g.

type GamesCompendium {
instance:
 op void chess();
 op void draughts();
}

Defining programs as normal instance methods means that they do not have a special
name (such as "main"). An interesting effect of this approach is that programs can be
executed internally in the context of other programs. For example the chess program can
be executed within some other program or object with an expression such as:

GamesCompendium.init().chess();

In this case a new "value" is created for the duration of the program execution. In
principle it is also possible to execute a program as a local object, e.g.

(new GamesCompendium.init()).chess();

Provided that the state left behind by the method is not subsequently assigned to a
variable, the difference is uninteresting from an application viewpoint.

3 PROCESS EXECUTION MODELS

To clarify our terminology we define a process as a static representation of an
independent activity and a thread as a unit within a process which can actually carry out a
computation (using a separate stack). A process can contain multiple threads which might
be introduced to simplify the logic of a process and/or to improve efficiency by allowing
the activity to be carried out in parallel.

There are two fundamentally different models for mapping processes and threads
onto objects. In the following description of these we assume initially that a process has
only one thread. Multithreading is discussed as an extension to these models.

PERSISTENT OBJECTS AND CAPABILITIES IN TIMOR

96 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 6

Alternative Execution Models

The first model assumes that there is a fixed (one to one) relationship between an object
and a process, such that the code of an object is executed by its own thread. This
corresponds to the typical client-server model. To request a service, a thread of a client
object sends a message to the process of a server object. When the service has been
carried out the server typically sends a reply in the form of a message to the client
process. This model is frequently used at the operating system level, for communication
between application programs and OS modules, between OS modules themselves and
(because the OS provides no alternative) between application objects. It is for example
the underlying model used for communication between remote objects in Java (although
the programmer is given the impression that he is making a remote procedure call).

In this model each object has an input buffer of message requests. If an object
provides a number of services, each different type of message can represent a different
service provided by the server. The thread associated with an object in principle executes
an infinite loop in which messages are taken from its input buffer and are processed in
turn, with replies being passed back to the sending processes as messages. If an object's
input buffer is empty, the thread waits until a new message arrives. At the level of OS
modules, Lauer and Needham [13] called this the message oriented model. It is also
known as the out-of-process model (e.g. [14]), because services are handled out of the
user process (i.e. in another process).

In the alternative model (which Lauer and Needham called the procedure oriented
model, also known as the in-process model) each application program is represented by a
separate process, but there is no fixed relationship between a process and a server object.
Instead of sending messages to other objects, an application program invokes the services
of other objects by calling these as methods, without switching threads. Each public
method of an object represents a separate service provided by that object. When the
handling of the service completes, the method exits and execution is resumed in the
calling object, without switching threads. In this model processes do not "belong to"
objects. Instead, a thread moves from one object to another as services are requested and
are completed, in a stack-like way. This model corresponds to the way the internal
objects of an OO program communicate with each other.

Lauer and Needham considered these two models of process execution to be duals of
each other and thus fully equivalent. While this view may be theoretically correct,
Ramamohanarao [14] has shown that there are many practical differences, which on
analysis favour the procedure oriented model. In the following subsections we briefly
explain some of these.

Parallelism via Threads

Parallel activity in an object can be achieved in the out-of-process model by associating
multiple threads with a process, i.e. with an object. If this is done statically then the
existence of extra threads is only useful to the extent that multiple messages which can be

VOL. 6, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 97

processed in parallel are actually (dynamically) present. Otherwise the threads simply
wait for messages and increase the process scheduler overhead without improving
parallelism. If, on the other hand, threads are created dynamically on a need basis, a
thread creation overhead arises whenever a thread is dynamically created.

Parallelism is achieved in the in-process model in that the user application explicitly
creates multiple threads for each appropriate parallel user activity. Each thread can
execute independently of the others and potentially in parallel with them. Each can move
from object to object by invoking their methods as procedure calls. Such parallelism
reflects the parallel activities of a user process, not merely attempts to optimise system
efficiency by adding more threads to an object, i.e. threads are created on a genuine need
basis, and if multiple users or user activities need parallel access to an external service, no
new threads need be created and no processes need to hang around waiting for messages.
Hence the number of threads in an in-process system represents the number of genuinely
needed, user-initiated4 activities.

In the in-process multithreading model there is no process scheduler overhead due to
the creation of extra threads "in case" they are needed, nor is there an extra thread
creation cost when multiple users happen to invoke the same object. Furthermore
conventional parameter passing is not only more efficient but also much more flexible
than passing information via message buffers, and when a client invokes a server, there is
no process switching overhead as such (although a part of the overhead associated with a
process switch can occur, to switch to a new addressing context). Thus an in-process
invocation of a server object is always cheaper than the out-of-process equivalent,
because process scheduling is not involved.

Synchronisation

In a basic out-of-process system, in which there is only one thread associated with each
object, the programmer does not need explicitly to include synchronisation code, because
the synchronisation is organised by the message passing system, e.g. by treating message
buffers as bounded buffers [3]. However, as soon as extra threads are added to a server
object in an attempt to increase parallelism, explicit synchronisation has to be added, to
ensure that the internal data structures of the object remain consistent. In other words
synchronisation occurs both on the message buffers and on the server's private state data.
Although the latter can be organised using monitors which enforce mutual exclusion [5],
significantly more parallelism is often achievable if reader-writer synchronisation (cf. [2])
is used.

In an in-process system synchronisation is never needed on the "message passing"
operation, as this takes the form of parameter passing on separate stacks for different
threads. However, it is always possible that multiple threads can be concurrently active in
the same object, making explicit synchronisation necessary at the level of the private state
data of the object.

4 If a server object can benefit from parallelism, it can of course create multiple threads dynamically in the
in-process model.

PERSISTENT OBJECTS AND CAPABILITIES IN TIMOR

98 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 6

Hence although a basic single-thread out-of-process system has the advantage of
implicit synchronisation, an in-process system designed to achieve a high degree of
parallelism requires the same explicit synchronisation as its out-of-process counterpart
but has the advantage that bounded buffer synchronisation (which in a highly parallel
system can easily become a bottleneck) is not needed.

Identifying the Initiator of an Activity

There are many good reasons for wishing to identify who is the initiator of some activity
which may actually be carried out in some service (e.g. OS) object. One example is the
need to charge users for their use of services. In the in-process model this is easily (and
cheaply) done, simply by examining the identity of the process carrying out the activity
(because the process does not change when a server object is invoked). This point is also
relevant for monitoring activities. But the most significant advantage of the in-process
model in this respect relates to protection.

In many out-of-process systems the question which user is attempting to carry out
some protected activity cannot easily or cheaply be answered, because the active process
is often a system process (i.e. a process associated with the current server object rather
than with the current user or application). It is of course possible to organise an out-of-
process system such that originators of messages can be traced, but in practice such a
feature is rarely provided as a general facility, because it would be relatively expensive to
implement.

Choice of Model for Timor

Other programming languages, such as Java, have not made an explicit choice between
these two models. Instead the tendency is implicitly to follow the in-process model for
interactions between local objects within a single OO program, but for interactions
between independent major objects (e.g. remote objects in Java) to accept the limitations
imposed by the (out-of-process) operating system environments in which they are used,
with the result that the semantics for object interactions differ between these two levels
(see section 8).

In designing Timor we have decided in favour of a consistent model with uniform
semantics. In view of the advantages of the in-process model which have been outlined in
this section, Timor rigorously supports the in-process model. This provides Timor with a
significant protection (and monitoring) advantage over other OO programming languages
[12]. However, for those convinced of the advantages of the out-of-process model, Timor
is not a hindrance, because it is easy to simulate the out-of-process model in an in-process
system. (Simulating the in-process model in an out-of-process model is much more
difficult.)

VOL. 6, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 99

4 PARALLEL TIMOR PROGRAMS

This section introduces those features of Timor which are needed to write normal parallel
programs. As in other programming languages the programmer can always assume that
when his code starts executing in one of the interface methods of an object an already
existing thread executes the code which he writes. This is the thread which invokes the
method of the object being programmed.

Creating Threads

To provide parallel activity for the execution of the code of an object, the programmer
can create new threads by means of the thread operator. This returns a thread reference
(of type Thread*)5. The thread operator is followed by a method call, which specifies
the code that is subsequently executed as an independent thread.

To create a new thread, a statement such as the following can be used:

Thread* aThread = thread x.m(a, b, c);

The parameters of the method (here method m of object x) are evaluated in the creating
thread and are made available as values, references6 and/or capabilities to the new thread.
If the method is defined to return a result, this is discarded, i.e. the new thread cannot
communicate a result to its creator by returning a value. Results can of course be returned
in that the creating thread passes a reference or capability for an object as a parameter to
the new thread, which then writes values to be returned into this object.

Thread References

A thread reference is returned when a new thread is created and it can be used by the
creating thread to control the further progress of the new thread, e.g. using methods such
as suspend, continue, delete of the type Thread.

Conceptually a thread reference is like any other reference. It can be assigned to
variables of the type Thread*, and multiple references can concurrently exist for a
thread. A thread reference cannot escape from the file object in which it was created,
because, like other references, it cannot be passed as a parameter nor returned on inter-
file object method invocations (see [11]).

5 Using the thread construct, a programmer cannot create values or capabilities of type Thread. We shall
see in section 5 how thread capabilities can be created. Thread values can never be explicitly created.
6 Whether such parameters can actually include references depends whether x is a file object or not (see
[11]).

PERSISTENT OBJECTS AND CAPABILITIES IN TIMOR

100 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 6

Inter-File Communication

Although thread references cannot escape from the file object in which they are created,
the threads themselves are not confined to executing within a single file object. In
accordance with the in-process model, a thread can visit different file objects by invoking
their methods (assuming that it has access to capabilities with appropriate access rights).

Synchronisation

As indicated in section 3, explicit synchronisation of the state data of an object is always
necessary in an in-process system. Nevertheless, synchronisation as such is not part of the
Timor language, in contrast with Java. However, there is a basic type Semaphore, which
is part of the language definition.

The normal programmer does not have to explicitly program with semaphores.
Instead he can for example easily achieve mutual exclusion or reader-writer
synchronisation simply by associating general purpose synchronising qualifiers with the
objects to be synchronised (at both the local and file object levels [10]).

Explicit coordination of the cooperating threads of a process can also be achieved by
semaphores (e.g. used as private semaphores) and if appropriate local or file objects can
be used as bounded buffers for exchanging information [3].

Processes, like file objects, have world-wide unique identifiers which are not re-used
over time. Each thread has an identifier which consists of the process number and a suffix
(which is unique within the process). The initial thread of a process is always thread 0.
There is a pseudo variable processNum which allows the process number of the
currently active thread to be obtained, and a similar pseudo variable threadNum for
obtaining the current thread number (within its process). In this way communicating
threads can identify each other.

Thread Deletion

A thread persists either until it is explicitly deleted (using a reference) or until it exits
from the method in which it started executing. In addition all the threads created within a
particular file object (i.e. where their thread references are stored) are deleted when the
file object is deleted. All the threads belonging to a process are deleted when the process
is deleted.

Deleting a thread has no effect on other threads which it may have created, or which
may have created it. This is possible because there is no implicitly declared data which a
thread automatically shares with its parent or children threads that is automatically
deleted when a thread terminates.

VOL. 6, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 101

5 THE TIMOR PROCESS MODEL

A normal application programmer who wishes to write parallel programs need
understand only a straightforward thread concept and where appropriate synchronisation
qualifiers, as discussed in the last section. However, a system programmer can use further
features to implement types to create and/or manage processes for the SPEEDOS
operating system7 [4] or for the SPEEDOS environment used by Timor compilers in more
conventional operating systems [11]. These features are now briefly outlined.

Creating Processes

In OO languages such as Java the initial thread associated with a program execution is
created when the program is started. This is not normally the case in Timor, which
automatically supports the concept of persistent processes [6].

Just like a file object in Timor [11], a process is a persistent object (which can be
visible both at the OS level and the programming language level). A persistent process
can loosely be thought of as a persistent file object in which the linkage stacks for inter-
file object calls made by its threads are stored (and are used when the threads are active).

Each process object and each file object has an owner, in the sense of an externally
identifiable user, and the unique identifier of this owner is recorded as part of the object8.
Normal file objects created by a process have their ownership identifier set to that of the
owner of the creating process. In this way it is always possible to identify the owner of a
process and the owner of a file object. Executing code can obtain the owner identifier of
the objects in his current environment, including the owner of the current process and
current file. This can be used for example for carrying out protection checks (see [12]).

Timor supports a predefined type Process, which for technical reasons can only be
instantiated as a file object. Two makers are provided to create a new process object. The
first of these creates an additional process for the owner of the currently active process,
e.g.

Process** myProcessCap = create Process.init();

The effect of this invocation is that an "empty" process object is created, i.e. without
threads. The owner of this is marked as the owner of the creating process.

The second maker, called newUser, creates an "empty" process object for a new
user, i.e. a new owner identifier is allocated for the new process:

Process** myProcessCap = create Process.newUser();

7 www.speedos-security.org
8 One key reason for this is that it supports a number of protection facilities [12]

PERSISTENT OBJECTS AND CAPABILITIES IN TIMOR

102 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 6

Creating External Threads

A process is only useful if it contains threads which can be activated. In Timor there are
two kinds of threads: internal threads for executing parallel programs, and external
threads, which are responsible for initiating activities for the user, executing sequential
programs and initiating parallel programs. As was described in section 4 internal threads
are addressed and controlled by references, and therefore provide parallel activities for
the methods associated with a particular file object (although they can visit other file
objects), while an external thread represents an independent user activity associated with
a process object which is addressed and controlled via capabilities. Hence an external
thread is visible globally (e.g. at the OS level) and its capabilities can also be passed from
one Timor file object to another.

A process has at most one external thread, which a user creates via the
createThread method of the process object with which it is to be associated:

Thread** firstThread =
 myProcessCap.createThread(startObject, method, param);

If the parameters are invalid, this method can return the value null. The startObject
is a capability for the file object in which the new thread starts to execute9. The method
parameter is of type int, and defines the number of the method in which the thread starts
executing10 and the param parameter is a capability9 which defines the addressing
environment of the new thread. (For example it can be a capability for a directory –
typically mapping string names to capabilities - which forms the root of the directory
system available to the new thread.)

The effect of invoking createThread is that space for a linkage stack is made
available in the process object (see below), the new thread begins executing in the
defined method of the start object, and this method receives the param capability as its
only parameter, i.e. only methods which are defined to accept a single capability as a
parameter can be started by createThread, and any value which they return is lost.
These are not serious limitations, since threads created in this way are special, as we shall
now see.

Deleting Processes and External Threads

The basic idea behind a persistent process is that it exists, and can contain persistent
threads, over a potentially long period of time. In accordance with the in-process model,
its existence is independent of the existence of any other object (file, program, etc.).
Under normal circumstances it is deleted only when an explicit decision is made (by
invoking the delete method on the process capability).

9 Its formal type is a Handle, since capabilities can be passed for different types of objects.
10 At the SPEEDOS level the public methods of a file object are numbered, starting at zero. Further objects
can be defined which map these numbers to the names used in the source code of a type.

VOL. 6, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 103

An external thread (like an internal thread) is automatically deleted if it exits from
the method in which it was created. An external thread can also be deleted if the delete
method of its thread capability is invoked. The deletion of an external thread does not
result in the deletion of its process, even if there are no further threads in the process, i.e.
a process can be reused by creating a new thread using the createThread method.

Long Suspending External Threads

The idea behind persistent processes is that not only the process, viewed as a storage unit,
but also its threads, as active computational units, can persist over long periods. For this
purpose the SPEEDOS run-time environment provides a "long suspend" facility, which
allows an external thread to voluntarily suspend itself for a long period (e.g.
corresponding to the time a user wishes to log out or to suspend the execution of a
particular program). A thread in the long suspended state does not need to be registered
with the system's process/thread scheduler.

Long suspending can take two forms. An external thread can simply deregister itself,
without affecting the execution of its internal threads, i.e. the latter can continue
processing. This option is useful, for example, when a user wishes to log out but would
like programs which he has started to continue executing in his absence.

Alternatively a long suspending external thread can request that the execution of its
internal threads are also frozen11. This alternative can be useful for example simply to
freeze the execution of a program which may not be executing as expected (e.g. because
it appears to be executing in an infinite loop), in preparation for debugging, and it can be
used to bring activity to a stop before the system is shut down.

Protecting Persistent Processes and their Threads

When the owner of an external thread decides to log out (or to suspend the execution of
one of his programs), the Command Language Interpreter (CLI) - or any other file object
which accepts a deactivation command - could in principle directly invoke the long
suspend facility. However, to protect his objects and processes the CLI and other objects
which accept a logout command should treat this as a signal to invoke a logout method of
an authentication object, which then calls the long suspend method supported by the
Timor run-time environment.

The effect of this is that when the user indicates that he wants to continue, usually
via a login command to the Timor run-time environment, execution of the thread resumes
at the statement following the long suspend call, i.e. in the logout method of the
authentication object. The authentication object can then carry out arbitrary checks
defined by the owner of the process to ensure that the user now attempting to activate the
process is who he claims to be. Since users can select their own authentication objects, a

11 In this case measures might need to be taken to avoid locking out threads from other processes which
might be concurrently active in a file. The nature of these measures depends on the environment in which
the threads are working. For example in a database system a roll-back may be appropriate, in a simple
semaphore environment an exception might be raised which causes semaphores to be released, etc.

PERSISTENT OBJECTS AND CAPABILITIES IN TIMOR

104 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 6

hacker has no a priori knowledge of how he can imitate the user (because there is no
centrally defined authentication mechanism – such as a password system – and no
centrally stored authentication information – such as a password file).

A simple modification of this procedure can be used to protect newly created
external threads: when a new thread is activated, as described above, its start object might
be defined to be a CLI object in a method which immediately calls the user's
authentication object. The effect will be that the new thread enters the logged out state
and can remain dormant until its owner, possibly a new user, first activates it.

6 DISTRIBUTION

The Timor distribution concept is in principle12 very simple: Timor file and process
objects can be located on any computer which has the necessary run-time software
support. File objects can be accessed independently of their location, provided that an
access path between cooperating systems exists (e.g. via the Internet).

In this context "access" to a file object means that one of its methods is invoked by a
Timor thread currently active in some other file object, which may be stored on the same
computer or some other computer in the network. The prerequisite for making a remote
call (like the invocation of a file method of a file object on the same computer node) is
the possession of a capability (with appropriate access rights) for the remote file. The
location of a file can remain completely invisible to the holder of a capability.

In contrast with Java, for example, the semantics of invoking a remote object and a
local object do not change. There are no features in Timor for serialising objects passed
as parameters, and Timor does not have inconsistent semantics with respect to the passing
of parameters (see the discussion in section 6 of [11]).

At the level of Timor programs and files, inter-file method invocations are the only
means of communication between Timor file objects. There are neither message passing
primitives nor protocols, although these can easily be simulated via user level file objects
with appropriate methods (e.g. corresponding to bounded buffers).

Library routines can of course be developed which allow Timor programs to
communicate with non-Timor programs and data entities which may be on remote (or
local) nodes, but these are not relevant to the discussion in this paper.

12 In practice communication errors can occur in a distributed system (e.g. when the destination computer
cannot be reached, or when it fails to provide a response after acknowledging the receipt of a method
invocation). Handling such cases cleanly implies– as in other systems - that appropriate exceptions must be
provided and that recovery software can be provided in libraries, etc.

VOL. 6, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 105

7 IMPLEMENTATION ISSUES

As was described in [11], the basic assumption in Timor is that objects are persistent.
This applies equally to processes. All processes persist until they are explicitly or
implicitly deleted. To this end Timor assumes not only a normal run-time environment
(as for other programming languages), but also a more extensive run-time environment,
in the form of an emulator for relevant parts of the SPEEDOS system (or better still, a
run-time environment which is an actual SPEEDOS system).

The key features of a SPEEDOS emulator with respect to persistent processes
include the use of

• memory mapped files as containers for file and process objects, thus avoiding the
need to "serialise" data structures,

• a mechanism which allows threads to invoke the methods of local and remote file
objects in a uniform manner, and

• the provision of a method for suspending processes at log out, thus allowing the
process to carry out its own authentication checks (see section 5).

Persistent Process and Stack Organisation

When a new Timor process is created, a new persistent container (in a non-SPEEDOS
environment a mapped file) is allocated at the node on which the creation operation takes
place. Any threads subsequently created for this process are stored in this container. For
each thread there is a stack of linkage information defining the inter-file calls made by the
thread. From this linkage stack the current "location" of the thread (i.e. the file object in
which it is currently active) can be established at any time.

For managing local calls within a file object (i.e. calls to local objects or to internal
methods of an object) the language run-time system organises a local call stack which
does not affect the process object, but which refers back to the process object of the
thread in question, thus allowing the process container of each thread active in the file
object to be located.

This organisation not only gives the compiler freedom to organise stacks, but it also
solves the following problem which can occur in persistent systems.

Suppose that, as is frequently the case in practice, a method of a file object (or one of
its local objects) has the task of creating a new local object – say a new bank account in a
banking system – then the programmer will typically produce code along the following
lines:

impl BankAccountsImpl of BankAccounts {
state:
 List<BankAccount*> accountsList =
 List<BankAccount*>.init();
instance:
 op void createNewAccount(...) {

PERSISTENT OBJECTS AND CAPABILITIES IN TIMOR

106 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 6

 BankAccount* newAccount = new BankAccount.init(...);
 accountsList.insert(newAccount);
}

If the local stack frames of threads were stored in the process object the effect of
executing such a statement would be that the new item (here newAccount) would be
created in (a heap or stack of) the process object, and inserting it into the main persistent
structure (in the file object) would result in a copy operation, which for large items would
be unacceptable. By defining that the stack frames of a thread are stored in the container
of the file object whose method is being executed, locally instantiated objects are created
in the heap of the file object itself, such a copy operation can be avoided. (Note also that
references between file objects are not permitted, as is explained in [11], so that a
solution which involves instantiating an item in the file heap but referencing it from a
stack in the process object is also excluded.) From the local stack of a thread (in the file
object) it is possible to establish the identity of the process object to which the thread
belongs.

Implementing Processes in Distributed Systems

Capabilities can be used to invoke methods of files irrespective of their location. Hence a
thread active in a file on one node of a network can simply invoke a method of a file on a
different node (assuming that it has a valid capability for the remote file which provides
access to the method requested).

In principle there are two ways of managing this situation: the data can be brought to
the process, e.g. as in distributed virtual memory (DSM) implementations, or the process
can be taken to the data, as for remote procedure calls (RPC). In genuine SPEEDOS
systems a DSM implementation is the norm, although an RPC implementation can be
easily organised. In the context of a SPEEDOS emulator for a conventional system,
where paging across networks is not the norm, the more efficient implementation is a
form of RPC, i.e. the process is taken to the data. This functions as follows.

When the first invocation of a file object by a thread of a process on a remote node13
occurs, the SPEEDOS emulator on that node creates a proxy process container for the
invoking process. The linkage data for the thread held in the process object of the calling
node is updated to indicate that the thread has been transferred to the destination node. At
the destination node the proxy process object is updated to reflect the origin of the call for
the current thread, which retains the same identity as it had at the calling node. The
SPEEDOS emulator organises that parameters (which can only be values or capabilities,
cf. [11]) are copied to the proxy container. Thereafter the process can proceed in the
appropriate file environment at the new node as if it were in the old node.

When an inter-file return operation is invoked, this process is reversed, i.e. return
values are passed back to the calling node, the linkage information for the thread is

13 Invocations of "remote" objects (in the Java sense) on the same node are not special for Timor, as the
process object exists independently of a particular file object on the same node.

VOL. 6, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 107

deleted and if this is the last thread in the proxy process container, the latter is deleted.
Control is then returned, as usual, to the caller in the calling node.

8 RELATED WORK

The most important features of Timor persistence which find parallels in other OO
programming languages (especially Java) were discussed in [11]. It is appropriate here to
add that Java and other OO languages have no notion of a persistent process nor do they
genuinely support the in-process process structuring model, despite attempts to give this
appearance.

This is particularly clear in relation to remote method invocation. Because objects in
Java are not naturally persistent, the destination instance of a remote method invocation
must first be activated before it can be invoked remotely, i.e. remote objects, unlike
Timor files, are active entities with their own thread(s). Hence under the surface the out-
of-process model is used for communicating between remote objects in Java (unlike
Timor), even though the programmer is given the impression that he is using the in-
process model (as in the case of invocations between methods of local objects within a
single program).

One consequence of this distinction is that the protection advantages of the in-
process model discussed in [12] are not readily available in Java (and could not be made
readily available without considerable programming effort and run-time cost). In
particular Java does not (and could not, without considerable run-time overhead) provide
a mechanism which uniquely identifies the user associated with an active process (in
contrast with Timor, see section 3). This is unfortunate because this feature provides the
basis for several significant protection possibilities, especially in conjunction with
qualifying types and bracket methods (e.g. access control lists and revocation lists).

Finally, it is at least as easy in Timor to apply reader-writer synchronisation to an
object (file or local) using a reader-writer qualifier [10] as it is to use a monitor or
equivalent in a language such as Java, and the effect is greater parallelism.

9 CONCLUSION

A companion paper [11] presented a new concept for supporting persistent objects in
programming languages, which inter alia allows a straightforward implementation of
persistent database systems. This paper has extended the idea by describing how
persistent processes can also be defined and implemented.

The Timor concept of persistent processes has a significant advantage over process
concepts of other programming languages (leaving aside the protection advantages
discussed in [12]), viz. distribution is genuinely invisible to the user (unless he
specifically wants to know about the locations of his objects) without affecting the
semantics of the language.

PERSISTENT OBJECTS AND CAPABILITIES IN TIMOR

108 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 6

REFERENCES

[1] K. B. Bruce, L. Cardelli, G. Castagna, The Hopkins Object Group, G. T.
Leavens, and B. Pierce, "On Binary Methods", Theory and Practice of Object
Systems, vol. 1, no. 3, pp. 221-242, 1995.

[2] P. J. Courtois, F. Heymans, and D. L. Parnas, "Concurrent Control with
Readers and Writers," Communications of the ACM, vol. 14, no. 10, pp. 667-
668, 1971.

[3] E. W. Dijkstra, "Cooperating Sequential Processes," in Programming
Languages, E. Genuys, Ed.: Academic Press, 1968, pp. 43-112.

[4] K. Espenlaub, "Design of the SPEEDOS Operating System Kernel," PhD
Thesis, Department of Computer Structures, University of Ulm, 2005.

[5] C. A. R. Hoare, "Monitors: An Operating System Structuring Concept,"
Communications of the ACM, vol. 17, no. 10, pp. 549-557, 1974.

[6] J. L. Keedy and K. Vosseberg, "Persistent Protected Modules and Persistent
Processes as the Basis for a More Secure Operating System," Proceedings of
the 25th Hawaii International Conference on System Sciences, 1992, vol. 1,
pp. 747-756.

[7] J. L. Keedy, G. Menger, and C. Heinlein, "Support for Subtyping and Code
Re-use in Timor," 40th International Conference on Technology of Object-
Oriented Languages and Systems (TOOLS Pacific 2002), Sydney, Australia,
2002, Conferences in Research and Practice in Information Technology, vol.
10, pp. 35-43.

[8] J. L. Keedy, G. Menger, and C. Heinlein, "Inheriting from a Common
Abstract Ancestor in Timor," Journal of Object Technology, vol. 1, no. 1, pp.
81-106, www.jot.fm/issues/issue_2002_05/article2, 2002.

[9] J. L. Keedy, G. Menger, and C. Heinlein, "Taking Information Hiding
Seriously in an Object Oriented Context," Net.ObjectDays, Erfurt, Germany,
2003, pp. 51-65.

[10] J. L. Keedy, G. Menger, C. Heinlein, and F. Henskens, "Qualifying Types
Illustrated by Synchronisation Examples," in Objects, Components,
Architectures, Services and Applications for a Networked World,
International Conference NetObjectDays, NODe 2002, Erfurt, Germany, vol.
LNCS 2591, M. Aksit, M. Mezini, and R. Unland, Eds.: Springer, 2003, pp.
330-344,
http://link.springer.de/link/service/series/0558/papers/2591/25910330.pdf.

VOL. 6, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 109

[11] J. L. Keedy, K. Espenlaub, C. Heinlein, and G. Menger, "Persistent Objects
and Capabilities in Timor," in Journal of Object Technology, vol. 6, no. 4,
May-June 2007, pp. 103-123 http://www.jot.fm/issues/issue_2007_05/article3

[12] J. L. Keedy, K. Espenlaub, C. Heinlein, and G. Menger, "Security and
Protection in Timor Programs," (submitted for publication), 2006.

[13] H. C. Lauer and R. M. Needham, "On the Duality of Operating System
Structures," ACM Operating Systems Review, vol. 13, no. 2, pp. 3-19, 1979.

[14] K. Ramamohanarao, "A New Model for Job Management Systems", PhD
Thesis, Department of Computer Science, Monash University, 1980.

About the authors

J. Leslie Keedy retired from the position of Professor and Head,
Department of Computer Structures, University of Ulm, Germany in
2005, where he previously led the Timor language design and the
Speedos operating system design groups. His email address is
keedy@jlkeedy.net. His biography can be visited at
http://www.jlkeedy.net/biography_short.php

Klaus Espenlaub completed his Ph.D. in Computer Science at the
University of Ulm in 2005. He is currently employed by InnoTek
Systemberatung GmbH. His research interests include secure
operating systems, protection mechanisms and computer architecture.
His email address is klaus@espenlaub.com.

Christian Heinlein has been working as a Scientific Assistant at the
University of Ulm, Germany, where he conducted the research project
APPLEs, that aims at developing “Advanced Procedural
Programming Languages,” which are both conceptually simpler and
more flexible than standard object-oriented languages. He can be
reached at christian.heinlein@uni-ulm.de. See also
www.informatik.uni-ulm.de/rs/mitarbeiter/ch/apples.

Gisela Menger received a Ph.D. in Computer Science from the
University of Ulm in 2000. She recently retired from the Department
of Computer Structures at the University of Ulm. Her research
interests include programming language design and software
engineering.

